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Object-Based Rendering and 3-D Reconstruction
Using a Moveable Image-Based System

Zhen-Yu Zhu, Shuai Zhang, Shing-Chow Chan, Member, IEEE, and Heung-Yeung Shum, Fellow, IEEE

Abstract—This paper proposes a movable image-based ren-
dering (M-IBR) system for improving the viewing freedom and
environmental modeling capability of conventional static IBR
systems. The system supports object-based rendering and 3-D
reconstruction capability and consists of three main components.

1) An improved video stabilization method to reduce the shaky
motion frequently encountered in movable IBR systems. It
employs local polynomial regression (LPR) to automatically
select an appropriate bandwidth for smoothing the estimated
motion.

2) A novel view synthesis algorithm using a new segmentation
and mutual-information (MI)-based algorithm for dense
depth map estimation, which relies on segmentation, LPR-
based depth map smoothing, and MI-based matching algo-
rithm to iteratively estimate the depth map. The method
is very flexible and both semiautomatic and automatic seg-
mentation methods can be employed. They rank fourth and
sixth, respectively, in the Middlebury comparison of existing
depth estimation methods. This allows high-quality render-
ings of outdoor scenes with improved mobility/freedom to
be obtained.

3) A new 3-D reconstruction algorithm that utilizes the se-
quential structure-from-motion technique and the dense
depth maps estimated previously. It relies on a new iterative
point cloud refinement algorithm based on Kalman filter for
outlier removal and the segmentation-MI-based algorithm
to further refine the correspondences and the projection ma-
trices. The mobility of our system allows us to recover more
conveniently 3-D model of static objects from the improved
point cloud using a new robust radial basis function-based
modeling algorithm to further suppress possible outliers
and generate smooth 3-D meshes of objects. Experimental
results show that the proposed 3-D reconstruction algorithm
significantly reduces the adverse effect of the outliers and
produces high-quality renderings using shadow light field
and the model reconstructed.

Index Terms—3-D reconstruction, image-based rendering
(IBR), movable IBR systems, tracking and stabilization.
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I. Introduction

IMAGE-BASED rendering/representation (IBR) [1]–[9],
[12] is a promising technology for rendering new views of

scenes from a collection of densely sampled images or videos.
It has potential applications in virtual reality, immersive tele-
vision, and visualization systems.

While there has been considerable progress recently in
the capturing, compression and transmission of image-based
representations [12], [13], [31], [32], [52], most multiple
camera systems are not designed to be movable so that the
viewpoints are somewhat limited and usually cannot cope with
moving objects and perform 3-D reconstruction of objects in
open environment. Apart from many system design issues,
there are also many important problems and difficulties in
realizing these systems. This motivates us to study in [21] the
design and construction of a movable image-based rendering
(M-IBR) system based on plenoptic videos. In particular, a
linear camera array consisting of eight video cameras was
mounted on an electrically controllable wheel chair and its
motion can be controlled manually or remotely by means
of additional hardware circuitry. The system can potentially
provide improved viewing freedom to users and ability to
cope with moving objects and perform 3-D reconstruction.
Moreover, multiview displays are becoming available [13]. It
is predicted that 3-D or multiview applications will become
another important means of information exchange.

In this paper, we study the object-based rendering and 3-D
reconstruction using a movable IBR system so as to provide
improved viewing freedom and object modeling of stationary
objects in an open environment. In particular, we developed
a software system for such purposes, which includes the
following.

1) An improved video stabilization method to reduce the
shaky motion caused by the vibration of the wheel chair
and the roughness of the ground surface. Our method
employs local polynomial regression (LPR) to automat-
ically select an appropriate bandwidth or window for
smoothing the displacement, which avoids the trial-and-
error selection in conventional methods.

2) A view synthesis algorithm based on object tracking-
based segmentation algorithm to preserve discontinuities
and a new combined segmentation-mutual-information
(MI)-based algorithm for dense depth map estimation. It
relies on segmentation, LPR-based depth map smooth-
ing, and MI-based matching algorithm to iteratively
estimate the depth map. The method is very flexible

1051-8215/$31.00 c© 2012 IEEE
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Fig. 1. Block diagram of the proposed object-based rendering and 3-D reconstruction algorithm using the M-IBR system constructed.

and both semiautomatic and automatic segmentations
can be used. The semiautomatic and automatic versions
rank 4 and 6, respectively, in the Middlebury comparison
of existing depth estimation methods. Using the depth
maps captured and the object-based approach [11], high-
quality renderings of outdoor scenes along the trajectory
can be obtained, which considerably improved the view-
ing freedom.

3) A 3-D reconstruction module for objects, which employs
the estimated dense depth maps to obtain dense point
correspondences from multiple views for 3-D recon-
struction. For stationary objects, the M-IBR system
can be driven around the object to obtain sufficient
correspondences from different views, which can be
integrated together for 3-D reconstruction. To this end,
the sequential structure-from-motion (S-SFM) technique
is first adopted to estimate the locations of the M-IBR
system so as to obtain an initial set of fairly reliable 3-D
point cloud from the 2-D correspondences. New iterative
Kalman filter (KF)-based and segmentation-MI-based al-
gorithms are proposed to fuse the correspondences from
different views and remove possible outliers to obtain
an improved point cloud. More precisely, the proposed
algorithm relies on the KF to track the correspondences
across different views so as to suppress possible outliers
while fusing correspondences from different views. With
these reliable matched points, the camera parameters and
hence the image correspondences can be further refined
by reprojecting the updated correspondences to succes-
sive views to serve as prior features/correspondences
for MI-based matching. By iterating these processes, an
improved point cloud with reliable correspondences can
be recovered. Simulation results show that the proposed
algorithm significantly reduces the adverse effect of the
outliers and generates a more reliable point cloud. To
recover the 3-D model from the improved point cloud,
a new robust radial basis function (RBF)-based model-
ing algorithm is proposed to further suppress possible
outliers and generate smooth 3-D surfaces from the raw
3-D point cloud. Compared with the conventional RBF-
based smoothing, it is more robust and reliable.

The system flow of the proposed system is summarized in
Fig. 1. Experimental results show that high-quality renderings
of outdoor dynamic plenoptic videos and 3-D geometry of
objects can be obtained using the proposed system and algo-
rithms. Since dynamic objects may only be partially visible,
only partial 3-D models can be recovered. Potential appli-

Fig. 2. Proposed M-IBR system.

cations of the system include indoor/outdoor environmental
modeling and multiview video recording.

This paper is organized as follows. The design and devel-
opment of the proposed prototype M-IBR system are sum-
marized in Section II. The problems of video stabilization
and object segmentation/tracking are discussed in Section III.
Section IV is devoted to the segmentation-MI-based dense
depth map estimation algorithm. The 3-D reconstruction of
scene object(s) using SFM, iterative KF-based and MI-based
algorithm, and smoothed robust RBF is presented in Section V.
Finally, conclusions are drawn in Section VI.

II. Construction of the Proposed M-IBR System

As mentioned previously, the M-IBR system consists of a
linear array of cameras mounted on an electrically controllable
wheel chair so as to cope with moving objects in a large envi-
ronment and to improve the viewing freedom of users. Fig. 2
shows the M-IBR system that we have constructed. It consists
of a linear array of eight Sony HDR-TGIE high-definition
(HD) video cameras that are mounted on a FS122LGC wheel
chair.

