6,643 research outputs found

    Video Processing with Additional Information

    Get PDF
    Cameras are frequently deployed along with many additional sensors in aerial and ground-based platforms. Many video datasets have metadata containing measurements from inertial sensors, GPS units, etc. Hence the development of better video processing algorithms using additional information attains special significance. We first describe an intensity-based algorithm for stabilizing low resolution and low quality aerial videos. The primary contribution is the idea of minimizing the discrepancy in the intensity of selected pixels between two images. This is an application of inverse compositional alignment for registering images of low resolution and low quality, for which minimizing the intensity difference over salient pixels with high gradients results in faster and better convergence than when using all the pixels. Secondly, we describe a feature-based method for stabilization of aerial videos and segmentation of small moving objects. We use the coherency of background motion to jointly track features through the sequence. This enables accurate tracking of large numbers of features in the presence of repetitive texture, lack of well conditioned feature windows etc. We incorporate the segmentation problem within the joint feature tracking framework and propose the first combined joint-tracking and segmentation algorithm. The proposed approach enables highly accurate tracking, and segmentation of feature tracks that is used in a MAP-MRF framework for obtaining dense pixelwise labeling of the scene. We demonstrate competitive moving object detection in challenging video sequences of the VIVID dataset containing moving vehicles and humans that are small enough to cause background subtraction approaches to fail. Structure from Motion (SfM) has matured to a stage, where the emphasis is on developing fast, scalable and robust algorithms for large reconstruction problems. The availability of additional sensors such as inertial units and GPS along with video cameras motivate the development of SfM algorithms that leverage these additional measurements. In the third part, we study the benefits of the availability of a specific form of additional information - the vertical direction (gravity) and the height of the camera both of which can be conveniently measured using inertial sensors, and a monocular video sequence for 3D urban modeling. We show that in the presence of this information, the SfM equations can be rewritten in a bilinear form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale applications. The proposed SfM algorithm is experimentally demonstrated to have favorable properties compared to the sparse bundle adjustment algorithm. We provide experimental evidence indicating that the proposed algorithm converges in many cases to solutions with lower error than state-of-art implementations of bundle adjustment. We also demonstrate that for the case of large reconstruction problems, the proposed algorithm takes lesser time to reach its solution compared to bundle adjustment. We also present SfM results using our algorithm on the Google StreetView research dataset, and several other datasets

    Utilization of Robust Video Processing Techniques to Aid Efficient Object Detection and Tracking

    Get PDF
    AbstractIn this research, data acquired by Unmanned Aerial Vehicles (UAVs) are primarily used to detect and track moving objects which pose a major security threat along the United States southern border. Factors such as camera motion, poor illumination and noise make the detection and tracking of moving objects in surveillance videos a formidable task. The main objective of this research is to provide a less ambiguous image data for object detection and tracking by means of noise reduction, image enhancement, video stabilization, and illumination restoration. The improved data is later utilized to detect and track moving objects in surveillance videos. An optimization based image enhancement scheme was successfully implemented to increase edge information to facilitate object detection. Noise present in the raw video captured by the UAV was efficiently removed using search and match methodology. Undesired motion induced in the video frames was eliminated using block matching technique. Moving objects were detected and tracked by using contour information resulting from the implementation of adaptive background subtraction based detection process. Our simulation results shows the efficiency of these algorithms in processing noisy, un-stabilized raw video sequences which were utilized to detect and track moving objects in the video sequences

    Digital Image Stabilization

    Get PDF

    Automatic aerial target detection and tracking system in airborne FLIR images based on efficient target trajectory filtering

    Get PDF
    Common strategies for detection and tracking of aerial moving targets in airborne Forward-Looking Infrared (FLIR) images offer accurate results in images composed by a non-textured sky. However, when cloud and earth regions appear in the image sequence, those strategies result in an over-detection that increases very significantly the false alarm rate. Besides, the airborne camera induces a global motion in the image sequence that complicates even more detection and tracking tasks. In this work, an automatic detection and tracking system with an innovative and efficient target trajectory filtering is presented. It robustly compensates the global motion to accurately detect and track potential aerial targets. Their trajectories are analyzed by a curve fitting technique to reliably validate real targets. This strategy allows to filter false targets with stationary or erratic trajectories. The proposed system makes special emphasis in the use of low complexity video analysis techniques to achieve real-time operation. Experimental results using real FLIR sequences show a dramatic reduction of the false alarm rate, while maintaining the detection rate

