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ABSTRACT

CONVEX AND NON-CONVEX OPTIMIZATION USING CENTROID-ENCODING FOR

VISUALIZATION, CLASSIFICATION, AND FEATURE SELECTION

Classification, visualization, and feature selection are three essential tasks of machine learn-

ing. This Ph.D. dissertation presents convex and non-convex models suitable for these three tasks.

We propose Centroid-Encoder (CE), an autoencoder-based supervised tool for visualizing complex

and potentially large data sets, such as, SUSY (supersymmetric particles) with 5 million samples

and high-dimensional datasets, GSE73072 (Gene Expression Omnibus (GEO) database with iden-

tifier GSE73072) clinical challenge data. Unlike an autoencoder, which maps a point to itself, a

centroid-encoder has a modified target, i.e., the class centroid in the ambient space. We present a

detailed comparative analysis of the method using various data sets and state-of-the-art techniques.

We have proposed a variation of the centroid-encoder, Bottleneck Centroid-Encoder (BCE), where

additional constraints are imposed at the bottleneck layer to improve generalization performance in

the reduced space. We further developed a sparse optimization problem for the non-linear mapping

of the centroid-encoder called Sparse Centroid-Encoder (SCE) to determine the set of discrimina-

tive features between two or more classes. The sparse model selects variables using the ℓ1-norm

applied to the input feature space. SCE extracts discriminative features from multi-modal data

sets, i.e., data whose classes appear to have multiple clusters, by using several centers per class.

This approach seems to have advantages over models which use a one-hot-encoding vector. We

also provide a feature selection framework that first ranks each feature by its occurrence, and the

optimal number of features is chosen using a validation set.

CE and SCE are models based on neural network architectures and require the solution of

non-convex optimization problems. Motivated by the CE algorithm, we have developed a convex

optimization for the supervised dimensionality reduction technique called Centroid Component
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Retrieval (CCR). The CCR model optimizes a multi-objective cost by balancing two complemen-

tary terms. The first term pulls the samples of a class towards its centroid by minimizing a sam-

ple’s distance from its class centroid in low dimensional space. The second term pushes the classes

apart in embedded space by maximizing the scattering volume of the ellipsoid formed by the class-

centroids. Although the design principle of CCR is similar to LDA (Linear Discriminant Analysis),

our experimental results show that CCR exhibits performance advantages over LDA, especially on

high-dimensional data sets, e.g., Yale Faces, ORL (Olivetti Research Laboratory), and COIL20

(Columbia Object Image Library). Finally, we present a linear formulation of Centroid-Encoder

with orthogonality constraints, called Principal Centroid Component Analysis (PCCA). This for-

mulation is similar to PCA (Principal Component Analysis), except the class labels are used to

formulate the objective, resulting in the form of supervised PCA. We show the classification and

visualization experiments results with this new linear tool.

iii



ACKNOWLEDGEMENTS

To begin with, I would like to thank Prof. Michael Kirby for his directions, suggestions, and

feedback, without which the completion of this thesis would not have been possible. His course

Mathematical Modeling of Large Datasets inspired me to examine machine learning from a geo-

metrical perspective. His approach to connecting the subject to geometry has impacted my think-

ing process profoundly. I would also like to thank Prof. Charles Anderson, Prof. Asa Ben-Hur,

and Prof. Henry Adams for serving on my committee and providing valuable feedback. I am

also thankful to Manuchehr Aminian (Nuch), Shannon Stiverson, Kartikay Sharma, Eric Kahoe,

Karim Karimov, Nathan Mankovich (Nate), Xiaofeng Ma, and Amy Peterson for being valuable

colleagues.

I would like to thank my father, late Dilip Kumar Ghosh, mother, Anjali Ghosh, brother, late

Nabendu Ghosh, and my sister Paromita Ghosh for their support since my childhood and the

encouragement to pursue the higher study. Most of all, I would like to thank my wife, Shatabdi,

who was instrumental in supporting my academic endeavors for the last couple of years.

Research is an intellectual exercise driven by some known as well as unknown factors. The

known factors are easy to figure out and acknowledge. For example, I know how grateful I’m to my

parents, family, colleagues, advisor, and committee members. Perhaps, I can quantify or partially

measure their contribution to my dissertation. How about the unknowns? The concept of mapping

the samples to their class centroids came to mind in a morning while listening to the classical

music of Ludwig van Beethoven. I know that I was working on several clustering techniques and

autoencoders during that time. But I was not thinking about it at the very moment when I got

the idea of Centroid-Encoder. I’ve experienced the same many times during my research. These

experiences made me think that perhaps an incomprehensible factor influenced my research, and I

don’t understand it completely. All I can do is acknowledge it, and I’m also grateful to that!

iv



DEDICATION

To my daughter Trijeeta.

v



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Document Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Research Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Chapter 3: Supervised Visualization using Centroid-Encoder . . . . . . 4
1.3.2 Chapter 4: Bottleneck Centroid-Encoder . . . . . . . . . . . . . . . . . 6
1.3.3 Chapter 5: Sparse Centroid-Encoder . . . . . . . . . . . . . . . . . . . 6
1.3.4 Chapter 6: Principal Centroid Component Analysis . . . . . . . . . . . 7
1.3.5 Chapter 7: Centroid Component Retrieval . . . . . . . . . . . . . . . . 8

Chapter 2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Dimensionality Reduction . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Unsupervised Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Supervised Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.3 Limitations of Current Work . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Feature Selection using Linear Models . . . . . . . . . . . . . . . . . . 14
2.2.2 Feature Selection using Deep Neural Networks . . . . . . . . . . . . . 15
2.2.3 Limitations of Current Techniques . . . . . . . . . . . . . . . . . . . . 16

Chapter 3 Supervised Visualization using Centroid-Encoder . . . . . . . . . . . . . . . 18
3.1 Autoencoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Centroid-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Convergence Proof of Centroid-Encoder . . . . . . . . . . . . . . . . . . 20
3.4 The Centroid-Encoder Training Algorithm . . . . . . . . . . . . . . . . . 24
3.5 Pre-training Centroid-Encoder . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6 Visualization Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.6.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.6.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.7 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.1 MNIST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.2 USPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.3 Letter, Landsat and Phoneme Data Sets . . . . . . . . . . . . . . . . . . 39
3.7.4 Iris, Sonar and USPS (revisited) Data Sets . . . . . . . . . . . . . . . . 43

vi



3.7.5 SUSY data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.8 Comparison between CE and Bottleneck-ANN Classifier . . . . . . . . . . 47
3.9 Discussion and Analysis of Results . . . . . . . . . . . . . . . . . . . . . 50

3.9.1 Variance Plot to Explain the Complexity of Data . . . . . . . . . . . . . 50
3.9.2 Centroid-Encoder and Variance . . . . . . . . . . . . . . . . . . . . . . 51
3.9.3 Computational Complexity and Scalability . . . . . . . . . . . . . . . . 53

3.10 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Chapter 4 Bottleneck Centroid-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.1 Formulation of BCE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Analysis of Hyper-parameters . . . . . . . . . . . . . . . . . . . . . . . . 57
4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.3.3 Quantitative and Visual Analysis . . . . . . . . . . . . . . . . . . . . . 60

4.4 Bottleneck Centroid-Encoder and Variance . . . . . . . . . . . . . . . . . 66
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Chapter 5 Sparse Centroid-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.1 Sparse Centroid-Encoder . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1.1 Empirical Analysis of SCE . . . . . . . . . . . . . . . . . . . . . . . . 72
5.1.2 Feature Selection Workflow Using Sparse Centroid-Encoder . . . . . . 75

5.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2.2 Experimental Details . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.3 Quantitative and Qualitative Analysis . . . . . . . . . . . . . . . . . . . 81

5.3 Comparative Analysis between SCE and DFS . . . . . . . . . . . . . . . . 87
5.4 Challenges of Minimizing 1-norm using Stochastic Optimization . . . . . 89
5.5 Application of SCE on High Dimensional Biological Data set . . . . . . . 93

5.5.1 Feature Selection of Salmonella Data set . . . . . . . . . . . . . . . . . 94
5.5.2 Feature Selection of Ebola Data set . . . . . . . . . . . . . . . . . . . . 98

5.6 Comparison of SCE with Current State-of-the-art Methods . . . . . . . . . 101
5.7 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 104

Chapter 6 Principal Centroid Component Analysis . . . . . . . . . . . . . . . . . . . . 106
6.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.1.1 Relation Between the Eigenvalue and the Objective . . . . . . . . . . . 110
6.1.2 Connection with PCA . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.1.3 Connection with Centroid-Encoder . . . . . . . . . . . . . . . . . . . . 113

6.2 Visualization and Classification Results . . . . . . . . . . . . . . . . . . . 113
6.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Chapter 7 Centroid Component Retrieval . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2 Proof of Convexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

vii



7.3 Calculation of Gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.4 Initialization Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.5 Experiments to Analyze the CCR Model . . . . . . . . . . . . . . . . . . 120

7.5.1 Experiment to analyze the effect of Lambda . . . . . . . . . . . . . . . 120
7.5.2 Trade-off of the Optimization . . . . . . . . . . . . . . . . . . . . . . . 121
7.5.3 Comparison between Random vs Deterministic Initialization . . . . . . 123

7.6 Classification and Visualization Experiments . . . . . . . . . . . . . . . . 123
7.6.1 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.6.2 Supervised Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.6.3 Generalization Performance . . . . . . . . . . . . . . . . . . . . . . . . 125

7.7 Difference between CCR and LDA . . . . . . . . . . . . . . . . . . . . . 131
7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

Chapter 8 Conclusion and Future Research . . . . . . . . . . . . . . . . . . . . . . . . 133
8.0.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

viii



LIST OF TABLES

1.1 Brief summary of the proposed models. . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 Network topology used for CE on various data sets. The number d is the input dimen-
sion of the network and is data set dependent. . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Hyper-parameters for different models. . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Error rates (%) of k-NN (k=5) on the 2D embedded data by various dimensionality

reduction techniques trained with pre-training. Results of GerDA and pt-SNE are taken
from [1] and [2] correspondingly. Error rates of the variants of NCA and MCML are
reported from [3]. NA indicates that the result was not reported in the original source. . 32

3.4 Error rates (%) of k-NN (k=5) on the 2-dimensional data by various techniques trained
without pre-training. Error rate of HOPE, dt-NCA and dt-MCML are reported from [4]. 33

3.5 Classification error (%) of k-NN (k=5) on the 2D embedded data by different super-
vised embedding methods on Letter, Landsat and Phoneme data. Average misclassifi-
cations over ten-fold cross-validation are shown along with standard deviation. Results
of methods other than centroid-encoder, UMAP and SUMAP are reported from [5]. . . 39

3.6 k-NN (k = 5) error (%) on the 2D embedded data by different supervised embedding
methods on Iris, Sonar and USPS data. Note that given the limitations of KSPCA we
have restricted the USPS data set to have 1000 total samples. . . . . . . . . . . . . . . 43

3.7 Balanced success rate (BSR) and area under the curve (AUC) measure of different
methods on SUSY data sets. NA indicates result not reported. . . . . . . . . . . . . . 45

4.1 Error rates (%) of k-NN (k=5) on the 2D embedded data by various dimensionality
reduction techniques. Results of GerDA and pt-SNE are taken from [1] and [2] corre-
spondingly. Error rates of the variants of NCA and MCML are reported from [3]. . . . 61

4.2 Error rates (%) of k-NN (k=5) on the 2D embedded data by various dimensionality
reduction techniques on the FMNIST data. . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 The penalty term λ used for the four data sets. . . . . . . . . . . . . . . . . . . . . . . 79
5.2 Classification accuracies using the top 16 features by various techniques. Results of

Deep DFS, Shallow DFS, LASSO, and Random Forest are reported from [6]. We
present accuracy with the top 48 features which were selected from a validation set. . . 81

5.3 Classification result using the top features by various models on the MNIST data set.
Results of SG-L1-NN, L1-NN, and L2-NN are reported from [7]. . . . . . . . . . . . . 83

5.4 Classification results using the top features by various models on the Forest Cover data
set. Results of SG-L1-NN, L1-NN, and L2-NN are reported from [7]. . . . . . . . . . 85

5.5 List of top ten bands from each model. Bands selected by SSVM and SSVM + Wa-
LuMI are reported from [8]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6 Balanced success rate (BSR) of LOSO cross-validation on the DEE5 test set. The
selected features from training set is used to predict the classes of control, shedder,
and non-shedder. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.7 Number of samples in each class of Salmonella data. . . . . . . . . . . . . . . . . . . 94
5.8 Number of samples per class in training and test set for the three class problem. . . . . 95

ix



5.9 Number of features extracted by SCE for different classification experiments. . . . . . 95
5.10 BSR on test set for different classification experiments. . . . . . . . . . . . . . . . . . 96
5.11 Number of samples per class for various combinations in Ebola data set. . . . . . . . . 98
5.12 Number of samples per class in training and test set. . . . . . . . . . . . . . . . . . . . 99
5.13 Number of features extracted by SCE for different classification experiments on the

Ebola data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.14 BSR on test set for different classification experiments on the Ebola mice data set. . . . 99
5.15 Descriptions of the data sets used for benchmarking experiments. . . . . . . . . . . . . 101
5.16 Classification results using LassoNet, STG, and SCE features on six publicly available

data sets. The column ’#Centers for SCE’ denotes how many centroids per class are
used to train SCE. Numbers for LassoNet and STG are reported from [9] and [10]
respectively. All the reported accuracies are measured on the test set. NA means the
result has not been reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.17 Comparison of mean classification accuracy of FsNet, SCAE, and SCE features on five
real-world high-dimensional biological data sets. The prediction rates are averaged
over twenty runs on the test set. Numbers for FsNet and SCAE are being reported
from [11]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Classification accuracies (%) of 5-NN classifier on the 2D embedded data by various
dimensionality reduction techniques. . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1 The effect of λ on a subset of MNIST. The 3-dimensional data is represented in 2D by
CCR model3. Hausdorff distances among the class pairs are measured for each value
of λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2 The effect of λ on class-scatter on a subset of MNIST digits. First, the 784 dimensional
data is represented in 2D by CCR model. After that the CR and MSD are measured on
2D space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.3 The effect of λ on class-separation on a subset of MNIST digits. First, the 784 di-
mensional data is represented in 2D by CCR model. After that the CR and MSD are
measured on 2D space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.4 Classification accuracies (%) of 5-NN classifier on the 2D embedded data by various
dimensionality reduction techniques. We don’t have the result on MNIST and USPS
for MCML as it was taking too long to complete. . . . . . . . . . . . . . . . . . . . . 126

7.5 Average training time in seconds for each model on different data sets. We don’t have
the time for MCML on USPS and MNIST data as the model was taking too long to
finish. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

x



LIST OF FIGURES

3.1 Original trajectory of the of centroid-encoder along with the linear approximation. . . . 21
3.2 Pre-training a deep centroid-encoder by layer-freeze approach. In the first step, a

centroid-encoder with the first hidden layer is pre-trained (left diagram). The pre-
trained weights are (W1, W̃1). In the next step, a new hidden layer is added by extend-
ing the network architecture. After that, the weights (W2, W̃2) associated with the new
hidden layer are updated while keeping the other weights (W1, W̃1) fixed. This process
is repeated to add more hidden layers. . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Voronoi cells in 2D of the MNIST data using centroid-encoder. The network archi-
tecture of 784 → [1000, 500, 125, 2, 125, 500, 1000] → 784 is employed to map the
data onto the 2D space. The centroid of the training samples mapped to 2D are used
to form the Voronoi regions for each digit class. . . . . . . . . . . . . . . . . . . . . . 34

3.4 Two dimensional visualization of 10,000 MNIST test digits by Laplacian Eigenmap. . 35
3.5 A comparison of the visualizations of 10,000 MNIST test digits by different methods. . 36
3.6 Two dimensional plot of 3000 USPS test digits by different dimensionality reduction

methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Voronoi cells of two-dimensional Landsat data using a 16→ [250, 150, 2, 150, 250]→

16 centroid-encoder. Voronoi regions for each soil type are formed from the training set. 40
3.8 Voronoi cells of two-dimensional Landsat data using Supervised UMAP. Voronoi re-

gions for each soil type are formed from the training set. . . . . . . . . . . . . . . . . 41
3.9 Visualization of Iris (top row), Sonar (middle row) and USPS (bottom row) data using

different dimensionality reduction techniques. . . . . . . . . . . . . . . . . . . . . . . 44
3.10 Visualization of SUSY data set using PCA, centroid-encoder and supervised UMAP.

