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a b s t r a c t

In this paper, the impact of the wire grid size on the power-delay-area tradeoff of VLSI digital circuits

with differential routing is analyzed. To this aim, the differential MOS current-mode logic (MCML) is

adopted as reference logic style, and a complete differential design flow is used. Analysis shows that the

choice of the grid size in differential routing has a much stronger impact on the power-delay-area

tradeoff, compared to the usual single-ended case. Hence, the grid size is an important knob that must

be carefully selected when differential routing is adopted. The dependence of power, delay and area on

the grid size is discussed in detail through simple models, and introducing appropriate metrics.

To validate the analysis and show basic dependencies in practical circuits, 30 benchmark circuits with

an in-house designed MCML cell library were synthesized and routed in 0.18 mm CMOS technology.

Results show that non-optimal choice of the grid size can determine a dramatic increase in power

(1.7� ) and area (1.3� ). Interestingly, the grid size that optimizes the power-delay-area tradeoff is

almost independent of the specific circuit under design; hence a generally optimum grid size exists that

optimizes a very wide range of different circuits.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Interconnects heavily influence the power-delay-area tradeoff
in deep-submicron VLSI digital circuits, due to the strong
contribution of their parasitics. The impact of interconnects is
usually managed with automated CAD tools that perform
interconnect-aware physical synthesis and place and route [1,2].
Such automated design flows are usually available for single-
ended logic styles, whereas differential logic styles are not
explicitly supported [3,4]. Accordingly, the adoption of differential
logic styles requires further work to properly adapt commercial
tools.

Until now, differential logic styles such as MOS current-mode
logic (MCML) have been widely recognized to provide consider-
able advantages in terms of power supply noise compared
to conventional CMOS logic [5]. From an application point of
view, the reduced supply noise in MCML circuits enables a
number of applications, such as digital signal processing or error
correction in high-accuracy mixed-signal circuits, where sub-
strate noise reduction is key to improving the dynamic range of
ll rights reserved.
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noise-sensitive analog circuits. As another example, the low
supply noise feature is very useful also in cryptographic devices
with high level of security, since it makes differential power
analysis (DPA) attacks much harder, thereby considerably
increasing the level of protection of the secret key [6]. In these
applications, the advantage offered by the MCML logic style over
standard CMOS circuits has been experimentally demonstrated to
be in the order of 2–3 orders of magnitude at least, although this
comes at the cost of a power and area penalty [5,6]. In addition, to
make MCML a practical option for commercial chips, the design
effort has to be kept close to that of standard CMOS circuits, hence
manual design of MCML digital blocks is not a viable approach.
Accordingly, the use of standard-cell based automated design
methodologies for MCML circuits is mandatory.

In differential logic styles such as MCML, each signal is carried
by a pair of wires that switch in opposite directions, thus
canceling out the power supply and substrate noise to a large
extent [5–13]. The maximum benefits are obtained when each
differential signal pair is routed as a bundle (usually named ‘‘fully
differential pair’’), in which the two complementary wires have
exactly the same length [3–7,11]. Until now, a few methodologies
have been developed to allow the implementation of fully
differential logic circuits with standard CAD tools [3–7]. In the
first step, these methodologies rely on a fictitious single-ended
representation of differential signals, in order to allow for using
commercial CAD tools. Then, in a post-processing step, the
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fictitious single-ended cells and wires are turned into the fully
differential and logically equivalent counterparts. In such meth-
odologies, it was shown that timing integrity throughout all steps
of the design flow requires a fully differential routing, which
matches the lengths and parasitic of the two wires belonging to
the same differential signal pair. In other words, the two wires
belonging to the same pair must be always routed in parallel to
each other, as will be discussed in detail in Section 2.

As is well known, automated routing of VLSI circuits is
efficiently performed by restricting the possible decisions that
the tool can make. In particular, the tool is allowed to place and
route wires only at discrete positions in the die, according to a
routing grid [8,9]. In single-ended design flows, the wire grid pitch
(i.e., the grid step) is often set to the minimum value allowed by
the technology in order to provide maximum integration density.
Nevertheless, non-minimum wire grid pitch can bring limited
benefits (in the order of 10%) in terms of speed and power
consumption [10], since coupling capacitances between adjacent
wires are reduced when their distance is increased. Moreover,
current routing tools are able to automatically spread neighboring
wires apart when routing space is available. Therefore, the choice
of the wire grid pitch is not critical in the case of single-ended
routing, and can bring only a modest improvement compared to
the case of minimum pitch.

As opposite to single-ended design flows, the impact of wire
grid pitch in differential design flows is expected to be strong,
since wires belonging to the same differential pair are forced to be
close to each other by necessity, and tools are not able to freely
adjust their spacing. In addition, wires within the same pair
always experience opposite transitions, hence their effective
coupling capacitance is always increased by a factor of two due
to the Miller effect [2,11–13]. For these reasons, the choice of the
wire grid pitch is expected to be a critical design variable in
differential design flows, and further investigation is needed.

In this paper, the impact of the wire grid size in fully
differential design flows is analyzed. In particular, the impact of
the wire grid pitch on the power-delay-area tradeoff is analyzed
in detail through simple models and design considerations,
adopting a differential MOS current mode logic standard cell
library and a previously developed fully differential design flow.
Simple design metrics to optimize the grid pitch are also
introduced. According to the above premises, our analysis is
focused on local wires that connect standard cells within the same
module, hence effects typically associated with global wires (e.g.,
wire inductance) will not be considered.2 Analysis of 30 bench-
mark circuits in 0.18-mm technology is performed to validate the
above considerations. Results show that the proper choice of the
wire grid pitch in differential design flows significantly reduces
power and area for a given delay constraint. Interestingly, the
optimum wire grid pitch was found to be almost independent of
the specific circuit under design, hence pitch optimization can be
performed only once and used for a large number of different
designs.

The paper is structured as follows. In Section 2, a complete
fully differential design flow is introduced. Qualitative considera-
tions on the impact of the wire grid pitch and comparison
between differential and single-ended routing are reported in
Section 3, whereas a design metric is derived in Section 4.
Validation and simulation results are discussed in Section 5, and
conclusions are discussed in Section 6.
2 Observe that issues related to global interconnects are completely different

from local (intra-module) interconnects both in terms of the impact of wire

parasitics and design issues. Indeed, local interconnects are mainly capacitive and

easily prone to routing congestion, whereas global wires exhibit also resistive/

inductive behavior and typically do not suffer from serious congestion [20].
2. Review of a fully differential automated design flow

In order to implement circuits based on differential logic
styles, the two wires belonging to the same differential pair must
be routed as a bundle [3–7], i.e. they must be routed in parallel to
ensure that they have the same length and parasitics. This fully
differential routing approach has obvious advantages in terms of
signal integrity, which is an important aspect in nanometer
technologies, especially in the case of low-swing differential logic
styles with reduced noise margin [4,11]. However, the main
reason for using fully differential routing is related to timing
analysis. Indeed, in fully differential logic styles, the switching of
logic gates is triggered by the variations in the differential input
voltage; hence the timing arcs should relate input and output
differential voltages during the timing analysis of the circuit.
Unfortunately, current commercial timing analyzers are not able
to model timing of differential signals, as they support only
single-ended timing relationships.