    Video alignment to a common reference

    Get PDF
    2015 Spring.Includes bibliographical references.Handheld videos often include unintentional motion (jitter) and intentional motion (pan and/or zoom). Human viewers prefer to see jitter removed, creating a smoothly moving camera. For video analysis, in contrast, aligning to a fixed stable background is sometimes preferable. This paper presents an algorithm that removes both forms of motion using a novel and efficient way of tracking background points while ignoring moving foreground points. The approach is related to image mosaicing, but the result is a video rather than an enlarged still image. It is also related to multiple object tracking approaches, but simpler since moving objects need not be explicitly tracked. The algorithm presented takes as input a video and returns one or several stabilized videos. Videos are broken into parts when the algorithm detects background change and it becomes necessary to fix upon a new background. We present two techniques in this thesis. One technique stabilizes the video with respect to the first available frame. Another technique stabilizes the videos with respect to a best frame. Our approach assumes the person holding the camera is standing in one place and that objects in motion do not dominate the image. Our algorithm performs better than previously published approaches when compared on 1,401 handheld videos from the recently released Point-and-Shoot Face Recognition Challenge (PASC)

    Object-Based Rendering and 3D reconstruction Using a Moveable Image-Based System

    Get PDF
    published_or_final_versio

    Fast Video Stabilization Algorithms

    Get PDF
    A fast and robust electronic video stabilization algorithm is presented in this thesis. It is based on a two-dimensional feature-based motion estimation technique. The method tracks a small set of features and estimates the movement of the camera between consecutive frames. It is used to characterize the motions accurately including camera rotations between two imaging instants. An affine motion model is utilized to determine the parameters of translation and rotation between images. The determined affine transformation is then exploited to compensate for the abrupt temporal discontinuities of input image sequences. Also, a frequency domain approach is developed to estimate translations between two consecutive frames in a video sequence. Finally, a jitter detection technique to isolate vibration affected subsequence of an image sequence is presented. The experimental results of using both simulated and real images have revealed the applicability of the proposed techniques. In particular, the emphasis has been to develop real time implementable algorithms, suitable for unmanned vehicles with severe payload constraints

    Motion Segmentation Aided Super Resolution Image Reconstruction

    Get PDF
    This dissertation addresses Super Resolution (SR) Image Reconstruction focusing on motion segmentation. The main thrust is Information Complexity guided Gaussian Mixture Models (GMMs) for Statistical Background Modeling. In the process of developing our framework we also focus on two other topics; motion trajectories estimation toward global and local scene change detections and image reconstruction to have high resolution (HR) representations of the moving regions. Such a framework is used for dynamic scene understanding and recognition of individuals and threats with the help of the image sequences recorded with either stationary or non-stationary camera systems. We introduce a new technique called Information Complexity guided Statistical Background Modeling. Thus, we successfully employ GMMs, which are optimal with respect to information complexity criteria. Moving objects are segmented out through background subtraction which utilizes the computed background model. This technique produces superior results to competing background modeling strategies. The state-of-the-art SR Image Reconstruction studies combine the information from a set of unremarkably different low resolution (LR) images of static scene to construct an HR representation. The crucial challenge not handled in these studies is accumulating the corresponding information from highly displaced moving objects. In this aspect, a framework of SR Image Reconstruction of the moving objects with such high level of displacements is developed. Our assumption is that LR images are different from each other due to local motion of the objects and the global motion of the scene imposed by non-stationary imaging system. Contrary to traditional SR approaches, we employed several steps. These steps are; the suppression of the global motion, motion segmentation accompanied by background subtraction to extract moving objects, suppression of the local motion of the segmented out regions, and super-resolving accumulated information coming from moving objects rather than the whole scene. This results in a reliable offline SR Image Reconstruction tool which handles several types of dynamic scene changes, compensates the impacts of camera systems, and provides data redundancy through removing the background. The framework proved to be superior to the state-of-the-art algorithms which put no significant effort toward dynamic scene representation of non-stationary camera systems
    corecore