We built the models on the training set, and then project the test samples using the
trained models. We display a subset of the test set (5,000 samples selected randomly
from each class) using the three models. The k-NN classification accuracy is shown in
panel (d). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.11 Two-dimensional PCA plot of healthy and sick samples. . . . . . . . . . . . . . . . . 48
3.12 Two-dimensional visualization of healthy and sick samples using CE and Bottleneck-

ANN using . Unlike CE, which maps a sample to its class-centroid, bottleneck-ANN
maps a sample to its class label. Both the models use the same hidden layer layout
250→ 2→ 250. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.13 Two-dimensional visualization of MNIST digits using Bottleneck-ANN with a net-
work architecture 784 → [1000, 500, 125, 2, 125, 500, 1000] → 10. Each sample is
mapped to the one-hot-encoding class label. . . . . . . . . . . . . . . . . . . . . . . . 49

3.14 Variance plot using two different subsets (subset1: all the digits 0 and 1, subset2: all
the digits 4 and 9) of MNIST data. Left: comparison of variance plot of the two subsets
using the first 100 dimensions. Right: a blowup of the plot on the left showing the %
of variance captured in low dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.15 Two dimensional embedding using PCA for subset1 and subset 2. . . . . . . . . . . . 52

xi



3.16 Variance plots for the 4/9 digit data. Left: comparison of variance plot of the original
data and CE transformed data using the first 100 dimensions. Right: a blowup of the
plot on the left showing the % of variance captured in low dimensions. . . . . . . . . . 52

3.17 Two dimensional embedding using PCA on the CE-transformed data. . . . . . . . . . 53

4.1 Analysis of error rate with changes to λ1 and λ2. . . . . . . . . . . . . . . . . . . . . . 58
4.2 Two dimensional embedding of MNIST test samples using BCE and CE. . . . . . . . 61
4.3 Two dimensional visualization of 10,000 MNIST test digits by Laplacian Eigenmaps [12]. 62
4.4 Two dimensional embedding of 3,000 USPS test digits by different methods. . . . . . 63
4.5 Two dimensional embedding of FMNIST data using bottleneck centroid-encoder. . . . 65
4.6 Two dimensional embedding of FMNIST test cases using NNCA and SUMAP. . . . . 65
4.7 Comparison of variance plot of the two subsets using the first 100 dimensions; subset1:

all the digits 0 and 1, subset2: all the digits 4 and 9 of MNIST data. . . . . . . . . . . 66
4.8 Two dimensional embedding using PCA for subset1 and subset 2. . . . . . . . . . . . 67
4.9 Comparison of variance plot of the original data and BCE transformed data using the

first 100 dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.10 Two dimensional embedding using PCA on the BCE-transformed data. . . . . . . . . 68

5.1 The architecture of Centroid-Encoder and Sparse Centroid-Encoder. Notice the Centroid-
Encoder uses a bottleneck architecture which is helpful for visualization. In contrast,
the Sparse Centroid-Encoder doesn’t use any bottleneck architecture; instead, it em-
ploys a sparse layer between the input and the first hidden layer to promote feature
sparsity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Analysis of Sparse Centroid-Encoder. (a) Change of the two costs over λ. (b) Change
of validation accuracy over λ. (c) Sparsity plot of the weight of WSPL for λ = 0.001.
(d) Same as (c) but λ = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.3 Demonstration of the sparsity of Sparse Centroid-Encoder on MNIST digits 5 and 6.
The digits are shown in white, and the selected pixels are marked using blue—the
darkness of blue indicates the relative importance of the pixel to distinguish the two
digits. We showed the selected pixels for two choices of λ. Notice that for λ = 0.1,
the model chose the lesser number of features, whereas it picked more pixels for λ =
0.001. The parameter λ is the knob which controls the sparsity of the model. . . . . . . 74

5.4 Sparse Centroid-Encoder for multi-modal data set. Panel (a) shows the increase in
validation accuracy over the number of centroids per class. Panel (b)-(d) shows the
two-dimensional PCA plot of the three speech classes. . . . . . . . . . . . . . . . . . 75

5.5 Sparse Centroid-Encoder on MNIST (all ten classes) and high dimensional (#features
19993) SMK_CAN data. Panel (a) shows position of the selected pixels over two run
(λ = 0.0002). Panel (b)-(c) shows the sparsity plot (λ = 0.0002) of the SPL layer over
two run on SMK_CAN training data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xii



5.6 Feature selection workflow using Sparse Centroid-Encoder. a First, the data set has
been partitioned into training and validation. b We further partitioned the training set
into n splits. c On each of the training splits, we ran Sparse Centroid-Encoder to get
n feature sets. d We calculated the occurrence of each feature among the n sets and
called it the frequency of the feature. We ranked features from high to a low frequency
to get an ordered set. e At last, we picked the optimum number of features using a
validation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Locations of selected features of MNIST image shown in a 28 x 28 grid. The selected
pixels are marked in white, and the ignored pixels are marked in black. . . . . . . . . . 84

5.8 Comparison of classification accuracy using SCE and SSVM features on Indian Pine
data set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.9 (a) Change of the Cross-entropy loss and ℓ1 cost of DFS over different values of λ. (b)
Change of the Centroid-Encoder loss and ℓ1 cost of SCE over different values of λ.
The experimrnt is done on GM12878 data set. . . . . . . . . . . . . . . . . . . . . . . 88

5.10 Sparsity plot of DFS on GM12878 data set. . . . . . . . . . . . . . . . . . . . . . . . 88
5.11 Sparsity plot of SCE on GM12878 data set. . . . . . . . . . . . . . . . . . . . . . . . 89
5.12 Effect of the size of mini-batch on ℓ1-norm minimization using SCE for three choices

of mini-batches- 512 in (A), 1024 in (B), and 5000 in (C). For each case, the upper
panel shows the position of the selected pixels in a 28 x 28 grid, and the lower panel
presents the absolute weight of the sparse layer in descending order. . . . . . . . . . . 90

5.13 Effect of λ on ℓ1-norm minimization using SCE for three values 0.01 in (A), 0.001
in (B), and 0.0001 in (C). For each case, the upper panel shows the position of the
selected pixels in a 28 x 28 grid, and the lower panel presents the absolute weight of
the sparse layer in descending order. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.14 Effect of learning rate on ℓ1-norm minimization using SCE for three values 0.1 in (A),
0.01 in (B), and 0.001 in (C). For each case, the upper panel shows the position of the
selected pixels in a 28 x 28 grid, and the lower panel presents the absolute weight of
the sparse layer in descending order. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.15 Three dimensional PCA projection of liver and spleen samples using all 55471 features. 96
5.16 Three dimensional PCA projection of liver and spleen samples using 17 and 27 SCE

features respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.17 Three dimensional PCA projection of liver and spleen samples using 9 and 5 SCE

features respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.18 Three-dimensional PCA projection of Lethal and Mock samples of the four experi-

ments. In each of the cases, PCA is applied on the training data where each sample
consists of the features selected by sparse centroid-encoder as shown in Table 5.9. The
first three eigenvectors were used to project the training and test samples. . . . . . . . 100

xiii



6.1 The geometric intuition of the PCCA algorithm using toy data. In panel (a), we used
an arbitrary line to compute the cost in Equation6.2. The original samples were recon-
structed using the line, and then the distances from the corresponding class centroid
were denoted using the black lines. On the other hand, panel (b) shows the recon-
struction of all the samples using the PCCA solution and the distances from the corre-
sponding class centroids. Notice that the sum of the distances (d1, ..., d6) using PCCA
is less than using an arbitrary line; PCCA explicitly searches for a line that minimizes
the sum of the distances. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.2 We show how the one-dimensional reconstruction cost (Equation 6.2) changes for each
eigenvector along with the corresponding eigenvalue. The experiment is run using
MNIST digits 4 and 9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 Comparison of PCA and PCCA solution on toy data. . . . . . . . . . . . . . . . . . . 113
6.4 Comparison of PCCA(a) and PCA(b) projection on MNIST digits 4,7, and 9. . . . . . 114

7.1 Plot of L1 and L2 across λ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.2 Two dimensional plot of Wine samples training and test digits using CCR. . . . . . . . 128
7.3 Two dimensional plot of training and test samples of Iris data set using CCR. . . . . . 128
7.4 Two dimensional plot of training and test samples of Ionosphere data set using CCR. . 129
7.5 Two dimensional plot of USPS training and test digits by CCR. . . . . . . . . . . . . . 129
7.6 Classification accuracy of different DR methods on (a) Yale Face (b) ORL and (c)

COIL20 data sets. Classification is performed on 5, 10, 15 and 20 dimensional em-
bedding space. As Yale Face has 15 classes so the maximum embedding dimension
for LDA is 14 (#class− 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.1 Concentric circles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xiv



Chapter 1

Introduction

1.1 Motivation

Recent technological advancements have made high-dimensional data readily available, and

it has become popular to refer to the data deluge being experienced by society in general [13].

This deluge spans basically all areas of the scientific and engineering field, including, e.g., Astron-

omy, Archeology [14], Signal Processing [15], and Biology [16]. In bioinformatics, researchers

seek to understand omics data such as the gene expression levels measured by microarrays or

next-generation sequencing techniques; in the latter case, samples may consist of over 50,000

measurements [17–20]. Often these high-dimensional features may be noisy, redundant, miss-

ing, or irrelevant [21], which has the potential to degrade the performance of Machine Learning

tools [22]. Despite these challenges, there is strong evidence that these biological data sets capture

information that will enable knowledge discovery from data [23].

The discovery of new facts from data requires the synthesis of three related objectives, includ-

ing predictive model building, feature selection, and data visualization. The work presented here

treats these three topics as inter-related and mutually dependent. Predictive model building allows

one to use high-quality features to make accurate statements about samples, such as prognosis or

diagnosis of health state. Data (dimension) reduction often improves classification and provides

an additional opportunity for visualization. Coming full circle, feature selection helps with the

identification of salient features that are useful for discrimination in predictive models. This dis-

sertation addresses the interplay of these ideas in the setting of the centroid-encoder that performs

classification, visualization, and feature selection.

One of the first stages of data exploration is visualization in two or three-dimensional space.

Visualization provides a window into high dimensions, which helps a data explorer in many ways

to understand the data, including the characterization of class structure, data separability, and ex-
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perimental batch effects. The goal of a dimensionality reduction (DR) technique for visualization

is to preserve some of the intrinsic properties of interest in visualization space. The intrinsic prop-

erty can be statistical [24], topological [25], or geometrical [26]; in the presence of labels, the

intrinsic property may consist of discriminating features to assign class membership [27]. Prin-

cipal component analysis [28, 29] continues to be one of the most widely used methods for data

reduction and visualization over one hundred years after its initial discovery [30,31]. Nonetheless,

PCA often produces ambiguous results, sometimes collapsing distinct classes into overlapping re-

gions in the setting where class labels are available. It is tempting to infer incorrectly that the data

is not separable, even non-linearly, in higher dimensions.

Non-linear extensions to PCA were originally introduced to address the limitations of optimal

linear mappings [32–36], also see [37] for additional early references and details. These papers

provided the first applications of autoencoder neural networks where data sets are non-linearly

mapped to themselves. This is accomplished by first taking the data to higher dimensions before

passing through a bottleneck layer of a reduced dimension where data visualization is typically

done. In the process of non-linear dimension reduction, novel latent or hidden features which are

an amalgamation of the observables may be discovered.

Data reduction techniques such as PCA and its non-linear extensions have proven extremely

useful for understanding data in high dimensions, particularly as visualization tools. This research

addresses how such devices can be adapted to the case where class label information is avail-

able, i.e., supervised data reduction. More specifically, one objective of this dissertation is the

integration of class label information into the non-linear autoencoder reduction process for data vi-

sualization. Here we develop the centroid-encoder (CE) algorithm to analyze labeled data. While

standard autoencoders are the identity mapping on points, centroid-encoders map points to their

class centroid while passing through a low-dimensional representation. This approach provides a

low-dimensional encoding for visualization while ensuring that elements with the same label retain

their class structure required for classification. The smoothness of mapping functions ensures that

similar behavior is captured at the centroid-encoder bottleneck layer.
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Inspired by the centroid-encoder, we extend the centroid mapping in a linear setup to propose

supervised PCA. The second formulation seeks a linear transformation that reconstructs a data

point as its class centroid with the orthogonality constraint.

Typically DR (Dimensionality Reduction) techniques use all the features of the data to produce

a low-dimensional embedding for visualization. Such methods don’t attempt to distinguish the

relative importance of features in the reduction process. However, a data analyst often is interested

to learn which features are essential for a given machine learning task. For example, one may be

interested to know which biomarkers are crucial to predict neonatal sepsis [38]. Questions like

this come naturally while analyzing high-dimensional biological data. The abundance of features

demands the development of feature selection algorithms to improve a Machine Learning task,

e.g., classification. Which biomarkers are important to characterize a biological process, e.g., the

immune response to infection by respiratory viruses such as influenza [39]? Additional benefits

of feature selection include improved visualization and understanding of data, reduced storage

requirements, and faster algorithm training times.

In this research, we propose a new variable selection approach called Sparse Centroid-Encoder

(SCE) to extract features when class labels are available. Our method extends the Centroid-

Encoder model [40, 41], with an ℓ1 penalty [42, 43] sparsity promoting layer between the input

and the first hidden layer. We evaluate this Sparse Centroid-Encoder on diverse data sets and show

that the selected features produce better generalization than other state-of-the-art techniques. Our

results showed that SCE picked fewer features to obtain high classification accuracy. As a feature

selection tool, SCE uses a single model for the multi-class problem without the need to create mul-

tiple one-against-one binary models typical of linear methods, e.g., Lasso [44], or Sparse SVM [8].

The development of tools for DR (Dimensionality Reduction) is predicated by the nature of the

underlying optimization problem, i.e., convex or non-convex. Convex optimization has a unique

global extremum, which is algorithmically very attractive. Convex optimization tools, such as

the primal-dual interior-point method, provide provable convergence to a global optimum and are

generally robust to the selection of the initial condition [45]. In contrast, non-convex problems
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have local minima making it generally infeasible to determine an optimal solution. In this setting,

the initial condition plays a significant role, and if the initialization is bad, then the final solution

often gets stuck in a poor local minimum.

Motivated by the intrinsic appeal of convex optimization, we present a new model for the

task of supervised DR. Our algorithm, Centroid Component Retrieval (CCR), optimizes a multi-

objective cost. The resulting model seeks to map any point to the reduced representation of its

class centroid, thus increasing class localization. At the same time, the model pushes the classes

far apart by maximizing the volume of the scatter of the class-centroids in the low-dimensional

space.

1.2 Document Outline

The rest of the dissertation is organized as follows: In chapter 2, we present the related works.

Chapter 3 contains the theory and application of the Centroid-Encoder. Bottleneck Centroid-

Encoder (BCE), a variant of Centroid-Encoder, is described in chapter 4. Our proposed feature

selection tool, Sparse Centroid-Encoder (SCE), is described in chapter 5. Chapter 7 contains the

theory and application of the proposed convex model Centroid Component Retrieval (CCR). At

last, we present Principal Centroid Component Analysis (PCCA), a formulation of supervised

PCA in chapter 6. We present our conclusion and future research direction in chapter 8.

1.3 Research Summary

This section summarizes the research, breaks it down into chapters, and lists each chapter’s

main contributions. In Table1.1, we list all the five models along with a brief description. Our

purpose is to provide a quick overview of the dissertation. The table is helpful in relating all the

five models, which will benefit the readers to understand the works presented in this thesis.

1.3.1 Chapter 3: Supervised Visualization using Centroid-Encoder

The main contribution of this chapter is listed below.
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Table 1.1: Brief summary of the proposed models.

Model Brief Description
Centroid-Encoder (CE) A nonlinear model for supervised dimensionality reduction

LC(θ) = 1
2N

∑M
j=1

∑
i∈Ij

‖cj − f(xi; θ))‖
2
2 and visualization using bottleneck architecture.

Bottleneck Centroid-Encoder (BCE) An extension of CE with two penalty terms applied
LBCE(θ) = LC(θ) + λ1

2N

∑M
j=1

∑
i∈Ij

‖g(cj)− g(xi)‖
2
2 on the bottleneck layer to increase class localization

+λ2
∑

k<l
1

1+‖g(ck)−g(cl))‖
2

2

and class separation.

Sparse Centroid-Encoder (SCE) A nonlinear feature selection technique using 1-norm coupled
LSCE(θ, θspl) = LC(θ) + λ‖θspl‖1 with the Centroid-Encoder loss.

Principal Centroid Component Analysis (PCCA) A constrained linear formulation of Centroid-Encoder
minimize

a
‖C̃ − aaTX‖2F subject to aT a = 1 using eigendecomposition

Centroid Component Retrieval (CCR) A convex formulation that minimize class scatter
minimize

A
‖AT (C̃ −X)‖2F − λ log det(AT ĈĈTA+ γI) and maximizes class separation in the embedded space.

1. We proposed a non-linear dimension reduction technique called centroid-encoder. Centroid-

Encoder maps data to the corresponding class centroid through a low-dimensional bottleneck

analogous to autoencoder. Hence it exploits label information in the non-linear data (dimen-

sion) reduction process and may be viewed as a supervised variant of non-linear principal

component analysis [33–35].

2. We provided convergence proof of Centroid-Encoder that shows how the non-linear mapping

moves a sample to its class centroid.

3. As a mapping from the input space to the reduced space, CE generalizes directly to new

data without using landmarks or the computation of distance matrices typical of spectral

methods [12, 46] or self-organizing mappings [47, 48].

4. The advantage of centroid-encoder over many other data visualization techniques is that it

is not necessary to compute pairwise distances, e.g., dt-MCML, dG-MCML, dt-NCA, and

dG-NCA [3].

5. We empirically show that CE can preserve the neighborhood relationships of class-labeled

data without explicitly computing the neighborhood graph.

6. We show that CE produces similar or better results than other popular supervised methods

that explicitly use pair-wise distances or neighborhood graphs.
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7. We apply CE to produce the first low-dimensional visualization of the large particle Physics

Supersymmetry (SUSY) data set and show that it classifies samples with accuracy compara-

ble to the best high-dimensional models.