The motion of the wheel chair is originally controlled man-
ually through a VR2 joystick and power controller modules
from PG drives technology [14]. To make it electronically
controllable, we examined the output of the joystick and
generated the (x-, y-) motion control voltages to the power
controller using a Devasys USB-I2C/IO microcontroller unit
[15]. By appropriately controlling these voltages, the motion of
the wheel chair can be controlled electronically. Moreover, by
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Fig. 3. Snapshots of the plenoptic videos at a given time instance: the upper
row is the podium outdoor video from camera 1 to camera 3 and the lower
row is the presentation indoor video from camera 1 to camera 3.

using the wireless LAN of a portable notebook mounted on the
wheel chair, its motion can be controlled remotely to improve
the viewing freedom. Fig. 3 shows snapshots of an outdoor
and indoor plenoptic videos captured by the proposed system
called podium and presentation, respectively. The resolution of
these real-scene plenoptic videos is 1920 × 1080i with 25 f/s
in a 24-bit RGB format.

A preliminary system was illustrated in [21] where the HD
videos were captured in real time into the storage cards of
cam-corders. They can be downloaded to a PC for further pro-
cessing, such as calibration, depth estimation, and rendering
using the object-based approaches [10], [11], [16], [17]. For
real-time transmission, the cam-corders were equipped with a
composite video output that can be further compressed and
transmitted. To illustrate the concept of multiview conferenc-
ing, a ThinkSmart IVS-MV02 Intelligent Video Surveillance
System [18] was used to compress the (320 × 240) 30 f/s
videos online, which can be retrieved remotely through the
wireless LAN for viewing or further processing. The system
was built from Analog Device DSP and it can achieve real-
time compression at a bit rate of 400 kb/s. This paper greatly
extended the previous work [21] by introducing an improved
video stabilization and segmentation-MI-based depth estima-
tion algorithms. Moreover, a systematic approach for 3-D
reconstruction is proposed.

III. Video Stabilization and Object tracking

A. Video Stabilization

To ensure good tracking of objects and to obtain more image
samples for high-quality rendering, the wheel chair is usually
driven steadily during capturing. However, one problem with
M-IBR system is that the ground surfaces may not be smooth
and the whole mechanical structure can vibrate considerably
during motion. In our M-IBR system, the shaky motion of
the camera array of the outdoor environment seems to come
from the roughness of the ground surfaces and the vibration
of the mechanical structure during the movement. Besides,
the video captured may also appear shaky when the system
is moving and about to settle down in indoor environment.
To reduce these annoying effects, video stabilization [23]–
[26], [34], [53]–[55] is frequently employed to eliminate the
undesired motion fluctuation in the captured videos.

The development of video stabilization can be traced back
to the work of Ratakonda [23], who first proposed a method

using profile matching and subsampling to produce a low-
resolution stabilized video stream in real time. Later, Chang
et al. [24] presented an approach based on optical flow.
Matsushita et al. [25], [26] developed an improved method
for compensating the shaky motion of camera and proposed
an approach called motion inpainting to fill in the missing
areas. Agarwala et al. [53]–[55] proposed a novel stabilization
framework based on estimating camera motion, generating
the virtual 3-D camera path and view synthesis. Recently,
scale-invariant feature transformation (SIFT) is widely used in
solving the problem of video stabilization [34]. The features
extracted by SIFT are affine invariant and insensitive to the
change of the scale and luminance.

As mentioned above, our M-IBR system was driven steadily
during capturing. Therefore, the undesired motion fluctuation
will usually appear as high-frequency components compared
to the intentional motion. As a result, the problem of video
stabilization can also be viewed as the removal of high-
frequency components in the estimated velocity. To this end,
one needs to estimate the global motion of the camera, say,
by means of optical flow on the video sequence so that this
annoying high-frequency local motion can be removed to
stabilize the videos.

The proposed algorithm is divided into three major steps as
follows.

1) Global motion estimation: first, the geometric transfor-
mation between a location x = [x1, x2]T in a frame
with that in an adjacent frame, x′, is modeled by an
affine transformation x′ = T [x] = Ax + t, where
t = [tx1 , tx2 ]T is the translational component and the
affine rotation, scaling, and stretch are represented by the

matrix A =

[
a1 a2

a3 a4

]
. In homogeneous coordinates,

xh = [x1, x2, 1]T , T can be conveniently represented by

a matrix multiplication T hxh, where T h =

[
A t

0 1

]
. T

is estimated from the tracked features in adjacent video
frames using the SIFT [33], instead of the Lucas–Kanade
tracker in [21].

2) Local smoothing of motion: the intentional motion,
which is assumed to be slow and smooth, is then esti-
mated by smoothing the global motion estimated using
LPR with adaptive bandwidth selection [36]. Unlike
conventional methods, the bandwidth or window size for
smoothing can be automatically determined. This will be
further discussed below.

3) Video completion: the uncovered areas are filled using
motion inpainting [25], [26].

We now describe each step in more detail. Let
{It(x)|t = 0, · · · , N}, where x = [x1, x2]T , 1 ≤ x1 ≤ ℵ1,
1 ≤ x2 ≤ ℵ2, be a video sequence consisting of N video
frames with resolution ℵ1×ℵ2 captured by our M-IBR system.
Consider the global motion transformations up to time instant
t, {T 1

0, . . . ,T
t
t−1}, where T i+1

i is the coordinate transformation
from the ith to the (i + 1)th frame. If T i+1

i is smoothed
separately, a smoothed transformation chain {T̂ 1

0, . . . , T̂
t

t−1}
is obtained and the tth compensated image frame I ′

t can be
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Fig. 4. Motion smoothing results for (a) horizontal and (b) vertical direc-
tions. The original motion path and the smoothed motion path with different
methods are shown. The blue dotted lines correspond to the shaky original
motion path. Green and black lines correspond to the smoothed motion path
using the method in [25] with a small and a large kernel sizes, respectively.

obtained as follows:

I ′
t

(
t−1∏
i=0

(T i
i+1T̂

i+1
i )[x]

)
= It(x) (1)

where T i
i+1 and T̂

i+1
i denote, respectively, the transformation

from frame i + 1 to i and the smoothed transformation from
frame i to i+1. In order to avoid error accumulation due to the
cascade of original and smoothed transformation chains, [25]
proposed to compute directly the transformation T̃ t from the
current frame It(x) to the corresponding motion compensated
frame I ′

t (x) using only the neighboring transformation matrices
as T̃ t =

∑
i∈�t

T i
t ⊗G(i), where �t = {f : |f − t| ≤ η} are the

indices of neighboring frames, G(x) = (
√

2πσ)−1e−x2/2σ2
is a

Gaussian kernel, 2η is the support of �t or window size, and
⊗ denotes the element-wise convolution operation.

It can be seen that the selection of the kernel size affects
the degree of smoothing. A large kernel size will lead to the
problem of oversmoothing, while a small kernel size may not
be able to remove the high-frequency undesirable motion. The
green and black lines in Fig. 4 illustrate the effect of using a
small kernel size of η = 3 and a large kernel size of η = 20,
respectively, using the method in [25].

To address this issue, we propose a new method for choos-
ing adaptively the kernel size using LPR with adaptive band-
width selection. The close relationship between curve fitting
and video stabilization has been recognized, for example, in
[34], where a local parabolic fitting is used to compute the
smoothed motion path. However, the kernel size is also fixed.
The advantage of our method is that the kernel size can be
adaptively selected from the data.