The problem is illustrated in Fig. 1, where the switching of a
pair of complementary signals is represented in the case of
independently routed wires, i.e. with different length and
parasitics, thereby violating the premise of fully differential
design flows. Because of the difference in the parasitics
associated with each wire, the transitions of the driving gate
have different time constants. In other words, from Fig. 1 the two
complementary signals OUT and OUT0 cross the 50% threshold at
different points in time, and the point in time where the
difference of the two signals crosses the 50% threshold is
located somewhere in between (in fact, it can be easily seen
that it is close to the average of the two individual points, for
small differences of the two time constants). Therefore, if the
input-to-output delay is evaluated as the delay at only one of the
two single-ended outputs (as allowed by current CAD tools), it
underestimates or overestimates the actual delay evaluated on
the differential waveform. These timing errors can accumulate
and lead to considerable error when evaluating a path delay.
Clearly, such timing errors are not acceptable in high-speed
applications, since it is likely that the speed constraint will not be
actually met. Analogously, such errors are not acceptable in low-
power applications, since the delay overestimation clearly leads
to a circuit overdesign, thereby degrading the power efficiency.

According to the above considerations, commercial CAD tools
can accurately estimate the delay of differential logic gates only if
the two outputs of a differential pair have exactly the same delay.
This can be achieved by balancing the parasitics of the two wires
Fig. 1. 50% crossing points for two wires belonging to the same differential pair

and the corresponding differential voltage.
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within that same pair as much as possible, i.e. routing them as a
bundle.

A complete fully differential design flow was recently devel-
oped, based on the above discussed concept [4]. With no loss of
generality, in the following this design flow will be applied to a
standard cell library based on MOS current-mode logic (MCML)
style [14,15]. The design flow for differential MCML standard cells
is briefly illustrated in the flowchart in Fig. 2. Essentially, two
different views of the cell library are necessary: a logical view,
where each pair of complementary signals (differential inputs and
output of the cell) is represented as a single port, and a physical
view which includes both polarities for each signal. Once the cell
layouts are created, they are characterized for timing and power.
Logical and physical models are generated for simulation,
Fig. 2. Flowchart of the fully d
synthesis (timing library) and placement and routing (abstracts).
Then, a number of variants are generated for each cell by inverting
the inputs and output in all possible combinations, to take
advantage of the free signal inversion available with differential
cells (in differential cells, logic inversion is performed by simply
swapping pins).

In the circuit automated design, wire capacitance values are
properly evaluated to reflect the higher effective capacitance seen
in differential wires (more details are provided in Section 3), in
order to ensure accurate timing analysis throughout the flow.
Based on a standard-cell logic library and a standard HDL
description, circuits are then synthesized, placed and routed using
standard tools. The resulting circuit is made of fictitious single-
ended cells and wires, where each wire actually represents a pair
ifferential design flow [4].
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of complementary signals, according to appropriate design rules
that accommodate for the increased wire width. Then, a script
translates the single-ended design into a physical equivalent
differential design, by splitting each wire into a differential pair,
and replacing each cell by its physical counterpart. To correctly
connect each wire to the corresponding cell pins, the resulting
design is fed back to the router to complete the connections.

Summarizing, thanks to the joint adoption of commercial CAD
tools and appropriate scripts, the above design flow permits the
automated design of differential digital circuits from their VHDL/
Verilog description to their detailed physical-level design.
3 Actually, area may even slightly reduced by moderately increasing P. Indeed,

the reduction in Cwire allows the synthesis tool to reduce the cell strength and

hence area.
3. Understanding the impact of the routing grid pitch

When using a design flow that includes automated place and
routing, the designer has to preliminarily choose the wire grid
pitch. Unfortunately, until now no criteria or guidelines have been
provided to assist this choice. For this reason, in the following the
impact of wire grid pitch is analyzed in detail for fully differential
routing, highlighting the interdependence of fundamental design
parameters, such as speed, power consumption and area.

3.1. Analysis of the power-delay-area tradeoff versus wire grid pitch

In any type of automated routing, as shown in Fig. 3 the wire
grid size is set by the pitch P, which is defined as the distance
between the middle sections of the adjacent wires. In the same
figure, capacitance Ccoupling,INT schematizes the intrinsic coupling
capacitance between the considered wires, whereas CGND

represents the grounded capacitive contribution at each wire
(i.e., the contribution of the bottom plate, as well as the fringing
capacitance to ground of the lateral faces). For a given wire width,
Ccoupling,INT and CGND are proportional to the wire length L via the
capacitance per unit length ccoupling and cGND, respectively (i.e.,
Ccoupling,INT¼ccouplingL, CGND¼cGNDL). Analogously, the external
capacitance towards the adjacent wires Ccoupling,EXT in Fig. 3 is
proportional to the overlap length Lov (i.e., the length of the
overlapping section of the adjacent wires) via the capacitance per
unit length ccoupling (i.e., Ccoupling,EXT¼ccouplingLov). In deep-submicron
technologies, the capacitances associated with the lateral face
(i.e., Ccoupling,INT and Ccoupling,EXT) are well known to dominate over
the grounded capacitance CGND, as the lateral face area tends to
down-scale slowly compared to the bottom face of wires [2].

It is useful to observe that the wires belonging to the same
differential pair always experience opposite transitions, hence the
in-between coupling capacitance Ccoupling,INT is always affected by
the full Miller effect, i.e. it can be modeled as a grounded
capacitance (in parallel to CGND) equal to 2Ccoupling,INT [11]. On the
other hand, the full Miller effect takes place between
the considered wire and the adjacent ones only if they switch at
the same time, whereas no effect is observed if they switch in
different points of time. Hence, the capacitive contribution
between each wire of the differential pair and the adjacent one
can be schematized as a grounded capacitance equal to
aMillerCcoupling,EXT, being aMiller the well-known Miller effect
coefficient that results to 2 if full Miller effect takes place, and
is lower than 2 if this effect occurs only partially [2]. Accordingly,
the overall capacitance Cwire to ground associated with each wire
of a differential pair is proportional to L via the wire capacitance
per unit length cwire, according to

Cwire ¼ CGNDþCcoupling,INTþCcoupling,EXT ¼ cwireL ð1aÞ

cwire ¼ cGNDþ2ccouplingþccoupling
Lov

L
aMiller ð1bÞ
Relationships (1a) and (1b) can be used to understand the
impact of the wire grid pitch P on the wire capacitance, which is
related to performance and power, and area. If the grid size P is
small (i.e., close to its lower bound Pmin set by the technology),
ccoupling and hence cwire tend to be very high due to the short
distance between adjacent wires, thereby degrading speed and
power efficiency. At the same time, under low values of P, the
maximum possible integration density is obtained. When P is
increased with respect to Pmin, capacitance ccoupling tends to
decrease. As an example, this is shown by the plot of ccoupling

versus P/Pmin in Fig. 4, where the contribution capacitive
contributions of intermediate-level (metal 2–4) layers in
0.18-mm CMOS technology is considered. This is easily
explained by considering that an increase in P tends to spread
the lateral faces of two adjacent wires apart, thereby reducing the
capacitance associated with the parallel plates of the capacitor
Ccoupling,INT. At the same time, the small increase in P does not
significantly affect the routing density, as long as no congestion
occurs in routed wires, hence the wire length L is roughly
unaffected3 by P. Accordingly, from (1a) and (1b) the net effect of
a moderate increase in P is a reduction in Cwire, which in turn
improves both speed and power efficiency.