8. We also extend the centroid-encoder to capture the multi-modality of data by incorporating

multiple centroids per class. We applied the model to the SUSY data set.

1.3.2 Chapter 4: Bottleneck Centroid-Encoder

The highlights of this chapter are mentioned below.

1. We proposed a modification of the Centroid-Encoder, Bottleneck Centroid-Encoder (BCE)

model via adding a constraint in the bottleneck layer.

2. The CE calculates the centroids in the ambient space. If the centroids of multiple classes

are close to each other, then the corresponding samples will land close in the reduced repre-

sentation, which in turn causes misclassification. We add two more terms to the bottleneck

layer to avoid this situation.

3. BCE employs a centroid constraint at the bottleneck layer. This bottleneck cost has two

contrasting terms. The first term pulls all the samples of a class to its centroid by minimizing

the sample’s distance from its class centroid in reduced space. The second term pushes the

classes by maximizing the Euclidean distance between class-pair centroids.

4. We analyzed the importance of the two terms on the model’s performance.

5. We empirically showed that the BCE produces better generalization performance than CE

and other techniques.

1.3.3 Chapter 5: Sparse Centroid-Encoder

Using the Sparse Centroid-Encoder model, we have achieved the following objectives.

1. We proposed a non-linear feature selection technique, called Sparse Centroid-Encoder (SCE)

by adding a ℓ1 penalty to the optimization of Centroid-Encoder.
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2. Sparse Centroid-Encoder captures the intra-class variance by using multiple centers per

class. This approach detects better discriminatory features and provides valuable informa-

tion on whether the classes are unimodal (samples belongs to a distribution which has a

single peak) or multimodal (samples belongs to a distribution which has multiple peaks).

This aspect of SCE distinguishes itself from other feature selection techniques, which don’t

model intra-class variability.

3. We also provide a feature selection framework that first ranks each feature by its occurrence,

and the optimal number of features is chosen using a validation set.

4. We conducted an array of experiments to compare and contrast SCE with a deep features

selection technique, DFS [6]. We found that SCE is a more robust approach for weight

sparsity promotion.

5. We also analyzed the challenges of minimizing ℓ1-norm using stochastic optimization e.g.

Adam [49].

6. We empirically showed that SCE features produced better classification accuracy on the

unseen test data than other state-of-the-art techniques.

1.3.4 Chapter 6: Principal Centroid Component Analysis

The gist of this chapter is presented below.

1. We presented a new formulation of centroid mapping in a linear setup with orthogonality

constraints. The resulting model is a linear counterpart of the Centroid-Encoder.

2. We show that the solution comes from the eigendecomposition of symmetric matrices. The

formulation is closely related to PCA, except the labels are used, resulting in a new variation

of supervised PCA.

3. We established a mathematical relationship between the eigenvalue and the original cost.
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4. We present several classification and visualization experiments with our new tool, comparing

the vanilla PCA and a supervised version of PCA [50].

1.3.5 Chapter 7: Centroid Component Retrieval

We summarize the main contribution as listed below.

1. We formulated a convex model, Centroid Component Retrieval (CCR), for the task of super-

vised dimensionality reduction and visualization.

2. The proposed model doesn’t require the pair-wise distance calculation, and this aspect makes

our model faster than other techniques.

3. The design principle of CCR is similar to LDA, but the optimization problem of CCR is

convex, whereas the optimization of LDA is non-convex.

4. The generalized eigenvalue solution of LDA performs poorly when the within-class scatter

matrix becomes singular for the high-dimensional data sets [51]. CCR doesn’t suffer from

this limitation.

5. The experimental results suggest that CCR has performance benefits over LDA, particularly

for high-dimensional data sets.
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Chapter 2

Background

2.1 Dimensionality Reduction

Data dimensionality reduction for visualization has a long history and remains an active re-

search area. We describe the literature relating to unsupervised and supervised methods where we

assume data class labels are unavailable and available, respectively.

2.1.1 Unsupervised Methods

Principal Components Analysis is often the first (and last) tool used for visualization of un-

labeled data and is designed to retain as much of the statistical variance as possible [28, 29], see

also [24]. Equivalently, PCA minimizes the mean-square approximation error as well as Shannon’s

entropy [52]. Self-organizing mappings (SOMs) learn nonlinear topology-preserving transforma-

tions that map data points to centers that are then mapped to the center indices. SOMs have been

widely used in data visualization, having been cited over 20,000 times since their introduction [53].

Another class of methods uses interpoint distances as the starting point for data reduction and

visualization. For example, Multidimensional Scaling is a spectral method that computes a point

configuration based on the computation of the eigenvectors of a doubly centered distance ma-

trix [54]. The goal of the optimization problem behind MDS is to determine a configuration of

points whose Euclidean distance matrix is optimally close to the prescribed distance matrix. A

related approach, known as Isomap, applies MDS to approximate geodesic distances computed nu-

merically from data on a manifold [55]. Laplacian Eigenmaps is another popular spectral method

that uses distance matrices to reduce dimension and conserve neighborhoods [12]. These spec-

tral methods belong to a class of techniques referred to as manifold learning algorithms; see also

locally linear embedding [46], stochastic neighbor embedding [56], and maximum variance un-

folding [57].
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The technique t-distributed stochastic neighbor embedding [58], an extension of SNE, was

developed to overcome the data crowding or clumping problem often observed with manifold

learning methods and is currently a popular method for data visualization. More recently, the

uniform manifold approximation and projection (UMAP) algorithm has been proposed, which uses

Riemannian geometry and fuzzy simplicial sets to create a low-dimensional and locally uniformly

distributed embedding of the data [59]. It has been reported that the algorithm has a better run time

than t-SNE and offers compelling visualizations.

Note that these spectral methods including MDS, Laplacian Eigenmaps and UMAP compute

embeddings based on solving an eigenvector problem requiring the entire data set. Such methods

do not actually create mappings that can be applied to reduce the dimension of new data points

without repeating the computation or resorting to the use of landmarks [60]. This, in contrast to

methods such as PCA, SOM, parametric t-SNE [2] and autoencoders that serve as mappings for

streaming data.

2.1.2 Supervised Methods

Fisher’s linear discriminant analysis (LDA) reduces the dimension of labeled data by simul-

taneously optimizing class separation and within-class scatter [27, 61]. Both LDA and PCA are

linear methods in that they construct optimal projection matrices, i.e., linear transformations for

reducing the dimension of the data.

It is, in general, possible to add labels to unsupervised methods to create their supervised ana-

logues. A heuristic-based supervised PCA model first selects important features by calculating

correlation with the labels and then applies standard PCA of the chosen feature set [62]. Another

supervised PCA technique, proposed by [50], uses Hilbert-Schmidt independence criterion to com-

pute the principal components which have maximum dependence on the labels. Colored maximum

variance unfolding [63], which is the supervised version of MVU (Maximum Variance Unfolding),

is capable of separating different newsgroups better than MVU and PCA.
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The projection of neighborhood component analysis (NCA) [64] produces a better coherent

structure in two-dimensional space than PCA on several UCI data sets. Parametric embedding [65],

which embeds high-dimensional data by preserving the class-posterior probabilities of objects, sep-

arates different categories of Japanese web pages better than MDS. Optimizing the NCA objective

on a pre-trained deep architecture, Salakhutdinov et al. [66] achieved 1% error rate on MNIST test

data with 3-nearest neighbor classifier on 30-dimensional feature space. Min et al. proposed to

optimize the NCA and maximally collapsing metric learning (MCML) [67] objective using a Stu-

dent t-distribution on a pre-trained network [3]. Their approach yielded promising generalization

error using a 5-nearest neighbor classifier on MNIST and USPS data on two-dimensional feature

space. Neighbor retrieval visualizer (NeRV) [5] optimizes its cost such that the similar objects

are mapped close together in embedded space. Its supervised variant uses the class information to

produce the low-dimensional embedding. NeRV and its supervised counterpart were reported to

outperform some of the state-of-the-art dimension reduction techniques on a variety of datasets.

Harnessing the representation power of deep autoencoders, Xie et al. proposed a deeply em-

bedded clustering (DEC) which optimizes the clustering assignment in the representation space of

an autoencoder [68]. In DEC, the training samples are first transformed into a low dimensional

space by the non-linear mapping of the denoising autoencoder [69]. After that, the decoder is dis-

carded, and the cluster assignment is optimized using an auxiliary target distribution on the output

of the encoder. Note, DEC doesn’t use the label information of the samples, therefore, it’s strictly

an unsupervised method. Le et al. proposed a supervised autoencoder (SAE) that includes the un-

supervised reconstruction loss on the data and the supervised regression loss [70]. The supervised

loss is added to the output layer in a shallow autoencoder (one hidden layer). In a deep autoen-

coder, the authors suggested adding the supervision in the bottleneck layer. They show that the

unsupervised reconstruction loss improves the generalization performance. Adversarial Autoen-

coders (AAE) [71], fall into the category of generative models, aims to optimize dual objectives -

the traditional reconstruction loss of autoencoders and adversarial criteria [72] to match the aggre-

gated posterior distribution of the autoencoder to an arbitrary prior distribution. The adversarial
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cost forces the encoder to learn the user-defined prior distribution while the decoder imposes the

prior distribution while generating the samples. In addition, the supervised counterpart of AAE

incorporates labels into the model to guide the data generation.

Supervised Isomap (S-Isomap) [73], which explicitly uses the class information to impose

dissimilarity while configuring the neighborhood graph on input data, has a better visualization

and classification performance than Isomap. Zhang et al. suggested to use labels to optimize the

objective of Local Linear Embedding and their supervised model [74] performed better than LLE.

Similarly, the supervised version of Laplacian Eigenmaps [75] yield better quality visualization

than its unsupervised counterpart. Stuhlsatz et al. proposed a generalized discriminant analysis

based on classical LDA (GerDA) [1], which is built on deep neural network architecture. Min et

al. proposed a shallow supervised dimensionality reduction technique where the MCML objective

is optimized based on some learned or precomputed exemplars [4].

2.1.3 Limitations of Current Work

Dimensionality reduction is a very active area of research, and the field already has a host of

well-performing and widely-used techniques. Here we summarize some of the critical limitations

of the current tools. Many techniques e.g., [3], [5], [64], [58], [59], rely on the pair-wise distance

calculation to create the embedding. The distance matrix calculation makes these methods costly,

i.e., they scale quadratically with the number of data points and can be prohibitively slow as the

data set size increases. Spectral methods, e.g., MDS, Laplacian Eigenmaps, require an eigenvector

calculation using the entire training set, including testing data. Such methods do not actually cre-

ate mappings that can be applied to reduce the dimension of new data points without repeating the

computation or resorting to the use of landmarks [60]. UMAP involves constructing a second fuzzy

simplicial set for test data by rerunning the nearest neighbor search using the training data. Meth-

ods like UMAP and its supervised counterpart [59] depend on the initialization. Wang et al. [76]

showed that the embedding of UMAP is substantially worse when initialized randomly as opposed

to initialized with spectral embedding [77]. Deep neural network-based methods, e.g., deep-NCA
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(dt/dG-NCA) (see [3]), keep the similar objects close together in the embedding space. These

techniques don’t consider modeling the dissimilarities among the samples of different classes.

Moreover, these techniques use pair-wise distances, which makes them computationally expen-

sive. Supervised autoencoder [70] uses regression loss on the one-hot-encoding target along with

the reconstruction loss. Note that one-hot vectors of each class are equidistant from each other;

therefore, mapping to one-hot vectors may be helpful for classification but may not reveal the

geometric structure of data.

On the other hand, deep-MCML (dt/dG-MCML) (see [3]) collapse all the samples of a class to

a point, and at the same time, the model exerts a repulsive force among the different categories to

separate them. The repulsive force doesn’t consider the global structure of classes in the reduced

space. In theory, the repulsive force can push two clusters far apart without considering their

distance in the ambient dimension. Therefore, incorporating a repulsive force in the model may

improve the k-NN classification accuracy, a standard for comparing DR methods; but it may not

reveal the actual global layout of data. Note, like deep-NCA, deep-MCML also relies on pair-wise

distance computation.

2.2 Feature Selection

Feature selection can be accomplished in various ways that can be broadly categorized into

the filter, wrapper, and embedded methods. In a filter method, each variable is ordered based on

a score. After that, a threshold is used to select the relevant features [78]. Variables are usually

ranked using correlation [79, 80], and mutual information [81, 82]. In contrast, a wrapper method

uses a model and determines the importance of a feature or a group of features by the general-

ization performance of the predetermined model [83, 84]. Wrapper methods are computationally

intensive for larger data sets, in which case search techniques like Genetic Algorithm (GA) [85] or

Particle Swarm Optimization (PSO) [86] are used. In embedded methods, feature selection criteria

are incorporated within the model, i.e., the variables are picked during the training process [87].

Iterative Feature Removal (IFR) uses the absolute weight of a Sparse SVM model as a criterion to
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extract features from the high dimensional biological data set [39]. As Sparse Centroid-Encoder is

an embedded method, we present the literature review related to embedded techniques.

2.2.1 Feature Selection using Linear Models

Linear models are widely used in Machine Learning for classification and regression. These

models approximate the output as a linear combination of input variables (features), i.e. y ≈

f(x) = wTx + b where w and b are the model parameters. From the optimization perspective, a

linear models takes the following form: minimize
θ

l(y, f(x, θ)) where l is a loss function and θ is

the parameter set. Adding an ℓ1 penalty to the parameter set θ gives a feature selector. For example,

least absolute shrinkage and selection operator or Lasso [44], has been used extensively for feature

selection on various data sets [88–90]. Elastic net, proposed by Zou et al. [91], combined the

Lasso penalty with the Ridge Regression penalty [92] to overcome some limitations of Lasso.

Elastic net has been widely applied, e.g., [93–95]. Note both Lasso and Elastic net are convex

in the parameter space. Support Vector Machines (SVM) [96] are a state-of-the-art model for

classification, regression and feature selection. SVM-RFE is a linear feature selection model which

iteratively removes the least discriminative features until a parsimonious set of predictive features

are selected [97]. IFR [39], on the other hand, selects a group of discriminatory features at each

iteration and eliminates them from the data set. The process repeats until the accuracy of the model

starts to drop significantly. Note IFR uses Sparse SVM (SSVM), which minimizes the ℓ1 norm of

the model parameters. Lasso, Elastic Net, and SVM-based techniques are mainly applied to binary

problems. These models are extended to the multi-class problem by combining multiple binary

one-against-one (OAO) or one-against-all (OAA) models. Authors of [8] used 120 Sparse SVM

models to select discriminative bands from the Indian Pine data set, which has 16 classes. On the

other hand, Random Forest [98], a decision tree-based technique, finds features from multi-class

data using a single model. The model doesn’t use Lasso or Elastic net penalty for feature selection.

Instead, the model weighs the importance of each feature by measuring the out-of-bag error.
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2.2.2 Feature Selection using Deep Neural Networks

While the above mentioned linear feature selection models are fast and convex, they don’t

capture the non-linear relationship among the input features (unless a kernel trick is applied).

Because of the shallow architecture, these models don’t learn a high-level representation of input

features. Moreover, there is no natural way to incorporate multi-class data in a single model. Non-

linear models based on deep neural networks overcome these limitations. In this section, we will

briefly discuss a handful of such models.

Scardapane et al. [7] used group Lasso [44] to impose the sparsity on a group of variables

instead of a single variable. They applied the group sparsity simultaneously on the input and the

hidden layers to remove features from the input data and the hidden activation. On MNIST, their

algorithm discarded more than 200 features from the input vector with an accuracy of 97% on the

test data. Although on the Forest Cover data set, the algorithm used most of the input variables 52.7

out of 54. Li et al. proposed deep feature selection (DFS), which is a multilayer neural network-

based feature selection technique [6]. DFS uses a one-to-one linear layer between the input and

the first hidden layer. As a sparse regularization, the authors used elastic-net [91] on the variables

of the one-to-one layer to induce sparsity. The standard soft-max function is used in the output

layer for classification. With this setup, the network is trained in an end-to-end fashion by error

backpropagation. Despite the deep architecture, its accuracy is not competitive, and experimental

results have shown that the method did not outperform the Random Forest (RF) method. Kim

et al. [99] proposed a heuristics based technique to assign importance to each feature. Using the

ReLU activation, Roy et al. [100] provided a way to measure the contribution of an input feature

towards hidden activation of next layer. Han et al. [101] developed an unsupervised feature selec-

tion technique based on the autoencoder architecture. Using a l2,1-norm to the weights emanating

from each input node, they measure the contribution of each feature while reconstructing the in-

put. The model removes the input features, which have a minimum contribution. Taherkhani et

al. [102] proposed an RBM [103,104] based feature selection model which discards a feature if the

reconstruction error doesn’t increase after setting the corresponding input to zero. Recently, Balin
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et al. [105] proposed an end-to-end unsupervised feature selection technique, namely Concrete

Autoencoders (CAE). The authors utilize the concrete random variable, a continuous approxima-

tion of a one-hot vector in the feature selection layer. One of the attractive features of CAE is

that its cost function is differentiable, and the model picks a subset of original features by gradu-

ally minimizing the temperature of the concrete feature selector layer using an annealing scheme.

Yamada et al. [10] proposed Stochastic Gates, which incorporates continuous relaxation of the

Bernoulli distribution to approximate ℓ0-norm. The FsNet, proposed by Singh et al. [11], designed

for high-dimensional biological data sets, also uses a Concrete feature selection layer along with

Diet Networks [106] to reduce the model size. LassoNet [9], on the other hand, uses proximal

gradient descent to incorporate sparsity promoting ℓ1 norm to update model parameters.

