
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

6-2006

Fast Video Stabilization Algorithms Fast Video Stabilization Algorithms

Mohammed A. Alharbi

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Signal Processing Commons

Recommended Citation Recommended Citation
Alharbi, Mohammed A., "Fast Video Stabilization Algorithms" (2006). Theses and Dissertations. 3273.
https://scholar.afit.edu/etd/3273

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F3273&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/275?utm_source=scholar.afit.edu%2Fetd%2F3273&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/3273?utm_source=scholar.afit.edu%2Fetd%2F3273&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

AFIT/GCS/ENG/06-02

 Fast Video Stabilization Algorithms

THESIS

Mohammed A. Alharbi, Captain, RSAF

AFIT/GCS/ENG/06-02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GCS/ENG/06-02

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, the United
States Government, or Royal Saudi Air Forces.

AFIT/GCS/ENG/06-02

Fast Video Stabilization Algorithms

THESIS

Presented to the Faculty

Department of Electrical and Computer Engineering

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science

Mohammed A. Alharbi, B.S.Cp.E.

Captain, RSAF

June 2006

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

AFIT/GCS/ENG/06-02

Fast Video Stabilization Algorithms

Mohammed A. Alharbi, B.S.Cp.E.
Captain, RSAF

 Approved:

 /signed/ 31 May 2006

 Dr. Guna S. Seetharaman, Ph.D. (Chairman) date

 /signed/ 31 May 2006

 Lt. Col. Matthew E. Goda, Ph.D. (Member) date

 /signed/ 31 May 2006

 Maj. Scott R. Graham, Ph.D. (Member) date

AFIT/GCS/ENG/06-02

iv

Abstract

A set of fast and robust electronic video stabilization algorithms are

presented in this thesis. The first algorithm is based on a two-dimensional

feature-based motion estimation technique. The method tracks a small set of

features and estimates the movement of the camera between consecutive

frames. An affine motion model is utilized to determine the parameters of

translation and rotation between images. The determined affine

transformation is then exploited to compensate for the abrupt temporal

discontinuities of input image sequences. Also, a Frequency domain

approach is developed to estimate translations between two consecutive

frames in a video sequence. Finally, a jitter detection technique has been

developed to isolate vibration affected subsequences from an image

sequence. The experimental results of using both simulated and real images

have revealed the applicability of the proposed techniques. In particular, the

emphasis has been to develop real time implementable algorithms, suitable

for unmanned vehicles with severe payload constraints.

v

Acknowledgement

I offer my sincere thanks and appreciation to my advisor, Dr. Guna S.

Seetharaman, whose guidance and encouragement was extremely helpful

during this effort. I would also like to extend appreciation to my committee

members, Lt. Col. Matthew E. Goda and Maj. Scott R. Graham, for their

insight and useful advice.

 Mohammed A. Alharbi

vi

Table of Contents

 Page
Abstract ... iv
Acknowledgement.. v
Table of Contents .. vi
Table of Figures .. viii
List of Tables.. x

I. Introduction ... 1
1.1 Problem Statement... 1
1.2 Research Goal .. 1
1.3 Applications of DIS ... 2
1.4 Organization of the Study.. 3
1.5 Image Stabilization Methods ... 3

1.5.1 Digital Image Stabilization................................... 3
1.5.2 Optical Image Stabilization.................................. 6
1.5.3 Mechanical Image Stabilization 7

II. Literature Review .. 9

III. Background.. 12
3.1 Image Sampling ... 12
3.2 Quantization... 14
3.3 Converting Gray-scale Images to Binary Image Using

Thresholding .. 15
3.4 Histogram... 17
3.5 Cumulative Histogram... 18
3.6 Invariant Moments ... 20
3.7 Spatial Moments of Binary Images and Level Sets....... 21
3.8 Motion Analysis... 27

3.8.1 Image Translation... 27
3.8.2 Image Rotation ... 29
3.8.3 Image Scaling ... 32
3.8.4 Image Skewing ... 33

3.9 Image Interpolation.. 35

IV. Methodology... 38
4.1 Motion Estimation Module.. 38

4.1.1 Image Segmentation ... 44
4.1.2 Data Clustering... 48

4.2 Motion Compensation Module 53
Page

vii

4.3 Frequency Domain Approach To Estimate Image
Translation ... 54
4.3.1 Introduction .. 54
4.3.2 Transforming Domain .. 55
4.3.3 Fourier Transform of an Image 55
4.3.4 Translation Estimation 59
4.3.5 Rotation and Scaling Estimation........................ 62

4.4 Affine-Motion Inversion Scheme for Jitter Detection... 63

V. Results and Analysis... 71
5.1 Affine Based Approach for Motion Estimation 71

5.1.1 Simulation .. 71
5.1.2 Experiment ... 77

5.2 Frequency Domain Approach to Estimate Image
Translation ... 86
5.2.1 Simulation .. 86
5.2.2 Experiment ... 88

5.3 Jitter Detection Algorithm ... 94

VI. Conclusion .. 102
6.1 Summary .. 102
6.2 Limitations ... 102
6.3 Additional Remarks ... 103
6.4 Future work.. 103

Appendix A... 104

Bibliography ... 124

viii

Table of Figures

Figure Page

Figure 1-1: Optical Image Stabilization [15]...................................... 7
Figure 1-2: Gyroscopic Stabilizer [13] ... 8
Figure 3-1: Spatially sampled image containing N x M picture

elements ... 13
Figure 3-2: An example of (a) a sampled and digitized 4x4

sub-image and (b) its corresponding grayscale 15
Figure 3-3: Image histogram .. 18
Figure 3-4: Cumulative histogram.. 19
Figure 3-5: Center of mass of a gray-scale image 24
Figure 3-6: Center of mass of a binary image 25
Figure 3-7: Translation example... 28
Figure 3-8 Rotation Example .. 30
Figure 3-9: Image deformation to the right in the x-axis

direction ... 33
Figure 3-10: Image deformation to the lower direction of y-axis 34
Figure 3-11: Illustration that a rotation of the image requires

interpolation ... 35
Figure 3-12: Bilinear Interpolation... 36
Figure 4-1: DIS Model.. 38
Figure 4-2: Cumulative Histogtam of an image 46
Figure 4-3: Data Clustering example [34]. 48
Figure 4-4: Uncentered magnitude spectrum 57
Figure 4-5: The Centered magnitude spectrum 58
Figure 4-6: Uncentered spectrum of an image 58
Figure 4-7: The centered spectrum after using centring

property of DFT. .. 59
Figure 4-8: Rotation estimation. (a) Frequency values of a

reference image. (b) Frequency values of the
rotated image (θ=25 degrees) [37]................................. 63

Figure 4-9: Inverted Mexican hat signal... 67
Figure 4-10: The digital filter plot used in the jitter detection

process.. 70
Figure 5-1: Reference image .. 72
Figure 5-2: The constructed image by shifting the original

image by 19 pixels ... 73

ix

Figure 5-3: The constructed image by rotating the original
image by 0.0524 radians .. 74

Figure 5-4: Reconstructed image from Table 5-1 76
Figure 5-5: Reconstructed image from Table 5-2 76
Figure 5-6: Image taken at time = t .. 78
Figure 5-7: Image taken at time = t+1 ... 78
Figure 5-8: Difference between image at time= t and image at

tim= t+1... 79
Figure 5-9: Image Histogram.. 80
Figure 5-10: Cumulative Histogram... 81
Figure 5-11: Binary subimages resulted from segmentation

process.. 82
Figure 5-12: Rotation-Deformation angles... 83
Figure 5-13: Reconstructed image at time=t+1 84
Figure 5-14: Difference between image at time=t+1 and the

constructed image .. 85
Figure 5-15: Original image ... 86
Figure 5-16: Constructed image by shifting the original image......... 87
Figure 5-17: Image at time=t .. 88
Figure 5-18: Image at time=t+1 ... 89
Figure 5-19: Phase difference of images at time=t and time=t+1...... 90
Figure 5-20: Phase difference in u-axis .. 91
Figure 5-21: Phase difference in v-axis .. 91
Figure 5-22: Reconstructed image from translation estimated

values ... 92
Figure 5-23: The difference between the constructed image and

image at time = t+1.. 93
Figure 5-24: The motion parameter θ of the frames sequence........... 94
Figure 5-25: Convolution output of θ and .. 95
Figure 5-26: The frames of the first jitter ... 96
Figure 5-27: The frames of the second jitter 97
Figure 5-28: The frames of the first jitter after stabilization 99
Figure 5-29: The frames of the second jitter after stabilization 100

x

List of Tables

Table Page

Table 4-1: Motion vectors variables.. 41
Table 4-2: Phase of every point in u-v plane 61
Table 4-3: The digital filter used in the jitter detection process 69
Table 5-1: Estimated Motion Parameters for Pure Image

Translation ... 73
Table 5-2: Estimated Motion Parameters for Pure Image

Rotation.. 75
Table 5-3: Estimated motion vectors .. 84
Table 5-4: Estimated motion translation of the simulated

images .. 87
Table 5-5: FFT estimated motion translation of the simulated

images .. 92
Table 5-6: Estimated Motion Vectors ... 98

1

Fast Video Stabilization Algorithms

1. I. Introduction

1.1 Problem Statement

Assume a camera rigidly mounted on a vehicle in motion. If the

motion of the vehicle is smooth, so will be the corresponding image

sequence taken from the camera. In the case of small unmanned aerial

imaging system, and off road navigating ground vehicles, the onboard

cameras experience sever jitter and vibration. Consequently, the video

images acquired from these platforms have to be preprocessed to eliminate

the jitter induced variations before human analysis. The task at hand is to

detect the jitter and eliminate its effect. It is composed of two subtasks: First,

to develop a reliable method to detect in real-time the subsequence affected

by jitters. Second, to develop a strategy to interpolate the images, without

sacrificing detail (dismount targets).

1.2 Research Goal

 Motion in video images is caused by either the object motion or the

camera movement. Digital (electronic) image stabilization (DIS/EIS) system

2

endeavor to produce a compensated video sequence so that image motion

due to the camera’s undesirable vibration or juggles can be removed [1].

The goal of this research is to introduce a new approach to stabilize image

sequence. The newly developed algorithm provides a fast and robust

stabilization system, and alters real-time performance.

1.3 Applications of DIS

Modern (contemporary) light weight digital camera, camcorders,

CCD sensing arrays, and next-generation mobile phone with visual display,

etc., are principal candidates in need of automatic image stabilization. They

are prone to inevitable and undesirable camera motion during the image

capturing process. It would be worthwhile to have a digital image sequence

stabilization scheme that can further stabilize the image sequence for

improving the subjective quality of the video sequence obtained. Moreover,

an image stabilization algorithm is reported to be beneficial to the coding

efficiency of video signals [6]. It also has been used for the computation of

egomotion [17, 18], detection and tracking of Independently Moving Objects

(IMOs) [20, 21, 22], and video compression [19].

The developed algorithm is being implemented for Unmanned Arial

Vehicle (UAV) surveillance applications.

3

1.4 Organization of the Study

This thesis is organized into five chapters. The first chapter presents

the introduction, problem statement, the goal of the research, and finally it

summarizes the three types of image stabilization methods. Chapter two

reviews some related previous works. Chapter three presents fundamental

concepts in the field of image processing which are necessary to understand

the methodology used to solve the problem being studied. Chapter four

explains the methodologies and the techniques used to implement the

various algorithms. Chapter five documents the data resulted from the

algorithms test. Chapter six summarizes the research, including limitations

and areas of future work.

1.5 Image Stabilization Methods

There are three types of image stabilizers currently available [23]:

Digital Image Stabilization (DIS), Optical Image Stabilization (OIS), and

Mechanical Image Stabilization (MIS).

1.5.1 Digital Image Stabilization

Digital Image Stabilization (DIS) systems use electronic processing to

control image stability. The DIS system starts working once the image hits

the light-sensing chip, the Charge Coupled Device (CCD). If, through its

4

sensors, the system detects what it thinks is camera vibration, it responds by

slightly moving the image so that it remains in the same place on the CCD.

For example, if the camera vibrations to the right, the image moves to the

left to compensate, thus eliminating the vibration [23].

There are two ways DIS works to reduce the perceived movement of

the image. One method increases the size of the image by digitally

"Zooming" in on the image so that it is larger than the CCD. By making the

image larger, the system can "pan and scan" within the image to counter the

movement created by the vibration. Because this system must digitally zoom

in on the image to slightly increase its size, it decreases the picture

resolution somewhat. The other method of electronic stabilization uses an

oversized CCD. The video image covers only about 90 percent of the chip's

area, giving the system space in which to move the image. When the image

is stable, the chip centers the image on the CCD. If the camera vibrates to

the right, the image has the space to roam to the left to compensate for the

vibration, keeping the subject of the image in exactly the same place on the

CCD, thus eliminating the vibration.

Detecting the vibration is key to the effectiveness of the system. DIS

systems use one of two ways to detect shaky video. Either they detect

movement within the image as recorded on the CCD or they detect the actual

movement of the camera. The first method of detection analyzes the changes

5

between the fields in each image. A specially designed feature of the camera

stores the odd and even fields of the video frame and look for changes

between them. If parts of the image change in one field but not the other, it

indicates that the subject in the field of view is moving but not the

background. If however, the entire image changes from one field to the next,

it most likely means there is camera vibration and the camera must correct

the image. To correct the camera vibration, the camera's electronics detect

the direction of the movement and shifts the active field so that it meshes

with the memorized field. A major disadvantage of this system is that if

there is a large object moving in the frame, it may be interpreted as camera

vibration and the camera will attempt to stabilize the subject causing a

blurring of the image and reduction in picture resolution. The camera can

also use motion sensors to detect camera vibration. Because this method

senses movement in the camera not the image, the movement of a subject in

the image cannot fool it. However, it will sometimes react at the beginning

of an intentional camera movement (such as a pan) and will take a short

moment to realize that you are moving the camera on purpose. Instead of a

smooth pan, the image will freeze and then leap into the pan suddenly [23].

6

1.5.2 Optical Image Stabilization

The Optical Image Stabilization (OIS) system, unlike the DIS system,

manipulates the image before it gets to the CCD. When the lens moves, the

light rays from the subject are bent relative to the optical axis, resulting in an

unsteady image because the light rays are deflected. By shifting the IS lens

group on a plane perpendicular to the optical axis to counter the degree of

image vibration, the light rays reaching the image plane can be steadied [15].

Since image vibration occurs in both horizontal and vertical

directions, two vibration-detecting sensors for yaw and pitch are used to

detect the angle and speed of movement. Then the actuator moves the IS

lens group horizontally and vertically thus counteracting the image vibration

and maintaining the stable picture. The Shift-IS component is located within

the lens groups and is most effective for lower frequency movements caused

by platform vibration or wind effect without increasing the overall size and

weight of the master lens. Figure 1-1 shows an illustration of this type of

image stabilization.

7

Figure 1-1: Optical Image Stabilization [15]

1.5.3 Mechanical Image Stabilization

Mechanical image stabilization involves stabilizing the entire camera,

not just the image. This type of stabilization uses a device called “Gyros”.

Gyros consist of a gyroscope with two perpendicular spinning wheels and a

battery pack. Gyroscopes are motion sensors. When the gyroscopes sense

movement, a signal is sent to the motors to move the wheels to maintain

8

stability. The gyro attaches to the camera’s tripod socket and acts like an

"invisible tripod" [13].

Figure 1-2: Gyroscopic Stabilizer [13]

Figure 1-2 shows a picture of a gyroscopic stabilizer. The vibration

gyro was improved by employing a tuning fork structure and a vibration

amplitude feedback control [33]. They are heavy, consume more power, and

are not suitable for energy sensitive and payload constrained imaging

applications.

9

2. II. Literature Review

Many methods for video stabilization have been reported over the past

few years. Most proposed methods compensate for all motion [2, 18, 20, 24,

25, 26], producing a sequence where the background remains motionless.