LPR is a very flexible and efficient nonparametric regression
method in statistics, and it has been widely applied in many
research areas, such as data smoothing, density estimation,
and nonlinear modeling. Given a set of noisy samples of
a signal, the data points are fitted locally by a polynomial
using the least-squares (LS) criterion with a kernel function
having certain bandwidth parameters. Since signals may vary
considerably over time, it is crucial to choose a proper kernel
size or local bandwidth to achieve the best basis-variance
tradeoff. In this paper, we used the refined intersection of
confidence intervals (R-ICI) method to perform bandwidth
selection. Here, we follow the homoscedastic data model of

the time series

Yi = m(Xi) + σ(Xi)εi (2)

where {(Yi, Xi)|i = 1, 2, · · · , n} are a set of univariate obser-
vations, m(Xi) is a smooth function specifying the conditional
mean of Yi given Xi, and εi is an independent identically
distributed (i.i.d.) additive white Gaussian noise. The problem
is to estimate m(Xi) and its kth derivative m(k)(Xi) from the
noisy sample Yi so as to achieve smoothing. Since m(Xi) is a
smooth function, we can approximate it locally as a general
degree-p polynomial at a given point x0

m(x) ≈ m(x0) + m′(x0)(x − x0)
+m′′(x0)(x − x0)2/(2!) + · · · + m(p)(x0)(x − x0)p/(p!)
= β0 + β1(x − x0) + · · · βp(x − x0)p

(3)
where x is in the neighborhood of x0 and βk (k = 0, 1, · · · , p)
is the kth polynomial coefficient. The coefficient vector β =
[β0, β1, · · · , βp]T at location x0 can be found by solving the
following weighted least-squares regression problem:

min
β

⎧⎨
⎩

n∑
i=1

Kh(Xi − x0)

[
Yi −

p∑
k=0

βk(Xi − x0)k
]2
⎫⎬
⎭ (4)

where Kh(Xi − x0) = K(Xi−x0
h

)/h, K(·) is a kernel function
with bandwidth parameter h, which emphasizes the influence
of neighboring observations around x0 in the estimation. The
parameter h is adaptively chosen at different locations x0 so
as to adapt to the local characteristics of the signal (i.e., the
intentional motion path). Differentiating the objective function
in (4) with respect to β and setting the derivative as zero, we
get the following LS solution in the matrix form:

β̂(x0, h) = (XT WX)−1XT Wy (5)

where

X =

⎡
⎢⎢⎢⎣

1 (X1 − x0) · · · (X1 − x0)P

1 (X2 − x0) · · · (X2 − x0)P

...
...

. . .
...

1 (Xn − x0) · · · (Xn − x0)P

⎤
⎥⎥⎥⎦

y =
[

Y1 Y2 · · · Yn

]T
, and W = diag{Kh(Xi −x0)} is the

weighting matrix.
By estimating β̂(x0, h) with an optimized bandwidth h

at different x0, we obtain a smoothed representation of the
data from the noisy observations. In the context of video
stabilization, a key problem of applying LPR is thus to select
an optimal bandwidth parameter h to achieve the best bias-
variance tradeoff in estimation. Here, we use the R-ICI band-
width selection algorithm [35] to select the optimal bandwidth.
The basic idea of the R-ICI adaptive bandwidth selection
method is to calculate a set of smoothing results with different
bandwidths and then to examine a sequence of confidence
intervals of these smoothing results to determine and refine the
optimal bandwidth. In this paper, the kernel K(u) is chosen
as the Epanechnikov kernel K(u) = (3/4)(1 − |u|2)+ and the
bandwidth parameter set for R-ICI is H = {hj : |hj = aj/N,

j = 1, · · · , 10} with a = 1.2. N is the total number of frames.
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Fig. 5. Video stabilization result. The first row shows the original images
captured by our system, the second row shows the stabilized images without
video completion, and the third row shows the completed results.

Due to page limitation, the details of the algorithm are omitted
and interested readers are referred to [35] and [36].

After video stabilization, some of the pixels at the bound-
aries may be missing, as illustrated in the second row of Fig. 5.
These missing areas can be filled in or completed by video
completion using motion inpainting [26], which can propagate
the motion field into the missing areas rather than simply
propagating the RGB color values.

Fig. 4(a) and (b) shows the original and smoothed trans-
lational motion in the x and y directions (i.e., tx1 and tx2 in
T). Green and black lines show the motion obtained by a
fixed small kernel and a fixed large kernel using the method
in [25], respectively. The red lines show the motion obtained
by using the LPR with the R-ICI (LPR-R-ICI) bandwidth
selection method over time. It can be seen that the proposed
LPR-R-ICI method is able to suppress the high-frequency
components while preserving the smooth intentional motion.
Example original images, stabilized results, and inpainted
results using the proposed method are shown in Fig. 5.

B. Object Tracking Using Level-Set Method

For rendering (intermediate view synthesis) and 3-D re-
construction of a given object in the scene, it is usually
advantageous to segment the object for further processing so as
to preserve depth discontinuities. Following the object-based
approach [21], we first segment the object at a given frame
using a semiautomatic segmentation method. Object tracking
is then employed to track and segment the object automatically
in subsequent frames and adjacent views. In our system, the
initial segmentation for each camera is performed by means
of Lazy snapping [22]. Then, the object at other time instants
of each camera is tracked using the level-set method [10].
Example video tracking results are shown in Fig. 6(a). It can
be seen that major depth discontinuities are well delineated. If
automatic segmentation methods are used to obtain the initial
segmentation, the segmented part may sometimes involve more
objects. Moreover, part of background and foreground will be
grouped together. Although such segmentation is, in principle,
consistent in terms of image intensity, depth discontinuities
may not be preserved as well. As an illustration, a graph-cut-
based automatic segmentation method [37] is used to obtain
an initial segmentation for tracking. Fig. 6(a) and (b) com-

Fig. 6. Segmentation results using the level-set-based tracking method.
(a) Initial segmentation obtained by lazy snapping. (b) Initial segmentation
obtained by the graph cut method.

pares the example results using the semiautomatic-based and
automatic-segmentation-based tracking. It can be seen that the
former gives a better result than the latter, for example, at the
light pole and foreground of the scene. To obtain a better ren-
dering result, the semiautomatic method will be adopted in this
paper, though our framework also works for automatic meth-
ods. We now describe the proposed depth estimation method.

IV. Segmentation and MI-Based Dense Depth

Map Estimation

Conventional depth estimation techniques are mostly based
on computing the correspondences from stereo or multiple
views using feature point matching. More recent algorithms
employ Markov random field [39] to model the observation
and estimate the depth map by maximizing the a posterior
probability. In particular, graph-cuts (GC)-based [40] and
belief-propagation (BP)-based [41] methods for performing
the optimization have been widely used because of their good
performances. The success of these methods depends critically
on how the physical phenomena, such as occlusion, edges,
color correlation, are modeled. Techniques, such as occlusion
penalization [47], visibility checking [41], [46], and structural
information [42]–[46], are areas of active research. Another
popular direction is to combine segmentation with GC or BP
[42]–[46].

In this paper, we proposed a modified MI-based dense
matching algorithm by utilizing prior segmentation informa-
tion. The segmentation information, which can be obtained
semiautomatically and automatically, considerably reduces
possible matching errors arising from occlusion. Apart from its
flexibility, the proposed algorithm only involves the selection
of few parameters and it works well for indoor scenes and
outdoor scenes.
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A. MI Matching

Since we wish to perform IBR and 3-D reconstruction of
selected object(s) in the scene using multiview videos, the
first step is to establish dense 2-D correspondences between
adjacent views so as to generate a dense point cloud for 3-
D reconstruction or depth maps for rendering. In our M-IBR
system, there are eight cameras and hence eight views are
obtained at each time instance for depth estimation. Here, a
modified MI-based dense matching algorithm with segmen-
tation is employed. As we have segmented the images into
several parts, the whole matching process is performed on
each image segment. In the sequel, we shall use “image” to
denote the segmented parts in the image.