2.2.3 Limitations of Current Techniques

Now we discuss some of the limitations of feature selection techniques mentioned before. Lin-

ear methods, such as Sparse SVM [8], LASSO [44], and Elastic Net [91] assume the classes of

samples are approximately linearly separable and use an affine mapping of the features to sep-

arate the data. Therefore these linear techniques can’t model the nonlinear geometry. LASSO,

Elastic Net, and Sparse SVM are mainly designed for binary-class problems, and they can’t han-

dle multiple classes using a single model. These models are extended to the multi-class problem

by combining multiple binary one-against-one (OAO) or one-against-all (OAA) models. Authors

in [8] used 120 Sparse Sparse SVM models to select discriminative bands from the Indian Pine data

set, which has 16 classes. These limitations are addressed in neural network-based techniques, e.g.,

DFS [6], Group Sparse ANN [7], LassoNet [9], etc. These models can learn the nonlinear rela-

tionship using nonlinear activation functions and handle multi-class data using one-hot-encoding

class labels implemented on a single model. Besides, deep neural networks with multiple non-

linear hidden layers learn high-level features, making them useful to represent complex nonlinear

structures [107]. In DFS and Group Sparse ANN, the authors used ℓ1 to promote feature sparsity.

Note that the ℓ1-norm is not differentiable, and the authors implemented symbolic differentiation
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using the Theano package [108] to calculate the gradient with stochastic optimization. In recent

work, Yamada et al. [10] reported that DFS and Group Sparse ANN failed to induce sparsity on

several bench-marking feature selection data sets. However, the authors didn’t investigate the root

cause.

Unlike DFS and Group Sparse ANN, which use non-differentiable ℓ1-norm, the cost function

of CAE [105] is differentiable. Note, unlike the ℓ1-norm, which selects a subset from the original

feature set, the concrete feature selector picks a user-specified number of features. Also, Stochastic

Gates [10] approximates ℓ0-norm by a continuous relaxation of the Bernoulli distribution. Recent

articles on Neural Network-based models, CAE, Stochastic Gate, and FsNet, address the non-

differentiable aspect of ℓ1 and provide a new direction to induce feature sparsity. But notice that all

of these techniques are optimized on neural network architecture, making them nonconvex models.

Training these models will produce non-unique features as a consequence of local minima, and the

features may not be optimal for classifying test data. Each different run will potentially produce

a different set of features, and the current literature doesn’t address how to select a single set of

robust features using neural network architecture.
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Chapter 3

Supervised Visualization using Centroid-Encoder

Dimensionality reduction techniques such as PCA and its nonlinear extensions, e.g., Kernel

PCA and Autoencoders, have proven extremely useful for understanding data in high dimensions,

particularly as visualization tools. Here we address the question of how such devices can be

adapted to the case where class label information is available, i.e., supervised data-dimensionality

reduction. More specifically, this chapter concerns integrating class label information to the non-

linear autoencoder reduction process for data visualization. Autoencoder neural networks are the

starting point for our approach and are described briefly in the next section.

3.1 Autoencoder

An autoencoder is a dimension reducing mapping that has been optimized to approximate the

identity on a set of training data [37, 109, 110]. The mapping is modeled as the composition of a

dimension reducing mapping g followed by a dimension increasing reconstruction mapping h, i.e.,

f(x) = h(g(x)) where the encoder g is represented g : U ∈ R
n → V ∈ R

m and the decoder h is

represented h : V ∈ R
m → U ∈ R

n. The composition of g and h, and hence f , is accomplished

by minimizing the unconstrained cost

LA(D; θ) =
1

2N

N∑

i=1

‖xi − f(xi; θ))‖22 (3.1)

where D = {xi} is the data and θ represents all the unknown parameters, i.e., weights and biases,

in the network. Hence, the autoencoder learns a function f such that f(xi; θ) ≈ xi where the

model parameters θ are found by solving the minimization problem. The encoder map g takes the

input xi and maps it to a latent representation yi = g(xi) ∈ V ⊂ R
m. The decoder ensures that

the encoder is faithful to the data point, i.e., it serves to reconstruct the reduced point to its original

state xi ≈ h(yi).
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The cost LA is minimized iteratively by backpropagating [111, 112] the gradient w.r.t. θ. Ap-

plying chain rule on Equation 3.1 gives us

∂LA

∂θk
=

∑

k

∑

l

∂LA

∂fl

∂fl
∂θk

(3.2)

where the term ∂LA

∂fl
is known as output error/delta (∆) which is readily calculated to be

∆A =
1

N

N∑

i=1

(f(xi, θ)− xi) (3.3)

The term ∂fl
∂θk

is the (lk)th element of the Jacobian matrix of f . The details for using multi-layer

perceptrons for training autoencoders can be found in [37].

3.2 Centroid-Encoder

Here we propose a form of supervised autoencoder that exploits label information. Let D ∈

R
n×N is the data matrix where N is the total number of samples and n is the dimension of each

sample xi ∈ R
n. Assume D has M classes {Cj}Mj=1 where the index set of class Cj is denoted by

Ij . We define centroid of each class as

cj =
1

|Cj|
∑

i∈Ij

xi

where |Cj| is the cardinality of class Cj . The centroid-encoder is trained by determining a mapping

f = h ◦ g with input-output pairs

{xi, cj}Ni=1

where cj is the target center for data point xi, i.e., i ∈ Ij . Thus, unlike autoencoder, which maps

each point xi to itself, centroid-encoder will map each point xi to its class centroid cj such that

cj ≈ f(xi) while passing the data through a bottleneck layer of dimension m to provide the reduced
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point g(xi). The cost function of centroid-encoder is defined as

LC(D; θ) =
1

2N

M∑

j=1

∑

i∈Ij

‖cj − f(xi; θ))‖22 (3.4)

where θ represents all the unknown parameters, i.e., weights and biases, in the network. This

cost is also referred to as the distortion error [113]. Like an autoencoder, the cost is minimized

by iteratively updating the parameters (θ) by error backpropagation. We can connect this to the

learning procedure for autoencoder by applying chain rule on Equation 3.4

∂LC

∂θk
=

∑

k

∑

l

∂LC

∂fl

∂fl
∂θk

(3.5)

where the term ∂fl
∂θk

is identical to an autoencoder and the output delta/error which is being back-

propagated is readily calculated to be

∆C =
1

N

M∑

j=1

(
∑

i∈Ij

f(xi; θ)− cj) (3.6)

Note, the terms ∆A and ∆C capture the difference between auto-encoder and centroid-encoder;

the gradient vector g is the same in both cases; see, e.g., [37, 114] for details on the computation

of the gradient g.

3.3 Convergence Proof of Centroid-Encoder

We want to minimize the centroid-encoder cost using iterative gradient descent method such

that the cost at iteration k+1 is less than the cost at iteration k, i.e, Ek+1 < Ek. Let θ0 is the initial

set of parameters which is set randomly. The output of the map x̃0 is defined as:

x̃0 := f(x; θ0) (3.7)

where x is the input to the centroid-encoder. The parameter set θ0 is updated using back-propagation
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Figure 3.1: Original trajectory of the of centroid-encoder along with the linear approximation.

which results in the updated parameter set θ1. This gives a new output x̃1 as shown in Figure 3.1.

The point x̃1 can be approximated from the initial parameter θ0 using Taylor series expansion. Let

x̂0 is the initial point of the approximation, i.e. x̂0 = x̃0.

x̂0 = x̃0 = f(x; θ0) (3.8)

Using Taylor series one can approximate x̃1 as given below:

x̂1 := f(x; θ0 +∆θ0) (3.9)

x̂1 = f(x; θ0) + Jθ0∆θ0 (3.10)

x̂1 = x̂0 + Jθ0∆θ0 (3.11)

where Jθ0 is known as the Jacobian matrix or derivative matrix of the function f . Note, that we

have ignored the higher order polynomial terms (degree >= 2) in the Taylor series expansion.
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Hence x̂1 is a linear approximation of x̃1. Let,

∆x̂0 := Jθ0∆θ0. (3.12)

Therefore Equation 3.11 becomes,

x̂1 = x̂0 +∆x̂0 (3.13)

We can use Equation 3.12 in the context of centroid-encoder to calculate the ∆x̂0. Now use Equa-

tion 3.5 where ∂LC

∂θi
corresponds to ∆θ0 in Equation 3.12. Writing the above equation in terms of

Jacobian matrix gives us:
∂LC

∂θi
= JT

θ

∑

j

∂LC

∂fj
(3.14)

Here Jθ is a K ×M Jacobian matrix, where K is the number of nodes in the output layer and M

is the total number of parameters (weights and biases). Substituting the value of ∆θ0 in Equation

3.12 gives us:

∆x̂0 = Jθ0J
T
θ0

∑

j

∂LC

∂fj
(3.15)

Replacing
∑

j
∂LC

∂fj
by (x̂0 − c) (see Equation 3.6) gives us:

∆x̂0 = Jθ0J
T
θ0
(x̂0 − c) (3.16)

The Jacobian contains the partial derivatives of a function and these derivatives point in the direc-

tion of the maximum increase of the function. As we are minimizing the cost of centroid-encoder,

we should consider the direction of maximum decrease. For a sufficiently small ǫ0 > 0, the change

in ∆x̂0 can be written as:

∆x̂0 = −ǫ0Jθ0JT
θ0
(x̂0 − c)

∆x̂0 = −ǫ0Qθ0(x̂0 − c)

(3.17)
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where Qθ0 = Jθ0J
T
θ0

is a PSD (positive semi-definite) matrix. Let’s consider the square distance of

x̂1 from its class center c

‖c− x̂1‖22 = (c− x̂1)
T (c− x̃1) (3.18)

‖c− x̂1‖22 = cT c− 2cT x̂1 + x̂T
1 x̂1 (3.19)

Substituting the value of x̂1 from Equation 3.13,

‖c− x̂1‖22 = cT c− 2cT (x̂0 +∆x̂0)+

(x̂0 +∆x̂0)
T (x̂0 +∆x̂0)

(3.20)

from which it follows

‖c− x̂1‖22 = ‖c− x̂0‖22 + 2(x̂0 − c)T∆x̂0 +∆x̂T
0∆x̂0 (3.21)

Putting the value of ∆x̂0 from Equation 3.17, gives us:

‖c− x̂1‖22 = ‖c− x̂0‖22 − 2ǫ0(x̂0 − c)TQθ0(x̂0 − c)+

ǫ0
2(x̂0 − c)TQ2

θ0
(x̂0 − c)

(3.22)

If we choose ǫ0 as given below:

2(x̂0 − c)TQθ0(x̂0 − c)

(x̂0 − c)TQ2
θ0
(x̂0 − c)

> ǫ0 (3.23)

then Equation 3.22 becomes:

‖c− x̂1‖22 = ‖c− x̂0‖22 − κ2 (3.24)
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where κ2 > 0. Equation 3.24 implies that:

‖c− x̂1‖22 < ‖c− x̂0‖22 for
2(x̂0 − c)TQθ0(x̂0 − c)

(x̂0 − c)TQ2
θ0
(x̂0 − c)

> ǫ0 (3.25)

Similarly we can write:

‖c− x̂2‖22 < ‖c− x̂1‖22 for
2(x̂1 − c)TQθ1(x̂1 − c)

(x̂1 − c)TQ2
θ1
(x̂1 − c)

> ǫ1 (3.26)

and

‖c− x̂k+1‖22 < ‖c− x̂k‖22 for
2(x̂k − c)TQθk(x̂k − c)

(x̂k − c)TQ2
θk
(x̂k − c)

> ǫk (3.27)

Therefore

‖c− x̂0‖22 > ‖c− x̂1‖22 > ‖c− x̂2‖22... > ‖c− x̂‖22 >

‖c− x̂k+1‖22

Therefore the sequence {x̂k} converges to c completing the proof.

3.4 The Centroid-Encoder Training Algorithm

The training is very similar to that of an autoencoder and the steps are described in Algorithm

1. As with autoencoders, the centroid-encoder is a composition of two maps f(x) = (h ◦ g)(x).

For visualization, we train a centroid-encoder network using a bottleneck architecture, meaning

that the dimension of the image of the map g is 2 or 3.

3.5 Pre-training Centroid-Encoder

Here we describe the pre-training strategy of centroid-encoder. We employ a technique we

refer to as pre-training with layer-freeze, i.e., pre-training is done by adding new hidden layers

while mapping samples of a class to its centroid; see Figure 3.2. In this approach, weights of
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Algorithm 1: Supervised Non-linear Centroid-Encoder (without pre-training).

Input: Labeled data (D) = {xi}Ni=1 with M classes, Ij index set of class Cj . User defined
parameters: error tolerance τ , learning rate µ, bottleneck dimension m.

Output: Bottleneck output yi = g(xi); network parameters θ.
Result: Non-linear embedding of data in m dimensions.
Initialization: Class centroids cj = 1

|Cj |

∑
i∈Ij

xi, j = 1, . . . ,M . Iteration t← 0.
Partition D into training (Tr) and validation set (V).

1 while |Lt+1
C (V ) - Lt

C(V )| > τ do

2 Compute the loss/error LC(V ) and LC(Tr) using Equation 3.4
3 Compute backpropogation error ∆C using Equation 3.6 on training set Tr.
4 Update model parameters θ by θt+1 = θt − µ∆C .g

t

5 end

hidden layers are learned sequentially. Initially θ = (W1, W̃1) and by the end of training θ =

(W1, . . . ,Wn, W̃n, . . . , W̃1) using our θ notation for the set of unknown parameters. The algorithm

starts by learning the parameters of the first hidden layer using standard error backpropagation

[111]. Then the second hidden layer is added in the network with weights initialized randomly. At

this point, the associated parameters of the first hidden layer are kept frozen. Now the parameters of

the second hidden layer are updated using backpropagation. We repeat this step until pre-training

is done for each hidden layer. Once pre-training is complete, we do an end-to-end fine-tuning

by updating the parameters of all the layers at the same time. We comment that our pre-training

approach is different than the greedy layer-wise pre-training proposed by [103] and [110,115]. The

unsupervised pre-training of Hinton et al. and Bengio et al. uses the activation of the lth hidden

layer as the input for the (l + 1)th layer. In our approach, we use the original input-output pair

(xi, cj) to pre-train each hidden layer. As we use the labels to calculate the centroids cj , so our

pre-training is supervised.
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Figure 3.2: Pre-training a deep centroid-encoder by layer-freeze approach. In the first step, a centroid-
encoder with the first hidden layer is pre-trained (left diagram). The pre-trained weights are (W1, W̃1). In
the next step, a new hidden layer is added by extending the network architecture. After that, the weights
(W2, W̃2) associated with the new hidden layer are updated while keeping the other weights (W1, W̃1) fixed.
This process is repeated to add more hidden layers.

3.6 Visualization Experiments

To evaluate centroid-encoder we select three suites of data sets from the literature and run

three bench-marking experiments comparing centroid-encoder with a range of other supervised

dimension reduction techniques. To objectively compare the performance of these supervised

models we employ a standard class prediction error on the two-dimensional visualization domain.1

The classification error is defined as

Error (%) =
100

N

N∑

i=1

I[li 6= f(x̃i)] (3.28)

1This corresponds to the bottleneck layer for CE.
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Here N is total number of test samples, li is the true label of the ith test sample, and f is a

classification function which returns the predicted label of the embedded test sample x̃i. Here

I denotes the indicator function. Following the supervised visualization literature [2, 3, 5, 64],

we chose the k-nearest neighbor (k-NN) as the classification function (f ). All results share the

following workflow:

• Select a small data set from the training set and run 10-fold cross validation to determine the

network architecture and hyper-parameters

• Using this architecture train K models on different data partitions as described below

• Using the sequestered test set compute average k-NN (k = 5) classification errors on the 2D

representation with standard deviations

We follow this common evaluation strategy in the three bench-marking experiments so that

our CE results are comparable to the published results. We describe details of each experiment

including how the training and test partitions were selected below. In addition to prediction error,

we also visualize the two-dimensional embedding of test samples of each model to do a subjective

comparison. We fix the reduction dimension as 2 in all networks for our visualization application.

3.6.1 Data Sets

Here we provide a brief description of the eight data sets used in visualization and classification

experiments.

MNIST Digits: This is a widely used collection of digital images of handwritten digits (0..9)2

with separate training (60,000 samples) and test set (10,000 samples). Each sample is a grey level

image consisting of 1-byte pixels normalized to fit into a 28 x 28 bounding box resulting in vecced

points in R
784.

2The data set is available at http://yann.lecun.com/exdb/mnist/index.html.
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USPS Data: A data set of handwritten digits (0 . . . 9)3, where each element is a 16x16 image

in gray-scale resulting in vecced points in R
256. Each of the ten classes has 1100 digits for a total

of 11,000 digits.

Phoneme Data: This data set is created from Finish speech recorded continuously from the

same speaker. A 20-dimensional vector represents each phoneme. The data set consists of 3924

number of samples distributed over 13 classes. The data set is taken from the LVQ-PAK4 software

package.

Letter Recognition Data: Available in the UCI Machine Learning Repository [116], this data

set is comprised of 20,000 samples where each of them represents an upper case letter of the

English alphabet A to Z selected from twenty different fonts. Each sample is randomly distorted

to produce a unique representation that is converted to 16 numerical values and 26 classes.