Other techniques only subtract the 3D rotation of the camera [27, 28, 29]

generating a de-rotated sequence. However, these methods can be

distinguished by the models adopted to estimate the camera motion [9].

Several two-dimensional and three-dimensional stabilization schemes are

described in [24]. For 2D models, in general all the estimated affine motion

parameters are compensated for, i.e., gross motion is removed from the input

sequence [20, 25, and 21]. Stabilization in 3D is achieved by re-rotating the

frames, generating a translation-only sequence, or a sequence containing

translation and low-frequency rotation. Yao et al. [29] Compensate for 3D

rotation by tracking multiple visual cues, like distant points and horizon

lines, using an extended Kalman filter for the estimation of the 3D motion

parameters of interest. Both kinematics and kinetic models suitable for

determining the smooth and oscillatory rotational motion components are

considered, so that smoothed rotation can be also obtained. A vehicle model

is also used in [27] to filter the high-frequency components of the rotational

10

parameters. A flow-based motion estimator applied to points on the horizon

(distant points) is used to estimate the rotational parameters, and the solution

is recursively refined to obtain smoothed motion. Two-dimensional models

are used by [17, 18, 19, and 22]. Another method in [19] seeks to use linear

segments from the input images and align them with the absolute vertical

direction, which can be provided by an inertial sensor, eliminating the need

to estimate the rotation around the optical axis. Stabilization is achieved by

compensating for 2D linear translation, which minimizes the disparity

between two successive frames.

Fast implementations of 2D stabilization algorithms are presented in

[25, 20, and 21]. Hansen et al. [25] describe the implementation of an image

stabilization system based on a mosaic-based registration technique. Burt et

al. [20] describe a system which uses a multi-resolution, iterative process

that estimates affine motion parameters between levels of Laplacian pyramid

images. From coarse to fine levels, the optical flow of local patches of the

image is computed using a cross-correlation scheme. The motion parameters

are then computed by fitting an affine motion model to the flow [9].

Some studies follow frequency domain algorithms to estimate motion

between two images [30, 31, and 32]. The Fourier transform properties of

relocated images are used to estimate rotation and translation. Frequency

domain methods for estimating shifts in the image plane are based on the

11

fact that a shift in spatial domain can be expressed as a phase shift in

frequency domain. Two shifted images differ only by a linear phase

difference [30, 31]. These methods can be extended to include (planar)

rotation and scale using polar coordinates [32] with the advantage that shift,

rotation and scale can be estimated separately. The main limitation of

frequency domain methods is that they are restricted to global shifts and

rotations in the image plane, and scale [11]. If the scene is composed of

multiple, independently moving objects, then, the method will not provide

adequate performance.

A fast and robust implementation of a digital image stabilization

algorithm presented in this thesis is based on the 2D model described in [1].

The developed algorithm is similar to the other algorithms based on

the 2D rigid motion model [29]. But instead of using extensive feature-

tracking, our parametric motion model is obtained by tracking only a small

set of features to characterize the underlying motion vectors and produce

equally good performance.

 The algorithm is applied to translational and rotational camera motion

separately.

12

3. III. Background

This chapter presents basic ideas behind image stabilization, and

introduce various analytical tools used in literature for building a simple

vibration compensation systems. In particular, we investigated the problem

using three approaches: (1) levelsets based shape analysis, (2) feature points

based jitter detection and, (3) Fourier transform based approach.

3.1 Image Sampling

Before an image can be manipulated using various image processing

techniques, it must be spatially sampled. The process of sampling an image

is the process of applying a two-dimensional grid to a spatially continuous

image to discretize it into a two-dimensional array of elements.

Figure 3-1 shows a sampled image containing a total of NM sampled

elements using a rectangular grid. Any type of sampling grid can be used,

but the rectangular grid is by far the most common because of its

relationship to two-dimensional arrays. The fundamental unit of a sampled

image is a picture element and is typically referred to as a pixel. The value

of each pixel is equal to the average intensity of the continuous spatial image

covered by that pixel.

13

X Direction

Y
 D

ire
ct

io
n

0

0

N-1

M-1

1 2 3 4 N-10

0
1
2
3
4

M-1

N x M array of intensity values

Figure 3-1: Spatially sampled image containing N x M picture elements

The result of sampling produces a two-dimensional array of numbers

that are directly proportional to the intensity levels of the continuous spatial

image. Real-time video data is usually digitized over a 320x240, 640x480,

14

768x525, or 1600x1200 grid according to the context. Many of these size-

resolution combinations were chosen to be compatible with the spatial size

of NTSC video and to meet the storage size requirements of digital memory.

Image size that are powers of two exist because of the requirements for

computing the Fast Fourier Transform (FFT), to be considered later.

3.2 Quantization

Besides spatial sampling, the intensity level at each pixel must also be

digitized into a finite set of numbers. The process of digitization converts an

analog intensity value into a set of digital numbers that represent the

intensity levels in the image. The quantity of numbers used to represent the

intensities in a continuous tone image determines the final quality of the

digitization process. This set of numbers is referred as the gray levels or

grayscales of an image.

Since an image is the spatial distribution of light energy, the numbers

assigned to gray levels of a digitized image can take only positive values.

Figure 3-2 (a) gives a 4x4 sub-image taken from an image. Figure 3-2 (b)

gives the corresponding grayscale, with the value of 0 assigned to black and

each grayscale value increasing in intensity until the value of 255 is reached,

corresponding to white.

15

165 167 168 166

79 160 161 160

72 77 75 152

30 76 71 180

X

y

Minimum = 0 Maximum = 255

(a)

(b)

Figure 3-2: An example of (a) a sampled and digitized 4x4 sub-image and (b) its

corresponding grayscale

3.3 Converting Gray-scale Images to Binary Image Using
Thresholding

Thresholding is an image processing technique for converting a

grayscale or color image to a binary image based upon a thresholding value.

If a pixel in the image has an intensity value less than the threshold value k

(i.e., f(x,y)<k), the corresponding pixel in the in the resulting image is set to

0 (black). Otherwise, if the pixel intensity value is greater or equal to the

16

threshold intensity k (i.e., f(x,y)≥k), the resulting pixel is set to 255 (white).

Thus, it is used to create a binary image, or an image with only 2 colors,

black (0) and white (255). This can be formulated as follows:

0 (,)
(,)

255 (,)
f x y k

f x y
f x y k

<⎧
= ⎨ ≥⎩

 (3-1)

The last equation can be generalized as follows:

(,)
(,)

(,)
a

b

G f x y k
f x y

G f x y k
<⎧

= ⎨ ≥⎩
 (3-2)

where, Ga and Gb are the desired two gray levels in the threshold image.

The process of thresholding as described by equation 8 reduces a

multilevel image to a two gray-level image containing gray levels Ga and Gb.

Equation (3-2) can be expanded to include more than one threshold value as

follows:

1

1 2

2 max

 0 (,)
(,) (,)

 (,)

a

b

c

G f x y k
f x y G k f x y k

G k f x y G

≤ <⎧
⎪= ≤ <⎨
⎪ ≤ <⎩

 (3-3)

where, Gmax is the maximum allowable gray level of the image f(x,y) (255 in

case of 8-bit gray-scaled image). And k1, and k2 are threshold values.

17

3.4 Histogram

The brightness characteristic of an image can be concisely described

with a tool known as the brightness histogram. The brightness histogram

describes the frequency distribution of the gray levels of pixels within a

digital image. It provides a graphical representation of how many pixels

within an image fall into a given image.

A histogram appears as a graph with “brightness” on the horizontal

axis from 0 to 255 (for an 8-bit gray scale) and “number of pixels” on the

vertical axis. To find the number of pixels having a particular brightness

within an image, we simply look up the brightness on the horizontal axis,

follow the bar graph up, and read off the number of pixels on the vertical

axis. Because all pixels must have some brightness value defining them, the

number of pixels in each brightness column adds up to the total number of

pixels in the image.

Let’s assume that an image has been digitized and sampled into N

pixels, each of which has been quantized into n levels in the range d0 ,d1 ,… ,

dn-1. Figure 3-3 shows the histogram of this image.

18

Figure 3-3: Image histogram

The function h(dk)= The number of pixels with a gray level equals dk

and is written as :

h(dk)=Nk (3-4)

where, dk is the gray level and Nk is the number of pixels with a gray

level = dk.

3.5 Cumulative Histogram

The cumulative histogram is another variation of the histogram in

which the vertical axis gives not just the number of the pixels at that gray

level, but rather gives the number of the pixels at that level plus the number

of pixels with smaller values of gray level.

Using the same assumptions as in the last section, the cumulative

histogram of the image is shown in Figure 3-4.

19

Figure 3-4: Cumulative histogram

 The function H(dk) = The number of pixels with a gray level

equal to or less than dk. Hence,

0 0

() ()
k k

k i i

i i

H d h d N
= =

= =∑ ∑ (3-5)

0

()
k

k i

i

H d N
=

=∑ (3-6)

Both histogram and cumulative histogram are step functions.

The cumulative histogram H(dk) increases from 0 to N, being the

number of pixels in the image, since
1

0

n

i

i

N N
−

=

=∑ .

20

3.6 Invariant Moments

In general, the moments of a function are commonly used in

probability theory. However, several desirable properties that can be derived

from moments are also applicable to image analysis.

Definition: The set of moments of a bounded function f(x,y) of

two variables is defined by:

(,)j k
jkM x y f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫ (3-7)

where, j and k take on all nonnegative integer values.

As j and k take on all nonnegative integer values, they generate an

infinite set of moments. Furthermore, this set is sufficient to specify the

function f(x,y) completely. In other words, the set {Mjk} is unique for the

function f(x,y), and only f(x,y) has that particular set of moments.

The parameter j+k is called the order of the moment. There is only

one zero-order moment,

00 (,)M f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫ (3-8)

21

There are two first-order moments and correspondingly more

moments of higher orders.

The coordinates of the center of gravity of an object are:

10

00

,Mx
M

= (3-9)

01

00

My
M

= (3-10)

where,

10 (,)M x f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫ (3-12)

01 (,)M y f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫
 (3-13)

3.7 Spatial Moments of Binary Images and Level Sets

The spatial moments of an object in an image are statistical shape

measures that give statistical measures related to an object’s characteristics.

00 (,)M f x y dxdy

∞ ∞

−∞ −∞

= ∫ ∫
(3-11)

22

The zero-order spatial moment is computed as the sum of the pixel

brightness values in an image. In the case of binary image, this is simply the

number of pixels in the object, because every object pixel is equal to 1

(white). Therefore, the zero order spatial moment of a binary object is its

area. For a gray-scaled image, an object’s zero-order spatial moment is the

sum of its pixel brightness.

The first order spatial moments of an object contain two independent

components x and y. They are the x and y sums of the pixels brightness in

the object, each multiplied by its respective x or y coordinate location in the

image.

In the case of a binary image, the first-order x spatial moment is just

the sum of the x coordinates of the object’s pixels, because every object

pixel is equal to 1 (white). Likewise, the y spatial moment is the sum of the

y coordinate of the object’s pixels. For a gray-scaled image, an object’s first

order spatial moments are as defined above. The first-order spatial moments

of an object represent the object’s mass and how it is spatially distributed.

The two most common image object measurements that use spatial

moments are object area and center of mass (a.k.a centroid). As stated

above, an object’s area is computed as it’s zero-order spatial moment. An

object’s center of mass can be computed as the first-order spatial moments

(x and y) divided by the zero order moment, or the object area.

23

There are two forms of the center of mass, one that considers pixels to

have uniform weight, as in a binary image, and one that weights pixels based

on their brightness values. The second form considers pixels that are black

to have a weight = 0, those that are white to have a weight = 255, and pixels

with brightness in between to have a weight corresponding to their

respective gray-levels.

The definitions for the center of mass measures are as follows:

Brightness-Weighted Center of Mass:

The balance point (x,y) of the object where there is equal brightness

above, below, left, and right. If we think of the pixels in an object as having

a weighted dependent upon their brightness, then the brightness weighted

center of mass is the point where the object will perfectly balance on the tip

of a point, as shown in Figure 3-5.

24

Center of mass

Figure 3-5: Center of mass of a gray-scale image

x
Sum of objects x-pixel coordinates pixel brightness Center of Mass =

Number of pixels in object
×

y
Sum of objects y-pixel coordinates pixel brightness Center of Mass =

Number of pixels in object
×

For a binary image, the pixel brightness will be equal to 1. So, for a

binary image:

x
Sum of objects x-pixel coordinates Center of Mass =

Number of pixels in object

y
Sum of objects y-pixel coordinates Center of Mass =

Number of pixels in object

Figure 3-6 shows the center of mass for a binary object.

25

Figure 3-6: Center of mass of a binary image

For an NxM gray-scaled image, equation (3-7) can be changed to

discrete version as follows:

1 1

0 0

(,)
M N

j k
jk

y x

M x y f x y
− −

= =

=∑∑ (3-14)

And for an NxM binary image, equation (3-7) reduces to:

1 1

0 0

((,) 1)
M N

j k
jk

y x

M x y f x yδ
− −

= =

= −∑∑ (3-15)

Equation (3-8) can also be changed to the following:

1 1

00

0 0

(,)
M N

y x

M f x y
− −

= =

=∑∑
(3-16)

Likewise, equation (3-9) can be changed as follows:

26

1 1

10

0 0

(,)
M N

y x

M xf x y
− −

= =

=∑∑ (3-17)

And, equation (3-10) can be changed as follows:

1 1

01

0 0

(,)
M N

y x

M yf x y
− −

= =

=∑∑ (3-18)

Finally, the center of gravity of an image will be:

1 1

0 010
1 1

00

0 0

(,)

(,)

M N

y x
M N

y x

xf x y
Mx
M

f x y

− −

= =
− −

= =

= =
∑∑
∑∑

(3-19)

1 1

0 001
1 1

00

0 0

(,)

(,)

M N

y x
M N

y x

yf x y
My
M

f x y

− −

= =
− −

= =

= =
∑∑
∑∑

 (3-20)

We can also compute higher-order spatial moments. For instance, the

second-order moments produce object orientation information. Spatial

moments of an order that is greater than two produce abstract information

that is difficult to tie specifically to physical object characteristics.

27

3.8 Motion Analysis

3.8.1 Image Translation

The basic model of disparity between two images is translation.

Translation is used to move regions of an image intact to other locations

within the image. Typically, it indicates that an object in the foreground has

moved. If the translation operations moves a region outside the area defined

by the original image, then a new image must be created that encompasses

the original image plus the translated region. Image translation is defined as

follows:

new old

new old

x x x
y y y
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (3-21)

where, xold, yold are the pixel coordinates of an arbitrary point in the region to

be translated; and, xnew, ynew are the coordinates of its location after of the

translation is complete. The values Δx, and Δy define the amount of

translation in the x and y directions, respectively. For each pixel within a

region to be translated, Equation (3-21) is applied to produce a new set of

translated coordinates. In translating a region, the original image is first

copied to the output image and then the region to be translated is moved to

its new position within the image using Equation (3-21). If the pixels within

the original region to be translated are left unchanged, the translation process

28

becomes equivalent to an image copy. If, on the other hand, the original

region to be translated is filled with a constant gray level (erased), the

translation operation becomes equivalent to a move operation. Figure 3-7

shows an example of a translation.

Figure 3-7: Translation example

Translation by integer pixel values is straight forward. However,

translation by subpixels must be realized using bilinear interpolation.

29

3.8.2 Image Rotation

Rotation is one of the fundamental models of linear spatial

transformations between two images. It is characterized by two parameters:

center of rotation, and the rotation angle.

Consider a counter-clockwise rotation of the camera. The net effect is

a clockwise rotation of all pixels to a new location.

cos sin
sin cos

new old

new old

x x
y y

θ θ
θ θ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

(3-22)

where, θ is the angle of rotation.