On the other hand, if P is strongly increased with respect to
Pmin, the distance between differential wires becomes so high that
the routing density is severely degraded and routing congestion
occurs. Due to congestion, wires follow longer paths than
necessary, hence their length L tends to rapidly increase when
increasing P. Hence, despite of the small reduction in cwire (since
ccouplingp1/P slowly reduces for high values of P), the fast increase
in L determines an increase of Cwire, according to (1a) and (1b).
This effect is further emphasized for high values of P, as the
increase in Cwire forces the synthesis tool to increase the cell
strength for a targeted speed, which in turn further increases the
circuit area and hence the wire length.

The above discussed dependence of Cwire on the pitch P is
summarized in Fig. 5, from which it is apparent that there is an
optimum grid size Popt that minimizes Cwire. Observe that this
optimum choice of grid size improves speed and power at the
same time, and can also slightly reduce the area occupied by
the circuit (as was observed in note 1). In other words, speed,
power and area are not conflicting requirements in the optimum
choice of the grid size P: indeed, the optimum grid size improves
the routing efficiency, thereby bringing benefits to speed, power
and area at the same time.
3.2. Single-ended and differential routing: qualitative considerations

and differences

Until now, some results have been published on the impact of
the wire pitch only in the case of single-ended routing [10,16–18].
In particular, at the best of the authors’ knowledge, only [10]
explicitly discusses the optimization of the wire grid pitch herein
considered. More specifically, [10] shows that an optimum pitch
exists, and a modest improvement in power consumption and
performance can be achieved (within 10%). Moreover, the
optimum pitch is shown to significantly depend on the specific
circuit under design. On the other hand, papers [16–18] do not
explicitly consider the wire grid pitch optimization, but they
target the design of interconnect hierarchy at the process level,
and propose guidelines to select geometrical dimensions of
wires. Results in these papers agree well with the qualitative



Fig. 3. Cross section of a differential pair of wires (dark grey) and two adjacent wires (light grey).

Fig. 4. Capacitance contributions per unit length as a function of the routing pitch

P normalized to the minimum allowed by technology Pmin.

4 Indeed, CAD tools try to avoid long wires running in parallel, hence the

overlap length Lov in Fig. 3 is usually kept much lower than the wire length L.
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considerations reported in the previous subsection, but they do
not provide any information on how to size the wire grid pitch in
differential routing, once the process is defined.
In general, it is expected that fully differential routing can also
take advantage of the wire grid pitch optimization, although no
work in the literature has been devoted to this particular case
until now. To understand the differences with respect to the
single-ended case, let us observe that the intrinsic coupling
capacitance (i.e., the second term in (1b)) dominates over the
external coupling capacitance (i.e., the third term in (1b)), since
Lov5L in well-designed circuits.4 Physically, this is because the
external contribution is due only to the generally short overlap
between adjacent wires belonging to different pairs, whereas the
intrinsic contribution has the largest possible value (since every
wire within a differential pair runs parallel to the complementary
wire for its entire length). Interestingly, the intrinsic contribution
is constant in the design since ccoupling depends only on the
process, whereas the external contribution depends on ratio Lov/L,
which clearly depends on the specific design. Since the latter
contribution is negligible, it is expected that the wire capacitance
per unit length in differential routing is almost design-indepen-
dent; hence the wire grid pitch optimization impacts the
capacitance of all wires almost in the same way, regardless of
the considered design. In other words, the wire grid pitch
optimization is expected to be almost unaffected by the specific



grid pitch P

Cwire
(eq. (1b))

L const., high cwire
high Cwire

PoptPmin

high L, cwire const.
high Cwire

min. Cwire

low performance
power inefficient

low performance
power inefficient

high performance
power efficient

Fig. 5. Dependence of Cwire on the wire pitch P.
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design, i.e. a design-independent optimum pitch can be found.
This qualitative result will be shown to agree well with simulation
results in Section 5.

From the above considerations, the intrinsic contribution in
differential routing is significantly greater than that of single-
ended wires, whereas the grounded contribution (i.e., cGND in (1b))
is almost the same in both cases. Hence, the reduction of ccoupling

obtained with the pitch increase (see Fig. 5) has a stronger effect
on cwire when considering differential routing. Hence, the power/
delay improvement achieved with the pitch optimization in
differential routing is expected to be much greater than that of
single-ended wires. This consideration will also be validated
through comparison with simulations in Section 5.

Summarizing, the wire grid pitch optimization in differential
circuits is expected to significantly impact the power-delay-area
tradeoff, and the resulting optimum pitch is expected to be
roughly design-independent, in contrast to previous results on
single-ended routing.
Fig. 6. Plot of FOM in (2) normalized to the case P¼Pmin versus P/Pmin for various

values of i (differential and single-ended routing).
4. Metrics to estimate the impact of grid size

As discussed in Section 3, a tradeoff between the wire
capacitance Cwire and area exists in the choice of the wire grid
pitch P. In the following, simple metrics that provide information
on this tradeoff are discussed.

A reasonable metric that can express the capacitance–area
tradeoff should include the product of capacitance and area, or a
power of them if we want to put more weight on one of them.
To achieve a general metric that permits to find the optimum wire
grid pitch Popt that leads to the best capacitance–area tradeoff
(see Fig. 5), it is sufficient to derive a simple expression of
capacitance and area that is valid for P lower than (or comparable
to) the optimum pitch Popt, according to Fig. 5. As was discussed in
Section 3.1, in Fig. 4, for PrPopt the wire length L is roughly
constant, hence the dependence of Cwire on P in (1) is approximately
due only to factor cwire. In regard to area, from Fig. 3 the area
occupied by a pair of differential wires is proportional to the grid
pitch P and wire length L, the latter of which can be again assumed
to be approximately independent of P when evaluating Popt.
According to these considerations, the dependence of the capaci-
tance (area) on P is simply captured by cwire (P). Hence, a suitable
metric to describe the capacitance-are tradeoff is ci

wireP, where
exponent i is set to a value greater (lower) than unit if capacitance is
more (less) important than area. In this regard, observe the wire area
in the region of interest where PrPopt is not a serious issue, since
from Fig. 5 the wire length is independent of P, whereas reduction in
cwire is crucial. For this reason, more weight should be put on
capacitance in the capacitance-area metric. This can be done by
introducing an exponent i¼2 in the term cwire, thereby yielding the
following capacitance-area figure of merit (FOM)

FOM¼ c2
wireP ð2Þ

In (2), the dependence of the wire capacitance per unit length
cwire on P can be easily extracted from technology data or from
simulations on 3-D field solvers [2]. For example, the dependence
of cwire on P is shown in Fig. 4 for the considered 0.18 mm CMOS
technology, which has Pmin¼0.72 mm, and cwire¼0.24 fF/mm
(0.19 fF/mm) for the differential (single-ended) routing under
P¼Pmin (this difference is due to the additional coupling
capacitance contribution between the differential wire pair).