Landsat Satellite Data: This data set consists of satellite images with four different spectral

bands. Given the pixel values of a 3x3 neighborhood, the task is to predict the central pixel of

each 3x3 region. Each sample consists of 9-pixel values from 4 different bands, which makes the

dimension 36. There are six different classes and 6435 samples. The data set is also available in

UCI Machine Learning Repository [116].

Iris Data: The UCI Iris data set [116] is comprised of three classes and is widely used in the

Machine Learning literature. Each class has 50 samples and, each sample has four features.

Sonar Data: This UCI data set [116] has two classes: mine and rock. Each sample is repre-

sented by a 60-dimensional vector. The mine class has 111 patterns, whereas the rock category has

97 samples.

SUSY Data: It is a high-energy particle physics data set with 4.5 million samples in the train-

ing set and 0.5 million samples in the test set. Each data point has 18 features, where the first

8 represent kinematic properties measured by the particle detectors, and the last ten features are

derived by the Physicist from the kinematic properties. The goal is to determine when supersym-

3The data set is available at https://cs.nyu.edu/~roweis/data.html.

4The software is avilable at http://www.cis.hut.fi/research/software.
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metric particles are produced from the background process where no particles are detected. The

data set is available in UCI repository [116].

3.6.2 Experimental Details

Here we present the details of the bench marking experiments. Our goal is to compare centroid-

encoder with a wide range of other methods to establish its relative performance attributes. To

this end, we picked the published results from three papers [3, 5, 50] for benchmarking. For an

apples-to-apples comparison, we followed the same experimental methodology as described in

those papers. This approach permitted a direct comparison to deep neural network-based models

(deep-MCML and deep-NCA), kernel methods, and non-linear neighborhood preserving models

using the authors’ best results. It is an implicit assumption in this approach that the authors of these

papers have carefully optimized their work, and hence these results are most useful for comparison.

Experiment 1: The first bench-marking experiment is conducted on the widely studied MNIST

and USPS data sets. We compared CE with the following methods: autoencoder, non-linear NCA

[66], supervised UMAP [59], GerDA [1], HOPE [4], parametric t-SNE [2], t-distributed NCA [3],

t-distributed MCML [3], and supervised UMAP. All MNIST models were trained using the entire

training set and evaluated on the standard test set. For USPS, we followed the strategy in [3], where

we randomly split the entire data set into a training set of 8000 samples and a test set consisting

of 3000 samples. We repeat the experiments K = 10 times and report the average error rate with

standard deviation. To determine the model architecture in each case we took a subset from the

training data (3000 and 30,000 for USPS and MNIST respectively), picked randomly, and ran 10-

fold cross-validation. We implemented non-linear-NCA and Autoencoders in Python, and we used

the scikit-learn [117] package to run supervised UMAP. For the rest of the methods, we took the

published results for comparison.

Experiment 2: We conducted the second experiment on Letter, Landsat, and Phoneme data

sets. For evaluation, we compared CE with the following techniques: supervised neighbor retrieval

visualizer (SNeRV) by [5], multiple relational embedding (MRE) by [118], colored maximum vari-
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Table 3.1: Network topology used for CE on various data sets. The number d is the input dimension of the
network and is data set dependent.

Dataset Network topology Activation
MNIST d→ 1000→ 500→ 125→ 2 tanh
USPS d→ 2000→ 1000→ 500→ 2 relu

Phoneme d→ 250→ 150→ 2 relu
Letter d→ 250→ 150→ 2 relu

Landsat d→ 250→ 150→ 2 relu
Iris d→ 100→ 2 relu

Sonar d→ 500→ 250→ 2 relu
SUSY d→ 500→ 250→ 125→ 2 relu

ance unfolding (MUHSIC) by [63], supervised isomap (S-Isomap) by [73], parametric embedding

(PE) by [65], and neighborhood component analysis (NCA) by [64] and supervised UMAP. Fol-

lowing the experimental setup in [5], we randomly selected 1500 samples from each data set and

ran 10-fold cross-validation (K = 10). Except for UMAP and supervised UMAP, we used the

published results in [5]. We picked the architecture (for CE and AE) and other model specific

hyper-parameters by running 10-fold internal cross-validation on the training set.

Experiment 3: For the third experiment, we compared the performance of centroid-encoder

with supervised PCA (SPCA), and kernel supervised PCA (KSPCA) on the Iris, Sonar, and a

subset of USPS data set. Following [50], test error rates were obtained by averaging over K = 25

runs on randomly generated 70/30 splits of each data set. For USPS, we randomly picked 1000

cases and used that subset for our experiment, as done by [50]. Model specific hyper-parameters

are tuned using 10-fold internal cross-validation on the training set. We implemented SPCA and

KSPCA in Python.

3.6.3 Implementation

We have implemented centroid-encoder in PyTorch to run on GPUs. To train CE with an

optimal number of epochs, we used 10% of training samples as a validation set in all of our

visualization experiments. We measure the generalization error on the validation set after ev-

ery training epochs. Once the validation error doesn’t improve, we stop the training. Finally,
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we merge the validation set with the training samples and train the model for additional epochs.

The model parameters are updated using Adam optimizer [49]. Table 3.1 provides the network

architecture used in training of CE on various data sets. The implementation is available at:

https://github.com/Tomojit1/Centroid-encoder/tree/master/GPU. Apart from centroid-encoder, we

have implemented autoencoder (AE), non-linear NCA (NNCA), supervised PCA (SPCA) and ker-

nel supervised PCA (KSPCA). These models require the tuning of hyper-parameters as listed in

Table 3.2.

Table 3.2: Hyper-parameters for different models.

Model Hyper parameter Range of Values

CE, AE
learning_rate 0.1, 0.01, 0.001, 0.0001, 0.0002, 0.0004, 0.0008

mini_batch_size 16, 25, 32, 50, 64, 75,128, 256, 512, 1024
weight_decay 0.001, 0.0001, 0.00001, 0.00002, 0.00004, 0.00008

SUMAP
n_neighbors 5, 10, 20, 40, 80
min_dist 0.0125, 0.05, 0.2, 0.8

KSPCA
kernel_parameter(γ) 0.001, 0.01, 0.025, 0.035, 0.05, 0.1, 1.0, 2.5, 3.0,

5.0, 7.5, 10.0
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3.7 Results

Now we present the results from a comprehensive quantitative and qualitative analysis across

these diverse data sets. Note that the primary objective of our assessment is to determine the

quality of information obtained from visualization, including class separability, data scatter, and

neighborhood structure. Since this assessment is by its very nature subjective, we also employ

label information to determine classification rates that provide additional quantitative insight into

the data reduction for visualization. Computational expense is also an essential factor, and we will

see that this is a primary advantage of CE over other methods when the visualizations and error

rates are comparable.

3.7.1 MNIST

Table 3.3: Error rates (%) of k-NN (k=5) on the 2D embedded data by various dimensionality reduction
techniques trained with pre-training. Results of GerDA and pt-SNE are taken from [1] and [2] correspond-
ingly. Error rates of the variants of NCA and MCML are reported from [3]. NA indicates that the result was
not reported in the original source.

Method
Dataset

MNIST USPS
Centroid-Encoder 2.61± 0.09 2.91± 0.31
Supervised UMAP 3.45± 0.03 6.17± 0.23

NNCA 4.71± 0.57 6.58± 0.80
Autoencoder 22.04± 0.78 16.49± .91
dt-MCML 2.03 2.46± 0.35

dG-MCML 2.13 3.37± 0.18
GerDA 3.2 NA
dt-NCA 3.48 5.11± 0.28
dG-NCA 7.95 10.22± 0.76
pt-SNE 9.90 NA

As shown in Tables 3.3 (results with pre-training) and 3.4 (results without pre-training), the

models with relatively low error rates for the MNIST data amongst our suite of visualization meth-

ods are dt-MCML, dG-MCML, centroid-encoder, and HOPE. With pre-training, the error rate of

CE is comparable to the top-performing model dt-MCML and superior to NNCA and supervised
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UMAP by a margin of 2.1% and 0.84%, respectively. Note that methods in the MCML and NCA

families require the computation of distance matrix over the data set, making them significantly

more expensive than CE, which only requires distance computations between the data of a class

and its center. It’s noteworthy that the error of CE is lower than the other non-linear variants of

NCA: dt-NCA and dG-NCA. Among all the models, parametric t-SNE (pt-SNE) and autoencoder

exhibit the worst performance with error rates on MNIST data are 9.90% and 22.04%, respectively.

These high error rates are not surprising given these methods do not use label information.

The prediction error of CE with pre-training is relatively low at 2.6%, as shown in Table 3.3

behind the more computationally expensive dt-MCML and dG-MCML algorithms. With no pre-

training, the numeric performance of centroid-encoder is statistically equivalent to dt-MCML and

HOPE.

Table 3.4: Error rates (%) of k-NN (k=5) on the 2-dimensional data by various techniques trained without
pre-training. Error rate of HOPE, dt-NCA and dt-MCML are reported from [4].

Method
Dataset

MNIST USPS
Centroid-Encoder 3.17± 0.24 2.98± 0.67

Autoencoder 21.55± 0.47 15.17± 0.85
HOPE 3.20 3.03

dt-MCML 3.35 4.07
dt-NCA 3.48 5.11

While the prediction error is essential as a quantitative measure, the visualizations reveal in-

formation not encapsulated in this number. The neighborhood relationships established by the em-

bedding provide potentially valuable insight into the structure of the data set. The two-dimensional

centroid-encoder visualization of the MNIST training and test sets are shown in Figure 3.3. The

entire 10,000 test samples are shown in b) while only a subset of the training data set, 1000 digits

picked randomly from each class, is shown in a). The separation among the ten classes is easily

visible in both training and test data, although there are few overlaps among the categories in test
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(a) Visualuzation of 1000 digits per class from MNIST training set.

(b) Visualization of the 10,000 MNIST test samples.

Figure 3.3: Voronoi cells in 2D of the MNIST data using centroid-encoder. The network architecture of
784 → [1000, 500, 125, 2, 125, 500, 1000] → 784 is employed to map the data onto the 2D space. The
centroid of the training samples mapped to 2D are used to form the Voronoi regions for each digit class.

data. Consistent with the low error rate, the majority of the test digits are assigned to the correct

Voronoi cells.
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Figure 3.4: Two dimensional visualization of 10,000 MNIST test digits by Laplacian Eigenmap.

Now let’s consider the visualization from a neighborhood relationship perspective. This com-

parison aims to verify whether CE can preserve class neighborhood structure without calculating

the neighborhood graph. We compare the results with those of Laplacian Eigenmaps (LE), as

shown in Figure 3.4, an unsupervised manifold learning spectral method that solves an optimiza-

tion problem preserving neighborhood relations [12]. Both CE and LE place digits 5 and 8 as

neighbors at the center, allowing us to view all digits as being perturbations of these numbers.

Digits 7, 9, and 4 are collapsed to one region; in contrast, CE is built to exploit label information

and separates these neighboring digits. LE clumps 7, 9, 4 next to 1 as well, consistent with the CE

visualization. The digit 0 neighbors 6 for both CE and LE, but LE significantly overlaps the 6 with

the digit 5.
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Figure 3.5 shows the two-dimensional arrangement of 10,000 MNIST test set digits using non-

linear NCA, supervised UMAP, UMAP, autoencoder, and t-SNE. It is apparent that the embedding

of CE is more similar to LE in terms of the relative positioning of the digits in 2D than these

other visualization methods. There are some similarities across all the models, e.g., 0 and 6 are

neighbors for all methods (except for SUMAP), as are the digits 4, 9, and 7. The separation among

the different digit groups more prominent in CE than all the methods save for SUMAP, but as seen

above, quantitatively, SUMAP has a higher error rate than CE. We note that unsupervised UMAP,

as well as t-SNE, both agree with CE that the digits 5 and 8 should be in the center. However, in

contrast, CE provides a mapping that can be applied to streaming data.

Centroid-encoder

Figure 3.5: A comparison of the visualizations of 10,000 MNIST test digits by different methods.
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3.7.2 USPS

On USPS, centroid-encoder without pre-training has a prediction error slightly lower than

HOPE but outperformed dt-MCML and dt-NCA by the margins of 1.09% and 2.12%, respec-

tively, see Table 3.4. Without pre-training, the centroid-encoder performed better than NNCA with

pre-training and supervised-UMAP on both MNIST and USPS datasets.

On the USPS data, the top three models with pre-training are dt-MCML, centroid-encoder,

and dG-MCML with the error rates of 2.46%, 2.91%, and 3.37%, respectively. The error rate of

centroid-encoder is better than NNCA and supervised-UMAP by a margin of 3.67% and 3.26%,

respectively. Like in MNIST, dt-NCA and dG-NCA performed relatively poorly compared to

centroid-encoder. Again, autoencoder performed the worst among all the models.

Figure 3.6: Two dimensional plot of 3000 USPS test digits by different dimensionality reduction methods.
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In Figure 3.6, we show the two-dimensional visualization of 3,000 test samples using non-

linear NCA, supervised UMAP, centroid-encoder, and autoencoder. Like MNIST, the neighbor-

hoods of CE and the other methods share many similarities. Digits 4, 9, and 7 are still neighbors in

all the techniques but now sit more centrally. Digits 8 and 6 are now consistently neighbors across

all methods. The within-class scatter of each digit is again the highest for autoencoder since it is

unsupervised. Non-linear NCA also has considerable variance across all the digit classes. Super-

vised UMAP has tighter clumping of the classes – apparently an integral feature of SUMAP as

well as UMAP. However, supervised UMAP has some misplaced digits compared to CE, which

is evident from the error rate in Table 3.3. These observations are consistent with MNIST vi-

sualizations. SUMAP emphasizes the importance of local structure over the global structure of

the data. In contrast to CE, Autoencoder doesn’t provide any meaningful information about the

neighborhood structure.
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3.7.3 Letter, Landsat and Phoneme Data Sets

Here we compare centroid-encoder with another suite of supervised methods including, SNeRV,

PE, S-Isomap, MUHSIC, MRE, and NCA. Table 3.5 shows the results on three bench-marking

data sets, including UCI Letter, Landsat, and Phoneme data set. We included UMAP for additional

comparison. CE produces the smallest prediction error on Landsat and Phoneme data sets and

is ranked second on the Letter data set. On Landsat, the top three models are CE, SUMAP and

UMAP. On the Phoneme data, the centroid-encoder outperforms the second-best model, which is

SUMAP, by a small margin of 0.09%. Notably, the variance of errors of centroid-encoder (1.33) is

better than the SUMAP (2.84). On the Letter dataset, the centroid-encoder achieves the error rate

of 23.82%, which is the second-best model after SNeRV (λ = 0.1), although the variance of the

result of centroid-encoder is better than SNeRV by a margin of 1.47. Surprisingly the performance

of SUMAP and UMAP degrade significantly on this particular data set. It’s also noteworthy that

the variance of errors for centroid-encoder is the lowest in every case.

Table 3.5: Classification error (%) of k-NN (k=5) on the 2D embedded data by different supervised em-
bedding methods on Letter, Landsat and Phoneme data. Average misclassifications over ten-fold cross-
validation are shown along with standard deviation. Results of methods other than centroid-encoder, UMAP
and SUMAP are reported from [5].

Method
Dataset

Letter Landsat Phoneme
CE 23.82± 3.13 8.97± 2.55 7.52± 1.33

Supervised UMAP 33.57± 5.29 9.68± 3.12 7.61± 2.84
UMAP 39.15± 5.51 11.89± 2.83 8.47± 3.08

SNeRV λ = 0.1 22.96± 4.6 14.34± 7.38 9.43± 7.79
SNeRV λ = 0.3 24.59± 4.6 13.93± 6.97 9.02± 7.38

PE 31.15± 4.92 14.75± 8.20 9.84± 6.15
S-Isomap 31.97± 7.38 15.16± 9.02 8.61± 5.74

NCA 62.30± 5.74 15.57± 7.38 20.49± 5.73
MUHSIC 79.51± 4.92 15.37± 4.10 14.75± 4.1

MRE 90.98± 7.38 53.28± 34.2 45.08± 18.03

The visualization of the two-dimensional embedding using centroid-encoder on Landsat is

shown in Figure 3.7. We might conclude that the water content in the samples is causing scatter
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(a) Two-dimensional plot of Landsat training samples.

(b) Two-dimensional plot of Landsat test samples.

Figure 3.7: Voronoi cells of two-dimensional Landsat data using a 16 → [250, 150, 2, 150, 250] → 16
centroid-encoder. Voronoi regions for each soil type are formed from the training set.
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(a) Two-dimensional plot of Landsat training samples.

(b) Two-dimensional plot of Landsat test samples.

Figure 3.8: Voronoi cells of two-dimensional Landsat data using Supervised UMAP. Voronoi regions for
each soil type are formed from the training set.
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in the 2D plots and decreases as we proceed counter-clockwise. The test samples encode essen-

tially the same structure. In Figure 3.8, we show the visualization using SUMAP. We see tighter

clusters, but there is no difference between the damp and non-damp soil types. The neighborhood

relationships, demonstrated by Laplacian Eigemaps, also show this transition by dampness consis-

tent with CE. Damp and very damp soils are, however, not neighbors using SUMAP, making the

visualization less informative.
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3.7.4 Iris, Sonar and USPS (revisited) Data Sets

In this experiment, we compare supervised PCA and kernel supervised PCA to centroid-

encoder. Table 3.6 contains the classification error using a 5-NN classifier, showing that centroid-

encoder outperforms SPCA and KSPCA by considerable margins by this objective measure. In the

top row of Figure 3.9, we present the two-dimensional visualization of Iris test data. Among the

three methods, centroid-encoder and KSPCA produce better separation compared to SPCA. SPCA

can’t separate the Iris plants Versicolor and Virginica in 2D space. The dispersion of the three Iris

categories is relatively higher in KSPCA and SPCA compared to centroid-encoder. Surprisingly in

KSPCA, three classes are mapped on three separate lines.