MI of two random variables X and Y is defined as I(X; Y ) =∫
Y

∫
X

p(x, y) log
(

p(x,y)
pX(x)pY (y)

)
dxdy, where pX(x) and pY (y) are

the probability density function (pdf) of X and Y . I(X; Y ) can
also be expressed in terms of the entropy and joint entropy of
X and Y as follows:

I(X; Y ) = H(X) + H(Y ) − H(X, Y ) (6)

where H(X, Y ) = − ∫
Y

∫
X

p(x, y) log p(x, y)dxdy is the joint
entropy of X and Y, and H(X) = − ∫

X
p(x) log p(x)dx and

H(Y ) = − ∫
Y

p(y) log p(y)dy are the entropy of X and Y,
respectively. Intuitively, MI measures the information that X
and Y share by measuring how much knowing one of these
variables reduces the uncertainty about the other.

In [27], a free-form deformation method using spline
function was proposed for 2-D shape registration in pattern
recognition systems. We now extend it to our segmentation-
MI-based depth estimation algorithm. More precisely, the
intensities of the two rectified image segments, say A and B,
from two views to be matched are treated as random variables
with pdfs, pA(iA) and pB(iB), and joint pdf pAB(iA, iB). B
is then deformed by means of the disparity transformation
function T (B) with parameters to be determined. Ideally, when
the two images are registered, the MI, I(A; T (B)), will be
maximized. Therefore, by maximizing I(A, T (B)) using the
parameters of T (·), the two original image segments can
be registered to infer their correspondences. Consequently,
the entropies can be calculated from the probability density
functions as follows:

H(pA(iA)) = −
∫

I(A)
pA(iA) log pA(iA)diA

= −
∫∫

I(A),I(B)
pA,T (B)(iA, iB) log pA(iA)diAdiB (7)

H(pT (B)(iB)) = −
∫

I(B)
pT (B)(iB) log pT (B)(iB)diB

= −
∫∫

I(A),I(B)
pA,T (B)(iA, iB) log pT (B)(iB)diAdiB

(8)

H(pA,T (B)(iA, iB))

= −
∫∫

I(A),I(B)
pA,T (B)(iA, iB) log pA,T (B)(iA, iB)diAdiB

(9)

where iA and iB are the intensity valuables of A and T (B) and
their ranges are I(A) and I(T (B)) = I(B), respectively. The
latter follows from the fact T (·) is a disparity transformation
that does not change the range of the intensity values. To
proceed further, one needs to determine the corresponding
pdfs. A powerful method for approximating the pdfs is the
kernel method [51], which approximates the pdfs directly from
the image data as follows:

pA(iA) ≈ 1

V

∫∫
�

G1(iA − IA(x1, x2))dx1dx2 (10)

pT (B)(iB) ≈ 1

V

∫∫
�

G1(iB − IT (B)(x1, x2)))dx1dx2 (11)

pA,T (B)(iA, iB)

≈ 1

V

∫∫
�

G2(iA − IA(x1, x2), iB − IT (B)(x1, x2))diAdiB

(12)
where G1(x) = 1√

2πσ
e−x2/(2σ2), G2(x1, x2)= 1

2πσ1σ2

e−(x2
1/σ

2
1 +x2

2/σ
2
2 )/2, IA(x1, x2) and IB(x1, x2) are the

intensities of A and B at pixel location x = [x1, x2]T ,
IT (B)(x1, x2) = IB(T −1(x1, x2)), T −1 is the inverse function
of T, � is the image domain, and V is the area of �. In
practice, the integrals are approximated by summing over the
pixel coordinates.

For accurate matching, the transformation in our approach
is carried out in two steps, namely, global and local transfor-
mations. In global transformation, which is performed first,
the parameters of a global transformation are determined by
matching the two images so as to model their relative scale,
translation, and rotation. It can be derived as follows:

Eglobal =−
∫ ∫

I(A),I(B)
pA,T (B)(iA, iB) log

pA,T (B)(iA, iB)

pA(iA)pT (B)(iB)
diAdiB.

(13)
In the local transformation step (refinement), local defor-

mation is performed, which is represented by a 2-D spline
function. The transformation parameters, which are the dis-
placement vectors at a regular grid to interpolate the spline
function, are determined by minimizing the function in (13).

In this paper, the global deformation function TG is chosen
as an affine transformation. The model parameters can be
obtained by minimizing the objective function in (13). Let B′

be the transformed image obtained by the affine transformation
after the first step. The local transformation TL(B′), which is
a 2-D spline function, is parameterized by the displacement
vectors at a uniform grid of control points {C}, Pc(m, n) =
[Pc1 (m, n), Pc2 (m, n)]T for m = 1, . . . , M̂,n = 1, . . . , N̂. If
(ℵ1, ℵ2) is the resolution of the input image, the spacing of
the control points in the x and y directions is �1 = ℵ1/M̂

and �2 = ℵ2/N̂, respectively. The deformation of any pixel in
the image is obtained by spline interpolation of those at the
grid points {C}. Therefore, the deformation of pixel (x1, x2),
P(x1, x2) = [P1(x1, x2), P2(x1, x2)]T can be written as follows:

P(x1, x2) = 	3
μ=0	

3
γ=0β(l)β(v)Pc(m + μ, n + γ) (14)
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Fig. 7. (a) Example depth map obtained by using MI matching without segmentation information. (b) Depth map obtained by using automatic segmentation
MI matching. (c) Depth map obtained by using semiautomatic segmentation MI matching. Green areas in (c) are the occlusion areas detected by our algorithm.
(d), (i) Refined depth maps of (c) by inpainting and smoothing (c) using SK-LPR-R-ICI and 25 × 25 ideal low-pass filter, respectively. (e), (g) Renderings
obtained by (d) and (b). (f), (h) Enlargements of the red boxes in (e) and (g), respectively.

for 1 ≤ x1 ≤ ℵ1,1 ≤ x2 ≤ ℵ2, where l = (x1/�1) − 	x1/�1
,
v = (x2/�2) − 	x2/�2
 , β (u) is the cubic β-spline function,
{(m + μ, n + γ)|(μ, γ) ∈ [0, 3]} are the neighboring control
points of (x1, x2). The collection of Pc(m, n) forms the param-
eters of the transformation function given by TL(B′(x1, x2)) =
B′(x1 +P1(x1, x2), x2 +P2(x1, x2)). With (13) and (14), one gets
the local matching data term to be minimized

Edata=−
∫∫

I(A),I(B)
pA,TL(B′)(iA, iB) log

pA,TL(B′)(iA, iB)

pA(iA)pTL(B′)(iB)
diAdiB.

(15)
In order to reduce the variance of the variables, an additional
smoothing term and other prior constraints can be added to the
data term above. A popular smoothing term is the L2 norm
of the displacement vectors Esmooth = 	(m,n)(‖Pc(m, n)‖2 +
‖∇Pc(m, n)‖2). Since there are a few model parameters in
affine transformation, the smoothing term is only needed in
local matching.