Further analysis will indicate that:

cos sin
sin cos

new old

new old

x x
y y

θ θ
θ θ

−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

(3-23)

where the quantity x indicates an average value.

Then,

cos sin
sin cos

new new old old

new new old old

x x x x
y y y y

θ θ
θ θ

− −−⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥− −⎣ ⎦⎣ ⎦ ⎣ ⎦

(3-24)

It is often convenient and more desirable to analyze and characterize the

motion of individual objects in the scene, including their observed

rotation(s). The expression (3-24) above facilitates such a mechanism.

30

From (3-22) and (3-2) we conclude that:

cos sin
sin cos

new old old new old

new old old new old

x x x x x
y y y y y

θ θ
θ θ

− −−⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎡ ⎤
= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ − −⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦

(3-25)

(0,0)

A

B

(a)

(b)

(0,0)

A’

B

(c)

(a) (b)
 Camera rotation centered at (0,0)

(a) (c)
 Object "A" has rotated and then translated to A'.

↔

↔

Figure 3-8 Rotation Example

31

Composite motion comprised of both geometrical translation and

rotation of a region within an image about its geometrical center Mx, My, is

expressed as:

cos sin
sin cos

x xnew old

y ynew old old new

M Mx x
M My y

θ θ
θ θ

⎧ ⎫− ⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎪ ⎪= − +⎨ ⎬⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭

 (3-26)

The geometrical center (centroid) of the region as we have seen before

is given by:

1

1 N

x i
i

M x
N =

= ∑ (3-27)

and

1

1 N

y i
i

M y
N =

= ∑ (3-28)

where, xi and yi are the coordinates for each pixel in the region to be

translated and the parameter N is defined as the number of pixels within the

region being translated.

Equation (3-26) can also be used to rotate an entire image about the

particular point xo, yo by setting Mx= xo, My= yo. Once the rotation is

completed, the image is then translated back to its original position xo, yo.

32

3.8.3 Image Scaling

Another common type of geometrical operation is that of scaling.

Scaling provides a means of reducing or enlarging the size of an image.

Desired regions within an image can magnified to spatially enlarge features

that would otherwise be difficult to observe. Geometrical image scaling is

defined mathematically in equation (3-29)

0
0

xnew old

ynew old

x x
y y

σ
σ

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦
 (3-29)

To scale a total image, xold, yold are defined over the coordinates of the

entire image, and for region scaling xold, yold are defined by the pixels within

the region to be scaled. For σx and σy > 1, the output image will be an

enlarged version of the input image, while for σx and σy < 1 the scaled output

image is a reduced version of the input image. For either σx or σy negative,

the image is rotated about the axis of the negative scaling parameter. For

example if σx=-3, σy=1, the image is increased by three and is flipped about

the x axis. Geometric scaling in particular requires the use of interpolation

prior to scaling an image. Interpolation will be discussed later in this

chapter.

33

3.8.4 Image Skewing

The next basic model of shape change or disparity is skewing

(deformation) or shear change. Figure 3-9 shows an image of a rectangle that

has been skewed to the right in the x direction by an angle of α. Figure 3-10

shows the same image skewed to the lower direction of the y-axis by an

angle of α.

The skewing geometrical transformation is defined by

cos sin
sin cos

new old

new old

x x
y y

α α
α α

⎡ ⎤ ⎡ ⎤⎡ ⎤
=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (3-30)

where, α is the deformation angle.

x

y

0

0

N-1

M-1

x

y

0

0

N-1

M-1

α

Figure 3-9: Image deformation to the right in the x-axis direction

34

x

y

0

M-1

x

y

0

0

N-1

M-1

α

0 N-1

Figure 3-10: Image deformation to the lower direction of y-axis

Suppose an ellipse shaped disc were to be rotated by an axis parallel

to its surface, whose orientation is not parallel to the major or minor axes,

the resulting new contour will exhibit a shape conducive to be analyzed by

this model.

35

3.9 Image Interpolation

A large number of geometric transformations, such as translation,

rotation, and shearing will map pixels to a new position that is no longer an

integer and so not on the original sampling grid. Figure 3-11 illustrates that a

rotation of the image requires the evaluation of intensity at points that were

not on the original grid.

Figure 3-11: Illustration that a rotation of the image requires interpolation

Interpolation is a process of generating a value of a pixel based on its

neighbors. Neighboring pixels contribute a certain weight to the value of the

pixel being interpolated. This weight is often inversely proportional to the

distance at which the neighbor is located.

36

There are several different types of interpolation methods. Nearest

neighbor interpolation is the simplest method and basically makes the pixels

bigger. The value of a pixel in the new image is the value of the nearest pixel

of the original image. The other interpolation methods also include bilinear

interpolation and bicubic interpolation. The interpolation method that is used

in our DIS is bilinear interpolation. Bilinear interpolation determines the

value of a new pixel based on a weighted average of the 4 pixels in the

nearest 2x2 neighborhood of the pixel in the original image. Figure 3-12

shows four neighboring pixels surrounding the pixel (x,y) to be interpolated.

Figure 3-12: Bilinear Interpolation

37

In Figure 3-12, we assumed u and v are the integer parts of x and y,

respectively, bilinear interpolation is defined by

, 1, , 1 1, 1(,) (,) (1,) (, 1) (1, 1)u v u v u v u vf x y W f u v W f u v W f u v W f u v+ + + += + + + + + + +

(3-31)

where,

, (1)(1)u vW u x v y= + − + −

1, ()(1)u vW x u v y+ = − + −

, 1 (1)()u vW u x y v+ = + − −

1, 1 ()()u vW x u y v+ + = − −

The bilinear interpolation has an anti-aliasing effect and therefore

produces relatively smooth edges.

38

4. IV. Methodology

A General method for DIS includes two modules: motion estimation

module and motion compensation module. The motion estimation module

calculates global motion vector of input frame relative to reference frame.

Then, the motion compensation module processes input frame according to

motion vector and stabilizes observed images. Figure 4-1 shows a block

diagram of such a system.

Figure 4-1: DIS Model

With the advantage of low energy consumption, light weight and

compact size, DIS technique offers excellent performance in the case of low

frequency and small amplitude system vibrations.

4.1 Motion Estimation Module

The DIS proposed in this thesis is based on the following assumptions

that: each frame in the given image sequence is distinct, and the image

instability is the result of translation, rotation, skewing and scaling between

frames.

39

 Through analyzing image frames, the motion vectors (including

amounts of translation, rotation and scaling), which are the basis of

compensation processing, can be calculated. Motion estimation between

frames is usually based on a rigid motion model as follows:

0 cos sin cos sin
0 sin cos sin cos

xnew old

ynew old

x x x
y y y

σ α α θ θ
σ α α θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= +⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦⎣ ⎦

(4-1)

The above given model is explained in the following text. In the

formula, xnew, xold are horizontal coordinates of corresponding pixels in input

frame and reference frame; ynew, yold are vertical coordinates of

corresponding pixels in input frame and reference frame; Δx, Δy are

translation amounts between two frames; θ and α are the rotation and

deformation angles between two frames respectively. The two factors σx, σy

are the scaling factors.

Equation (4-1) can be rewritten as follows:

new old

new old

x x y
A

y y y
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦⎣ ⎦ ⎣ ⎦

 (4-2)

where, A is a sequence of rotation, scaling and angular deformation.

And it can be decomposed in the form:

40

0 cos sin cos sin
0 sin cos sin cos

S D R

x

y

A A A A
σ α α θ θ

σ α α θ θ

=

⎡ ⎤ −⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

Matrix A is a 4x4 matrix. So, it is in the form:

11 12

21 22

a a
A

a a
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

Hence,

11 12

21 22

0 cos sin cos sin
0 sin cos sin cos

x

y

a a
a a

σ α α θ θ
σ α α θ θ

⎡ ⎤ −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦

0 cos() sin()
0 sin() cos()

x

y

σ α θ α θ
σ α θ α θ

⎡ ⎤ − −⎡ ⎤
= ⎢ ⎥ ⎢ ⎥+ +⎣ ⎦⎣ ⎦

cos() sin()
sin() cos()

x x

y y

σ α θ σ α θ
σ α θ σ α θ

− −⎡ ⎤
= ⎢ ⎥+ +⎣ ⎦

(4-3)

By solving Equation (4-3),

2 2
11 12x a aσ = + (4-4)

2 2
21 22y a aσ = + (4-5)

12 11() atan2(,)a aα θ− = (4-6)

21 22() atan2(,)a aα θ+ = (4-7)

41

To find the values of α and θ, we need to solve Equation (4-6) and

Equation (4-7) simultaneously,

12 11 21 222 atan2(,) atan2(,)a a a aα = +

 12 11 21 22atan2(,) atan2(,)
2

a a a aα +
= (4-8)

By substituting the value of α into Equation (4-7),

12 11 21 22atan2(,) atan2(,)
2

a a a aα −
= (4-9)

Now, we have six variables to estimate, these values are show in Table 4-1.

Table 4-1: Motion vectors variables

Motion Vectors Description

σx The scaling factor in x axis

σy The scaling factor in y axis

θ Rotation angle

α Deformation angle

Δx Translation in x axis

Δy Translation in y axis

Our aim is to estimate the elements of A and the translation vector

(Δx,Δy) from two given images. Since σx, σy, α, and θ are functions of the

elements of A, then it is sufficient to find the value of A to get the values of

42

σx, σy, α, and θ. Because we have six unknowns, then we need six equations

to be solved simultaneously.

Assume nx is a feature point in an image at time=t where n is the

image number. And assume nx ′ is the same feature point in the same image

at time=t+1 where n is the image number. We have agreed before in

Equation (3-30) that:

n nx Ax C′ = + (4-10)

where,
n

n
n

x
 x =

y
′⎡ ⎤

′ ⎢ ⎥′⎣ ⎦
 ,

n
n

n

x
 x =

y
⎡ ⎤
⎢ ⎥
⎣ ⎦

 and
x

C
y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

In order to estimate the value of A and C, we need 6 images; that is

three images at time=t and the same 3 images but at time=t+1. This can be

written mathematically as follows

1 1x Ax C′ = +

2 2x Ax C′ = +

3 3x Ax C′ = +

These equations can also be expanded to the following equations:

1 11 1 12 1

1 21 1 22 1

x a x a y x
y a x a y y
′ = + +
′ = + +

43

2 11 2 12 2

2 21 2 22 2

x a x a y x
y a x a y y
′ = + +
′ = + +

3 11 3 12 3

3 21 3 22 3

x a x a y x
y a x a y y
′ = + +
′ = + +

These equations can be solved simultaneously to find the values of a11, a12,

a21, a22, Δx and Δy. The above computation can be expressed in the form of

matrix algebra as follows:

'
1 1 111

'
2 2 122

'
3 33

'
1 1 211

'
2 2 222

'
3 33

1
1
1

1
1
1

x y ax
x y ax
x y xx

x y ay
x y ay
x y yy

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥

⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 (4-11)

Which is of the form:

p Pa=

The above equation reveals several important facts. First, a minimum of

three points must be known in each image. Second, these points should not

be collinear. If they are collinear, then P can not be inverted. When more

than three points are known in the images, then standard pseudo inverse

computation computes an optimal estimate of a such that:

1()t ta P P P p−=

44

4.1.1 Image Segmentation

Segmentation is the process of partitioning an image into regions or

subimages. The region or the subimage here is defined as a group of pixels

with similar properties. These properties include same graylevel or textures

… etc. We will use graylevel as the property to distinguish between the

subimages. The simplest representation of a segment is a binary valued

image, where each pixel is assigned a value ‘1’ if it is in the region, and a ‘0’

otherwise.

Segmented images must satisfy the following two properties:

1. Distinctness :

No pixel is shared by two regions. That is

 for , 1, ... , ;

i jR R i j k

i j

= ∅ =

≠

∩

where, R is a subimage and k is the maximum number of subimages

intended to create.

2. Completeness:

All pixels in the image must be assigned to one of the k regions.

That is

1 2 ...

kR R R I=∪ ∪

where, I is the original image intended to be segmented.

45

The first property states that regions are disjoint sets and the second

property states that the entire image I must be covered by the regions Ri ,

i=1, 2, …, k.

One of the simplest methods to segment an image is to apply

thresholding. Thresholding is a method for image segmentation. The

cumulative histogram of the image is used to determine the proper value of

the threshold. The general equation to create some binary images from a

gray-scaled image can be written as follows:

1 (,)
0 (,)

n
n

n

f x y k
B

f x y k
<⎧

= ⎨ ≥⎩
 (4-12)

where, Bn is a binary image, kn is the threshold value used in the

segmentation to create this binary image and f(x,y) is a gray-scaled image.

One could iteratively try to determine the best threshold kn by a systematic

trial and error process. Also, well established decision techniques can be

applied to estimate an optimal threshold kn, when the parametric model of

the underlying distribution (histogram) is known.

In our work, we have chosen a level-sets based approach to selecting up to

six thresholds to divide image into six binary images. This approach is

explained in the following text.

In order to determine the proper value of kn , the image will be divided into

regions according to the gray levels. The cumulative histogram is a useful

46

tool to determine the threshold values needed in the segmentation. To find

the best threshold values, the y-axis of the cumulative histogram which

represents the number of pixels should be divided into the same number of

subimages needed to create. In our DIS algorithm, the number of binary

subimages is six. So, the y-axis should be divided into six portions.

Assume we have a cumulative histogram of an image plotted in

Figure 4-2.

Figure 4-2: Cumulative Histogtam of an image

47

In this example, six binary images can be created by using a modified

version of Equation (4-12) as follows:

1

1

1 (,)
0 (,)

n n
n

n n

k f x y k
B

k f x y k
−

−

< ≤⎧
= ⎨ < ≤⎩

The threshold values (k1, k2, k3, k4, k5, and k6) can be calculated as follows:

1()n nk H D−=

where,

n
n ND

m
×

=

where, n is the threshold number and it can take values from 1 to the number

of binary subimages, at least six in this context. N is the total number of

pixels in the image. And m is the desired number of binary subimages.

The segmentation process discussed earlier will result in 6 binary

subimages. All these subimages will be used to estimate the value of motion

vectors (σx, σy, α, θ, Δx, and Δy). Among the six subimages, each time we

will use 3 subimages to estimate the motion vectors. So, the resultant

number of motion vectors will be:

6 6! 20
3 (6 3)! 3!
⎛ ⎞

= =⎜ ⎟ − ×⎝ ⎠

Hence, we will have 20 motion vectors. A question arises here, which one of

these motion vectors should be used?

48

To determine the best motion vector, we are using a statistical tool

called “clustering”. To prepare our data to be clustered and then ready for

analysis, the θ and α values should be plotted in x-axis and y-axis

respectively. Then, a clustering technique will be used to analyze these data.

The following section explains in detail the idea of “clustering” and why we

need it here.

4.1.2 Data Clustering

Clustering is a classical topic in statistical data analysis and machine

learning. There is much research work discussing clustering methods [5]. It

is defined as the process of grouping a set of objects into classes of similar

objects. We can show this with a simple graphical example as in Figure 4-3.

Figure 4-3: Data Clustering example [34].