Table 3.6: k-NN (k = 5) error (%) on the 2D embedded data by different supervised embedding methods
on Iris, Sonar and USPS data. Note that given the limitations of KSPCA we have restricted the USPS data
set to have 1000 total samples.

Method
Dataset

IRIS Sonar USPS
Centroid-Encoder 3.29± 2.10 14.24± 2.99 12.16± 2.01

KSPCA 5.16± 4.56 21.06± 5.38 51.63± 2.11
SPCA 5.24± 2.23 32.75± 6.78 54.18± 0.66

The two-dimensional visualization of Sonar test samples is shown in the middle row of Figure

3.9. None of the methods can completely separate the two classes. The embedding of KSPCA

is slightly better than SPCA, which doesn’t separate the data at all. In centroid-encoder, the two

classes are grouped relatively far away from each other. Most of the rock samples are mapped at

the bottom-left of the plot, whereas the mine samples are projected at the top-right corner.

The visualization of USPS test data is shown at the bottom of Figure 3.9. Both SPCA and

KSPCA are unable to separate the ten classes, although KSPCA separates digit 0s from the rest of

the samples. In contrast, the centroid-encoder puts the ten digit-classes in 2-D space without much

overlap. Qualitatively, the embedding of centroid-encoder is better than the other two.
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(a) KSPCA (b) SPCA (c) Centroid-Encoder

(d) KSPCA (e) SPCA (f) Centroid-Encoder

(g) KSPCA (h) SPCA (i) Centroid-Encoder

Figure 3.9: Visualization of Iris (top row), Sonar (middle row) and USPS (bottom row) data using different
dimensionality reduction techniques.
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3.7.5 SUSY data set

The high-energy supersymmetry particle data (SUSY), is a large data set with 4,500,000 train-

ing points and 0.5 million test points [119]. Here we demonstrate that CE is effective at visualizing

larger data sets; taken as a whole this data set is too large for many of the other methods compared

here such Laplacian Eigenmaps, t-SNE, KSPCA, SPCA. The sklearn implementation of UMAP

required 9 hours 12 minutes to complete on this data set.

Table 3.7: Balanced success rate (BSR) and area under the curve (AUC) measure of different methods on
SUSY data sets. NA indicates result not reported.

Method Dim. of classification space BSR AUC
CE Classifier 2 80.41± 0.02 0.875± 0.002

Baldi et al. [119] 300 NA 0.879

Le et al. [70] not reported 77.79± 0.02 NA

In Figure 3.10, we show the 2-dimensional embedding of SUSY test samples using centroid-

encoder, supervised UMAP and PCA. Unlike previous exmaples in this paper, here we used a

multi-center per class approach for centroid-encoder. For both the signal and background classes

two centers were determined using standard k-Means algorithm [120,121]. Now the CE algorithm

is applied as before. We observe that the data is not completely separable in two-dimensional space,

as evident from the visualization of each model. PCA and centroid-encoder put the two classes

close together, although centroid-encoder split the two classes better than PCA. On the other hand,

SUMAP produces three distinct clusters: one for the signals for two for the backgrounds. Notice

the overlap of the samples from signal to the background.

To quantify the quality of the embedding of these models, we again ran k-NN classification

on the two-dimensional space. We vary the number of nearest neighbors (hyper-parameter k) to

investigate the robustness of the embedding as we transition from local to more global structure.

We see that the accuracies remain almost the same for supervised UMAP as we increase the value

of k. On the other hand, the classification improves for centroid-encoder as k increases. The

accuracy starts to saturate after k = 50. The low classification accuracy of PCA is expected as it’s
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an unsupervised model. It’s noteworthy that the classification performance using the embedding of

centroid-encoder is better than supervised UMAP for each k. The higher classification accuracies

for the small and large values of k indicate that the embedding of centroid-encoder is robust than

supervised UMAP. From the neighborhood perspective, we can say that the centroid-encoder better

preserves the neighborhood of the data both from local to more global sense.

(a) PCA projection of the test data set. (b) CE reduction of the test data set.

(c) SUMAP representation of the test data set. (d) k-NN classification accuracy.

Figure 3.10: Visualization of SUSY data set using PCA, centroid-encoder and supervised UMAP. We built
the models on the training set, and then project the test samples using the trained models. We display a
subset of the test set (5,000 samples selected randomly from each class) using the three models. The k-NN
classification accuracy is shown in panel (d).

To illustrate how CE can be used as a classifier, we train a one-hot encoded neural network

on the visualized data. In this architecture the decoder is discarded and a softmax layer with
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one-hot-encoding is attached with the encoder. The network is further trained to learn the class

label. In this experiment a bottleneck architecture with two nodes in the bottleneck layer is used;

see Table 3.1. The resulting balanced success rate (BSR) of CE is better than the supervised

autoencoder model of [70] by a margin of 2.65. The difference of AUC score between our model to

[119] is not significant. We should note that we performed the classification on the 2-dimensional

space, whereas [119] did the classification on 300-dimensional space; see Table 3.7.

3.8 Comparison between CE and Bottleneck-ANN Classifier

In this section, we compare the visualization of CE with an artificial neural networks classifier

with bottleneck architecture. For simplicity, we will call the later model bottleneck-ANN, which

maps a sample to its class label, unlike the centroid-encoder, which maps a sample to its corre-

sponding class-centroid. The comparison aims to explore relative properties and features of the

bottleneck-ANN and CE embeddings. We note that mapping to class-centroids is not the same as

mapping to class labels. The bottleneck-ANN uses one-hot-encoding vector to map a sample to

its class label. Let’s consider a C-class problem where each data point lives in R
d. The one-hot-

encoding class labels are
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 where each target vector has C number of elements.

Therefore the bottleneck-ANN will be a mapping fANN : Rd → R
C . In contrast, the mapping of

centroid-encoder is fCE : Rd → R
d as the centroids live in R

d-dimensional space.

To compare these two models, we used a biological dataset with three classes: one healthy

(control) and two sick classes. The disease class 2 is more severe than class 1, and the samples of

class 1 lie between controls and class 2. Please note that the relationship mentioned above is shared

with us by the data provider, and a two-dimensional PCA plot (see Figure 3.11) also confirms the

fact. For a fair comparison we used the same bottleneck architecture 250 → 2 → 250. We

used 70% samples from each class in training and the rest for the test. Figure 3.12 displays the

two-dimensional visualization of the three classes using CE and Bottleneck-ANN. Notice that CE

placed the sick class 1 (red samples) between the healthy and the sick class 2, maintaining the
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class relationship in the low-dimensional space. On the other hand, Bottleneck-ANN put the three

classes equidistantly, failing to preserve the geometry of the class structure. The embedding of

Bottleneck-ANN is not surprising; the reason lies in the target of the mapping (fANN ). The one-

hot-encoding targets of the three classes are

[
1

0

0

]
,

[
0

1

0

]
, and

[
0

0

1

]
. Notice the distance between any

two classes in
√
2. Hence the mapping (fANN ) is enforcing the classes to be equidistant in the

bottleneck space. This demonstration suggests that the centroid-encoder is a better visualization

tool than Bottleneck-ANN on this dataset.

Figure 3.11: Two-dimensional PCA plot of healthy and sick samples.

Now we compare the two models on the widely used MNIST digits using a hidden layer archi-

tecture of 1000, 500, 125, 2, 125, 500, 1000. Note, CE maps the output of the last hidden layer to

a class-centroid, whereas the Bottleneck-ANN maps to a one-hot-encoding class label. In Figure

3.13, we show the two-dimensional plot of MNIST digits. Observe that the model puts digits ’7’

(dark blue) away from classes ’4’ (purple) and ’9’ (sky blue). These three classes are neighbors, as

shown by several models, e.g., Laplacian Eigenmap (Figure 3.4), UMAP (Figure 3.5), t-SNE (Fig-

ure 3.5) and Centroid-Encoder (Figure 3.3). Bottleneck-ANN thinks digits ’1’ (light green) and ’6’

(black) are neighbors, although these two digits are not similar looking. None of the other models
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Figure 3.12: Two-dimensional visualization of healthy and sick samples using CE and Bottleneck-ANN
using . Unlike CE, which maps a sample to its class-centroid, bottleneck-ANN maps a sample to its class
label. Both the models use the same hidden layer layout 250→ 2→ 250.

(LE, UMAP, t-SNA, and CE) put these two classes in neighboring space. Clearly, bottleneck-

ANN doesn’t preserve the neighborhood relationship. To objectively compare the embedding of

CE and bottleneck-ANN, we did a 5-NN classification on the embedding space. The error rate of

bottleneck ANN is 4.46± 0.32, compare to CE 2.61± 0.09.

Figure 3.13: Two-dimensional visualization of MNIST digits using Bottleneck-ANN with a network archi-
tecture 784 → [1000, 500, 125, 2, 125, 500, 1000] → 10. Each sample is mapped to the one-hot-encoding
class label.
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3.9 Discussion and Analysis of Results

The experimental results in Section 3.7 establish that centroid-encoder performs competitively,

i.e., it is the best, or near the best, on a diverse set of data sets. The algorithms that produce similar

classification rates require the computation of distance matrices and are hence more expensive than

centroid-encoders. Here we analyze the CE algorithm in more detail to discover why this improved

performance is perhaps not surprising. This has to do, at least in part, with the fact that centroid-

encoder, implementing a non-linear mapping, is actually able to capture more variance than PCA,

and this is particularly important in lower dimensions.

3.9.1 Variance Plot to Explain the Complexity of Data

PCA captures the maximum variance over the class of orthogonal transformations [37]. The

total variance captured as a function of the number of dimensions is a measure of the complexity

of a data set. We can use variance to establish, e.g., that the digits 0 and 1 are less complex than the

digits 4 and 9. To this end, we use two subsets from the MNIST training set: the first one contains

all the digits 0 and 1, and the second one has all the digits 4 and 9. Next, we compute the total

variance captured as a function of dimension; see Figure 3.14. Clearly, the variance is more spread

out across the dimensions for the digits 4/9. In Figure 3.15, we show the visualization of these two

subsets using PCA. We see that the 0/1 samples in subset1 are well separated in two-dimensional

space, whereas the data in subset2 are clumped together. This lies in the fact that in low dimension

(2D) PCA captures more variance from subset1 (around 41%) as compared to subset2 (about 22%).

We can say that subset 2 is more complex than subset1 .

50



Figure 3.14: Variance plot using two different subsets (subset1: all the digits 0 and 1, subset2: all the digits
4 and 9) of MNIST data. Left: comparison of variance plot of the two subsets using the first 100 dimensions.
Right: a blowup of the plot on the left showing the % of variance captured in low dimensions.

3.9.2 Centroid-Encoder and Variance

In this section, we demonstrate how centroid-encoder maps a higher fraction of the variance

of the data to lower dimensions. Again, consider the subset of digits 4 and 9 from the experiment

above. We use all the digits 4 and 9 from the MNIST test set as a validation set. We trained a

centroid-encoder with the architecture 784 → [784] → 784 where we used hyperbolic tangent

(‘tanh’) as the activation function. We keep the number of nodes the same in all the three layers.

After the training, we pass the training and test samples through the network and capture the hidden

activation which we call CE-transformed data. We show the variance plot and the two-dimensional

embedding by PCA on the CE-transformed data. Figure 3.16 compares the variance plot between

the original data and the CE-transformed data. In the original data, only 22% of the total variance

is captured, whereas about 89% of the total variance is captured in CE-transformed data. It appears

that the non-linear transformation of centroid-encoder puts the original high dimensional data in a

relatively low-dimensional space. Visualization using PCA of CE-transformed data (both training

and test) is shown in Figure 3.17. This time, PCA separates the classes in two-dimensional space.
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(a) Subset1: digit 0 and 1 (b) Subset 2: digit 4 and 9

Figure 3.15: Two dimensional embedding using PCA for subset1 and subset 2.

Comparing Figure 3.17 with Figure 3.15b, it appears that the transformation by centroid-encoder

is helpful for low-dimensional visualizations.

Figure 3.16: Variance plots for the 4/9 digit data. Left: comparison of variance plot of the original data and
CE transformed data using the first 100 dimensions. Right: a blowup of the plot on the left showing the %
of variance captured in low dimensions.
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(a) Digits 4 and 9 from training set. (b) Digits 4 and 9 from test set.

Figure 3.17: Two dimensional embedding using PCA on the CE-transformed data.

3.9.3 Computational Complexity and Scalability

The computational complexity of the centroid-encoder is effectively the same as the autoen-

coder. Note, both methods, as is typical of neural network approaches, require the determination

of a suitably tuned network architecture. This is a hidden cost for neural networks in general.

The advantage of centroid-encoder over many other data visualization techniques is that it is not

necessary to compute pairwise distances. If everything else is fixed, we can view centroid-encoder

as scaling linearly with the number of data points. Techniques that require distance matrices scale

quadratically with the number of data points and can be prohibitively slow as the data set size

increases. Methods based on distance matrices include NNCA, dt-NCA, dG-NCA, dt-MCML,

and dG-MCML, as well as the spectral methods including MDS, UMAP, Laplacian Eigenmaps,

Isomap and their supervised counterparts. The only overhead of centroid-encoder is the calculation

of centroids of each class, but this is also linear with the number of classes.

3.10 Conclusions

We presented the centroid-encoder as a new tool for data visualization when class labels are

available. CE is well suited to multi-class data visualization tasks for very large data sets, e.g.,

over a million data points, such as the SUSY analysis presented here. In our experience, it is also
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beneficial for smaller biological data sets residing in high-dimensions, e.g., 1000 samples with

10,000-50,000 features; this domain-specific application will appear elsewhere. The objective

function can also be easily adapted via the addition of penalty terms, such as the addition of a

sparsity promoting ℓ1-norm term. In future work, we will explore the application of this penalty

term with CE as a sparse non-linear approach for supervised data reduction that can be applied to

the optimal feature extraction problem. The wide variety of examples presented here suggest that

CE shares many qualitative performance similarities with techniques such as Laplacian eigenmaps

and Fisher Discriminant analysis, but has the advantages associated with autoencoders and deep

neural networks including the ability to model very large data sets with highly parameterized deep

architectures.

We compared CE to state-of-the-art techniques and showed advantages empirically over other

methods. Our examples illustrate that CE captures the topological structure, i.e., neighborhoods

of the data, comparable to methods, but with lower cost and generally better prediction error.

These experiments include comparisons to the unsupervised Laplacian eigenmaps, UMAP, pt-

SNE, autoencoders; the supervised UMAP, SPCA, KSPCA as well as the MCML and NCA class

of algorithms. The algorithms that have the most similar prediction errors when compared to CE

require the computation of distances between all pairs of points. We demonstrated that the 2D

embedding of centroid-encoder produces competitive, if not optimal, prediction errors. We also

showed empirically that the model globally captures high statistical variance relative to optimal

linear transformations, i.e., more than PCA.

In addition to capturing the global topological structure of the data in low-dimensions, CE

exploits data labels to minimize the within-class variance. This improves the localization of the

mapping such that points are mapped more faithfully to their Voronoi regions in low-dimensions.

CE also provides a mapping model that can be applied to new data without any retraining being

necessary. This is in contrast to the spectral methods described here that require the entire train-

ing and testing set for computing the embedding eigenvectors. Also, while the experiments run
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in this chapter focus on visualization of labeled data sets, it would be interesting to explore the

classification performance of bottleneck dimensions larger than three.
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Chapter 4

Bottleneck Centroid-Encoder

In this chapter, we present a nonlinear dimensionality reduction technique called "bottleneck

centroid-encoder" (BCE) that extends the framework of centroid-encoders (CE). In centroid-encoder,

the centroids are computed explicitly from the data and are not optimized for classification in the

reduced space. Bottleneck centroid-encoders employ a centroid constraint at the bottleneck layer.

This bottleneck cost has two contrasting terms. The first term pulls all the class samples to their

centroid by minimizing their distance from their class centroid in reduced space. The second term

pushes the classes by maximizing the Euclidean distance between class-pair centroids. We present

a detailed analysis of the method, including various numerical experiments using several data sets.

The results are compared to other supervised dimensionality reduction techniques, including su-

pervised UMAP (SUMAP), nonlinear NCA (NNCA), t-distributed NCA, t-distributed MCML.

