64 research outputs found

    Design of low-voltage power efficient frequency dividers in folded MOS current mode logic

    Get PDF
    In this paper we propose a methodology to design high-speed, power-efficient static frequency dividers based on the low-voltage Folded MOS Current Mode Logic (FMCML) approach. A modeling strategy to analyze the dependence of propagation delay and power consumption on the bias currents of the divide-by-2 (DIV2) cell is introduced. We demonstrate that the behavior of the FMCML DIV2 cell is different both from the one of the conventional MCML DFF (D-type Flip-Flop) and from FMCML DFF without a level shifter. Then an analytical strategy to optimize the divider in different design scenarios: maximum speed, minimum power-delay product (PDP) or minimum energy-delay product (EDP) is presented. The possibility to scale the bias currents through the divider stages without affecting the speed performance is also investigated. The proposed analytical approach allows to gain a deep insight into the circuit behavior and to comprehensively optimize the different design tradeoffs. The derived models and design guidelines are validated against transistor level simulations referring to a commercial 28nm FDSOI CMOS process. Different divide-by-8 circuits following different optimization strategies have been designed in the same 28nm CMOS technology showing the effectiveness of the proposed methodology

    Delay models and design guidelines for MCML gates with resistor or PMOS load

    Get PDF
    In this paper we present propagation delay models for MCML gates with resistor- or triode-PMOS-based output I–V conversion. The dependence of the parasitic capacitance of triode PMOS devices is accurately evaluated for the first time in the literature. The proposed models are able to accurately predict the propagation delay as a function of the bias current ISS in different design scenarios which require different tradeoffs between speed, area and power efficiency. The proposed models are validated against transistor level simulations referring to a 28 ​nm CMOS process showing a maximum percentage error lower than 6.5%. Based on these models, a comparative analysis is carried out and useful guidelines for the design of MCML gates are proposed

    Power Optimized Transceivers for Future Switched Networks

    Get PDF
    Network equipment power consumption is under increased scrutiny. To understand and decompose transceiver power consumption, we have created a toolkit incorporating a library of transceiver circuits in 45-nm CMOS and MOS current mode logic (MCML) and characterize power consumption using representative network traffic traces with digital synthesis and SPICE tools. Our toolkit includes all the components required to construct a library of different transceivers: line coding, frame alignment, channel bonding, serialization and deserialization, clock–data recovery, and clock generation. For optical transceivers, we show that photonic components and front end drivers only consume a small fraction (<22%) of total serial transceiver power. This implies that major reductions in optical transceiver power can only be obtained by paying attention to the physical layer circuits such as clock recovery and serial–parallel conversions. We propose a burst-mode physical layer protocol suitable for optically switched links that retains the beneficial transmission characteristics of 8b/10b, but, even without power gating and voltage controlled oscillator power optimization, reduces the power consumption during idle periods by 29% compared with a conventional 8b/10b transceiver. We have made the toolkit available to the community at large in the hope of stimulating work in this field

    Optimization of the wire grid size for differential routing: Analysis and impact on the power-delay-area tradeoff

    Get PDF
    In this paper, the impact of the wire grid size on the power-delay-area trade off of VLSI digital circuits with differential routing is analyzed. To this aim, the differential MOS current-mode logic (MCML) is adopted as reference logic style, and a complete differential design flow is used. Analysis shows that the choice of the grid size in differential routing has a much stronger impact on the power-delay-area tradeoff, compared to the usual single-ended case. Hence, the grid size is an important knob that must be carefully selected when differential routing is adopted. The dependence of power, delay and area on the grid size is discussed indetail through simple models, and introducing appropriate metrics. To validate the analysis and show basic dependencies impractical circuits, 30 benchmark circuits with an in-house designed MCML cell library were synthesized and routed in 0.18 mm CMOS technology. Results show thatnon-optimal choice of the grid size can determine a dramatic increase in power (1.7x) and area (1.3x). Interestingly, the grid size that optimizes the power-delay-area tradeoff is almost independent of the specific circuit under design; hence a generally optimum grid size exists that optimizes a very wide range of different circuits

    A Survey Addressing on High Performance On-Chip VLSI Interconnect

    Get PDF
    With the rapid increase in transmission speeds of communication systems, the demand for very high-speed lowpower VLSI circuits is on the rise. Although the performance of CMOS technologies improves notably with scaling, conventional CMOS circuits cannot simultaneously satisfy the speed and power requirements of these applications. In this paper we survey the state of the art of on-chip interconnect techniques for improving performance, power and delay optimization and also comparative analysis of various techniques for high speed design have been discussed

    Convex and non-convex optimization using centroid-encoding for visualization, classification, and feature selection