If the pair of images being registered does have distinct
geometric features as correspondences, incorporating this fea-
ture information can greatly improve accuracy and efficiency.
In our algorithm, the scale invariant features can be used
as a feature term. These constraints can be conveniently
integrated into our registration framework. More precisely,
assuming that the total number of feature points is R, and
their corresponding locations at A and B′ are xA,r and xB′,r,
r = 1, · · · , R, respectively, then the following energy term can
be incorporated as a feature term:

Efeature =
R∑

r=1

D(xA,r, xB′,r) (16)

where D(xA,r, xB′,r) is an appropriate distance measure such
as the Euclidean distance between xA,r and xB′,r. Therefore,
the object function in the local transformation is as follows:

Elocal = Edata + Esmooth + Efeature. (17)

The L-BFGS algorithm [28] is used to solve for the un-
constrained nonlinear optimization problems. An advantage

is that the explicit evaluation of the Hessian matrix is not
required, since it can be recursively estimated. Moreover, it
was found to be much faster than using the conventional level
set method [27]. Because there is no need to compute the
whole Hessian matrix, the storage space of L-BFGS is less
than other conventional algorithms, such as belief propagation.
Because of this reason, the L-BFGS method can deal with
large problems such as 1080P resolution images. Meanwhile,
the L-BFGS method can converge to a local optimum in
nonconvex problems under mild conditions as demonstrated in
[28]. This is an important advantage over other conventional
algorithms. Previous studies also analyzed and demonstrated
the efficiency of the L-BFGS [28], especially in terms of
function evaluations.

As mentioned previously, the segmented parts are processed
one by one and they will be integrated to form the final depth
map for matching one view to the other at each time instant.

B. Depth Map Refinement

Compared with the traditional MI method, the segmen-
tation-MI-based method simplifies the preservation of depth
discontinuities, and the smoothing and inpainting of depth
maps. This is illustrated in Fig. 7 where example depth maps
obtained by the MI algorithm without segmentation [Fig. 7(a)],
with automatic segmentation [Fig. 7(b)], and semiautomatic
segmentation techniques [Fig. 7(c)] are shown. The depth
maps obtained by incorporating the segmentation information
[Fig. 7(b), (c)] are considerably better than the one without
segmentation information [Fig. 7(a)]. Moreover, the depth dis-
continuities at object boundaries and smoothness at flat regions
are seen to be better preserved for the semiautomatic approach,
which will significantly reduce the artifacts during rendering.
However, due to noise, occlusion, and lower reliability of the
matching process at low texture areas, the resulting depth maps
may still contain errors. These issues will be addressed below
through further refinement of the depth maps.

1) Occlusion Detection and Inpainting: Let the depth
map obtained by the MI-based matching algorithm from
the stabilized images I ′

i,t(x) to I ′
i+1,t(x) be �i

i+1,t(x), where
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x1 = 1, 2, · · · , ℵ1 x2 = 1, 2, · · · , ℵ2, i = 1, . . . , M and
t = 0, . . . , N. Similarly, a depth map can be obtained from
matching I ′

i+1,t(x) to I ′
i,t(x), which gives �i+1

i,t (x). If a pixel
is not occluded, then the depth values of the same pixel
in �i

i+1,t(x) and �i+1
i,t (x) should be similar to each other. If

the absolute value of their difference is larger than a certain
threshold, this pixel is considered to be occluded. In this paper,
this threshold value is chosen as two pixels. Therefore, we
can obtain a refined depth map �i,t(x) of each image after
occlusion detection. For a comprehensive survey of occlusion
detection algorithms, please see [38].

After these occluded pixels are detected, we need to inpaint
the depth values at these occlusion areas [e.g., the green areas
in Fig. 7(c)]. The occluded areas are inpainted by interpolation
using the samples inside the corresponding segments, which
avoids blurring at depth discontinuities if the conventional
interpolation techniques are used.

2) Smoothing of Depth Maps: As mentioned earlier, depth
map may contain an invalid value due to noise and regions
with low texture, and others. Therefore, the depth maps should
be further smoothed to reduce such estimation errors. Here,
we adopt 2-D LPR with adaptive bandwidth selection [36],
which is a 2-D generalization of the LPR-R-ICI method
introduced before, for smoothing depth maps of different
segments. It enables us to preserve the discontinuity at object
boundaries while performing smoothing at flat areas. More
precisely, we treat the depth map as a 2-D function Y (x1, x2)
of the coordinate x = [x1, x2]T with x1 = 1, 2, · · · , ℵ1 and
x2 = 1, 2, · · · , ℵ2

Yi = m(Xi) + σ(Xi)εi (18)

where (Yi, Xi) is a set of observations with i = 1, · · · , n. Xi =
[Xi,1, Xi,2]T is a 2-D explanatory variable. m(Xi) is a smooth
function specifying the conditional mean of Yi given Xi, and εi

is an independent identically distributed (i.i.d.) additive white
Gaussian noise. The problem is to estimate m(Xi) from the
noisy sample Yi. Since m(Xi) is a smooth function, we can
approximate it locally as a general degree-p polynomial at a
given point x = [x1, x2]T

m(X : x) =
p∑

κ=0

∑
k1+k2=κ

βk1,k2

2∏
j=1

(Xj − xj)kj (19)

where β = {βk1,k2 : k1 + k2 = κ and κ = 0, ...p} is the vector
of coefficients. The polynomial coefficient at a location x

can be determined by minimizing the following weighted LS
problem:

min
β

n∑
i=1

KH (Xi − x)[Yi − m(Xi : x)]2 (20)

where KH (·) is a suitably chosen 2-D kernel. When x is
evaluated at a series of 2-D grid points, we obtain a smoothed
depth map from the noisy depth estimates Yi. Similar to (4),
(20) can be solved using the LS method and the solution is as
follows:

β̂LS(x, h) = (T �)−1T �� (21)

where � = diag{KH (X1 −x), · · · , KH (Xn −x)} is the weight-
ing matrix, � = [Y1, Y2, · · · , Yn]T

 =

⎡
⎢⎢⎢⎣

1 (X1 − x)T vech{(X1 − x)(X1 − x)T } · · ·
1 (X2 − x)T vech{(X2 − x)(X2 − x)T } · · ·
...

...
...

...
1 (Xn − x)T vech{(Xn − x)(Xn − x)T } . . .

⎤
⎥⎥⎥⎦

and vech(·) is the half-vectorization operation. The following
Gaussian kernel is employed in this paper:

KH (u) =
1

h2(2π| det C−1|) exp

(
−1

2
uT Cu

)
(22)

where the positive definite matrix C and scalar bandwidth
h determine, respectively, the orientation and scale of the
smoothing. Since the Gaussian kernel is not of compact
support, it should be truncated to a sufficient size ℵK × ℵK

to reduce the arithmetic complexity. Usually, C is determined
from the principal component analysis of the data covariance
matrix at x. When h is small, noise in the depth map may
not be removed effectively. On the contrary, a large-scale
kernel better suppresses additive noise at the expense of
possibly blurring of the depth maps. Here, we adopt the
iterative steering kernel regression (ISKR) method in [36],
which was shown to have a better performance than the
conventional symmetric kernel [36], especially along image
edges. In the ISKR method, the local scaling parameter was
obtained as hi = h0γi, where h0 and γi are, respectively, the
global smoothing parameter and the local scaling parameter.
The scale selection process is fully automatic and it can be
performed by using the data-driven adaptive scale selection
method with the R-ICI rule mentioned in Section III. The
resulting method is called the SK-LPR-RICI algorithm and
more details can be found in [36]. The depth map smoothed
by SK-LPR-RICI is denoted by �̃i,t(x).