4.1 Formulation of BCE

The centroid-encoder algorithm calculates its cost on the output layer and then backpropagates

the gradient through the hidden layers. Note that the gradient of a sample depends on the distance

from itself to its class-centroid, which is calculated in the ambient space. If the centroids of mul-

tiple classes are close in the ambient space, then the corresponding samples will land close in the

reduced space. This will cause misclassification. To avoid this situation, we add two more terms

to the bottleneck layer, i.e., at the output of the encoder g. Our modified objective function is now

LBCE(θ) =
1

2N

M∑

j=1

∑

i∈Ij

(‖cj − f(xi; θ)‖22 + λ1‖g(cj)− g(xi)‖22) + λ2

∑

k<l

1

1 + ‖g(ck)− g(cl))‖22
(4.1)

The term ‖g(cj) − g(xi)‖22 will further pull a sample xi towards it centroid which will improve

the class localization in reduced space. As we want to avoid mapping different classes close in

the bottleneck, it’s desirable to have a force that will push the classes far apart. We can achieve
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this by maximizing the distances (equivalently the square of the ℓ2-norm) between all class-pairs

centroids. We introduced the third term to fulfill the purpose. Note, as the original optimization is a

minimization problem, we choose to minimize
∑

k<l
1

1+‖g(ck)−g(cl)‖
2
2

which will ultimately increase

the distance between the centroids of class k and l. We added 1 in the denominator for numerical

stability. The hyper parameters λ1 and λ2 will control the class localization and separation in

the embedded space. We used validation set to determine their values. This modification of the

centroid-encoder at the bottleneck will be referred to as bottleneck centroid-encoder (BCE).

4.2 Analysis of Hyper-parameters

The BCE model incorporates two hyper-parameters λ1 and λ2 to control the class scatter and

separation in embedded space. These parameters need to be tuned using a validation set for optimal

result on the test set. This section analyzes the importance of the two hyper-parameters on the

model’s performance. The analysis is done on the MNIST training digits over a range of values. We

put aside 20% of samples from each class as a validation set. The rest of the data set is used to train

a BCE model for each combination of λ1 and λ2. After the training, the validation set is used to

compute the error rate using a 5-NN classifier in the two-dimensional space. Figure 4.1 shows the

errors for different combinations of λ1 and λ2 in a heat map. Observe that the error rate increases

with λ2 when λ1 is zero. The behavior is not surprising as setting λ1 to zero nullifies the effect

of the second term (see Equation 4.1), which would hold the samples tight around their centroid

in reduced space. The gradient from the first term will exert a pulling force to bind the samples

around their centroids, but the gradient coming from the third term will dominate the gradient of

the first term as λ2 increases. As an effect, the class-scatter increases in low dimensional space

resulting in misclassifications. As soon as λ1 increases to 0.1, the error rate decreases significantly.

After that, a higher value of λ2 doesn’t change the results too much. It’s also noteworthy that an

increase in λ1 doesn’t decrease the error rate too much. The minimum validation error occurs for

λ1 = 0.6 and λ2 = 0.1. The analysis reveals that λ1 is relatively more important than λ2.
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Figure 4.1: Analysis of error rate with changes to λ1 and λ2.

4.3 Experimental Results

In this section, we objectively compare the bottleneck centroid-encoder with other supervised

models on four datasets. We begin by describing the datasets next.

4.3.1 Data Sets

Here we provide a brief description of the data sets used in the bench-marking experiments.
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USPS: A data set of handwritten digits (0 . . . 9)5, where each digit is a 16x16 gray-scale image.

Each of the ten classes has 1100 digits for a total of 11,000 digits.

MNIST: This is widely used collection of digital images of handwritten digits (0..9)6 with

separate training (60,000 samples) and test set (10,000 samples). Each sample is a 28 x 28 grey

level image.

Fashion MNIST/FMNIST: It’s a data set of 10 different fashion items (T-shirts/tops, shoes,

etc) with separate training (60,000 samples) and test set (10,000 samples) [122]. Each sample is a

28 x 28 grey scale image.

4.3.2 Methodology

To objectively compare models, we employ a standard class prediction error using a test data

set on the two-dimensional visualization domain.

The class prediction error is defined as

Error (%) =
100

N

N∑

i=1

I[li 6= f(x̃i)] (4.2)

Here N is total number of test samples, li is the true label of the ith test sample, and f is a

classification function which returns the predicted label of the embedded test sample x̃i. Here I

denotes the indicator function, which has the value 1 if the argument is true (label incorrect), and 0

otherwise (label correct). A common choice of f for bench-marking algorithms in the supervised

visualization literature is the k-nearest neighbor (k-NN) classifier [2, 3, 5, 64].

As MNIST and FMNIST have a separate test set, we train the models on the training set and

then used the test set to calculate the generalization error. On the USPS following [3]; we randomly

picked 8, 000 cases from the original set to train the models and then used the rest of the 3, 000

samples to test. We took 80% of the samples from every 21 classes to train models on the Mouse

5The data set is available at https://cs.nyu.edu/ roweis/data.html.

6The data is available at http://yann.lecun.com/exdb/mnist/index.html.
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data, and we use the rest of the data for testing. In all the cases we repeat the process 10 times and

report the mean error rate with standard deviation.

Like autoencoder, BCE is a model based on deep architecture whose performance varies based

on network topology along with other hyper parameters: learning rate7, mini-batch8 size, and

weight decay9 constant. As with all neural network learning algorithms, these parameters need

to be tuned to yield optimal performance. We randomly picked some samples from each dataset

(10, 000 from MNIST and FMNIST and 2000 from USPS) to use as a validation set to finetune

the hyperparameters. For the Mouse data, we chose 10% random samples from each class as a

validation set. We implemented our models (along with Autoencoder) in PyTorch to run on GPUs.

We used the Adam optimizer ( [49]) to update the model parameters.

Beside our own models, we have implemented nonlinear NCA (NNCA) in Python following

[66]. We used the scikit-learn [117] package to run supervised UMAP (SUMAP). For the rest of

the methods, we took the published results for comparison.

4.3.3 Quantitative and Visual Analysis

Now we present the results from a comprehensive quantitative and qualitative analysis across

various data sets.

MNIST: First we discussed the result on MNIST set.

As shown in Tables 4.1, the models with relatively low error rates for the MNIST data amongst

our suite of visualization methods are dt-MCML, BCE, dG-MCML and centroid-encoder. The er-

ror rate of our models is comparable to the top-performing model dt-MCML and superior to NNCA

and supervised UMAP. Note that methods in the MCML and NCA families require the computa-

tion of distance matrix over the data set, making them significantly more expensive than BCE and

CE. It’s noteworthy that the error of BCE and CE is lower than the other non-linear variants of

7Learning rate was selected from the following list of values: 0.1, 0.01, 0.001, 0.0001, 0.0002, 0.0004, 0.0008.

8Mini-batch size was selected from the following values: 16, 32, 50, 64, 128, 256, 512, 1024.

9Weight decay was chosen from the following values: 0.001, 0.0001, 0.00001, 0.00002, 0.00004, 0.00008.
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Table 4.1: Error rates (%) of k-NN (k=5) on the 2D embedded data by various dimensionality reduction
techniques. Results of GerDA and pt-SNE are taken from [1] and [2] correspondingly. Error rates of the
variants of NCA and MCML are reported from [3].

Method
Dataset

MNIST USPS
CE 2.61± 0.09 2.91± 0.31

BCE 2.12± 0.08 2.53± 0.19
SUMAP 3.45± 0.03 6.17± 0.23
NNCA 4.71± 0.57 6.58± 0.80

Autoencoder 22.04± 0.78 16.49± .91
dt-MCML 2.03 2.46± 0.35

dG-MCML 2.13 3.37± 0.18
GerDA 3.2 NA
dt-NCA 3.48 5.11± 0.28
dG-NCA 7.95 10.22± 0.76
pt-SNE 9.90 NA

NCA: dt-NCA and dG-NCA. Among all the models, parametric t-SNE (pt-SNE) and autoencoder

exhibit the worst performance with error rates on MNIST data are 9.90% and 22.35%, respectively.

These high error rates are not surprising given these methods do not use label information.

(a) Embedding of BCE. (b) Embedding of CE.

Figure 4.2: Two dimensional embedding of MNIST test samples using BCE and CE.

While the prediction error is essential as a quantitative measure, the visualizations reveal in-

formation not encapsulated in this number. The neighborhood relationships established by the em-
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bedding provide potentially valuable insight into the structure of the data set. The two-dimensional

visualization of BCE and CE on the MNIST test set is shown in Figure 4.2. Both the models sep-

arated the ten classes. Although the scatter of each digit class is more prominent in CE than BCE.

The additional terms in the objective function in the bottleneck layer of BCE makes the clump-

ing tighter for each class and separated from each other. This observation supports the improved

generalization of BCE over centroid-encoder in Table 4.1.

Now let’s consider the visualization from a neighborhood relationship perspective. We compare

the results with those of Laplacian Eigenmaps (LE), as shown in Figure 3.4, an unsupervised

manifold learning spectral method which is formulated to preserve neighborhood relations [12].

Figure 4.3: Two dimensional visualization of 10,000 MNIST test digits by Laplacian Eigenmaps [12].

LE placed the digit 0 and 6 as neighbors, and the same neighbor-relationship is visible in both

BCE and CE. Digits 7, 9, and 4 are collapsed to one region in the embedding of LE; in contrast,

BCE and CE are built to exploit label information and separates these neighboring digits. Digits

3, 5, and 8 are neighbors in LE with a significant overlap; this neighborhood relationship is also

maintained in BCE and CE, although we see clear separation among these digit classes. Like

62



LE, BCE and CE also mapped the digits 0 and 1 far apart as these two classes have significant

dissimilarities.

USPS: On USPS, BCE and CE are among the top three performing models. The difference of

error rate between the BCE and the top performing model dt-MCML is very slim. Both of our

models have lower error rate than supervised UMAP and nonlinear NCA. Figure 4.4 shows the two-

dimensional representation of the USPS test digits by all the models. When comparing CE to BCE,

we see that the latter produces more compact clusters of the ten classes with better separation. In

the embedding of NNCA, each digit class has dispersed more compare to other methods. SUMAP

emphasizes the importance of local structure over the global structure of the data.

Figure 4.4: Two dimensional embedding of 3,000 USPS test digits by different methods.
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FMNIST: Table 4.2, shows the error rates on FMNIST using four supervised models. BCE is

the best among all the models leaving centroid-encoder the second-best model. The classification

error of BCE is better by a margin of at least 3% from SUMAP and NNCA. Figure 4.5 shows

visualization of FMNIST training and test samples using BCE. It can be argued that the BCE

embedding is better compared to NNCA and SUMAP as shown in Figure 4.6. NNCA didn’t

produce tighter clusters compared to BCE. For example, the shirts (silver), coats (magenta) and

bags (brown) are dispersed too much. Unlike BCE, the dresses (dark green) are mapped too close

to the other clothing items. The SUMAP (4.6b) managed to produce ten clusters, but the model

failed to separate the classes. The clothing groups are significantly overlapped with samples from

other categories. In particular, two cloth categories, the t-shirts (red) and the pullover (golden), are

not visible at all. The shirts (silver) overlapped significantly with other groups. This justifies the

better error rate of BCE (9.79%) compared to NNCA (13.02%) and SUMAP (14.79%).

Table 4.2: Error rates (%) of k-NN (k=5) on the 2D embedded data by various dimensionality reduction
techniques on the FMNIST data.

Method Error Rate
CE 10.34± 0.54

BCE 9.79± 0.24

SUMAP 14.79± 0.00
NNCA 13.02± 0.54

Bottleneck Centroid-Encoder with Reconstruction Loss in the Output Layer The BCE

incorporates a CE loss at the output layer. Le et al. have shown that the unsupervised reconstruction

loss of autoencoders improves the generalization performance [70].

L(θ) = 1

2N

∑
‖xi − f(xi; θ)‖22 +

1

2N

M∑

j=1

∑

i∈Ij

λ1‖g(cj)− g(xi)‖22 + λ2

∑

k<l

1

1 + ‖g(ck)− g(cl))‖22
(4.3)

Motivated by their work, we incorporate the reconstruction loss in the BCE framework as shown

in Equation 4.3. Notice the difference between the original BCE cost (Equation 4.1) and the
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(a) Training data. (b) Test data.

Figure 4.5: Two dimensional embedding of FMNIST data using bottleneck centroid-encoder.

(a) NNCA. (b) SUMAP.

Figure 4.6: Two dimensional embedding of FMNIST test cases using NNCA and SUMAP.

proposed one (Equation 4.3); the CE loss at the output layer is replaced by the reconstruction

loss of autoencoders. With this modification to the BCE cost, we run a 5-NN classification on

the two-dimensional embedding space using MNIST data. The modified BCE cost produced a

5-NN classification of 2.24 ± 0.06, slightly higher than the original BCE error of 2.12 ± 0.08.

This experiment suggests that the reconstruction loss at the output layer doesn’t help improve the

generalization performance of the BCE model.
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4.4 Bottleneck Centroid-Encoder and Variance

The experimental results in Section 4.3.3 establish that the proposed algorithm BCE produces

more compact data reduction with visually tighter clusters and numerically improved classification.

Here we analyze the BCE algorithm in more detail to discover why this improved performance is

perhaps not surprising. This has to do, at least in part, with the fact that BCE, implementing

a nonlinear mapping optimized at the bottleneck, captures more variance than PCA, and this is

particularly important in lower dimensions.

PCA captures the maximum variance over the class of orthogonal transformations [37]. The

total variance captured as a function of the number of dimensions is a measure of the complexity

of a data set. We can use variance to establish, e.g., that the digits 0 and 1 are less complex than

the digits 4 and 9. To this end, we use two subsets from the MNIST training set: the first one

contains all the digits 0 and 1, and the second one has all the digits 4 and 9. Next, we compute the

total variance captured as a function of dimension; see Figure 4.7. Clearly, the variance is more

Figure 4.7: Comparison of variance plot of the two subsets using the first 100 dimensions; subset1: all the
digits 0 and 1, subset2: all the digits 4 and 9 of MNIST data.
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(a) Subset1: digit 0 and 1 (b) Subset 2: digit 4 and 9

Figure 4.8: Two dimensional embedding using PCA for subset1 and subset 2.

spread out across the dimensions for the digits 4/9. Figure 4.8, shows the visualization of these

two subsets using PCA. We see that the samples in subset1 are well separated in two-dimensional

space, whereas the data in subset2 are clumped together. This lies in the fact that in low dimension

(2D) PCA captures more variance from subset1 (around 41%) as compared to subset2 (about 22%).

We can say that subset2 is more complex than subset1 .

Now, we demonstrate how BCE maps a higher fraction of the variance of the data to lower

dimensions. Again, consider the subset of digits 4 and 9 from the experiment above. We use all

the digits 4 and 9 from the MNIST test set as a validation set. We trained a bottleneck centroid-

encoder with the architecture 784 → [784] → 784. We keep the number of nodes the same in all

the three layers. After the training, we pass the training and test samples through the network and

capture the hidden activation which we call BCE-transformed data. We show the variance plot and

the two-dimensional embedding by PCA on the BCE-transformed data.

Figure 4.9 compares the variance plot between the original data and the BCE-transformed

data. In the original data, only 22% of the total variance is captured, whereas about 92% of the

total variance is captured in BCE-transformed data.
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Figure 4.9: Comparison of variance plot of the original data and BCE transformed data using the first 100
dimensions.

Visualization using PCA of BCE-transformed data (both training and test) is shown in Figure

4.10. This time, PCA separates the classes in two-dimensional space. Comparing Figure 4.10

with Figure 4.8b, it appears that the transformation by bottleneck centroid-encoder is helpful for

low-dimensional visualizations.

(a) Digits 4 and 9 from training set. (b) Digits 4 and 9 from test set.

Figure 4.10: Two dimensional embedding using PCA on the BCE-transformed data.
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4.5 Conclusion

In this chapter we propose the bottleneck centroid-encoder architecture to optimize the location

of centroids in the reduced space. The objective function includes terms that serve to enhance the

separation between classes while making classes compact. These characteristics make BCE par-

ticularly well suited to the task of data visualization when class labels are available. Our numerical

experiments showed advantages over a range of other methods and established that methods with

approximately equivalent performance are considerably more computationally expensive. Our ex-

amples illustrate that BCE captures the topological structure, i.e., neighborhoods of the data, com-

parable to other methods such as Laplacian Eigenmaps but with generally better prediction error.

These experiments also include comparisons to the unsupervised pt-SNE, autoencoders as well as

the supervised MCML and NCA class of algorithms. The algorithms that have the most similar

prediction errors when compared to BCE require the computation of distances between all pairs

of points. We demonstrated that the 2D embedding using BCE produces classification rates that

reflect an improvement over CE. We also showed empirically that the model globally captures high

statistical variance relative to optimal linear transformations, i.e., more than PCA. In addition to

capturing the global topological structure of the data in low-dimensions, BCE exploits data labels

to minimize the within-class variance. This improves the localization of the mapping such that

points are mapped more faithfully to their Voronoi regions in low-dimensions. Both CE and BCE

algorithms provide a mapping model that can be applied to new data without any retraining being

necessary. This is in contrast to spectral methods, such as Laplacian Eigenmaps, that require the

entire training and testing set for computing the embedding eigenvectors.
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Chapter 5

Sparse Centroid-Encoder

This chapter presents a non-linear feature selection technique called Sparse Centroid-Encoder

(SCE). We develop the sparse optimization problem by adding a sparsity promoting ℓ1-norm term

to the objective of the centroid-encoder. The goal of the algorithm is to extract discriminatory

features in groups while mapping a point to its class centroid. This approach has the advantage

that it can be applied to determine all features which separate multiple classes simultaneously.

The algorithm is applied to a wide variety of data sets including, single-cell biological data, high-

dimensional biological data, hyperspectral data, image data, and GIS data. We compared our

method to various state-of-the-art feature selection techniques, including six neural network-based

models (DFS, SG-L1-NN, G-L1-NN, STG, CAE, and FsNet), Sparse SVM, and Random Forest.