The resulting metric in (2) is plotted in Fig. 6 versus P/Pmin for
the differential and single-ended routing case. In this figure, cwire

and P are normalized to the values obtained for the minimum grid
size Pmin allowed by the technology. Fig. 6 reveals that the
differential routing can provide significantly higher benefits from
pitch optimization, compared to single-ended routing. This
observation confirms that the optimization of P is crucial in
differential routing, and agrees well with qualitative considerations
that are reported in Section 3.2.



M. Alioto et al. / Microelectronics Journal 41 (2010) 669–679 675
Inspection of Fig. 6 also shows that the figure of merit in (2) for
the differential routing has a slightly flat minimum between
1.5Pmin and 1.6Pmin, hence it is reasonable to set P to Popt¼1.5Pmin

in circuits implemented with the considered technology. This flat
minimum around Popt ensures that designs around the optimum
grid pitch are robust against moderate process variations.
In Section 5, it will be shown that this value of Popt agrees well
with the optimum found experimentally in several designs.

Finally, it is interesting to compare results obtained for the
differential routing with the single-ended case. From Fig. 6, FOM

under single-ended routing is apparently less sensitive to P,
i.e. the choice of the grid size in differential routing is more critical
than in the single-ended case. This is due to the increased
coupling capacitance associated with each differential wire pair,
as discussed in Section 3.1, and agrees well with the qualitative
considerations in Section 3.2. For the same reason, Popt for single-
ended routing is lower than that of differential case (PoptE1.2Pmin

from Fig. 6), and is close to the minimum value allowed by
technology.
5. Analysis of test circuits and validation

In order to evaluate the impact of routing grid size P on the
power-delay-area tradeoff, 30 circuits (ISCAS 85 and 89) taken
from the IWLS’2005 benchmark suite [19] were synthesized
under different values of the grid pitch. The considered bench-
marks are summarized in the first column of Tables 1–3.

Each test circuit was synthesized using Synopsys Design
Compiler Topographical, which performs logic synthesis
and physical optimization according to the wire technology
Table 1
Summary of results for 1� delay constraint.

Design\pitch (lm) Critical path length Area

0.72 0.80 0.88 0.96 1.04 1.12 1.20 0.72 0.80 0

s27 1.00 0.94 0.94 0.94 0.89 0.89 0.92 1.00 1.09 1

s208_1 1.00 1.12 1.02 0.93 1.07 1.02 0.98 1.00 0.85 0

s298 1.00 0.96 0.89 0.92 0.89 0.90 0.89 1.00 0.86 0

s349 1.00 0.96 0.98 1.01 0.96 1.01 1.00 1.00 0.80 0

s344 1.00 0.96 0.92 0.96 0.89 0.93 0.94 1.00 0.88 0

s386 1.00 0.99 0.97 0.95 0.93 0.95 0.99 1.00 0.87 0

s420_1 1.00 0.98 0.91 0.90 0.91 0.91 0.90 1.00 1.04 0

s713 1.00 0.95 0.86 0.83 0.84 0.85 0.89 1.00 1.10 1

s526n 1.00 1.01 0.99 1.00 0.96 0.96 0.98 1.00 0.96 0

s400 1.00 1.01 0.92 0.96 0.90 0.91 0.91 1.00 0.74 0

s526 1.00 0.90 0.98 0.91 0.90 0.90 0.96 1.00 0.85 0

s382 1.00 0.98 0.96 0.97 0.99 0.97 0.99 1.00 0.94 0

s444 1.00 0.94 0.95 0.92 0.93 0.92 0.95 1.00 0.65 0

s510 1.00 1.02 0.99 1.00 1.00 0.99 1.00 1.00 0.96 0

s641 1.00 1.06 1.00 1.01 0.98 0.98 1.02 1.00 0.86 1

s820 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.74 0

s832 1.00 0.99 0.99 0.99 0.97 0.99 0.98 1.00 0.90 0

s1238 1.00 0.98 1.06 0.96 0.89 1.00 1.05 1.00 0.93 0

s838_1 1.00 0.91 0.90 0.92 0.91 0.90 0.91 1.00 0.74 0

s1196 1.00 0.89 0.91 0.81 0.85 0.90 0.81 1.00 0.87 0

s1488 1.00 0.92 0.90 0.89 0.90 0.89 0.90 1.00 0.83 0

s1494 1.00 1.01 1.01 1.02 1.02 1.02 1.02 1.00 0.82 0

s1423 1.00 0.99 1.01 1.00 1.00 1.01 1.00 1.00 0.83 0

s5378 1.00 1.02 1.04 1.12 1.01 1.05 1.00 1.00 0.68 0

s9234_1 1.00 0.85 0.76 0.80 0.75 0.81 0.78 1.00 1.00 0

s13207 1.00 1.02 0.95 0.90 0.84 0.87 0.96 1.00 0.91 0

s15850 1.00 0.98 1.04 0.99 1.00 0.99 0.88 1.00 0.91 0

s38417 1.00 0.79 0.74 0.70 0.72 0.61 0.68 1.00 0.96 0

s38584 1.00 0.81 0.86 0.79 0.79 0.80 0.89 1.00 0.91 0

s35932 1.00 0.87 0.82 0.74 0.81 0.84 0.96 1.00 0.91 0

Average 1.00 0.96 0.94 0.93 0.92 0.93 0.94 1.00 0.88 0
Std. dev. 0.00 0.07 0.08 0.09 0.08 0.09 0.08 0.00 0.11 0
parameters. Routing was performed using Metal-1 to Metal-4
layers. Each circuit was synthesized under several speed con-
straints in order to validate the results for different performance
targets. To this end, each circuit was preliminarily characterized
to obtain the minimum delay by performing five synthesis runs
(with minimum grid size Pmin), starting with very tight timing
constraints, and updating the timing constraint for the next run
with the result of the previous one. This allowed for obtaining the
very minimum delay achievable in the critical path. Then, in order
to evaluate the impact of the routing grid at different speed
constraints, synthesis runs were then performed for a delay
constraint of 1� , 1.25� , 1.5� , 2� and 5� greater than the
minimum value, and with interconnect parasitic data correspond-
ing to the various routing grid pitches adopted (ranging from Pmin

to 1.7Pmin). For each of these circuits and for each speed
constraint, power and area were also evaluated. The resulting
values of the critical path delay, area and power normalized to the
case with minimum pitch are reported in Tables 1–3, which
respectively refer to the case of 1� , 2� and 5� delay constraint.