As an illustration, we also smooth the example depth map
by a 25 × 25 ideal low-pass filter and the result is shown in
Fig. 7(e). Comparing Fig. 7(e) with (d), we can see that the
discontinuity of the object boundaries using SK-LPR-R-ICI is
well preserved, while the object boundaries are blurred by the
lowpass filter due to its fixed size and relatively large support
for noise suppression. In order to illustrate the effect of these
errors in the depth maps on the rendering qualities, example
renderings are also shown in Fig. 7(f) and (h) according to the
depth maps obtained from Fig. 7(d) and (b), respectively. It can
be seen that inaccurate depth values produce obvious distortion
of the light pole in Fig. 7(h) and (i). By combining this new
MI-based depth estimation algorithm with our movable IBR
system, we can obtain the depth map [Fig. 8(a), (c)] and
synthesized views [Figs. 8(b), 9(b)] at nearby locations of the
trajectory in indoor/outdoor environment.

V. 3-D Reconstruction and Modeling

A. Structure From Motion

In order to perform 3-D reconstruction, the camera must be
calibrated to determine the intrinsic parameters, as well as their
extrinsic parameters, i.e., their relative positions and poses. In
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Fig. 8. Rendering results obtained by the proposed algorithm. (a) Depth maps corresponding to images in (b). The highlighted images in (b) show the
rendered views from the adjacent views in (b) using depth maps in (a). (c) Depth maps at other positions.

Fig. 9. Example rendering results. The first row shows the original images
captured by our M-IBR system. The second row shows renderings with a
step-in ratio of 1.15 times.

this paper, we employ the plane-based calibration method [19]
and the SFM method [20] to determine the camera projection
matrices, which connect the world coordinate and the image
coordinate, of our M-IBR system. This is accomplished by
using a sufficient large checkerboard calibration pattern to
determine the intrinsic parameters and therefore only the
extrinsic parameters need to be computed by structure-from-
motion. This greatly reduces the degree of freedom of the
camera projection matrices and hence improves the accuracy
of calibration.

SFM combined with self-calibration [20] is a useful ge-
ometry reconstruction method, which can estimate 3-D object
positions and projection matrices without any prior knowledge
of the camera motion and structure of the scene. Sequential
methods (S-SFM) and factorization methods (F-SFM) are
two commonly used approaches in SFM. S-SFM works with
each view sequentially by incorporating the results obtained
in previous views. In contrast, F-SFM works by computing
camera pose and scene geometry using all image measure-
ments simultaneously. F-SFM is in principle more accurate
once it converges to the global minimum, but it requires
accurate initialization and is computationally more expensive.

In practice, sequential methods are usually adopted and the
factorization method can be used as a refinement if necessary.
Moreover, most factorization methods only assume simplified
linear camera models, e.g., orthographic, weak perspective,
and paraperspective. Therefore, we shall employ the S-SFM
method in this paper.

Our S-SFM algorithm consists of four major steps: 1) track-
ing of 2-D feature points in the whole image sequence using
SIFT; 2) determination of an initial solution for the camera
motion (extrinsic parameters), since the intrinsic parameters
are known from calibration; 3) extending and optimizing
the solution for every additional view; and 4) optimization
of the camera motion globally using bundle adjustment. A
comprehensive summary of the S-SFM algorithm can be found
in [20].

After S-SFM, cameras are fully calibrated. In addition, an
initial 3-D point cloud of the object in the scene can be
obtained. However, in order to reconstruct a more accurate
3-D model, we need to refine the 3-D point cloud to remove
outliers, and so on.

B. Point Cloud Generation and Refinement

After the dense depth map estimation, a set of point
correspondences from multiple views are obtained. For 3-D
reconstruction of stationary objects, the M-IBR system can be
driven around them to obtain more views for reconstruction.
Using the S-SFM technique, the camera projection matrices of
the M-IBR system can be estimated. This allows a set of 3-D
points to be computed from their correspondences in adjacent
views through triangulation [20]. More precisely, from the
depth map between views i and i + 1, one can get a set of
corresponding image points from views i and i+1 and their 3-
D locations with the help of the estimated camera parameters
and triangulation. To determine more accurate location of a
3-D point that is visible to all cameras, we need to track
its correspondences across multiple views. Suppose that we
start with a pair of correspondences between views 1 and
2. Let its estimated 3-D location obtained by triangulation
be z(1). Using the depth map between views 2 and 3, one
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Fig. 10. Iterative refinement of point cloud. (a) Initial point cloud. (b) Point
cloud after outlier detection and Kalman filtering. (c) Point cloud after the
proposed iteration method.

can also determine another correspondence of this point and
its estimated location z(2). By continuing this operation re-
peatedly for subsequent views, we get more estimates z(i)
from views i and i + 1, for i = 1, · · · , M − 1, where M is
the total number of views. An example set of 3-D points
obtained is shown in Fig. 10(a). However, outliers may exist
due to errors in mutual segmentation-MI-based matching and
estimating the projection matrices in S-SFM and occlusion,
and so on. Therefore, the estimated locations cannot simply
be averaged. In this paper, a Kalman-filter-based method is
proposed to track the location z(i) and detect possible outliers
so that the point cloud can be refined by fusing different views.
Moreover, an iterative method for further refining the point
cloud will be introduced.

1) KF-Based Outlier Detection and Point Cloud Fusion:
KF is the minimum mean-squares state estimator of the
following linear state-space model with Gaussian innovation
and measurement noise:

x(t) = F (t)x(t − 1) + w(t) (23)

z(t) = H(t)x(t) + δ(t) (24)

where x(t) ∈ Rn and z(t) ∈ Rm are, respectively, the state
vector and observation vector at time t. F (t) ∈ Rn×m and
H(t) ∈ Rm×n are the state transition and observation matrices,
respectively, and the innovation w(t) ∈ Rn and measurement
δ(t) ∈ Rm noise are zero mean Gaussian noise with covariance
matrix Qw(t) ∈ Rn×n and Rδ(t) ∈ Rm×m, respectively.
Assuming that F (t), H(t), Qw(t), and Rδ(t) are known, the
standard KF update for estimating the state x(t) is given by

x̂(t/t − 1) = F (t)x̂(t − 1/t − 1) (25)

P(t/t − 1) = F (t)P(t − 1/t − 1)FT (t) + Qw(t) (26)

e(t) = z(t) − H(t)x̂(t/t − 1) (27)

K(t) = P(t/t−1)HT (t)·[H(t)P(t/t−1)HT (t)+Rδ(t)]
−1 (28)

x̂(t/t) = x̂(t/t − 1) + K(t)e(t) (29)

P(t/t) = [I − K(t)H(t)]P(t/t − 1) (30)

where x̂(t/τ) (τ = t−1, t) denotes the estimate of x(t) given the
measurements {z(j), j ≤ τ} and e(t) represents the prediction
error.