49

The most well known similarity measures are based on distances, such

as Euclidean distance and Manhattan distance. There are many algorithms

can be used to implement data clustering. In this thesis, a graph theoretic

algorithm will be used to do the job. Graph theoretic algorithm for clustering

is a technique based on modified Kruskal’s algorithm. The purpose is to take

the advantage of the simplicity of tree structure, which can facilitate efficient

implementations of much more sophisticated clustering algorithms. There

are many variations in the family of graph theoretic algorithms, such as

Minimal Spanning Tree (MST) based method, Cut algorithm, and

Normalized Cut/Spectral methods. In general, the idea of graph theoretic

algorithms is the following: firstly, it constructs a weighted graph upon the

points in the high-dimensional space, with each point being a node, we will

use (θ,α) as nodes and the distance value between any two nodes being the

weight of the edge connecting the two nodes. Then, it decomposes the graph

into connected components in some way, and calls those components as

clusters or forests. We mainly focus on an MST-based clustering algorithm

using Kruskal’s algorithm. Kruskal’s algorithm is used to create minimum

spanning tree and it works as follows:

1. Consider the edges from shortest to longest.

2. Take the first (smallest) edge and then consider the next edge.

3. Take an edge if it does not make a cycle.

50

4. If you still have edges then go to step 1.

In our case here, we will not continue to create a full minimum

spanning tree because this is not our goal. Instead, we will stop whenever we

have an optimum cluster which satisfies our conditions. The conditions we

set to be satisfied are two:

a. The cluster (forest) should contain all the subimages.

b. The distance between any two nodes in the cluster should not exceed

10% of the largest distance between the nodes.

Eventually, we will get a cluster with some nodes. Assume F is the

chosen cluster, then F={n1, n2, …, nn}, where, ni is a node in (θ,α) graph.

We know that every node here is calculated using 3 subimages as we

have seen earlier.

Because every node is constructed by three subimages, then assume:

 n1 = (p1, q1, r1)

 n2 = (p2, q2, r2)

 …

 nn = (pn, qn, rn)

where, pi, qi and ri, are subimages.

For every node ni, the size of the subimage with the minimum size

(w) will be used to calculate the final motion vectors as follows:

51

1

1

(.)

ˆ

n

i i

i
n

i

i

w

w

α

α =

=

=
∑
∑

(4-13)

1

1

(.)
ˆ

n

i i

i
n

i

i

w

w

θ

θ =

=

=
∑
∑

(4-14)

1

1

(.)

ˆ

n

i xi

i
x n

i

i

w

w

σ

σ =

=

=
∑
∑

(4-15)

1

1

(.)

ˆ

n

i yi

i
y n

i

i

w

w

σ

σ =

=

=
∑
∑

(4-16)

1

1

(.)

ˆ

n

i i

i
n

i

i

w x

x

w

=

=

Δ

Δ =
∑
∑

(4-17)

1

1

(.)

ˆ

n

i i

i
n

i

i

w y

y

w

=

=

Δ

Δ =
∑
∑

(4-18)

where,

1...
min((), (), ())i i i ii n

w size p size q size r
=

=

52

At the end of this phase of the DIS algorithm, we have the

estimated motion vectors (σx, σy, α, θ, Δx, and Δy) which are necessary in

the next phase which is “Motion Compensation”.

53

4.2 Motion Compensation Module

The result of the motion estimation process described in the last

section is capable of computing the motion vectors between two frames. The

objective of motion compensation is to keep some kind of history of the

motion estimates in order to create a stabilized sequence. We have seen that

the DIS proposed is based on a hypothesis that the image instability in image

sequence is the result of translation, rotation, skewing and scaling between

frames. So, by knowing these motion vectors which are estimated in the last

section, an image can be constructed.

An image can be constructed using the hypothesis in Equation (4-10):

n nx Ax C′ = +

where, A as calculated in the last section:

ˆ ˆˆ ˆˆ ˆcos() sin()
ˆ ˆˆ ˆˆ ˆsin() cos()

x x

y y

σ α θ σ α θ

σ α θ σ α θ

⎡ ⎤− −
= ⎢ ⎥

+ +⎢ ⎥⎣ ⎦

and

ˆ
ˆ
x

C
y

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

As we know already, pixels of an image occupy integer coordinates.

We can note from Equation (4-10) that the destination pixels may lie

54

between the integer coordinates. So, in order to create an image from these

pixels, destination pixels are interpolated at the integer coordinates.

4.3 Frequency Domain Approach To Estimate Image Translation

This section introduced the Fourier transform based approach to

estimate image translation between two images.

4.3.1 Introduction

So far in this thesis, we have considered only one kind of image

representation. For the most part, the images have recorded brightness as a

function of position. In practice, there are many different ways in which

image data can be presented. These changes of representation are useful to

analyze certain characteristics of the images more efficiently. Some kinds of

transformation produce representations which, although different from the

original data, are completely equivalent to it in terms of the information

contained. These so-called domain transforms, of which the Fourier

transform is by far the most important, allow images to be treated in ways

entirely different from those used on the original data.

55

4.3.2 Transforming Domain

Domain transforms provide alternative ways of describing an image.

Instead of recording brightness as a function of position, we can choose a

completely different presentation of the image.

In Fourier transform, the image is stored as a set of spatial frequency

values together with their associated amplitudes and phase. The point is that

instead of brightness as a function of position, the Fourier representation is

a complex valued function of spatial frequency. In the frequency domain,

changes in image position produce a noticeable changes in the phase of each

spectral component. The phase change can be quantitively measured, and

used to characterize the motion.

4.3.3 Fourier Transform of an Image

As we are only concerned with digital images, we will use the

Discrete Fourier Transform (DFT). The DFT is the Fourier Transform

variation used in digital processing.

The Fourier transform of a M x N image is shown mathematically as:

π
π θ π

⎛ ⎞− − − +⎜ ⎟
⎝ ⎠

= =

= − < ≤∑∑
1 1 2

0 0
(,) (,) ,

ux vyM N j
M N

x y
H u v h u v e (4-19)

 where, h(x,y) is the image to be transformed and H(x,y) is the transformed

one.

56

It is also possible to transform image from the frequency domain back

to the spatial domain. This is done with an inverse Fourier transform as

follows:

π ⎛ ⎞− − +⎜ ⎟
⎝ ⎠

= =

= ∑∑
1 1 2

0 0
(,) (,)

ux vyM N j
M N

x y
h x y H u v e (4-20)

In the frequency domain, u represents the spatial frequency along the

original images axis and v represents the spatial frequency along the y axis.

In the center of the image u and v have their origin.

The Fourier transforms deals with complex numbers. The magnitude

is expressed as:

2 2(,) (,) (,)H u v R u v I u v= + (4-21)

and phase as:

1 (,)(,) tan
(,)

I u vu v
R u v

θ − ⎡ ⎤
= ⎢ ⎥

⎣ ⎦
(4-22)

where, R(u,v) is the real part and I(u,v) is the imaginary.

The frequency is dependent on the pixel location in the transform. The

further from the origin it is, the higher the spatial frequency it represents.

The computation of the Fourier transform stores the real and

imaginary spectral components in arrays, starting with positive frequency

values followed by negative frequency values. Figure 4-4 shows an example

57

of the magnitude spectrum from a one-dimensional DFT, showing that the

negative frequency components follow the positive frequency components.

Figure 4-4: Uncentered magnitude spectrum

Normally when plotting spectral components using the Cartesian

coordinate system, negative frequency components are plotted first followed

by the positive frequency components. The first half and last half of the

array of Fourier components must be swapped. This can be done by

multiplying every pixels in the image by (-1)x+y , that is:

(,) (,)(1)x yf x y f x y +⇒ − (4-23)

Equation (4-23) is the centering property of the DFT.

Figure 4-5 shows the output from the DFT after application of the centering

property.

58

Figure 4-5: The Centered magnitude spectrum

Figure 4-6 shows the uncentered magnitude spectrum of an image

containing a white object. Figure 4-7 shows the DFT spectrum of the same

image after application of the centering property.

Figure 4-6: Uncentered spectrum of an image

59

Figure 4-7: The centered spectrum after using centring property of DFT.

4.3.4 Translation Estimation

In this chapter, a frequency domain method is investigated for

estimating the translation between two images.

The motion between a reference image and the second is assumed to

be a pure translation. Considering such kind of displacement between two

images the motion may be simply described by two parameters: horizontal

and vertical shifts.

60

In the Fourier transform domain relation between two mutually

shifted images can be expressed as follows:

2 ()

2 1 1(,) (,) (,)
j au bv

Nf x y f x a y b F u v e
π

+
= − − ↔ (4-24)

where, f1(x,y) is the reference image and f2(x,y) is the shifted one. F1(u,v) is

the Fourier transform of f1(x,y). It is known from Fourier transform

properties that a spatial shift results in multiplication.

What we want here is to find out the values of a and b in equation

(4-24) because they represent the vertical and horizontal shifts.

We know from equation (4-24) that:

π
+

=
2 ()

2 1(,) (,)
j au bv

NF u v F u v e (4-25)

Dividing Equation (4-25) by F1(u,v) :

π
+

=
2 ()2

1

(,)
(,)

j au bv
NF u v e

F u v
 (4-26)

The right hand side term on this equation is a complex number and it

can be split into two parts: the real part R(u,v) and the imaginary part S(u,v).

The phase of this complex number can be calculated as follows:

θ =(,) atan2((,), (,))u v S u v R u v (4-27)

The phase also can be found as follows:

2(,) ()u v au bv
N
πθ = + (4-28)

61

So, for every point in the frequency domain, there is a phase as in

Table 4-2.

Table 4-2: Phase of every point in u-v plane

u-v plane points Phase

(u1,v1) θ(u1,v1)

(u2,v2) θ(u2,v2)

… …

(uN,vN) θ(uN,vN)

By finding the phase of every point using Equation (4-28) and finding

the square mean error of these phases, we get:

()
2

1

2 (,)
N

i i i i
i

E au bv u v
N
π θ

=

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑ (4-29)

The error should be kept minimal. So,

()
2

1

2 (,)
N

i i i i
i

E au bv u v
N
π θ

=

⎡ ⎤= + −⎢ ⎥⎣ ⎦
∑ =minimum (4-30)

0, 0E E
a b

∂ ∂
= =

∂ ∂
 (4-31)

()
1

2 22 (,) . 0
N

i i i i i
i

E au bv u v u
a N N

π πθ
=

∂ ⎡ ⎤= + − =⎢ ⎥∂ ⎣ ⎦
∑ (4-32)

()
1

2 22 (,) . 0
N

i i i i i
i

E au bv u v v
b N N

π πθ
=

∂ ⎡ ⎤= + − =⎢ ⎥∂ ⎣ ⎦
∑ (4-33)

62

2 2
2 2

1 1 1

2 2 2N N N

i i i i i
i i i

au bu v u
N N N
π π π θ

= = =

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ (4-34)

2 2
2

1 1 1

2 2 2N N N

i i i i i
i i i

u v a bv v
N N N
π π π θ

= = =

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑ ∑ ∑ (4-35)

2

1 1 1

2

1 1 1

2 2

2 2

N N N

i i i i i
i i i

N N N

i i i i i
i i i

u u v u
aN N
b

u v v v
N N

π π θ

π π θ

= = =

= = =

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎡ ⎤⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑
 (4-36)

The last equation gives the values of a and b which we are looking for.

4.3.5 Rotation and Scaling Estimation

The underlying computations to estimate rotation and scaling in

Fourier domain are not as simple as in translation estimation. The

complexities of the model poses a serious question about the efficiency of

finding rotation and scale change in frequency domain vs. the same in spatial

domain. Such challenges stem from the fact that:

Given, (,) (,)f x y F u v←⎯→ , then:

(cos sin , sin cos) (cos sin , sin cos)f x y x y F u v u vθ θ θ θ θ θ θ θ+ − + ←⎯→ −

So, the rotation in the spatial domain is also rotation in the frequency

domain but in the opposite direction as shown in Figure 4-8.

63

Figure 4-8: Rotation estimation. (a) Frequency values of a reference image. (b)

Frequency values of the rotated image (θ=25 degrees) [37]

So, using this method will not simplify the rotation estimation. Same thing is

applied in the case of scaling based on the fact that scale change in the

spatial domain is also scale change in the frequency domain. This can be

expressed as follows: Given () ()f x F w←⎯→ , then 1() wf ax F
a a

⎛ ⎞←⎯→ ⎜ ⎟
⎝ ⎠

.

4.4 Affine-Motion Inversion Scheme for Jitter Detection

In this section, a new approach to detect jitters in a sequence of video

frames is introduced. The approach seeks to model the underlying changes a

series of 2D affine transforms between consecutive video frames, without

64

resorting to a three dimensional interpretation of the physical factors that

give a rise to the changes.

The affine transformation is represented by a set of invariants to be

estimated by weighted geometric moments of each observed image. In

particular, the image-plane will be viewed as a collection of non-overlapping

concentric regions of varying weights of interest. Thus, the moments will be

calculated using a geometric-location weighted and intensity weighted

computations.

The approach proposed is a simplified strategy to decide if the

disparity between a video frame and its predecessor is due to a smooth

motion or an erratic jitter. Six moments-based descriptors and the gray level

histogram are used to arrive at that decision. Individual parameters used for

such decision include: the change in direction in the apparent motion of the

weighted center of gravity, the discontinuities in the angular velocity of the

eigen-vectors of the scatter matrix (second order moments), and the

dynamics of the focus-of-expansion of the observed ego-centric optical flow

field. These computations are progressively complex. They will be

implemented at different temporal sampling rate, i.e., the simplest method

will be applied to every frame while the advanced method will be applied to

every other frame, etc.

65

The basic method computes six numbers: M00, M01, M10, M11, M20, and

M02.Which are defined as:

,
(,) (,)i j

ij
x y

M x y w x y f x y= ∑ (4-37)

The image f(x,y) and the weights w(x,y) are expressed on a 640x480

grid to be indexed as -320 ≤ x <320, and -240 ≤ y <240, reflecting a zero-

centered image plane. A standard Gaussian function is used for w(x,y) with

an arbitrary chosen half-power radius of 128. Then, w is computed as:

2 2

2-
2(,) , 128

x y

w x y e σ σ
⎛ ⎞+
⎜ ⎟⎜ ⎟
⎝ ⎠= = (4-38)

The centroid of an image is generally the simplest descriptor of the

image, which is depicted by:

() ()10 01, , ,x y M Mμ μ = (4-39)

Or

() ()2 2
y, , arctan2(,) ; .x y xrμ μ μθ μ μ μ μ π θ π= + − < ≤ (4-40)

The gravity adjusted second order moments, 20 02 11, and M M M are

defined as:

,

,

() () (,) (,)

(,) (,)

i j
x y

x y
ij

x y

x y w x y f x y
M

w x y f x y

μ μ− −
=
∑

∑
 (4-41)

It is useful to represent them in the form:

66

2
1 2 1 1120 11

1 2 1 22
1 2 2 2211 22

cos cos cos sin0
; , ; and, .

sin sin cos sin0
M M
M M

θ θ θ θλ
π θ θ π λ λ

θ θ θ θλ
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

= − < ≤ ≥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

(4-42)

The factorization given above represents the scatter composition of

the spatial data. The eigen-values and the eigen-vectors describe the

underlying shape more succinctly. Thus, each frame (, ;)f x y t represented by

a vector, 1 2 1 2() (, , , , , ;) ,Tt r tμ μθ λ λ θ θ=Φ in addition to the standard and weighted

histograms: [],h g and [],wh g respectively.

 In general a smoothly varying image sequence must entail smooth

variations in these parameters. For example, a constant motion of the

aircraft above an otherwise static landscape would entail gradual variation in

(,)rμ μθ indicating a constant velocity or constant acceleration. This can be

verified by computing the first and second derivatives (with respect to time)

of these spatio-temporal parameters, , rμ μθ ,..., etc. Jitters are indicated by

sudden discontinuities in velocities due to impulsive or transient forces. The

simplest approach to detecting abrupt discontinuities in a function is to apply

a derivative operator, and decide positive if the output magnitude is above a

certain threshold. The threshold may have to be determined adaptively.

Presence of high frequency signals and noisy data pose serious

challenge to this approach. Thus, it is useful to preprocess the data to cancel

67

the effect of noise. Then, we run the risk of de-emphasizing a valid edge

data, due to the low pass filtering nature of such preprocessing steps. We

have chosen to apply a robust multiresolution technique, called Laplacian of

Gaussian, also know as 2 G∇ ∗ .