To summarize the results in Tables 1–3, the average power
consumption mPower (normalized to the case P¼Pmin) among the
considered designs was evaluated to have an idea on the typical
power saving obtained with pitch optimization. Analogously, the
standard deviation of the power consumption sPower was
evaluated to evaluate the typical spread of the power saving
among different designs. Analogous parameters mArea and sArea

were evaluated for area. Fig. 7a and b depicts mPower (mArea) under
the 1� delay constraint, as well as the typical range
mPower7sPower (mArea7sArea) indicated in light grey. Figs. 8a–b
and 9a–b depict the same curves for a 2� and 5� delay
constraint, respectively.
Power

.88 0.96 1.04 1.12 1.20 0.72 0.80 0.88 0.96 1.04 1.12 1.20

.12 1.00 0.94 0.94 0.94 1.00 1.07 1.14 1.00 0.81 0.83 0.79

.95 0.82 0.92 0.84 0.87 1.00 0.80 0.94 0.79 0.90 0.78 0.82

.76 0.81 0.98 0.85 0.84 1.00 0.84 0.65 0.73 0.93 0.79 0.82

.64 0.69 0.65 0.63 0.69 1.00 0.70 0.52 0.59 0.48 0.46 0.57

.92 0.77 0.76 0.75 0.75 1.00 0.85 0.89 0.70 0.69 0.64 0.68

.76 0.65 0.70 0.58 0.66 1.00 0.90 0.70 0.56 0.61 0.50 0.59

.96 0.96 0.83 0.89 0.96 1.00 1.07 0.94 0.94 0.73 0.82 0.94

.33 1.07 0.95 1.06 0.90 1.00 1.11 1.40 0.99 0.86 0.97 0.82

.75 0.73 0.69 0.88 0.87 1.00 0.93 0.65 0.60 0.56 0.81 0.83

.88 0.73 0.64 0.67 0.86 1.00 0.68 0.82 0.61 0.47 0.51 0.81

.85 0.76 0.75 0.77 0.95 1.00 0.78 0.77 0.67 0.59 0.66 0.89

.71 0.76 0.73 0.67 0.78 1.00 0.94 0.60 0.64 0.59 0.50 0.70

.74 0.71 0.77 0.66 0.71 1.00 0.53 0.65 0.56 0.66 0.54 0.61

.81 0.85 0.74 0.78 0.78 1.00 0.96 0.77 0.82 0.65 0.71 0.72

.06 0.84 0.76 0.80 0.78 1.00 0.85 1.01 0.76 0.67 0.76 0.67

.63 0.71 0.70 0.68 0.66 1.00 0.65 0.48 0.62 0.62 0.58 0.55

.79 0.56 0.72 0.72 0.72 1.00 0.86 0.73 0.44 0.62 0.63 0.62

.81 0.79 0.81 0.74 0.70 1.00 0.85 0.71 0.64 0.68 0.62 0.55

.71 0.80 0.62 0.69 0.67 1.00 0.63 0.61 0.72 0.45 0.59 0.55

.76 0.68 0.79 0.73 0.70 1.00 0.83 0.67 0.55 0.67 0.62 0.55

.81 0.74 0.68 0.79 0.66 1.00 0.77 0.74 0.67 0.58 0.71 0.57

.71 0.67 0.59 0.70 0.64 1.00 0.78 0.61 0.56 0.47 0.61 0.52

.75 0.79 0.71 0.75 0.65 1.00 0.70 0.63 0.73 0.54 0.60 0.47

.70 0.72 0.70 0.65 0.66 1.00 0.55 0.58 0.59 0.57 0.51 0.51

.83 0.86 0.82 0.83 0.87 1.00 1.00 0.73 0.77 0.70 0.71 0.78

.90 0.89 0.87 0.87 0.85 1.00 0.85 0.81 0.75 0.74 0.75 0.72

.87 0.88 0.87 0.86 0.85 1.00 0.87 0.77 0.77 0.76 0.74 0.72

.95 0.88 0.89 0.89 0.90 1.00 0.95 0.92 0.80 0.80 0.81 0.81

.83 0.78 0.78 0.77 0.79 1.00 0.84 0.69 0.60 0.61 0.57 0.62

.80 0.84 0.82 0.89 0.83 1.00 0.80 0.67 0.74 0.70 0.78 0.66

.84 0.79 0.77 0.78 0.78 1.00 0.83 0.76 0.70 0.66 0.67 0.68

.15 0.11 0.10 0.11 0.10 0.00 0.14 0.19 0.13 0.12 0.12 0.13



Table 2
Summary of results for 2� delay constraint.

Design \pitch (lm) Critical path length Area Power

0.72 0.80 0.88 0.96 1.04 1.12 1.20 0.72 0.80 0.88 0.96 1.04 1.12 1.20 0.72 0.80 0.88 0.96 1.04 1.12 1.20

s27 1.00 0.84 0.88 0.78 0.99 1.04 1.00 1.00 0.85 0.69 0.69 0.69 0.92 1.12 1.00 0.66 0.45 0.44 0.34 0.85 1.08

s208_1 1.00 1.11 1.06 0.99 1.05 1.09 1.00 1.00 0.86 0.93 0.83 0.79 0.87 0.79 1.00 0.79 0.91 0.72 0.65 0.81 0.66

s386 1.00 0.96 0.94 0.91 0.99 1.01 1.03 1.00 1.03 0.94 0.96 0.87 0.96 0.97 1.00 1.08 0.84 0.78 0.72 0.80 0.93

s298 1.00 1.04 1.01 0.95 0.96 1.04 1.05 1.00 1.15 1.05 0.91 1.01 0.99 0.93 1.00 1.36 1.15 0.80 0.98 1.06 0.79

s349 1.00 1.02 0.96 0.98 0.99 0.99 0.99 1.00 1.00 0.81 0.76 0.75 0.75 0.78 1.00 1.00 0.61 0.51 0.48 0.51 0.53

s344 1.00 0.95 0.99 1.00 0.90 0.94 0.94 1.00 0.83 0.88 0.83 0.83 0.88 0.85 1.00 0.68 0.77 0.63 0.64 0.70 0.65

s420_1 1.00 0.99 1.02 1.02 1.01 0.99 1.02 1.00 1.05 1.09 1.04 1.01 0.99 1.00 1.00 1.12 1.11 1.11 1.06 0.97 0.94

s400 1.00 1.02 1.08 1.06 1.02 1.04 1.04 1.00 1.01 0.98 0.87 0.89 0.90 0.86 1.00 1.10 0.97 0.74 0.78 0.79 0.73