Here, we associate z(i) with the ith observation of state
space model and the true state x as the true location of the
3-D point and assume that the additive noise is zero-mean
and Gaussian distributed. Since the true 3-D location across
multiple camera views does not change, the state transition
and observation matrices should be F (t) = I3 and H(t) = I3,
respectively. Thus, (23) and (24) can be rewritten as follows:

x(i) = x(i − 1) + w(i) (31)

z(i) = x(i) + δ(i) (32)

where w(i) and δ(i) are Gaussian distributed innovation and
measurement noise with zero mean and variance Qw = qI3

and Rδ = rI3, respectively, and I3 is the 3×3 identity matrix.
The KF updates are then reduced to

P(i/i − 1) = P(i − 1/i − 1) + qI3 (33)

K(i) = P(i/i − 1)[P(i/i − 1) + rI3]−1 (34)

x̂(i/i) = x̂(i − 1) + K(i)e(i) (35)

P(i/i) = [I3 − K(i)]P(i/i − 1) (36)

where i = 2, · · · , M − 1. The initial state and covariance are
initialized to x(1) = z(1) and P(1/1) = 10, respectively, while
q = r = 0.1 denotes the expected variance of the estimation
error. As mentioned earlier, outliers may arise due to error in
matching and estimated camera parameters. We now propose
a method to detect possible outliers at each KF iteration based
on the following three consistency criteria. If they are violated,
z(i) is considered as an outlier and the KF will be terminated.

1) Segmentation consistency: at the ith iteration, z(i) is
reprojected back to a 2-D point xi = P iz(i) in view
i, where P i is the camera projection matrix of view i,
which contains the intrinsic parameters and extrinsic pa-
rameters. For notational convenience, we have dropped
the additional subscript t for denoting the tth time in-
stant. Due to errors in computing the projection matrixes
and triangulation, xi may lie outside the segment it
belongs to. In this case, z(i) is considered as an outlier.

2) Location consistency: the 3-D distance between z(i) and
the predicted location of the KF x̂(i) should be relatively
small. That is, ||z(i)− x̂(i)|| ≤ εD for some constant εD.
If not, it is treated as an outlier.

3) Intensity consistency: z(i) is reprojected back to two 2-
D points xi = P iz(i) and xi+1 = P i+1z(i) in views i and
i + 1, respectively. They should have similar intensity
values, i.e., |I i(xi) − I i+1(xi+1)| ≤ εI for some constant
εI . However, to cope with intensity variation, we employ
the normalized cross-correlation (NCC) as a measure for
intensity consistency check. The NCC has a range of
[−1, 1] and in this paper, z(i) is treated as an outlier if
its NCC score is smaller than 0.8.
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Fig. 11. Upper figures show the 3-D to 2-D reprojection at frame 20 and
frame 21, respectively. Blue points are inliers. Green points are outliers
detected by the segmentation consistency check. Red points are the outliers
detected by intensity and location consistency checks. Lower part shows
the enlargement of the highlight area in upper left. The point cloud is
downsampled for better visualization.

To ensure the reliability of the extracted 3-D points, we only
include those points that satisfy the consistency tests above
for K consecutive number of views. K is chosen to be four
in this paper since we have at most seven matches for the
eight views. The KF is first applied to the first view. When
it is terminated, say at the ith iteration, a set of potential 3-
D points SF = {z(1), z(2), · · · , z(i)} is obtained. If i is less
than K, we then proceed to the second view and so on until a
consecutive of K matched views is found. If so, the matched
3-D points can be fused by computing their mean value. If not,
then we shall proceed to the remaining corresponding points.
The process is illustrated in Fig. 11 where the projections
of the point cloud are also shown. Blue points denote the
inliers. Green points show the points detected by segmentation
consistency in (i). Red points show the points detected by
location and intensity consistency checks in (ii) and (iii).
Fig. 10(b) shows the refined point cloud after the outlier
detection and Kalman filtering, where we can see that outlying
points are effectively suppressed. The advantages of the KF-
approach are its implementation simplicity, and flexibility,
where one can process the views sequentially while performing
the consistency checks.

2) Iterative Refinement of Point Cloud: With more reliable
matched points, the camera parameters and hence the image
correspondences can be further improved. This suggests an
iteration method for further refining the point cloud and other
parameters.

More precisely, after Kalman filtering, the 2-D matching
and 3-D geometry are refined as follows.

1) The fused 3-D point cloud is first reprojected to succes-
sive views to serve as prior features/correspondences for
MI-based matching. By adding to (14) the reprojection
correspondences as parts of the feature term, a more
reliable depth map can be computed.

2) The updated matching result is then used to update the
3-D point cloud using the KF-based outlier detection
and point fusion algorithm introduced above.

3) The process will be repeated until the maximum number
of iterations, LMAX, is reached or no significant improve-
ment of the 3-D geometry can be obtained. To measure

Fig. 12. Convergence behavior of the RMSD versus the number of iterations
for the proposed iterative 3-D reconstruction algorithm. The blue line shows
the RMSD values with the KF-based outlier detection. The red line shows the
RMSD values without KF-based outlier detection.

the change in the 3-D geometry, a similarity measure of
two consecutive 3-D point clouds is therefore needed.

Let the 3-D point clouds at the l and l + 1 iterations be
M(l) = {p(l)

j , j = 1, . . . , ϑ} and M(l+1) = {p(l+1)
j , j = 1, . . . , ϑ},

respectively, where ϑ is the number of estimated 3-D points. In
this paper, the similarity measure is chosen as the root-mean-
square distance (RMSD) between two point clouds, which is
defined as follows:

RMSD =

√√√√ 1

ϑ

ϑ∑
j=1

D(p′
j, pj) (37)

where p′
j ∈ M(l+1) is the point closest to pj ∈ M(l) and D(x, y)

is the Euclidean distance between vectors x and y.
The algorithm can be terminated when the minimum RMSD

value or the maximum number of iterations, LMAX, is reached.
Fig. 12 plots RMSD versus the number of iterations for refin-
ing the point cloud for the statue in Fig. 11. Fig. 10(c) shows
the final point cloud obtained by refining the one at Fig. 10(b).
Considerable improvement in terms of the smoothness and
number of matched points is observed, which demonstrates the
effectiveness of the proposal iterative refinement approach.

C. RBF Modeling and Mesh Generation

After the completion of the iterative refinement procedure,
the final point cloud M̃ may still contain holes and may not
be smooth enough to get a good mesh. Therefore, further
smoothing of the raw 3-D point cloud is necessary. In this
paper, we employ the RBF-based modeling for smoothing and
the construction of the 3-D mesh. The basic form of an RBF
is as follows:

F (x) = 	θ
j=1cjpj(x) + 	ϑ

i=1λiϕ(x − xi) (38)

where cj is the model coefficient of the polynomial pj(x),
j = 1, · · · , θ, which together form a basis of the polynomial
part of the RBF; and λi is the RBF coefficient for the RBF
ϕ(x − xi) with center xi, i = 1, · · · , ϑ, where ϑ is the number
of data points, which is also equal to the RBFs used in the
RBF. Given a set of 3-D points {x1, x2, · · · , xϑ} with values
f = [F (x1), F (x2), · · · , F (xϑ)]T and the additional conditions
[29], pT � = 0, where p is the vector containing {pj(x)} and
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Fig. 13. 3-D reconstruction results: (a) without using RBF, (b) using RBF
without outlier detection, and (c) using RBF with outlier removal.