It is essentially a finite impulse response digital filter, whose

continuous (analog) impulse response is of the form:

2

2
2

2
2(,)

x

h x e
x

σσ
−∂

= ∗
∂

 (4-43)

The function looks like an inverted Mexican hat as shown in Figure 4-9.

Figure 4-9: Inverted Mexican hat signal

68

We compute:

() () ()g n h n f n= ⊕

() (())S n sign g n=

() () (1)E n S n XOR S n= −

where, g(n) is the generated signal used for detection, h(n) is the digital filter

whose equation is (4-43), S(n) is a sign function which can be expressed as

follows:

0 0
()

1 0

x
sign x

x

<⎧
⎪= ⎨
⎪ ≥⎩

 (4-44)

E(n)=1, whenever there is an edge. The procedure must be repeated at

least for six σ, i.e., h(x, σ0), h(x, σ0r), h(x, σ0r2), …etc. where r=1.1. The

reason why we have at least six σ’s, is to accommodate wide range of

variations in the imaging conditions. The typical values of h(x) for various

scales and resolutions are shown in Table 4-3 and plotted in Figure 4-10.

69

Table 4-3: The digital filter used in the jitter detection process

Mask Mask values

h1 -0.8094 -0.10289 0.3861 0.112726 0.008549 0.000209 0 0

h2 -0.6849 -0.32967 0.24046 0.292063 0.114655 0.02239 0.002402 0.000147

h3 -0.72272 -0.27137 0.317401 0.246125 0.06186 0.006962 0.000382 0

h4 -0.64948 -0.37242 0.150245 0.306644 0.175519 0.05371 0.009892 0.001147

h5 -0.74284 -0.23582 0.347275 0.214785 0.04177 0.003404 0 0

h6 -0.68486 -0.32973 0.240357 0.292101 0.114727 0.022418 0.002406 0.000148

70

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

h1

h2

h3

h4

h5

h6

Figure 4-10: The digital filter plot used in the jitter detection process

If a zero-crossing is found in at least three σ’s, this gives an indication of

existence of jitter. The next zero-crossing of these σ’s indicates the end of

the jitter. All frames between these two consecutive zero-crossing instances

are to be dropped and replaced by a suitable postprocessed images. We

choose a simple method which take the first and the last images in the

sequence, to generate a smoothly varying image sequence. This image

sequence is computed by the FFT estimator described in section 4.3.

71

5. V. Results and Analysis

This chapter describes the experimental setup and the results obtained

in testing all algorithms developed in this thesis.

The results of the affine model fitting algorithm to estimate motion

vectors will be discussed first. The second section describes the test results

for the frequency domain method to estimate the inter-frame translation in

an image sequence. Finally, the effectiveness of jitter detection technique

will be demonstrated.

5.1 Affine Based Approach for Motion Estimation

This approach was tested in a simulation setup and a practical

experiment. The goal of the simulation was to evaluate the performance in a

controlled environment with exact knowledge about the shift and rotation

values between two images in an image sequence. This enables us to

evaluate the performance and sensitivity of the algorithm. We have also

tested the algorithm on a real world imagery without any modifications

5.1.1 Simulation

The scene we used in the simulation was the same scene used in the

experimental section. However, the principale difference stems from the way

72

we preprocessed the image frames. For the simulated testing, each image

was padded with a black (all zeros) pixels background. In contrast, the

realistic testing considers the image data without adding a well defined

boundary conditions.

For the simulation, we started from an image shown in Figure 5-1. It

is of size 700 x 400 pixels with a zero-padded background making the total

size of image 720 x 480 pixels.

Figure 5-1: Reference image

Two images were constructed by shifting and rotating the original

image. These two images were then used as inputs to the algorithm to

estimate the motion vectors between each image and the original image. The

first image shown in Figure 5-2 is constructed by shifting the original image

by 19 pixels in the positive x-axis direction.

73

Figure 5-2: The constructed image by shifting the original image by 19 pixels

When only shifts are applied, the motion vectors estimation produces

perfect results. Table 5-1 shows the estimated vectors.

Table 5-1: Estimated Motion Parameters for Pure Image Translation

Value
Parameter

Actual Estimated

ˆ xσ 1 1

ˆ yσ 1 1

θ̂ 0 0

α̂ 0 0

x̂Δ 19 19

ŷΔ 0 0

74

The second image shown in Figure 5-3 is constructed by rotating the

original image by θ = 0.0524 radians. The rotation was centered at the center

of the image grid.

Figure 5-3: The constructed image by rotating the original image by 0.0524 radians

When rotation is applied, as shown in Figure 5-3, the rotation angle is

accurately estimated but with not well estimated shifts. Table 5-2 shows the

actual parameters along with the estimated ones.

75

Table 5-2: Estimated Motion Parameters for Pure Image Rotation

Value
Parameter

Actual Estimated

ˆ xσ 1 0.95496

ˆ yσ 1 1.0236

θ̂ 0.0524 0.0577

α̂ 0 0.0126

x̂Δ 0 31.662

ŷΔ 0 -18.287

The errors in the shift estimation are due to the interpolation

approximation made when rotating the image.

Finally, the original image in Figure 5-1 and the two estimated motion

vectors in Table 5-1 and Table 5-2 are used as inputs to the reconstruction

part of the algorithm. Figure 5-4 and Figure 5-5 show the reconstructed

images from the estimated motion parameters in Table 5-1 and Table 5-2

respectively.

76

Figure 5-4: Reconstructed image from Table 5-1

Figure 5-5: Reconstructed image from Table 5-2

77

The precision of the image in Figure 5-4 was sufficient to have a good

reconstruction. However, the image in Figure 5-5 is in acceptable precision

except for the shifts.

5.1.2 Experiment

As described in the last section, the images used in the experimental

testing are a real world images without any preprocessing. Two images

taken at time=t and time=t+1 were to be considered. These two images are

shown in Figure 5-6 and Figure 5-7 respectively.

78

Figure 5-6: Image taken at time = t

Figure 5-7: Image taken at time = t+1

Because of the small amount of motion between the two consecutive

images, the non-overlapping part between them is small. Figure 5-8 shows

an inverted version of the difference between the two images.

79

Figure 5-8: Difference between image at time= t and image at tim= t+1

Unlike the simulation section, we will have an inside and more deep

look at the algorithm in this section. Firstly, we will start by plotting the

histogram and the cumulative histogram of the image at time=t which is the

start point of the segmentation process. The histogram and the cumulative

histogram are shown in Figure 5-9 and Figure 5-10 respectively. Figure 5-10

also shows the gray levels of the six segmented subimages B1 to B6. Figure

5-11 shows these subimages.

80

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5
x 104

Gray Level

N
o.

 O
f P

ix
el

s

Figure 5-9: Image Histogram

81

Figure 5-10: Cumulative Histogram

82

Subimage B1 Subimage B2

Subimage B3 Subimage B4

Subimage B5 Subimage B6

Figure 5-11: Binary subimages resulted from segmentation process

83

After extracting the binary subimages, the correlation of rotation angle

θ and deformation angle α is plotted to determine the proper group of

subimages that should be used to calculate the motion vectors. Figure 5-12

shows rotation-deformation angles plot.

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

al
ph

a

theta

Figure 5-12: Rotation-Deformation angles

By using the approach described in section 3.1.6, we can find the best

set of subimages which can be used to calculate the motion vectors. Table

5-3 shows the final estimated motion vectors.

84

Table 5-3: Estimated motion vectors

Parameter Value

ˆ xσ 1.0009

ˆ yσ 1.0145

θ̂ 0.014805

α̂ 0.003251

x̂Δ -1.7065

ŷΔ -11.281

At this point, we can use the estimated motion vectors to reconstruct

the image at time=t+1. Figure 5-13 show the reconstructed image.

Figure 5-13: Reconstructed image at time=t+1

The original image at time=t+1 in Figure 5-7 and the reconstructed

image in Figure 5-13 shows some differences. Figure 5-14 shows these

differences.

85

Figure 5-14: Difference between image at time=t+1 and the constructed image

In order to get more precise motion vector estimates, the difference

between the image at time=t+1 and the constructed image must be

minimized.

86

5.2 Frequency Domain Approach to Estimate Image Translation

Following the same scheme used in the previous section to evaluate

an algorithm, two types of test are conducted. We will have a simulation and

an experiment for the same reason mentioned previously.

5.2.1 Simulation

For the part of simulation, we used the image shown in Figure 5-15 as

an original image. This image is of size 620 x 400 pixels with a zero-padded

background, making the total size of 720 x 480 pixels. A new image has

been constructed by applying image translation effect to the original image.

Figure 5-16 shows this constructed image.

Figure 5-15: Original image

87

Figure 5-16: Constructed image by shifting the original image

These two images are used as inputs to the FFT motion estimator to

estimate the motion translation between the constructed image and the

original image. The FFT estimator gave perfect results during the process of

simulation. It could produce the exact values of translations. Table 5-4

shows this result.

Table 5-4: Estimated motion translation of the simulated images

Value
Parameter

Actual Estimated

xΔ -15 -15

yΔ -40 -40

88

5.2.2 Experiment

As in the previous section, in this part of FFT estimator’s evaluation, a

more realistic sequence of images is used as inputs. Figure 5-17 and Figure

5-18 show two images that are taken from a video stream.

The translation between these two images is to be estimated using

FFT estimator developed. It has been assumed that the rotation and scaling

factors between these two images are very small and hence can be neglected.

In this case, the image at time=t+1 can be totally reconstructed using the

estimated translations.

Figure 5-17: Image at time=t

89

Figure 5-18: Image at time=t+1

We have seen that the shift parameter Δx and Δy can be computed as

the slope of the phase difference between the two images. The first step here

is to plot the phase difference of the two images. Figure 5-19 shows such

plot.

90

u

v

50 100 150 200 250 300

50

100

150

200

-3

-2

-1

0

1

2

3

Figure 5-19: Phase difference of images at time=t and time=t+1

The parameter Δx is the shift in u-direction. It is computed by

eliminating the effect of shift in v-direction. This is done by plotting the

phase difference along u-axis and setting v=0 as in Figure 5-20. Same

method is used to get the parameter Δy.

91

0 50 100 150 200 250 300 350
-150

-100

-50

0

50

100

150

u

P
ha

se
 d

iff
er

en
ce

Figure 5-20: Phase difference in u-axis

0 50 100 150 200 250
-150

-100

-50

0

50

100

150

v

P
ha

se
 d

iff
er

en
ce

Figure 5-21: Phase difference in v-axis

92

As mentioned earlier, the slope of phase differences in each axis

represent the estimated shift parameters. Table 5-5 shows the final results.

Table 5-5: FFT estimated motion translation of the simulated images

Parameter Value

xΔ -27

yΔ 13

In order to evaluate the results obtained, a new image can be

constructed from image at time=t and the estimated motion translation then

compared to the image at time=t+1. Figure 5-22 shows the constructed

image.

Figure 5-22: Reconstructed image from translation estimated values

93

Figure 5-23 shows the error in difference between the constructed

image and the image at time=t+1. This difference has been inverted for

better viewing.

Figure 5-23: The difference between the constructed image and image at time = t+1

We can notice that the estimated values are precise enough to produce

a good constructed image.

 Only translation was considered. The other motion vectors like

rotation and scaling which are to be investigated in a future work using the

Fourier Domain approach.

94

5.3 Jitter Detection Algorithm

This section presents experimental results obtained from a video

sequence. The image frame sequence is of size 320 x 240 pixels and

contains 336 frames in length. The frame rate is 28 frames per second.

The video is used as input to the developed jitter detection algorithm.

The Motion parameter θ values of the sequence are depicted in Figure 5-24.

0 50 100 150 200 250 300
-2.5

-2

-1.5

-1

-0.5

0

0.5

Frame Number

Th
et

a
(R

ad
ia

ns
)

Figure 5-24: The motion parameter θ of the frames sequence

95

The output of convolving this signal with the multi-resolution LoG

filters shown in Figure 5-25.

Frame Number

Jitter
Start: 101
End: 127

Duration: 26 frames

Jitter
Start: 218
End: 242

Duration: 24 frames

Figure 5-25: Convolution output of θ and

It shows the existence of two jitters. The first jitter starts at frame 101

and lasts for 26 frames. The second jitter starts at frame 218 and lasts for 24

frames. Unfortunately, still images are not the proper way to display

dynamic process like video stabilization. But, the result can be shown as a

sequence of still images. Figure 5-26 and Figure 5-27 show the frame

images of these two video jitters.

96

Frame 99

Frame 100

Frame 101

Frame 102

Frame 103

Frame 104

Frame 105

Frame 106

Frame 107

Frame 108

Frame 109

Frame 110

Frame 111

Frame 112

Frame 113

Frame 114

Frame 115

Frame 116

Frame 117

Frame 118

Frame 119

Frame 120

Frame 121

Frame 122

Frame 123

Frame 124

Frame 125

Frame 126

Figure 5-26: The frames of the first jitter

97

Frame 215 Frame 216 Frame 217 Frame 218

Frame 219 Frame 220 Frame 221 Frame 222

Frame 223 Frame 224 Frame 225 Frame 226

Frame 227 Frame 228 Frame 229 Frame 230

Frame 231 Frame 232 Frame 233 Frame 234

Frame 235 Frame 236 Frame 237 Frame 238

Frame 239 Frame 240 Frame 241 Frame 242

Figure 5-27: The frames of the second jitter

98

Frame 101 must be registered with frame 126. Same thing should be

done to frame 218 and frame 242. Either image registration algorithms

developed in this thesis can be used to do this task. FFT approach has been

selected to do such job. Table 5-6 shows the resulted estimated motion

parameters.

Table 5-6: Estimated Motion Vectors for the two jitters

Parameter Estimated
Value Parameter Estimated

Value
xΔ -38 xΔ -26

yΔ 17 yΔ 11

Frame 101 to Frame 127 Frame 218 to Frame 242

The next step now is to reconstruct images according to the estimated

motion vectors. We can note that only the image translations were estimated,

that is because the FFT motion estimator is selected to estimate the motion

vectors. This is acceptable because of the nature of the dataset under testing.

Dropped frames were substituted by a reconstructed version of the last frame

in the jitter. To give impression of a smooth transition between frames, the

amount of translation in these frames were gradually increased until last

frame of the jitter reached. Figure 5-28 and Figure 5-29 show the final

results.

99

Frame 99

Frame 100

Frame 101

Frame 202

Frame 103

Frame 104

Frame 105

Frame 106

Frame 107

Frame 108

Frame 109

Frame 110

Frame 111

Frame 112

Frame 113

Frame 114

Frame 115

Frame 116

Frame 117

Frame 118

Frame 119

Frame 120

Frame 121

Frame 122

Frame 123

Frame 124

Frame 125

Frame 126

Figure 5-28: The frames of the first jitter after stabilization

100

Frame 215 Frame 216 Frame 217 Frame 218

Frame 219 Frame 220 Frame 221 Frame 222

Frame 223 Frame 224 Frame 225 Frame 226

Frame 227 Frame 228 Frame 229 Frame 230

Frame 231 Frame 232 Frame 233 Frame 234

Frame 235 Frame 236 Frame 237 Frame 238

Frame 239 Frame 240 Frame 241 Frame 242

Figure 5-29: The frames of the second jitter after stabilization

101

As mentioned earlier in describing the jitter detection technique

developed in this thesis, the missing part of the images resulted from images

reconstruction, should be substituted from future frames. This should not be

very difficult and it is recommended to be done as a future work for this

thesis.

102

6. VI. Conclusion

6.1 Summary

In this thesis, we have presented a video stabilization technique. The

underlying technology of motion-estimation, jitter detection, and image

registration, have been described. We presented the formulation we used to

implement real-world video stabilization algorithms and the results obtained

with these algorithms. We also presented the required analysis to fully

develop the approach. An Affine-based approach that tracks a small set of

features was used to estimate the movement of the camera between

consecutive frames. Fourier transform was also used to demonstrate

translation estimation between images. The resulting translation estimate

was robust and fast.