s444 1.00 1.00 1.00 1.01 0.93 1.00 1.00 1.00 0.94 0.89 0.83 0.90 0.82 0.84 1.00 0.86 0.77 0.67 0.77 0.64 0.68

s526n 1.00 1.02 0.98 1.03 0.98 0.98 1.02 1.00 0.91 0.85 0.85 0.87 0.87 0.87 1.00 0.86 0.71 0.70 0.76 0.78 0.73

s526 1.00 1.01 1.00 0.99 1.01 0.99 1.01 1.00 0.94 0.93 0.90 0.85 0.84 0.81 1.00 0.90 0.84 0.78 0.75 0.71 0.65

s382 1.00 0.96 0.97 1.01 1.00 1.00 0.99 1.00 0.97 0.70 0.73 0.77 0.80 0.76 1.00 0.93 0.43 0.49 0.58 0.61 0.53

s713 1.00 1.01 1.00 0.98 1.00 1.01 1.02 1.00 1.06 1.01 1.01 0.90 0.92 0.91 1.00 1.12 0.89 1.10 0.85 0.86 0.81

s820 1.00 1.00 0.91 1.01 1.01 1.02 1.03 1.00 0.98 0.91 0.96 0.90 0.99 0.95 1.00 0.95 0.78 0.89 0.74 0.96 0.86

s641 1.00 1.02 1.02 1.03 0.96 1.03 1.01 1.00 0.75 0.73 0.71 0.71 0.76 0.75 1.00 0.55 0.50 0.47 0.49 0.60 0.54

s510 1.00 0.98 0.97 1.00 0.98 0.95 1.00 1.00 0.85 0.86 0.74 0.77 0.77 0.76 1.00 0.68 0.72 0.48 0.56 0.52 0.51

s832 1.00 0.97 0.99 1.00 0.98 1.00 0.97 1.00 0.97 0.92 0.86 0.83 0.84 0.83 1.00 0.93 0.86 0.71 0.67 0.68 0.67

s838_1 1.00 1.03 1.02 1.04 1.04 1.02 0.99 1.00 0.93 0.89 0.94 0.85 0.82 0.83 1.00 0.78 0.68 0.76 0.65 0.66 0.64

s1238 1.00 0.96 0.98 0.96 0.95 0.97 0.95 1.00 0.87 0.78 0.87 0.78 0.83 0.82 1.00 0.74 0.55 0.76 0.57 0.66 0.64

s1196 1.00 0.98 0.98 0.94 0.97 1.01 1.01 1.00 0.92 0.84 0.81 0.80 0.82 0.83 1.00 0.85 0.67 0.60 0.58 0.66 0.66

s1423 1.00 1.01 1.01 1.00 1.00 1.04 0.98 1.00 0.97 1.03 0.85 0.89 0.93 0.88 1.00 0.88 1.01 0.68 0.73 0.77 0.76

s1494 1.00 1.00 0.99 0.99 0.98 0.98 0.97 1.00 0.87 0.79 0.75 0.76 0.76 0.75 1.00 0.75 0.61 0.55 0.55 0.55 0.54

s1488 1.00 0.99 0.98 0.99 0.99 0.99 0.99 1.00 0.79 0.78 0.80 0.74 0.81 0.75 1.00 0.61 0.59 0.63 0.52 0.66 0.54

s5378 1.00 0.97 0.97 0.96 0.95 0.97 0.98 1.00 0.99 0.92 0.89 0.87 0.88 0.88 1.00 1.01 0.82 0.76 0.68 0.72 0.71

s9234_1 1.00 0.97 0.94 0.94 0.96 0.96 0.92 1.00 0.87 0.82 0.83 0.82 0.82 0.81 1.00 0.77 0.65 0.66 0.67 0.63 0.63

s13207 1.00 0.96 1.02 1.07 1.05 1.04 1.06 1.00 1.06 1.00 1.02 1.01 1.02 1.00 1.00 1.21 1.00 1.06 1.02 1.07 1.00

s15850 1.00 1.01 1.02 0.98 0.99 1.01 1.01 1.00 0.88 0.89 0.86 0.87 0.90 0.88 1.00 0.65 0.66 0.60 0.59 0.68 0.64

s38417 1.00 1.03 1.01 0.98 1.01 1.00 0.97 1.00 0.99 0.91 0.89 0.93 0.92 0.99 1.00 0.95 0.78 0.74 0.83 0.81 0.97

s38584 1.00 0.97 0.94 1.06 0.99 1.07 1.04 1.00 0.97 0.99 0.90 0.91 0.94 0.90 1.00 0.88 0.90 0.73 0.75 0.81 0.75

s35932 1.00 1.12 1.16 1.12 1.13 1.09 1.14 1.00 0.96 0.79 0.77 0.76 0.79 0.88 1.00 0.90 0.62 0.60 0.59 0.64 0.73

Average 1.00 1.00 0.99 0.99 0.99 1.01 1.00 1.00 0.94 0.89 0.85 0.84 0.87 0.87 1.00 0.88 0.76 0.70 0.69 0.74 0.72
Std. dev. 0.00 0.05 0.05 0.06 0.04 0.04 0.04 0.00 0.09 0.10 0.09 0.08 0.08 0.09 0.00 0.19 0.18 0.17 0.16 0.14 0.15

Table 3
Summary of results for 5� delay constraint.

Design\pitch (lm) Critical path length Area Power

0.72 0.80 0.88 0.96 1.04 1.12 1.20 0.72 0.80 0.88 0.96 1.04 1.12 1.20 0.72 0.80 0.88 0.96 1.04 1.12 1.20

s27 1.00 1.08 1.01 1.00 0.84 1.00 1.00 1.00 0.92 0.92 1.00 1.00 1.00 1.00 1.00 0.86 0.86 0.93 0.93 0.93 0.93

s208_1 1.00 0.92 0.81 0.80 0.76 0.82 0.76 1.00 0.94 0.91 0.91 0.93 0.91 0.91 1.00 0.80 0.71 0.72 0.75 0.72 0.73

s386 1.00 0.88 0.79 0.74 0.77 0.75 0.82 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 0.96

s298 1.00 0.82 0.88 0.84 0.84 0.83 0.82 1.00 1.00 0.99 0.99 1.00 0.98 0.98 1.00 0.99 0.84 0.84 0.87 0.83 0.83

s349 1.00 0.91 0.80 0.75 0.77 0.73 0.79 1.00 0.99 0.99 0.99 0.99 0.99 0.99 1.00 0.91 0.92 0.90 0.89 0.89 0.89

s344 1.00 1.19 1.35 1.22 1.16 1.32 1.11 1.00 0.94 0.89 0.91 0.93 0.93 0.85 1.00 0.86 0.67 0.75 0.72 0.83 0.67