� is the vector containing the RBF coefficients {λi}; the RBF
coefficients satisfy the following equation:[

� p

pT 0

]
·
[

�

c

]
=

[
f

0

]
(39)

where [�]ji = ϕ(xj − xi), i, j = 1, · · · , ϑ, and c =
[c1, c2, · · · , cθ]T . By solving the linear equation in (39), the
RBF coefficients can be computed. The complexity of solving
(38) is O(ϑ3). The fast evaluation method proposed in [30] can
reduce the complexity to O(ϑ log ϑ). The basic idea of this
fast RBF algorithm is that exact interpolation is not needed
in practice. Consequently, the value of F (xi) is only required
to lie in an acceptable range to achieve a given accuracy. In
this paper, we also make use of this property to get rid of
possible outliers left. More precisely, we set an error bar for
the RBF values εi1 < F (xi) < εi2, where, for simplicity, we
set εi1 = −εi2 = εi. Consequently, the problem becomes

minimize �T ��

subject to |F (xi)| < εi pT � = 0
(40)

which is recognized as a convex constrained quadratic pro-
gramming problem and it can be solved readily [29]. In this
paper, εi is chosen as the normalized confidence value obtained
from the matching results. The higher the confidence is, the
closer the reconstructed points are to the original points. By
comparing the reconstructed 3-D model [Fig. 13(c)] with the
one without removing the outliers and smoothing [Fig. 13(a)]
and the one using RBF without outlier removal [Fig. 13(b)],
significant improvement is obtained. Finally, we summarize
the complete system flow in Algorithm 1.

D. Experimental Results

We now present and evaluate further the experimental
and timing results of the proposed algorithm. The testing is
performed in an INTEL Core i7 920 CPU-based computer with
4 GB RAM and GTX295 GPU acceleration. The resolution
and the frame rate of the videos are 1920 × 1080i and 25
f/s, respectively. Example video stabilization results have been
presented in Fig. 5 and a demonstration video of our video
stabilization algorithm can be found at http://www.youtube.
com/watch?v=qPuMNjgUoWs.

The segmentation-MI-based matching algorithm has been
evaluated extensively on the stereo test image sets at the
Middlebury stereo page and our outdoor plenoptic video
podium. Fig. 14 shows the stereo images, ground truth depth
maps, and depth maps calculated by our method of the

Algorithm 1 System flow of the proposed algorithm

1) Video Stabilization
1.1. Compute SIFT features of each video sequence.
1.2. Use the feature points to determine the affine transfor-
mation
1.3. Use LPR for smoothing the parameters of the local
transformations.
1.4. Stabilize the video and use motion inpainting to fill in
missing areas.

2) Segmentation-MI-based Depth Estimation
2.1. Perform semiautomatic segmentation using Lazy snap-
ping or automatic segmentation using graph cut on refer-
ence image frames.
2.2. Use the level set method to track each segment.
2.3. Apply the segmentation-MI-based depth estimation
algorithm to each segment for adjacent views and detect
possible occlusions.
2.4. Integrate the depth maps of the segments and perform
SK-LPR-RICI smoothing and inpaint the occlusion areas.

3) IBR
3.1. Use the depth maps, mattes, and original images to
render intermediate views using the approach in [11].

4) 3-D reconstruction (optional)
4.1. Compute the projection matrices using the S-SFM
method and determine the initial 3-D point cloud.
4.2. Iteration refinement.

i) Perform KF-based filtering and fusion of the point
cloud.

ii) Reproject the 3-D points to 2-D images to refine
the estimation of the depth maps and projection matrices.

iii) Go to step 2.3 if the minimum RMSD or maximum
number of iteration is not reached.
4.3. Perform robust RBF-based smoothing to the point
cloud and generate the mesh from the RBF model.
4.4. Render the 3-D model using shadow field to support
real-time relighting and object movement.

Teddy test images (450 × 375) [48]. Table I is a reproduc-
tion of the upper part of the evaluation at the Middlebury
stereo pages. A standard threshold of 1 pixel has been used
in Table I. The segmentation-MI-based matching is among
the best performing stereo algorithms at the upper part of
the table with the semiautomatic and automatic versions
ranking the fourth and sixth, respectively. The performance
difference between our algorithm and the top algorithm is
very small. Moreover, our algorithm is very stable and in-
sensitive to versatile data sets such as real data sets. And
there are not too many parameters that need to be selected
carefully in our algorithm. Example renderings at different
views of the podium plenotic video have been shown in
Figs. 8 and 9.

To illustrate the 3-D reconstruction of the stationary object,
the M-IBR system was driven around a statue in the podium
sequence. The 3-D model of the statue is estimated by the
procedures described in step 4 of Algorithm 1. Fig. 15
gives example renderings using the reconstructed 3-D model
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Fig. 14. Teddy test images [48] and depth maps for comparison. (a) LEFT image. (b) RIGHT image. (c) Ground truth depth map. (d) Depth map calculated
by semiautomatic segmentation-based MI matching. (e) Depth map calculated by automatic segmentation-based MI matching.

Fig. 15. Object-based rendering results using the estimated 3-D model and shadow field in different lightening conditions.

TABLE I

Comparison of the Rank Using Standard Threshold of 1 Pixel

on Middlebury Test Stereo Images

Algorithm Rank Tsukuba Venus Teddy Cones
Adapting BP [42] 6.7 1.37 0.21 7.06 7.92
CoopRegion [43] 6.7 1.16 0.21 8.31 7.18
DoubleBP [46] 8.8 1.29 0.45 8.30 8.78
Our Method (Semi-Seg) 9.6 1.30 0.18 5.10 8.88
OutlierConf [49] 9.8 1.43 0.26 9.12 8.57
Our Method (Auto-Seg) 12.2 1.30 0.24 7.91 8.88
SubPixDoubleBP [50] 13.2 1.76 0.46 8.38 8.73
SurfaceStereo [44] 13.8 1.65 0.28 5.10 7.95

and shadow field using OpenGL, which supports real-time
relighting and object movement with soft shadow. The 3-D
rendering speed is 60 f/s and the processing time of the whole
reconstruction process is about 10 min.

More results of another sequence “conference” where a
person is conducting a conference presentation can be found
in [56]. The M-IBR system is used to track the motion of
the speaker and its partial dynamic geometry is recovered
by integrating the depth maps computed using the eight
cameras at each time instant. Relighting and rendering using
this dynamic partial geometry is also illustrated in [56].
More rendering results can be found in our demonstration
video at http://www.youtube.com/watch?v=hZHW5XS9xAg.
Moreover, the SK-LPR-RICI method can be applied to the
depth map to estimate a smooth gradient field. Combining this
gradient field with the depth map, a normal field corresponding
to the 2-D image can be approximated. This can be used
to perform real-time 2-D relighting. A demonstration video
of the 2-D relighting results can be found at http://www.
youtube.com/watch?v=5LRdPgnWapo. Due to page limitation,
the details of the relighting algorithm will be reported in future
work.

VI. Conclusion

A new system and associate processing algorithms for
object-based rendering and 3-D reconstruction using a
movable IBR system for improved viewing freedom and
environmental modeling were presented. They included three
major components, namely: 1) an improved video stabilization
method based on LPR; 2) a new iterative segmentation and
MI-based algorithm for dense depth map estimation, which
supports both semiautomatic and automatic segmentation
methods; and 3) a new 3-D reconstruction algorithm using the
S-SFM technique and the dense depth maps estimated, which
makes use of a new iterative point cloud refinement algorithm
based on KF for outlier removal and the segmentation-MI-
based algorithm to further refine the correspondences and
the projection matrices. A new robust RBF-based modeling
algorithm was developed to further suppress possible outliers
and generate a smooth 3-D mesh of the object. The mobility
of our system also allowed us to capture 3-D models of static
objects more conveniently. Experimental results showed that
high-quality renderings can be obtained by using the shadow
light field and the 3-D model reconstructed. Further research
will focus on improving the mechanic design of the camera
array so that they can be steered to different directions, while
the platform or wheel chair is moving.
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