    Get PDF
    Includes bibliographical references.2022 Fall.Classification, visualization, and feature selection are the three essential tasks of machine learning. This Ph.D. dissertation presents convex and non-convex models suitable for these three tasks. We propose Centroid-Encoder (CE), an autoencoder-based supervised tool for visualizing complex and potentially large, e.g., SUSY with 5 million samples and high-dimensional datasets, e.g., GSE73072 clinical challenge data. Unlike an autoencoder, which maps a point to itself, a centroid-encoder has a modified target, i.e., the class centroid in the ambient space. We present a detailed comparative analysis of the method using various data sets and state-of-the-art techniques. We have proposed a variation of the centroid-encoder, Bottleneck Centroid-Encoder (BCE), where additional constraints are imposed at the bottleneck layer to improve generalization performance in the reduced space. We further developed a sparse optimization problem for the non-linear mapping of the centroid-encoder called Sparse Centroid-Encoder (SCE) to determine the set of discriminate features between two or more classes. The sparse model selects variables using the 1-norm applied to the input feature space. SCE extracts discriminative features from multi-modal data sets, i.e., data whose classes appear to have multiple clusters, by using several centers per class. This approach seems to have advantages over models which use a one-hot-encoding vector. We also provide a feature selection framework that first ranks each feature by its occurrence, and the optimal number of features is chosen using a validation set. CE and SCE are models based on neural network architectures and require the solution of non-convex optimization problems. Motivated by the CE algorithm, we have developed a convex optimization for the supervised dimensionality reduction technique called Centroid Component Retrieval (CCR). The CCR model optimizes a multi-objective cost by balancing two complementary terms. The first term pulls the samples of a class towards its centroid by minimizing a sample's distance from its class centroid in low dimensional space. The second term pushes the classes by maximizing the scattering volume of the ellipsoid formed by the class-centroids in embedded space. Although the design principle of CCR is similar to LDA, our experimental results show that CCR exhibits performance advantages over LDA, especially on high-dimensional data sets, e.g., Yale Faces, ORL, and COIL20. Finally, we present a linear formulation of Centroid-Encoder with orthogonality constraints, called Principal Centroid Component Analysis (PCCA). This formulation is similar to PCA, except the class labels are used to formulate the objective, resulting in the form of supervised PCA. We show the classification and visualization experiments results with this new linear tool

    A methodology for automated design and implementation of complex analog and digital CMOS integrated circuits applying a genetic algorithm and a CAD tool for multiobjective optimization.

    Get PDF
    Tesis (Doctorado en Ciencias Naturales para el Desarrollo) Instituto TecnolĂłgico de Costa Rica, Escuela de IngenierĂ­a ElectrĂłnica, 2014.This dissertation proposes an automated methodology to design and optimize electronic integrated circuits, something that could be called simulation-driven optimization. The concept of Pareto optimality or the so called Pareto front is introduced as a useful analysis tool in order to explore the design space of such circuits. A genetic algorithm (GA) is employed to automatically detect this front in a process that efficiently finds optimal parameterizations and their corresponding values in an aggregate fitness space. Since the problem at hand is inherently a multi-objective optimization task, many different performance measures of the circuits must be able to be easily defined and computed as fitness functions. The methodology has been validated through measurements of several fabricated test cases, using MOSIS fabrication services for a standard 0.5m CMOS technology.Instituto TecnolĂłgico de Costa Rica. Escuela de IngenierĂ­a ElectrĂłnica

    Design and modelling of clock and data recovery integrated circuit in 130 nm CMOS technology for 10 Gb/s serial data communications

    Get PDF
    This thesis describes the design and implementation of a fully monolithic 10 Gb/s phase and frequency-locked loop based clock and data recovery (PFLL-CDR) integrated circuit, as well as the Verilog-A modeling of an asynchronous serial link based chip to chip communication system incorporating the proposed concept. The proposed design was implemented and fabricated using the 130 nm CMOS technology offered by UMC (United Microelectronics Corporation). Different PLL-based CDR circuits topologies were investigated in terms of architecture and speed. Based on the investigation, we proposed a new concept of quarter-rate (i.e. the clocking speed in the circuit is 2.5 GHz for 10 Gb/s data rate) and dual-loop topology which consists of phase-locked and frequency-locked loop. The frequency-locked loop (FLL) operates independently from the phase-locked loop (PLL), and has a highly-desired feature that once the proper frequency has been acquired, the FLL is automatically disabled and the PLL will take over to adjust the clock edges approximately in the middle of the incoming data bits for proper sampling. Another important feature of the proposed quarter-rate concept is the inherent 1-to-4 demultiplexing of the input serial data stream. A new quarter-rate phase detector based on the non-linear early-late phase detector concept has been used to achieve the multi-Giga bit/s speed and to eliminate the need of the front-end data pre-processing (edge detecting) units usually associated with the conventional CDR circuits. An eight-stage differential ring oscillator running at 2.5 GHz frequency center was used for the voltage-controlled oscillator (VCO) to generate low-jitter multi-phase clock signals. The transistor level simulation results demonstrated excellent performances in term of locking speed and power consumption. In order to verify the accuracy of the proposed quarter-rate concept, a clockless asynchronous serial link incorporating the proposed concept and communicating two chips at 10 Gb/s has been modelled at gate level using the Verilog-A language and time-domain simulated

    An Improved Latch for SerDes Interface: Design and Analysis under PVT and AC Noise

    Get PDF
    Digital subsystem prefers CMOS process, but it is difficult to manage speed and average power (Pavg) trade-off in each era with power supply voltage (Vdd) scaling. Current mode logic (CML) has emerged as an alternative to design the fundamental block of a SerDes, namely, the latch. However, available CML circuits consume significant Pavg and suffer from rapid input slewing. Typically, fast switching inputs enable current flow to effective supply voltage VP and overcharges output. In fact, VP is different than externally applied Vdd and oscillates with time as and when an abrupt current is drawn. This affects delay td and introduces jitter. The topic presents a new latch for SerDes interface using a new current steering circuit and coupled to a power delivery network (PDN). The significant point is to attain an almost constant td in comparison to conventional designs while the Vdd changes. The post-layout results at 0.09-μm CMOS and 1.1 V Vdd indicate that the Pavg and td are 339.5 µW and 61.9 ps, respectively, at 27OC. Surprisingly, the td variation is noted to be minimum and the power supply noise induced jitter is around 1.5 ns when VP close to the circuit varies due to sudden current
    • …
    corecore