s420_1 1.00 0.97 0.89 1.02 0.92 0.94 0.93 1.00 1.00 1.02 1.01 1.00 1.01 0.97 1.00 0.97 1.06 1.01 1.01 1.00 0.89

s444 1.00 1.00 1.04 0.90 0.86 1.01 0.82 1.00 0.99 0.96 0.94 0.95 0.97 0.96 1.00 0.92 0.78 0.78 0.81 0.86 0.81

s526n 1.00 0.91 0.99 0.88 0.97 0.86 0.88 1.00 1.00 0.99 0.99 0.99 0.99 0.99 1.00 0.97 0.93 0.88 0.89 0.91 0.89

s526 1.00 0.94 0.89 0.81 0.84 0.87 0.87 1.00 1.00 1.00 0.99 1.00 0.99 0.99 1.00 0.99 0.96 0.93 0.93 0.91 0.92

s382 1.00 1.02 0.97 1.04 0.96 1.00 0.91 1.00 0.86 0.86 0.85 0.85 0.85 0.84 1.00 0.55 0.60 0.54 0.55 0.56 0.51

s400 1.00 0.92 0.92 0.99 0.99 0.79 0.97 1.00 0.88 0.84 0.81 0.81 0.80 0.80 1.00 0.79 0.65 0.61 0.56 0.56 0.58

s713 1.00 0.93 0.98 0.95 0.99 0.88 0.87 1.00 0.95 0.90 0.81 0.80 0.86 0.83 1.00 0.89 0.74 0.56 0.51 0.64 0.56

s510 1.00 0.94 1.03 0.96 0.93 0.91 1.02 1.00 1.00 0.98 0.98 0.98 0.98 0.98 1.00 0.97 0.92 0.85 0.86 0.84 0.83

s641 1.00 1.02 0.96 1.02 0.94 0.98 0.98 1.00 0.84 0.79 0.78 0.77 0.79 0.77 1.00 0.58 0.48 0.45 0.41 0.47 0.42

s820 1.00 0.98 1.00 0.94 0.87 0.95 0.96 1.00 0.99 0.99 0.98 0.98 0.98 0.98 1.00 0.96 0.95 0.94 0.92 0.91 0.91

s832 1.00 0.92 1.03 1.02 1.00 1.00 0.98 1.00 0.97 0.97 0.96 0.96 0.98 0.96 1.00 0.87 0.88 0.83 0.84 0.96 0.86

s838_1 1.00 1.00 1.00 0.98 0.96 0.98 0.99 1.00 1.00 0.97 0.93 0.93 0.94 0.93 1.00 1.01 0.92 0.83 0.83 0.89 0.83

s1238 1.00 1.01 0.97 0.88 0.82 0.87 0.85 1.00 0.98 0.98 0.97 0.97 0.96 0.97 1.00 0.88 0.94 0.86 0.85 0.83 0.83

s1196 1.00 1.07 0.96 0.91 1.07 0.89 0.89 1.00 0.95 0.94 0.95 0.94 0.95 0.94 1.00 0.81 0.79 0.81 0.80 0.82 0.79

s1494 1.00 0.96 0.98 0.93 0.96 0.93 0.98 1.00 1.00 0.99 0.98 0.98 0.98 0.98 1.00 1.03 0.97 0.93 0.93 0.94 0.96

s1488 1.00 0.98 1.00 0.94 0.94 1.00 0.98 1.00 0.98 0.97 0.96 0.96 0.97 0.96 1.00 0.90 0.84 0.82 0.82 0.84 0.82

s1423 1.00 1.00 1.11 1.04 1.07 1.05 1.12 1.00 0.96 0.93 0.91 0.90 0.90 0.91 1.00 0.88 0.76 0.69 0.67 0.67 0.70

s5378 1.00 1.04 1.03 1.04 0.99 1.02 0.99 1.00 1.00 0.98 0.97 0.98 0.98 0.97 1.00 0.98 0.93 0.88 0.88 0.91 0.88

s9234_1 1.00 1.01 1.02 0.91 0.94 0.98 0.97 1.00 0.96 0.90 0.89 0.87 0.87 0.91 1.00 0.89 0.76 0.73 0.67 0.69 0.80

s13207 1.00 1.01 1.02 0.93 0.91 0.93 0.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.86 0.85 0.85 0.84 0.84

s15850 1.00 0.95 0.93 0.95 0.93 0.99 0.86 1.00 0.98 0.98 0.98 0.97 0.97 0.98 1.00 0.86 0.82 0.79 0.78 0.80 0.79

s35932 1.00 1.03 1.02 0.97 1.01 1.00 1.00 1.00 0.98 0.98 0.98 0.98 0.98 0.98 1.00 0.90 0.90 0.94 0.92 0.90 0.74

s38417 1.00 1.01 0.97 1.01 0.98 1.00 0.96 1.00 1.00 0.99 0.99 0.98 0.99 0.99 1.00 1.00 0.97 0.95 0.92 0.92 0.92

s38584 1.00 1.02 1.01 1.02 0.95 0.94 1.04 1.00 0.98 0.98 0.97 0.97 0.97 0.96 1.00 0.93 0.92 0.90 0.89 0.88 0.87

Average 1.00 0.98 0.98 0.95 0.93 0.94 0.93 1.00 0.97 0.95 0.95 0.95 0.95 0.94 1.00 0.90 0.84 0.82 0.81 0.82 0.80
Std. dev. 0.00 0.07 0.10 0.10 0.09 0.11 0.09 0.00 0.04 0.05 0.06 0.06 0.06 0.06 0.00 0.11 0.13 0.14 0.15 0.13 0.13
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Fig. 7. (a) Normalized power versus P/Pmin: average across the considered

benchmarks and typical range (1� delay constraint). (b) Normalized area versus

P/Pmin: average across the considered benchmarks and typical range (1� delay

constraint).

Fig. 8. (a) Normalized power versus P/Pmin: average across the considered

benchmarks and typical range (2� delay constraint). (b) Normalized area versus

P/Pmin: average across the considered benchmarks and typical range (2� delay

constraint).
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From Figs. 7–9, both power and area are always minimized for
Popt¼1.45Pmin–1.5Pmin under any design, which is close to the
optimum value of 1.5Pmin that was theoretically obtained in
Section 4 from the minimization of the figure of merit in (2).
Hence, the proposed metric in (2) consistently describes the
power-delay-area tradeoff, and can be used for design purposes.
Moreover, the optimum pitch is almost independent of the
considered design, which agrees very well with qualitative
considerations in Section 3.2. This is very interesting from a
design point of view: indeed, this means that the optimum pitch
can be found once and for all, then the same value can be used in
different designs.

According to Fig. 7a, the adoption of minimum pitch leads to a
1.7� increase in power and 1.3� in area for the 1� delay
constraint, compared to the optimum case, thereby confirming
that the optimization of P under differential routing is critical and
has a strong effect on the power-delay-area tradeoff.