6.2 Limitations

The displayed frames are always delayed by several units of time. In

general, up to five frames of delay is both adequate and acceptable. In a

realistic video acquired for 30 frames/second, this delay amount to 1/6 of a

103

second. Research studies on human perception of images indicate that this

delay is not of adverse impact for routine tasks.

When the scene is comprised of ground moving targets, interpolation

based on the first and the last frame as used here, will not be adequate. A

more complex technique will have to be developed. It is left for future

development of this effort.

6.3 Additional Remarks

We have applied an expanded version of the jitter detection and

compensation on a real world UAV data. The dataset and the experimental

findings are not included in this document for logistic reasons.

6.4 Future work

Current work from this thesis can be extended to improve the

performance and reduce the constraints on camera motion. Possible

improvements include:

1. Extending the FFT estimator to estimate rotation and other motion

vectors besides translation.

2. Adding a process to the jitter detector to compensate the missing parts

of images which occur due to image reconstruction.

104

7. Appendix A

This appendix lists the Matlab code developed in this research.

affinmethod.m
1 %%%
2 % Author: Capt. Mohammed A. Alharbi
3 % Date : 12-January-2006
4 % Description:
5 % The function is the controller of the based affine
6 % transformation method to register two
7 % images. It takes two images and construct a third
8 % image %based on the calculated motion vectors.
9 % Usage:
10 % image3=affinmethod(image,image2)
11 % Input:
12 % image1 - the first RGB image at time=t
13 % image2 - the second RGB image at time=t+1
14 % Output:
15 % image3 - the reconstructed image based on the
16 % estimated motion vectors
17 %%%
18
19 function [image3]=affinemthod(image1,image2)
20 clear all;
21 clc;
22 [theta,alpha,sigmax,sigmay,c1,c2,sizes1,sizes2]=…
23 main(image1,image2);
24 E=FullTree(theta,alpha);
25 nMST=MinSpanTree(E);
26 dMAX=max(E(:,3));
27 MST=E(nMST,:);
28 z=MST(:,3)<=dMAX*0.1;
29 Clusters=MST(z,:);
30 F=forests(Clusters(:,1:2));
31 plotter(theta,alpha,Clusters);
32 [properCluster,SubimagesNumbers]=findCluster2(Clusters,E);
33 [alphabar,thetabar,sigmaxbar,sigmaybar,c1bar,c2bar]=…
34 calcAverages(properCluster,sizes1,alpha,theta,…
35 sigmax,sigmay,c1,c2)
36 end

main.m
37 %%%
38 % Description:
39 % This function takes two images as inputs and calculated

105

40 % the motion vectors between them
41 % Usage:
42 % [Q1,Q2,Q3,Q4,Q5,Q6,sizes1,sizes2] = main(image,image2)
43 % Input:
44 % image1 - the first RGB image at time=t
45 % image2 - the second RGB image at time=t+1
46 % Output:
47 % Q1 - Rotation angle (theta)
48 % Q2 - Deformation angle (alpha)
49 % Q3 - Scaling factor in x-axis
50 % Q4 - Scaling factor in y-axis
51 % Q5 - Shift in x-axis
52 % Q6 - Shift in y-axis
53 % sizes1 - The size of binary images of the first image
54 % sizes2 - The size of binary images of the second image
55 %%%
56
57 function [Q1,Q2,Q3,Q4,Q5,Q6,sizes1,sizes2] =
58 myfun(im1,im2)
59 [M1,sizes1]=extract8features(im1,1);
60 [M2,sizes2]=extract8features(im2,2);
61 Qalpha=[];
62 Qtheta=[];
63 Qsigmax=[];
64 Qsigmay=[];
65 QC1=[];
66 QC2=[];
67 e=1;
68 for i=1:6
69 for j=i+1:6
70 for k=j+1:6
71 X=[M1(2*i-1),M1(2*j-1),M1(2*k-…
72 1);M1(2*i),M1(2*j),M1(2*k)];
73 Xbar=[M2(2*i-1),M2(2*j-1),M2(2*k-
74 …1);M2(2*i),M2(2*j),M2(2*k)];
75 Z=simequ2(X,Xbar);
76 matrices
77 [Q,Qalpha,Qtheta,Qsigmax,Qsigmay,QC1,QC2]=trans(Z,Qalpha
78 ,Qtheta,Qsigmax,Qsigmay,QC1,QC2);
79 end;
80 end;
81 end;
82 Q1 = Qtheta;
83 Q2 = Qalpha;
84 Q3 = Qsigmax;
85 Q4 = Qsigmay;
86 Q5 = QC1;
87 Q6 = QC2;
88 end

Extract6features.m
89 %%%
90 % Description:
91 % This function extracts six binary subimages out of an
92 % input image. Then, it outputs the sizes and the
93 % centroid of these binary images.

106

94 %
95 % Usage:
96 % Extract6features(image1)
97 % Input:
98 % image1 - an RGB image.
99 % Output:
100 % centroids - The centroid of the six binary subimages.
101 % Imsizes - The sizes of the six binary images.
102 %%%
103
104 function [centroids,imsizes] = features(imfile,imno)
105 writeimages=1;
106 showimages=0;
107 close all;
108 I2 = imread(imfile);
109 if isrgb(I2)
110 I2=rgb2gray(I2);
111 end
112 h = imhist(I2);
113 H=cumsum(h);
114 [M,N]=size(I2);
115 k=M*N;
116 k1=k/6;
117 k2=2*k/6;
118 k3=3*k/6;
119 k4=4*k/6;
120 k5=5*k/6;
121 k6=6*k/6;
122 [val,indx]=min(abs(H-k1));
123 k1hat=indx;
124 [val,indx]=min(abs(H-k2));
125 k2hat=indx;
126 [val,indx]=min(abs(H-k3));
127 k3hat=indx;
128 [val,indx]=min(abs(H-k4));
129 k4hat=indx;
130 [val,indx]=min(abs(H-k5));
131 k5hat=indx;
132 [val,indx]=min(abs(H-k6));
133 k6hat=indx;
134 % The first binary image
135 B1=I2;
136 B1=double(I2<k1hat);
137 B1=logical(B1);
138 B1=~B1;
139 imsizes(1)=sum(sum(B1));
140 % The second binary image
141 B2=double(I2>k1hat&I2<k2hat);
142 B2=logical(B2);
143 B2=~B2;
144 imsizes(2)=sum(sum(B2));
145 % The third binary image
146 B3=double(I2>k2hat&I2<k3hat);
147 B3=logical(B3);
148 B3=~B3;
149 imsizes(3)=sum(sum(B3));
150 % The fourth binary image
151 B4=double(I2>k3hat&I2<k4hat);

107

152 B4=logical(B4);
153 B4=~B4;
154 imsizes(4)=sum(sum(B4));
155 % The fifth binary image
156 B5=double(I2>k4hat&I2<k5hat);
157 B5=logical(B5);
158 B5=~B5;
159 imsizes(5)=sum(sum(B5));
160 % The sixth binary image
161 B6=double(I2>k5hat&I2<k6hat);
162 B6=logical(B6);
163 B6=~B6;
164 imsizes(6)=sum(sum(B6));
165 if imno==1
166 filename1='images\B11.bmp';
167 filename2='images\B21.bmp';
168 filename3='images\B31.bmp';
169 filename4='images\B41.bmp';
170 filename5='images\B51.bmp';
171 filename6='images\B61.bmp';
172 else
173 filename1='images\B12.bmp';
174 filename2='images\B22.bmp';
175 filename3='images\B32.bmp';
176 filename4='images\B42.bmp';
177 filename5='images\B52.bmp';
178 filename6='images\B62.bmp';
179 end;
180 if writeimages
181 imwrite(B1,filename1);
182 imwrite(B2,filename2);
183 imwrite(B3,filename3);
184 imwrite(B4,filename4);
185 imwrite(B5,filename5);
186 imwrite(B6,filename6);
187 end;
188 a=centroid(filename1);
189 MM(1,1)=a(1);
190 MM(2,1)=a(2);
191 a=centroid(filename2);
192 MM(1,2)=a(1);
193 MM(2,2)=a(2);
194 a=centroid(filename3);
195 MM(1,3)=a(1);
196 MM(2,3)=a(2);
197 a=centroid(filename4);
198 MM(1,4)=a(1);
199 MM(2,4)=a(2);
200 a=centroid(filename5);
201 MM(1,5)=a(1);
202 MM(2,5)=a(2);
203 a=centroid(filename6);
204 MM(1,6)=a(1);
205 MM(2,6)=a(2);
206 if showimages
207 figure;
208 imshow(B1);figure;
209 imshow(B2);figure;

108

210 imshow(B3);figure;
211 imshow(B4);figure;
212 imshow(B5);figure;
213 imshow(B6);
214 end;
215 centroids = MM;
216 end

centroid.m
217 %%%
218 % Description:
219 % This function calculated the centroid of a binary
220 % image.
221 % Usage:
222 % B_centroid = centroid(imfile)
223 % Input:
224 % imfile - The file name of the binary image.
225 % Output:
226 % B_centroid – The calculated centroid.
227 %%%
228
229 function B_centroid = centro(imfile)
230 im = imread(imfile);
231 [rows,cols] = size(im);
232 x = ones(rows,1)*[1:cols];
233 y = [1:rows]'*ones(1,cols
234 area = sum(sum(im));
235 meanx = sum(sum(double(im).*x))/area;
236 meany = sum(sum(double(im).*y))/area;
237 B_centroid = [meanx,meany];
238 end

simeq2.m
239 %%%
240 % Description:
241 % This function solves three simultaneous equations.
242 % Usage:
243 % result = simeq2(co1,co2)
244 % Input:
245 % co1 - Coefficients of the first set of equations
246 % co2 - Coefficients of the second set of equations
247 % Output:
248 % result - The result of the solved equations
249 %%%
250
251 function result=myfunc(co1,co2)
252 x11=co1(1,1);
253 x12=co1(1,2);
254 x13=co1(1,3);
255 y11=co1(2,1);
256 y12=co1(2,2);
257 y13=co1(2,3);
258 x11bar=co2(1,1);
259 x12bar=co2(1,2);
260 x13bar=co2(1,3);
261 y11bar=co2(2,1);

109

262 y12bar=co2(2,2);
263 y13bar=co2(2,3);
264 XX =[x11 y11 0 0 1 0;
265 0 0 x11 y11 0 1;
266 x12 y12 0 0 1 0;
267 0 0 x12 y12 0 1;
268 x13 y13 0 0 1 0;
269 0 0 x13 y13 0 1];
270 b=[x11bar ;y11bar ;x12bar; y12bar ;x13bar ;y13bar];
271 result = XX\b;
272 end

trans.m
273 %%%
274 % Description:
275 % This function calculates the values of the scaling in
276 % x-axis and y-axis. Also, it calculates the values of
277 % the rotation angle and the deformation angle. Then, it
278 % reorganizes shift values and put them in matrices. It
279 % produces all vectors of motion as arrays.
280 % Usage:
281 % [Qalphas,Qthetas,Qsigmaxs,Qsigmays,QC1s,QC2s] =
282 % trans(M,Qalpha,Qtheta,Qsigmax,Qsigmay,QC1,QC2)
283 % Input:
284 % Qalpha - Deformation angle.
285 % Qtheta - Rotation angle.
286 % Qsigmax – Scaling factor in x-axis
287 % Qsigmay – Scaling factor in y-axis
288 % QC1 - Shift in x-axis
289 % QC2 - Shift in y-axis
290 % Output:
291 % Qalphas - Array of deformation angles.
292 % Qthetas - Array of rotation angles.
293 % Qsigmaxs – Array of Scaling factors in x-axis
294 % Qsigmays – Array of Scaling factors in y-axis
295 % QC1s - Array of Shifts in x-axis
296 % QC2s - Array of Shifts in y-axis
297 %%%
298
299 function [Qalphas,Qthetas,Qsigmaxs,Qsigmays,QC1s,QC2s] =
300 myfun(M,Qalpha,Qtheta,Qsigmax,Qsigmay,QC1,QC2)
301 sigmax=sqrt(M(1)+M(2));
302 sigmay=sqrt(M(3)+M(4));
303 C1=M(5);
304 C2=M(6);
305 alphaminustheta=atan2(M(2),M(1));
306 alphaplustheta=atan2(M(3),M(4));
307 alpha=(alphaminustheta+alphaplustheta)/2;
308 theta=alphaplustheta-alpha;
309 Qalphas=[Qalphas ; alpha];
310 Qthetas=[Qthetas ; theta];
311 Qsigmaxs=[Qsigmaxs; sigmax];
312 Qsigmays=[Qsigmays; sigmay];
313 QC1s=[QC1s; C1];
314 QC2s=[QC2s; C2];
315 end

Fulltree.m

110

316 %%%
317 % Description:
318 % This function creates a full tree graph of a given two
319 % sets of points.
320 % Usage:
321 % [Q]=Fulltree(X,Y)
322 % Input:
323 % X - The x coordinates of the points to be converted in
324 % a fully tree graph.
325 % Y - The Y coordinates of the points.
326 % Output:
327 % Q - Edges of the created full tree graph.
328 %%%
329
330 function [Q] = myfun(X,Y)
331 z=1;
332 for i=1:19
333 for j=i+1:20
334 Q(z,:)=[i j sqrt((X(i)-X(j))^2 + (Y(i)-Y(j))^2)];
335 z=z+1;
336 end
337 end

MinSpanTree.m
338 %%
339 % This function solves the minimal spanning tree problem
340 % for a connected graph.
341 % Input parameter:
342 % E(m,2) or (m,3) - the edges of graph and their weight;
343 % 1st and 2nd elements of each row is numbers of
344 % vertexes;
345 % 3rd elements of each row is weight of edge;
346 % m - number of edges.
347 % If we set the array E(m,2), then all weights is 1.
348 % Output parameter:
349 % nMST - the list of the numbers of edges included
350 % in the minimal (weighted) spanning tree in the
351 %including order.
352 % Uses the greedy algorithm.
353 % Author: Sergiy Iglin
354 % e-mail: iglin@kpi.kharkov.ua
355 % or: siglin@yandex.ru
356 % personal page: http://iglin.exponenta.ru
357 %%%
358 function nMST=MinSpanTree(E)
359 [m,n,E] = Evalidation(E);
360 En=[(1:m)',E];
361 [Emin,nMST]=min(En(:,4)); nVer=[En(nMST,2:3)];
362 En=En(setdiff([1:m],nMST),:);
363 while length(nVer)<n,
364 Encurr=[];
365 for k=1:size(En,1),
366 if sum(ismember(En(k,2:3),nVer))==1,
367 Encurr=[Encurr;En(k,:)];
368 end
369 end
370 if isempty(Encurr),
371 error('The graph is not connected!')