Comparison of Figs. 7–9 also shows that the optimum pitch is
also independent of the delay constraint. However, the benefits of
the pitch optimization tend to be reduced when the delay



Fig. 9. (a) Normalized power versus P/Pmin: average across the considered

benchmarks and typical range (5� delay constraint). (b) Normalized area versus

P/Pmin: average across the considered benchmarks and typical range (5� delay

constraint).
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constraint is relaxed. Indeed, the power (area) under the optimum
pitch is reduced by 20–45% (10–30%) when 1� or 2� delay
constraint is assumed, compared to the minimum-pitch case. The
power (area) saving reduces to 5–35% (less than 10%) when
considering the 5� delay constraint. This means that the pitch
optimization is effective in reducing power and area for realistic
cases where a high or moderate performance is required, whereas
it is less advantageous in designs with very loose delay constraint.
This can be intuitively explained by observing that, tight delay
constraints force the synthesis tool to use high-strength cells,
which suffer from high power consumption and area. Equiva-
lently, when pitch is optimized, the resulting decrease in the
wire capacitance leads to the adoption of cells with smaller
strength, thereby significantly reducing the overall power and
area (see note 1). On the other hand, under loose delay constraint,
minimum-strength cells are usually adopted; hence the wire
capacitance reduction due to the pitch optimization does not lead
to a reduction in the cell power-area, because cells are already
minimum-sized.

Finally, a moderate reduction of the gate count (in the order of
10%) was observed under the optimum pitch (curves are omitted
for the sake of compactness). This can be explained by observing
that, under minimum pitch, the wire capacitance is so high that it
is advantageous to split each wire into several shorter wires, i.e. to
use a larger number of gates. For the same above reasons, the gate
count is largely independent of the grid pitch for loose delay
constraints.
6. Conclusion

In this paper, the impact of routing grid pitch on the power-
delay-area tradeoff has been analyzed in the case of intra-module
fully differential routing. Analysis has showed that the wire
grid pitch must be carefully set in circuits with differential
routing, as opposite to traditional single-ended circuits, whose
power-delay-area tradeoff is not so insensitive to the grid pitch.
To quantitatively evaluate this tradeoff, a simple metric was
introduced, and various interesting properties were derived from
design considerations. The optimum grid pitch predicted by this
metric agrees well with the optimum obtained in real designs,
and is almost independent of the specific circuit under design.
The design of 30 test circuits in 0.18 mm technology has shown
that the pitch optimization can lead to a power and area saving at
the same time, which, respectively, range from 20% to 45% and
10% to 30% for an assigned delay constraint. Reduced advantages
are observed in circuits with very loose delay constraint.

References

[1] International Technology Roadmap for Semiconductors. 2008 Update.
/http://public.itrs.netS.

[2] A. Chandrakasan, W. Bowhill, F. Fox (Eds.), Design of High-Performance
Microprocessor Circuits IEEE Press, 2001.

[3] F. Chen, Y. Liu, Wire sizing alternative—an uniform dual-rail routing
architecture, Proceedings of DATE (2008) 796–799.

[4] S. Badel, E. Guleyupoglu, O. Inac, A. Pena Martinez, P. Vietti, F. Gurkaynak,
Y. Leblebici., A generic standard cell design methodology for differential
circuit styles, Proceedings of DATE (2008) 843–848.

[5] J. Alfredsson, B. Oelmann, Trading speed and power for reduced substrate
noise from digital CMOS circuits, in: Proceedings of the IEEE International
Conference on Signals and Electronic Systems, 2004.

[6] F. Regazzoni et al., A design flow and evaluation framework for DPA-resistant
instruction set extensions, in: Proceedings of the 11th Cryptographic
Hardware and Embedded Systems International Workshop (CHES), pp. 2009.

[7] K. Tiri, I. Verbauwhede, Place and route for secure standard cell design,
in: Proceedings of the CARDIS, 2004, pp. 143–158.

[8] C. Saint, J. Saint, in: IC Mask Design, McGraw-Hill, 2002.
[9] SOC Encounter User Manual. Cadence; 2004.

[10] Atsushi Sakai, Takashi Yamada, Yoshifumi Matsushita, Hiroto Yasuura,
Reduction of coupling effects by optimizing the 3-d configuration of the
routing grid, IEEE Trans. on Very-Large Scale Integration Systems 11–5 (2003)
951–954.

[11] M. Alioto, G. Palumbo, in: Model and Design of Bipolar and MOS Current-
Mode Logic (CML, ECL and SCL Digital Circuits), Springer, New York, 2005.

[12] M. Alioto, G. Palumbo, Design strategies for source coupled logic gates, IEEE
Transactions on Circuits and Systems I 50–5 (2003) 640–654.

[13] M. Alioto, G. Palumbo, Power-aware design techniques for nanometer MOS
current-mode logic gates: a design framework, IEEE Circuits and Systems
Magazine 6–4 (2006) 40–59.

[14] M. Alioto, L. Pancioni, S. Rocchi, V. Vignoli., Power-delay-area-noise margin
trade-offs in positive-feedback source-coupled logic gates, IEEE Transactions
on Circuits and Systems I 54–9 (2007) 1916–1928.

http://public.itrs.net


M. Alioto et al. / Microelectronics Journal 41 (2010) 669–679 679
[15] M. Alioto, G. Palumbo, Power-aware design of nanometer MCML tapered
buffers, IEEE Transactions on Circuits and Systems II 55–1 (2008) 16–20.

[16] M.B. Anand, H. Shibata, M. Kakumu, Optimization study of VLSI interconnect
parameters, IEEE Transactions on Electron Devices 47–1 (2000) 178–186.

[17] R. Venkatesan, J.A. Davis, K.A. Bowman, J.D. Meindl, Optimal n-tier multilevel
interconnect architectures for gigascale integration (GSI), IEEE Transactions
on Very-Large Scale Integration Systems 9-6 (2001) 899–912.
[18] M. Laurent, M. Biret, Low-power design flow and libraries, in: Low Power
Design in Deep Submicron Electronics, Kluwer, 1997, pp. 64–65.

[19] Int. Workshop for Logic Synthesis (IWLS) 2005 benchmarks. Available at:
/http://www.iwls.org/ıwls2005/benchmarks.htmlS.

[20] A. Narasimhan, M. Kasotiya, R. Sridhar, A low-swing differential signaling
scheme for on-chip global interconnects, in: Proceedings of the VLSID’05,
Kolkata (India), 2005, pp. 634–639.

http://www.iwls.org/&inodot;wls2005/benchmarks.html

	Optimization of the wire grid size for differential routing: Analysis and impact on the power-delay-area tradeoff
	Introduction
	Review of a fully differential automated design flow
	Understanding the impact of the routing grid pitch
	Analysis of the power-delay-area tradeoff versus wire grid pitch
	Single-ended and differential routing: qualitative considerations and differences

	Metrics to estimate the impact of grid size
	Analysis of test circuits and validation
	Conclusion
	References