111

372 end
373 [Emin,imin]=min(Encurr(:,4));
374 nEdge=Encurr(imin,1);
375 nMST=[nMST,nEdge];
376 nVer=unique([nVer,Encurr(imin,2:3)]);
377 En=En(setdiff([1:size(En,1)],find(En(:,1)==nEdge)),:);
378 end
379 return
380 end

forests.m
381 %%%
382 % Description: This algorithm builds forests out of a group
383 % of nodes using Kruska’s algorithm.
384 %
385 % Usage:
386 % [Q]=forests(A).
387 % Input:
388 % A - A group on nodes.
389 % Output:
390 % Q - A graph consist of forest.
391 %%%
392
393 function [Q]=myfun(A)
394 B=[];
395 k=max(A(:));
396 M = sparse(A(:,1),A(:,2),1,k,k);
397 M=M+M';
398 M1 = zeros(size(M));
399 flag = 1;
400 while flag
401 M1=double((M+M*M)~=0);
402 if isequal(M,M1)
403 flag = 0;
404 end
405 M=M1;
406 end
407 M=unique(M,'rows');
408 M(all(~M,2),:)=[];
409 for (i=1:size(M,1))
410 a=find(M(i,:));
411 for (j=1:size(A,1))
412 if (length(intersect(a,A(j,:))) > 0)
413 B=[B; A(j,:)];
414 end
415 end
416 B=[B; [0 0]];
417 end
418 Q=B;

Plotter.m
419 %%%
420 % Description:
421 % This function plots a set of nodes in a graph.
422 % Usage:
423 % Plotter(X,Y,zo)
424 % Input:
425 % X - The x-coordinates of the nodes

112

426 % Y - The y-coordinates of the nodes
427 % zo - Distances between the nodes
428 % Output:
429 % none
430 %%%
431
432 function myplot(X,Y,zo)
433 plot(X,Y,'*');
434 axis equal
435 ylim=[-2 2.5];
436 ylabel('alpha');
437 xlabel('theta');
438 t=[1:20]';
439 T=num2str(t);
440 text(X,Y,T);
441 for (i=1:size(zo,1))
442 s=zo(i,1); e=zo(i,2);
443 line([X(s); X(e)], [Y(s) ;Y(e)])
444 end

findcluster2.m
445 %%%
446 % Description:
447 % The function finds the best group of nodes (binary
448 % subimages) that can be used to determine the motion
449 % vectors.
450 % Usage:
451 % [m,subno] = findcluster2(n,E)
452 % Input:
453 % n - The nodes (binary subimages) in the graph
454 % E - The cluster contains these nodes
455 % Output:
456 % m - The nodes (binary subimages) that should be
457 % used to determine motion vectors.
458 % subno - The index of these nodes.
459 %%%
460
461 %The following function takes clusters matrix
462 %It generates the data structure necssary to determine the
463 % best cluster to use
464 function [m,subno]=myfun(n,E)
465 n=sortrows(n,3);
466 maxdistance=0.3;
467 m=[];
468 subno=[];
469 subnocell=cell(10,1);
470 q=[];
471 for i=1:6
472 for j=i+1:6
473 for k=j+1:6
474 q=[q; i,j,k];
475 end
476 end
477 end
478 M=cell(10,1);
479 Mi=1;
480 current=n(1,:);
481 M{1}=current;

113

482 subnocell{1}=union(q(current(1),:),q(current(2),:));
483 if size(subnocell{1},2)==5
484 m=M{1};
485 subno=subnocell{1};
486 return
487 end
488 for i=2:size(n,1)
489 notinserted=true;
490 current=n(i,:);
491 j=1;
492 while j<=Mi & notinserted
493 if find(M{j}(:,1:2)==current(1)|…
494 M{j}(:,1:2)==current(2))
495 MM=[];
496 MM=[M{j}; current];
497 if clusthrecheck(E,MM)<=maxdistance
498 M{j}=MM;
499 subnocell{j}=union(subnocell{j},…
500 union(q(current(1),:),q(curent(2),:)));
501 if size(subnocell{j},2)==5
502 m=M{j};
503 subno=subnocell{j};
504 return
505 end
506 end
507 notinserted=false;
508 end
509 j=j+1;
510 end
511 if notinserted
512 Mi=Mi+1;
513 M{Mi}=current;
514 subnocell{Mi}=union(q(current(1),:),q(current(2),:));
515 if size(subnocell{Mi},2)==5
516 m=M{Mi};
517 subno=subnocell{Mi};
518 return
519 end
520 end
521 end

calcaverages.m
522 %%%
523 % Description:
524 % This function contains the average motion vector values
525 % for all selected binary subimages.
526 % Usage:
527 % sigmaybar,c1bar,c2bar]=...
528 % calcaverages(propCluster,sizes,alpha,…
529 % theta,sigmax,sigmay,c1,c2)
530 % Input:
531 % propCluster,
532 % sizes - The total size of each image.
533 % alpha - The deformation angle of each pair of
534 % images.
535 % theta - The rotation angle of each pair of images.
536 % sigmax - The Scaling factor in the x-axis.
537 % sigmay - The scaling factor in the y-axis.

114

538 % c1 - The shift in x-axis.
539 % c2 - The shift in the y-axis
540 % Output:
541 % propCluster – The indices of the nodes that contains
542 the best binary images that can be used
543 to calculate motion vectors.
544 % sizes - The total sizes of these binary images.
545 % alpha - The averaged deformation angles of these
546 % images.
547 % theta - The averaged rotation angles of these
548 % images.
549 % sigmax - The averaged scaling factors in the x-
550 % axes.
551 % sigmay - The averaged scaling factors in the y-
552 % axis
553 % c1 - The averaged shift in the x-axis
554 % c2 - The averaged shift in the y-axis
555 %%%
556
557 function [alphabar,thetabar,sigmaxbar,…
558 sigmaybar,c1bar,c2bar]=...
559 myfun(propCluster,sizes,alpha,theta,sigmax,sigmay,c1,c2)
560 q=[];
561 w=[];
562 for i=1:6
563 for j=i+1:6
564 for k=j+1:6
565 q=[q; i,j,k];
566 end
567 end
568 end
569 pc=unique(propCluster(:,1:2));
570 si=q(pc,:);
571 subsizes=sizes(si);
572 for i=1:size(subsizes,1)
573 w(i)=min(subsizes(i,:));
574 end
575 w=w';
576 alphabar=sum(w.*alpha(pc))/sum(w);
577 thetabar=sum(w.*theta(pc))/sum(w);
578 sigmaxbar=sum(w.*sigmax(pc))/sum(w);
579 sigmaybar=sum(w.*sigmay(pc))/sum(w);
580 c1bar=sum(w.*c1(pc))/sum(w);
581 c2bar=sum(w.*c2(pc))/sum(w);
582 end

Evalidation.m
583 %%
584 % The validation of array E - auxiliary function for
585 % GrTheory Toolbox.
586 % Author: Sergiy Iglin
587 % e-mail: iglin@kpi.kharkov.ua
588 % or: siglin@yandex.ru
589 % personal page: http://iglin.exponenta.ru
590 %%
591
592 function [m,n,newE] = Evalidation(E)
593 if ~isnumeric(E),

115

594 error('The array E must be numeric!')
595 end
596 se=size(E);
597 if length(se)~=2,
598 error('The array E must be 2D!')
599 end
600 if (se(2)<2),
601 error('The array E must have 2 or 3 columns!'),
602 end
603 if ~all(all(E(:,1:2)>0)),
604 error('1st and 2nd columns of the array E must be
605 positive!')
606 end
607 if ~all(all((E(:,1:2)==round(E(:,1:2))))),
608 error('1st and 2nd columns of the array E must be…
609 integer!')
610 end
611 m=se(1);
612 if se(2)<3,
613 E(:,3)=1;
614 end
615 newE=E(:,1:3);
616 n=max(max(newE(:,1:2)));
617 return
618 end

clusthrecheck.m
619 %%%
620 % Description:
621 % This function check the maximum threshold between all
622 % nodes and it outputs the maximum value.
623 % Usage:
624 % maxdis = clustercheck(E,a)
625 % Input:
626 % E - The clusters to be checked.
627 % a - The distances between the nodes within
628 % clusters.
629 % Output:
630 % maxdis - The maximum distance between the nodes in a
631 % cluster
632 %%%
633
634 %This function check the maximum distance (threshold)
635 %between all nodes in the cluster a
636 function maxdis=myfun(E,a)
637 q=unique(a(:,1:2));
638 w=[];
639 for i=1:size(q,1)
640 for j=i+1:size(q,1)
641 w=[w; q(i), q(j)];
642 end
643 end
644 [tf,loc] = ismember(w,E(:,1:2),'rows');
645 maxdis=max(E(loc,3));
646 end

116

moveitem.m
647 %%%
648 % Description:
649 % This function removes a node from a cluster and puts
650 % it to another cluster.
651 %
652 % Usage:
653 % [src,dist]=moveitem(src,dist,vals)
654 % Input:
655 % src : The source value.
656 % dist : The distination.
657 % vals : Values of all nodes in the clusters.
658 % Output:
659 % src : The source value after removing.
660 % dist : The distination after removing.
661 %%%
662
663 function [src,dist]=moveitem(src,dist,vals)
664 [tf,loc] = ismember(vals,src(:,:),'rows') ;
665 src=src(setdiff(1:size(src,1),loc),:);
666 dist=[dist; vals];
667 end

removerelated.m
668 %%%
669 % Description:
670 % Remove loops in clusters.
671 % Usage:
672 % [m,templist]=removerealted(m,templist,val)
673 % Input:
674 % m - The nodes in the cluster.
675 % templist – A temporary list used for switching nodes
676 % val - The values of these nodes.
677 % Output:
678 % m - The nodes in the cluster after removing
679 % loops
680 % templist - A temporary list used for switching nodes
681 %%%
682
683 function [m,templist]=removerealted(m,templist,val)
684 [r,c]=find(m(:,1:2)==val(1) | m(:,1:2)==val(2));
685 d=m(r,:);
686 [m,templist]=moveitem(m,templist,d);
687 end

sortcluster.m
688 %%%
689 % Description:
690 % This function sort the clusters according to their
691 % edges.
692 % Usage:
693 % [c1]=sortcluster(c]
694 % Input:
695 % c - Unsorted cluster.
696 % Output:
697 % c1 - Sorted cluster.

117

698 %%%
699
700 function [c1]=ext(c)
701 c1=[];
702 m=[];
703 h=1;
704 i=1;
705 while i<size(c,1)
706 while c(i,1)~=0
707 i=i+1;
708 end
709 temp=c(h:i-1,:);
710 temp=sortmat(temp)
711 m=[m;temp;0 0 0];
712 i=i+1;
713 h=i;
714 end
715 c1=m;
716 end

con4.m

717 %%%
718 % Description:
719 % Given a reference image and motion vectors, this
720 % function constructs a new image based on the reference
721 % image and motion vectors.
722 % Usage:
723 % function [newImage]=con4(image1,theta,alpha,sx,…
724 % sy,c1,c2)
725 % Input:
726 % image1 - The reference image.
727 % theta - The rotation angle.
728 % alpha - The deformation angle.
729 % sx - The scaling factor in x-axis.
730 % sy - The scaling factor in y-axis.
731 % c1 - The shift in x-axis.
732 % c2 - The shift in y-axis.
733 % Output:
734 % newImage - The new constructed image base on the
735 % reference image and the motion vectors.
736 %%%
737
738 function [newImage]=myfun(image1,theta,alpha,sx,sy,c1,c2)
739 close all;
740 A=[sx*cos(alpha-theta) sx*sin(alpha-theta);
741 sy*sin(alpha+theta) sy*cos(alpha+theta)];
742 figure;
743 imshow(image1);
744 for x=1:size(image1,2)
745 for y=1:size(image1,1)
746 xpos=x*A(1)+y*A(2)+c1;
747 ypos=x*A(3)+y*A(4)+c2;
748 fx = floor(xpos);
749 fy = floor(ypos);
750 apha=xpos-floor(xpos);
751 beta=ypos-floor(ypos);
752 if ~(fx+1>size(f,2) | fy+1>size(f,1) | fx<1 | fy<1)

118

753 newImage(y,x) = ...
754 image(fy, fx) * (1 - apha)*(1 - beta)+...
755 image(fy, fx+1) * apha*(1-beta) +...
756 image(fy+1, fx) * (1-apha)*beta +...
757 image(fy+1, fx+1) *apha*beta ;
758 elseif
759 (fx>0 && fy>0) && (fx==size(image1,2) ||…
760 fy==size(image1,1))
761 && ~(fx>size(image1,2) || fy>size(image1,1))
762 newImage(y,x) = image(fy, fx);
763 else
764 newImage(y,x) = 0;
765 end
766 end
767 end
768 figure;
769 imshow(newImage,[])
770 end

de5.m
771 %%%
772 % Description:
773 % This function takes two images and plot the phase
774 % difference of FFT of them.
775 % Usage:
776 % [m,n]=de5(im1,im2)
777 % Input:
778 % im1 - The first image.
779 % im2 - The second image.
780 % Output:
781 % m - The u values of the phase difference.
782 % n - The v values of the phase difference.
783 %%%
784
785 function [m,n]=myfun(im1,im2);
786 close all
787 F1=fft2(im1);
788 F2=fft2(im2);
789 F1=fftshift(F1);
790 F2=fftshift(F2);
791 P=F1./F2;
792 Pph=angle(P);
793 figure;
794 imshow(Pph);
795 s=size(im1,1);;
796 z=s/2;
797 Psurf=Pph.*(s/(2*pi));
798 PP=Psurf(z,:);
799 PP=PP';
800 figure; plot(PP);
801 QQ=Psurf(:,z);
802 figure; plot(QQ);
803 jp=z;
804 while PP(jp+1)-PP(jp)<max(PP)*0.3 && jp<s
805 jp=jp+1;
806 end
807 ip=z;

119

808 while PP(ip)-PP(ip-1)<max(PP)*0.3 && ip>2
809 ip=ip-1;
810 end
811 jp=jp-1;
812 P1=PP(ip:jp);
813 m=PP;
814 p=polyfit([ip:jp]',P1,1)
815 f = polyval(p,[ip:jp]);
816 figure; plot([ip:jp],P1,[ip:jp],f,'-r');
817 jq=z;
818 while QQ(jq+1)-QQ(jq)<max(QQ)*0.25 && jq<s
819 jq=jq+1;
820 end
821 iq=z;
822 while QQ(iq)-QQ(iq-1)<max(QQ)*0.25 && jq>2
823 iq=iq-1;
824 end
825 jq=jq-1;
826 Q1=QQ(iq:jq);
827 n=QQ;
828 p=polyfit([iq:jq]',Q1,1)
829 f = polyval(p,[iq:jq]);
830 figure; plot([iq:jq],Q1,[iq:jq],f,'-r');
831 end

conv1d.m
832 %%%
833 % Description:
834 % This function takes two signals and plots the
835 % convolution of them.
836 % Usage:
837 % conv1d(mask,q)
838 % Input:
839 % mask - The first signal (which is the digital filter)
840 % q - The signal intended to be convoluted.
841 %%%
842
843 function myfun(mask,q)
844 h1=mask(1,2:7);
845 ds=[1 2 4];
846 sum1=0;
847 z1=[];z2=[];
848 co=['r' ;'g'; 'k' ;'b' ;'c'; 'm'];
849 cp=1;
850 for (s=1:3)
851 for (n=6*ds(s):(336-ds(s)*6))
852 for (k=2:6)
853 sum1=sum1+(q(n+(k-1)*ds(s))+q(n-(k-1)*ds(s)))*h1(k);
854 end
855 z1(n)=h1(1)*q(n)+sum1;
856 sum1=0;
857 end
858 h2=mask(2,2:9);
859 sum1=0;
860 for (n=8*ds(s):(336-ds(s)*8))
861 for (k=2:6)
862 sum1=sum1+(q(n+(k-1)*ds(s))+q(n-(k-1)*ds(s)))*h2(k);
863 end

120

864 z2(n)=h2(1)*q(n)+sum1;
865 sum1=0;
866 end
867 plot(z1,co(cp));
868 hold on;
869 cp=cp+1;
870 plot(z2,co(cp));
871 cp=cp+1;
872 end
873 hold on;
874 plot([0 400],[0 0],'k')
875 end

fullrangephi.m
876 %%%
877 % Description:
878 % This function takes the values of rotation angles and
879 % out them as full range.
880 % Usage:
881 % [q]=fullrangephi(phi,FramesNumber)
882 % Input:
883 % phi - The rotation angel.
884 % FramesNumber – The number of the frame which the phi
885 % belong to.
886 % Output:
887 % q - A full-ranged alpha.
888 %%%
889
890 function [q]=myfun(phi,FramesNumber)
891 q=[];
892 q(1)=phi(1);
893 cdif=0;
894 for (i=2:FramesNumber)
895 dif=phi(i)-phi(i-1);
896 if dif>2
897 cdif=cdif-2*pi;
898 end
899 if dif<-2
900 cdif=cdif+2*pi;
901 end
902 q(i)=phi(i)+cdif;
903 end;

jd.m
904 %%%
905 % Description:
906 % This function takes plots the zero-crossing values that
907 % yield from convolution of the rotation angle and the
908 % mask.
909 % Usage:
910 % jd(moments,mask)
911 % Input:
912 % moments – The moments of the processed frames.
913 mask - The digital filter used in the convolution
914 %%%
915
916 function jd(moments,mask)
917 phi=atan2(moments(:,2),moments(:,3));

121

918 q=full_range_phi(phi,size(moments,1));
919 plot(q);
920 conv1d(mask,q)
921 end

get_moments.m

922
923 %%%
924 % Description:
925 % This function takes an image and calculates the moments
926 % of this image.
927 % Usage:
928 % [weight,S00,M00,M01,M10,M11,M20,M02]=get_moments(img)
929 % Input:
930 % img - The input image.
931 % Output:
932 % weight – The weight used to calculate the moments.
933 % M00 - The M00 moment.
934 % M01 - The M01 moment.
935 % M10 - The M10 moment.
936 % M11 - The M11 moment.
937 % M20 - The M20 moment.
938 % M02 - The M02 moment.
939 %%%
940
941 function [weight,S00,M00,M01,M10,M11,M20,M02]=myfun(img)
942 ii=320;
943 jj=240;
944 w_sigma_len=105;
945 for (i=1:ii)
946 for (j=1:jj)
947 u(j,i)=((i-ii/2)^2+(j-jj/2)^2)/(2*w_sigma_len^2);
948 end;
949 end;
950 weight=255*exp(-1*u.^2);
951 weight=u;
952 im=double(im);
953 S00=0;
954 S10=0;
955 S01=0;
956 S11=0;
957 S20=0;
958 S02=0;
959 for (x=1:ii)
960 for(y=1:jj)
961 cx=x-ii/2;
962 cy=y-jj/2;
963 S00=S00+im(y,x)*weight(y,x);
964 S10=S10+cx * im(y,x) * weight(y,x);
965 S01=S01+cy * im(y,x) * weight(y,x);
966 S11=S11+cx*cy*im(y,x)*weight(y,x);
967 S20=S20+cx*cx *im(y,x)*weight(y,x);
968 S02=S02+cy*cy *im(y,x)*weight(y,x);
969 end;
970 end;
971 M00=S00;
972 M10=S10;

122

973 M01=S01;
974 M11=S11;
975 M20=S20;
976 M02=S02;
977 end

Createmovie.m
978 %%%
979 % Description:
980 % This function create a movie out of a set of images.
981 % Usage:
982 % [avifilename]=Createmovie(A,frames_location)
983 % Input:
984 % A - Set of images.
985 % frames_location - The location of the images.
986 % Output:
987 % avifilename - The file name of the movie.
988 %%%
989
990 function [avifilename]=myfunc(A,frames_location)
991 aviobj = avifile(avifilename,'fps',28);
992 icon=[];
993 num=size(A,2);
994 for (j=1:num)
995 i=A(j);
996 if i<10
997 image1=strcat(frames_location,…
998 'frame00',int2str(i),'.bmp')
999 elseif i<100
1000 image1=strcat(frames_location,'frame0',…
1001 int2str(i),'.bmp')
1002 else
1003 image1=strcat(frames_location,'frame',…
1004 int2str(i),'.bmp')
1005 end
1006 if ~ismember(i,[115:126,230:239])
1007 im=imread(image1);
1008 imshow(im);
1009 frame=getframe;
1010 aviobj = addframe(aviobj,frame);
1011 end
1012 end
1013 aviobj = close(aviobj);
1014 end

get_angle_dif.m
1015 %%%
1016 % Description:
1017 % This function calculated the rotation angles difference
1018 between two images.
1019 % Usage:
1020 % [ang_dif]=get_angle_dif(im1,im2)
1021 % Input:
1022 % im1 - The first image.
1023 % im2 - The second image.
1024 % Output:

123

1025 % ang_dif – The difference in rotation angles between the
1026 % two images.
1027 %%%
1028
1029 function [ang_dif]=myfunc(im1,im2)
1030 [M00_1,M01_1,M10_1,M11_1,M20_1,M02_1]=get_moments(im1);
1031 [M00_2,M01_2,M10_2,M11_2,M20_2,M02_2]=get_moments(im2);
1032 F1=[M20_1 M11_1; M11_1 M02_1];
1033 F2=[M20_2 M11_2; M11_2 M02_2];
1034 [V1,D1] = eig(F1);
1035 [V2,D2] = eig(F2);
1036 ang1=atan2(V1(2,1),V1(1,1));
1037 ang2=atan2(V2(2,1),V2(1,1));
1038 ang_dif=ang2-ang1;
1039 end

vsplitter2.m
1040 %%%
1041 % Description:
1042 % This function split a movie into images.
1043 % Usage:
1044 % [im1]=vsplitter2(moviefilename,destinationfilename)
1045 % Input:
1046 % moviefilename - The movie’s file name.
1047 % destinationfilename - The name of the extracted
1048 % images.
1049 % Output:
1050 % im1 - The image file name.
1051 %%%
1052
1053 function [im1]=myfun(moviefilename,destinationfilename)
1054 mov=aviread(moviefilename);
1055 for i=1:size(mov,2)
1056 im1=mov(i).cdata;
1057 if i<10
1058 filename=strcat(destinationfilename,int2str(i),'.bmp')
1059 elseif i<100
1060 filename=strcat(destinationfilename,int2str(i),'.bmp')
1061 elseif i>=100
1062 filename=strcat(destinationfilename,int2str(i),'.bmp')
1063 end
1064 imwrite(im1,filename);
1065 end
1066 end
1067 end
1068 end

124

8. Bibliography

[1] Q. Zheng and R. Chellappa. A computational vision approach to image
registration. IEEE Trans. Image processing, 2:311-326, 1993

[2] C. Morimoto, R. Chellappa, ”Fast electronic digital image stabilization”,
Proceedings of the 13th International Conference on Pattern Recognition,
vol. 3,, pp.284-288, 25-29 August 1996

[3] JY. Chang, WF. Hu, MH Chang and BS Chang, “Digital Image
Translational and Rotational Motion Stabilization using Optical Flow
Technique”, IEEE Trans. on Consumer Electronics, Vol. 48, No. 1, pp. 108-
115, 2002.

[4] C. Morimato and R. Chellappa, “Evaluation of Image Stabilization
Algorithms”, Proc. of IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing, Vol. 5, pp. 2789-2792, 1998.

[5] A. Jain and R. Dubes , “Algorithms for clustering data”, Prentice Hall,
1988.

[6] A. Engelsberg and G. Schmidt, “A comparative review of digital image
stabilizing algorithms for mobile video communications,” IEEE Trans. On
Consumer Electronics, vol. 45, no. 3, pp. 591-597, Aug, 1999.

[7] M. Oshima; T. Hayashi; S. Fujioka; T. Inaji; H. Mitani; J. Kajino; K.
Ikeda; and K. Komoda, “VHS camcorder with electronic image stabilizer”,
IEEE Trans. on Consumer Electronics, Vol. 35, No. 4, pp. 749 – 758, Nov.
1989

[8] J.P. Derutin; F. Dias; L. Damez; and N. Allezard, “SIMD, SMP and
MIMD-DM parallel approaches for real-time 2D image stabilization”,
Computer Architecture for Machine Perception, 2005. CAMP 2005.
Proceedings. Seventh International Workshop on
4-6 July 2005 Page(s):73 – 80.

125

[9] C. Morimoto, R. Chellappa, “Fast electronic digital image stabilization
for off-road navigation”, Proc. of IEEE on Real-Time Imaging, Vol.2 , No.
5,Pages: 285 - 296 ,1996.

[10] A. Smolic, T. Sikora, and J.-R. Ohm, “Direct estimation of long-term
global motion parameters using affine and higher order polynomial models”,
in Proc. PCS'99, Picture Coding Symposium, Apr. 1999.

[11] P. Vandewalle; S. Süsstrunk; and M. Vetterli, “Double resolution from
a set of aliased images”, In: Proc. IS&T/SPIE Electronic Imaging 2004:
Sensors and Camera Systems for Scientific, Industrial, and Digital
Photography Applications V, vol. 5301, pp. 374-382,2004.

[12] R. Gonzalez, R. Woods, and S. Eddins,” Digital Image Processing
Using MATLAB”, Prentice Hall, 2004.

[13] iMultimedia, “Use Image Stabilization – Gyroscopic Stabilizer”,
[online],URL http://www.websiteoptimization.com/speed/tweak/stabilizer.
[Accessed 13-January-2006].

[14] R. Arther, ”Fundamental of Electronic Image Processing”, The
SPIE/IEEE Series on imaging science & engineering, 1996.

[15] Canon Digisuper 100xs, Product Manual, [online] URL
http://www.canon.com/bctv/products/pdf/100xs.pdf [Accesses 20-May-
2006]

[16] E. Thomas , “Measuring the Effectiveness of Image/Video Processing
for Stabilizing a Video Image Using a Commercial Media Processor”,
[Online], URL http://www.poly.asu.edu/ctas/dcst/Projects/pdf
/WettThomas.pdf, [Access 13-Febrauary-2006].

[17] T. Vieville, E. Clergue, and P. Facao., “Computation of ego-motion and
structure from visual and internal sensors using the vertical cue”, In Proc.
International conference on Computer Vision, Pages 591-598, Berlin,
Germany, 1993.

[18] M. Irani, B. Rousso, and S. Peleg., ‘Recovery of ego-motion using
image stabilization”, In Proc. Of IEEE conference on Computer Vision and
Pattern Recognition, Pages 454-460, Seattle, WA, June 1994.

126

[19] O. Kwon, R. Chellappa, and C. Morimoto., ”Motion compensated
subband coding of video acquired from a moving platform”, In Proc. Of
IEEE International conference on Acoustics, Speech, and Signal Processing,
pages 2185-2188, Detroit, MI, January 1995.

[20] P. Burt and P. Anandan., “Image Stabilization by registration to a
reference mosaic”, In Proc. DARPA Image Understanding Workshop, pages
425-434, Monterey, CA, November 1994.

[21] C. Morimoto, D. DeMenthon, L. Davis, R. Chellappa, and R. Nelson,
”Detection of independently moving objects in passive video”, In Proc. Of
Intelligent Vehicles Workshop, pages 270-275, Detroit, MI, September
1995.

[22] S. Balakirsky., “Comparison of electronic image stabilization systems”,
Master’s thesis, Department of Electrical Engineering, University of
Maryland, College Park, 1995.

[23] G. Robert., “ VideoMaker Magazine The End Of Shaky
Camera”,[online], URL http://www.videomaker.com/
scripts/article_print.cfm?id=9999,[Accessed 13-January-2006]

[24] L.S. Davis, R. Bajcsy, R. Nelson, and M. Herman. “RSTA on the
move” In Proc.. DARPA Image Understanding Workshop, pages 435-456,
Monterey, CA, November 1994.

[25] M. Hansen, P. Anandan, K. Dana, G. van der Wal, and P.J. Burt. “Real-
time scene stabilization and mosaic construction”. In Proc. DARPA Image
Understanding Workshop, pages 457-465, Monterey, CA, November 1994.

[26] H. Sawhney, S. Ayer, and M. Gorkani. “Model-based 2d and 3d
dominant motion estimation for mosaicing and video representation”
In Proc.. International Conference on Computer Vision, pages 583-590,
Cambridge, MA, June 1995.

[27] Z. DuriC and A. Rosenfeld. “Stabilization of image sequences”
Technical Report CAR-TR-778, Center for Automation Research,
University of Maryland, College Park, 1995.

127

[28] C. Morimoto and R. Chellappa. ”Fast 3d stabilization and mosaicking”.
In Proc. IEEE Conference on Computer Vision and Pattern Recognition,
Puerto Rico,PR, June 1997.

[29] Y. Yao, P. Burlina, and R. Chellappa.,” Electronic image stabilization
using multiple visual cues”. In Proc. International Conference on Image
Processing, pages 191-1 94, Washington, D.C., October 1995.

[30] S. Kim and W. Su, “Subpixel accuracy image registration by spectrum
cancellation” in Proc. IEEE International Conference on Acoustics, Speech
and Signal Processing, Vol. 5, pp. 153, 1993.

[31] H. Stone, M. Orchard, E. Chang, and S. Martucci, “A fast direct
Fourier-based algorithm for subpixel registration of images,” IEEE
Transactions on Geoscience and Remote Sensing 39, pp. 2235{2243,
October 2001.

[32] B. Marcel, M. Briot, and R. Murrieta, “Estimation of translation and

rotation by Fourier transform,” Signal Vol. 14, pp. 135-149, 1997.

[33] K. Kimura, “Angular Velocity Measuring Instrument”, USP 2544646,
1985.

[34] A tutorial on Clustering Algorithms, [On Line] URL
http://www.elet.polimi.it/upload/matteucc/Clustering/tutorial_html
/index.html [Accesses 22-January-2006].

[35] R. Fisher, “The Ransac (Random Sample Consensus) Algorithm” ,
[online], URL http://homepages.inf.ed.ac.uk/ rbf/CVonline /
LOCAL_COPIES / FISHER/ RANSAC/index.html, [Access 23-May-2006].

[37] P. Vandewalle, S. Susstrunk, and M. Vetterli, “A frequency domain
approach to registeration of aliased images with application to super-
resolution,” EURASIP Journal on Applied Signal Processing, 2006.

128

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of the collection of
information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188),
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to an penalty
for failing to comply with a collection of information if it does not display a currently valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)
13-06-2006

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From – To)
Oct 2004 – May 2006

5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Fast Video Stabilization Algorithms

 5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Alharbi, Mohammed A., Captain, RSAF

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(S)
 Air Force Institute of Technology
 Graduate School of Engineering and Management (AFIT/EN), Bldg 640
 2950 Hobson Way
 WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 AFIT/GCS/ENG/06-02

10. SPONSOR/MONITOR’S
ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
 N/A

11. SPONSOR/MONITOR’S
REPORT NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

13. SUPPLEMENTARY NOTES

14. ABSTRACT A fast and robust electronic video stabilization algorithm is presented in this thesis. It is based on a two-dimensional feature-based motion estimation
technique. The method tracks a small set of features and estimates the movement of the camera between consecutive frames. It is used to characterize the
motions accurately including camera rotations between two imaging instants. An affine motion model is utilized to determine the parameters of translation and
rotation between images. The determined affine transformation is then exploited to compensate for the abrupt temporal discontinuities of input image
sequences. Also, a Frequency domain approach is developed to estimate translations between two consecutive frames in a video sequence. Finally, a jitter
detection technique to isolate vibration affected subsequence of an image sequence is presented. The experimental results of using both simulated and real
images have revealed the applicability of the proposed techniques. In particular, the emphasis has been to develop real time implementable algorithms, suitable
for unmanned vehicles with severe payload constraints.

15. SUBJECT TERMS
 Video Stabilization, Motion Analysis, Image Registration, Video Processing

16. SECURITY CLASSIFICATION
OF:

19a. NAME OF RESPONSIBLE PERSON
Guna S. Seetharaman, Ph.D., (ENG)

REPORT
U

ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES
126 19b. TELEPHONE NUMBER (Include area code)

(937) 255-3636, ext 4612; e-mail: guna.seetharaman@afit.edu

Standard Form 298 (Rev: 8-98)
Prescribed by ANSI Std. Z39-18

	Fast Video Stabilization Algorithms
	Recommended Citation

	Microsoft Word - my thesis7.doc