We empirically showed that SCE features produced better classification accuracy on the unseen

test data, often with fewer or the same number of features.

5.1 Sparse Centroid-Encoder

The Sparse Centroid-Encoder (SCE) is a modification to the Centroid-Encoder architecture as

shown in Figure 5.1. The input layer is connected to the first hidden layer via the sparsity promoting

layer (SPL). Each node of the input layer has a weighted one-to-one connection to each node of

SPL. The number of nodes in these two layer are the same. The nodes in SPL don’t have any bias

and non-linearity. The SPL is fully connected to the first hidden layer, therefore the weighted input

from the SPL will be passed to the hidden layer in the same way that of a standard feed forward

network. During training, a ℓ1 penalty will be applied to the weights connecting the input layer and

SPL layer. The ℓ1 penalty will drive most of the weights to near zero and the corresponding input

nodes/features can be discarded. Therefore the purpose of the SPL is to select important features

from the original input. Note we only apply the ℓ1 penalty to the parameters of the SPL.
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Figure 5.1: The architecture of Centroid-Encoder and Sparse Centroid-Encoder. Notice the Centroid-
Encoder uses a bottleneck architecture which is helpful for visualization. In contrast, the Sparse Centroid-
Encoder doesn’t use any bottleneck architecture; instead, it employs a sparse layer between the input and
the first hidden layer to promote feature sparsity.

Let θspl is the parameters (weights) of the SPL and θ is the parameters of the rest of the net-

work. The cost function of sparse centroid-encoder is given in Equation 5.1 where λ is the hyper-

parameter which controls the sparsity. A higher value of λ will promote higher sparsity resulting
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more near-zero weights in SPL. In other words λ will control the number of features selected from

input.

Lsce(θ) =
1

2N

M∑

j=1

∑

i∈Ij

‖cj − f(xi; θ))‖22 + λ‖θspl‖1 (5.1)

Like centroid-encoder we trained sparse centroid-encoder using error back propagation, which

requires the gradient of the cost function of Equation 5.1. As ℓ1 function is not differentiable at 0,

we used sub-gradient.

Feature Cut-off

The ℓ1 penalty of the sparse layer (SPL) drives a lot of weight to near zero. Often hard thresh-

olding or a ratio of two consecutive weights is used to pick the nonzero weight [39]. We take a

different approach. After training SCE, we arrange the absolute value of the weights of the SPL in

descending order. And then find the elbow of the curve. We measure the distance of each point of

the curve to the straight line formed by joining the first and last points of the curve. The point with

the largest distance is the position (P) of the elbow. We pick all the features whose absolute weight

is greater than that of P; see panel (c), (d) of Figure5.2 and panel (b), (c) of Figure 5.5.

5.1.1 Empirical Analysis of SCE

In this section we present an empirical analysis of our model. The results of feature selection

for the digits 5 and 6 from the MNIST set are displayed in Figure 5.2. In panel (a), we compare

the two terms that contribute to Equation 5.1, i.e., the CE and ℓ1 costs, weighted with different

values of λ. As expected, we observe that the CE cost monotonically decreases with λ, while the

ℓ1 cost increases as λ decreases. For larger values of λ, the model focuses more on minimizing

the ℓ1-norm of the sparse layer, which results in smaller values. In contrast, the model pays more

attention to minimizing the CE cost for small λs; hence we notice smaller CE cost and higher ℓ1

cost. Panel (b) of Figure 5.2 shows the accuracy on a validation set as a function of λ; the validation

accuracy reached its peak for λ = 0.001. In panels (c) and (d), we plotted the magnitude of the
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feature weights of the sparse layer in descending order. The sharp decrease in the magnitude of the

weights demonstrates the promotion of sparsity by SCE. The model effectively ignores features

by setting their weight to approximately zero. Notice the model produced a sparser solution for

λ = 0.1, selecting only 32 features compared to 122 chosen variables for λ = 0.001. Figure 5.3

shows the position of the selected features, i.e., pixels, on the digits 5 and 6. The intensity of the

color represents the feature’s importance. Dark blue signifies a higher absolute value of the weight,

whereas light blue means a smaller absolute weight.

Figure 5.2: Analysis of Sparse Centroid-Encoder. (a) Change of the two costs over λ. (b) Change of
validation accuracy over λ. (c) Sparsity plot of the weight of WSPL for λ = 0.001. (d) Same as (c) but
λ = 0.1.

Our next analysis shows how SCE extracts informative features from a multi-modal dataset,

i.e., data sets whose classes appear to have multiple clusters. In this case, one center per class may

not be optimal, e.g., ISOLET data. To this end, we trained SCE using a different number of centers

per class where the centers were determined using standard k-Means algorithm [120, 121]. After

the feature selection, we calculated the validation accuracy and plotted it against the number of
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Figure 5.3: Demonstration of the sparsity of Sparse Centroid-Encoder on MNIST digits 5 and 6. The digits
are shown in white, and the selected pixels are marked using blue—the darkness of blue indicates the relative
importance of the pixel to distinguish the two digits. We showed the selected pixels for two choices of λ.
Notice that for λ = 0.1, the model chose the lesser number of features, whereas it picked more pixels for
λ = 0.001. The parameter λ is the knob which controls the sparsity of the model.

centers per class in Figure 5.4. The validation accuracy jumped significantly from one center to

two centers per class. The increased accuracy indicates that the speech classes are multi-modal,

further validated by the two-dimensional PCA plot of the three classes shown in panel (b)-(d).

Our last analysis sheds light on the feature selection stability of the SCE on MNIST digits as

shown in Figure 5.5. In panel (a), we present the position of the selected pixels over two runs

(194 and 198 respectively with 167 overlapping ones). Most of the selected pixels reside in the

middle of the image, making sense as the MNIST digits lie in the center of a 28 x 28 grid. Notice

that the non-overlapping pixels of the two runs are neighbors, making sense as the neighboring

pixels perhaps contain similar information about the digits. On the SMK_CAN dataset, which has

over 19,000 features, the ℓ1 penalty of the sparse layer makes most of the variables to zero/near

zero, selecting only 570 and 594 biomarkers. We didn’t use hard thresholding to induce sparsity.

Our feature cut-off technique, mentioned in Section 5.1, picks the non-zero biomarkers. Also,
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Figure 5.4: Sparse Centroid-Encoder for multi-modal data set. Panel (a) shows the increase in validation
accuracy over the number of centroids per class. Panel (b)-(d) shows the two-dimensional PCA plot of the
three speech classes.

notice the absolute weight of the selected biomarkers, which suggests that the ℓ1 didn’t shrink all

parameters of the sparse layers.

5.1.2 Feature Selection Workflow Using Sparse Centroid-Encoder

By design, sparse methods identify a small number of features that accomplish a classification

task. If one is interested in all the discriminatory features that can be used to separate multiple

classes, then one can repeat the process of removing good features. This section describes how
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Figure 5.5: Sparse Centroid-Encoder on MNIST (all ten classes) and high dimensional (#features 19993)
SMK_CAN data. Panel (a) shows position of the selected pixels over two run (λ = 0.0002). Panel (b)-(c)
shows the sparsity plot (λ = 0.0002) of the SPL layer over two run on SMK_CAN training data.

sparse centroid-encoder (SCE) can be used iteratively to extract all discriminatory features from a

data set; see [39] for an application of this approach to sparse support vector machines.

SCE is a model based on neural network architecture; hence, it’s a non-convex optimization.

As a result, multiple runs will produce different solutions, i.e., different feature sets on the same

training set. These features may not be optimal given an unseen test set. To find out the robust

features from a training set, we resort to frequency-based feature pruning. In this strategy, first, we

divide the entire training set into k folds. On each of these folds, we ran the SCE and picked the

top N (user select) number of features. We repeat the process T times to get k × T feature sets.

Then we count the number of occurrences of each feature and call this number the frequency of

a feature. We ordered the features based on the frequency and picked the optimum number from

a validation set. We present the feature selection work flow in Figure 5.6. We trained SCE using

Scaled Conjugate Gradient Descent [123].
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Figure 5.6: Feature selection workflow using Sparse Centroid-Encoder. a First, the data set has been
partitioned into training and validation. b We further partitioned the training set into n splits. c On each of
the training splits, we ran Sparse Centroid-Encoder to get n feature sets. d We calculated the occurrence of
each feature among the n sets and called it the frequency of the feature. We ranked features from high to a
low frequency to get an ordered set. e At last, we picked the optimum number of features using a validation
set.

5.2 Experimental Results

This section presents the experiments we did on various data sets and the results compared to

other feature selection models. We begin with a brief description of data sets.

5.2.1 Data sets

GM12878 It’s a single cell data set. The samples were collected from the annotated DNA

region of lymphoblastoid cell line. Each sample is represented by a 93 dimensional features sam-

pled from three classes: active enhancer (AE), active promoter (AP) and background (BG) where

each class contains 2, 156 number of samples. The data set is split equally into a separate training,

validation and test sets.
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Forest Cover It’s a data set of seven forest cover types (e.g. ponderosa pine) where each

sample is represented by a vector of 54 elements which were extracted from cartographic data.

There are about half million samples. The data is available in UCI repository.

MNIST This is a widely used collection of digital images of handwritten digits (0..9)10 with

separate training (60,000 samples) and test set (10,000 samples). Each sample is a grey level image

consisting of 1-byte pixels normalized to fit into a 28 x 28 bounding box resulting in vecced points

in R
784.

Indian Pines The hyper-spectral Indian Pine data set consists of 145x145 pixels by 220 bands

from 0.4 to 2.4 µm distributed among the sixteen classes. Often time the water absorption bands

104-108, 150-163, and 220 are discarded. But in our experiment, we did not exclude these bands

with the hope that the sparse centroid-encoder should reject these bands. In our experiment, we

included the pixels which had label information.

GSE73072 This microarray data set is a collection of gene expressions taken from human blood

samples as part of multiple clinical challenge studies ( [124]) where individuals were infected with

the following respiratory viruses HRV, RSV, H1N1, and H3N2. In our experiment we excluded the

RSV study. Blood samples were taken from the individuals before and after the inoculation. RMA

normalization ( [125]) is applied to the entire data set, and the LIMMA ( [126]) is used to remove

the subject-specific batch effect. Each sample is represented by 22,277 probes associated with

gene expression. The data is publically available on the NCBI GeneExpression Omnibus (GEO)

with identifier GSE73072.

5.2.2 Experimental Details

We did three bench-marking experiments to compare the sparse centroid-encoder with other

state-of-the-art feature selection methods. To make the evaluation objective, we compared the

classification accuracy on the unseen data using the selected features of different models. All the

three experiments share the following workflow:

10The data set is available at http://yann.lecun.com/exdb/mnist/index.html.
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• Using the training samples run sparse centroid-encoder to select optimal number of features.

Table 5.1 shows the ℓ1 penalty used for the data sets.

• Build K classification models with these features on the training set. We used centroid-

encoder as the classification model [23].

• Compute the accuracy on the sequestered test set using the K trained models and report the

mean accuracy with standard deviation.

Table 5.1: The penalty term λ used for the four data sets.

Data set Penalty term (λ)
GM12878 0.01

MNIST 0.001
Forest Cover 0.01
Indian Pine 0.01

We follow this common evaluation strategy in the three bench-marking experiments so that

our CE results are comparable to the published results. We describe details of each experiment

including how the training and test partitions were selected below.

Experiment 1: The first bench-marking experiment is done on the single-cell GM12878 data

set. We took the published result of deep feature selection (DFS), shallow feature selection,

LASSO, and Random Forest (RF) from the work of Li et al. [6] to evaluate our model. The

data set has separate training validation and a test set of equal size. We used the validation set to

tune hyper-parameters and to pick the optimal number of features. After the feature selection step,

we merged the training and validation set and trained K = 10 centroid-encoder classifiers with the

selected features, and reported classification accuracy on the test set.

Experiment 2: We conducted the second experiment on the widely studied MNIST data set along

with the Forest Cover data. Following the experimental setup of Scardapane et al. [7], each data

set was randomly partitioned into a training and test set with a ratio of 75:25. We used 20% of the
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training sample as a validation set to select the optimum number of features and hyper-parameters.

After the feature selection, a centroid-encoder is trained to predict the class label of the unseen

test cases. We repeated the process K = 25 times and reported the mean accuracy with standard

deviation.

Experiment 3: Our third bench-marking experiment compared SCE with the Sparse Support Vec-

tor Machine (SSVM) on the Indian Pine data set. For a fair comparison, we followed the same

experimental protocol as done by Chepushtanova et al. in their work [8]. The entire data set is split

in half into a training and test set. Because of the small size of the training set, we did a 5-fold

cross-validation on the training samples to tune hyper-parameters. After the feature selection on

the training set, we took top n = 1, 2, 3, 4, 5, 10, 20, 40, 60, 80 features to build a centroid-encoder

classifier on the training set to predict the class labels of the test samples. For each n we repeat

the classification task K = 10 times. In the article [8], the authors used spatial smoothing, which

significantly improved their classification result. We compared the efficacy of SCE and SSVM

features without spatial smoothing as our goal is not to report high accuracy.

Experiment 4: We conducted our last experiment on the GSE73072 human respiratory infection

data where the goal is to predict the classes control, shedders, and non-shedders at the very early

phase of the infection, i.e., at time bin spanning hours 1-8. Controls are the pre-infection samples,

whereas shedders and non-shedders are post-infection samples picked from the time bin 1-8 hr.

Shedders actually disseminate virus while non-shedders do not. We considered six studies, includ-

ing two H1N1 (DEE3, DEE4), two H3N2 (DEE2, DEE5), and two HRV (Duke, UVA) studies. We

used 10% training samples as a validation set—the training set comprised all the studies except for

the DEE5, which was kept out for testing. We did a leave-one-subject-out (LOSO) cross-validation

on the test set using the selected features from the training set. In this experiment we compared

SCE with Random Forest (RF).
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5.2.3 Quantitative and Qualitative Analysis

Now we present the results from a comprehensive quantitative and qualitative analysis across

all the data sets.

GM12878

Table 5.2 presents the classification accuracy on the test data using the features selected by

various methods. As with Li et al., we used the top 16 features to report the mean accuracy of

the test samples. Besides that, we report the test accuracy using the top 48 features picked from

the validation set. The classification using the top 48 SCE features is the best in the lot. When

restricted to the top 16, we see that the SCE features outperform all the other models. Note that the

accuracy of the deep DFS features is 2.66% lower than our model. We also reported the accuracy of

SCE without the feature selection workflow. In this case, we ran SCE and took the top 16 features

to classify the test samples. We repeated the step 10 times and presented the average result. Note

that the SCE features without the framework performed better than the DFS by approximately 2%.

Table 5.2: Classification accuracies using the top 16 features by various techniques. Results of Deep DFS,
Shallow DFS, LASSO, and Random Forest are reported from [6]. We present accuracy with the top 48
features which were selected from a validation set.

Feature Selection Method No. of Features Accuracy
SCE 48 89.40± 0.24

SCE 16 88.33± 0.13

SCE w/o framework 16 87.51± 0.89

DFS 16 85.67
Shallow DFS 16 85.34

LASSO 16 81.86
Random Forest 16 88.21

Among all the models, LASSO features exhibit the worst performance with an accuracy of

81.86%. This relatively low accuracy is not surprising, given LASSO is a linear model.

81



The classification performance gives a quantitative measure that doesn’t reveal the biological

significance of the selected genes. We surveyed the functionality of the top genes selected by

sparse centroid-encoder model and provided the description below from the literature. We see that

many of these genes are related to the proliferation of the lymphoblastoid cancer cells, e.g., POL2,

NRSF/REST, GCN5, PML, etc. Some genes play an essential role in transcriptional activation,

e.g., H4K20ME1, TAF1, H3K27ME3, etc. Gene H3K27AC plays a vital role in separating active

enhances from inactive ones. This survey confirms the biological significance of the selected genes.

• POL2(POLR2A): It’s a subunit of RNA polymerase II, which interacts with nuclear CD26

using a chromatin immunoprecipitation assay. This interaction led to transcriptional repres-

sion of the POLR2A gene, resulting in a proliferation of cancer cells [127].

• H4K20ME1 This gene has been implicated in transcriptional activation. Recent studies

showed a strong correlation between H4K20me1 and gene activation in the regions down-

stream of the transcription start site [128].

• NRSF(REST) NRSF/REST is highly expressed in non-neuronal tissues like the lung. The

findings of Kreisler et at. [129] support that NRSF/REST may act as an essential modulator

of malignant progression in small-cell lung cancer.

• TAF1 It’s the largest integral subunit of TFIID, initiates RNA polymerase II-mediated tran-

scription. Wang et al. discovered a critical promoter-binding function of TAF1 in transcrip-

tion regulation [130].

• H3K27AC This gene distinguishes active enhancers from inactive/poised enhancer elements

containing H3K4me1 alone [131].

• GCN5 GCN5 functions as a transcriptional coactivator of E2f1 target genes. In small-cell

lung cancer, E2F1 recruits GCN5 to acetylate H3K9, facilitating transcription of E2F1,

CYCLIN E, and CYCLIN D1 (39) all of which promote cellular proliferation and tumor

growth [132].
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• PML The PML gene provides instructions for a protein that acts as a tumor suppressor,

which means it prevents cells from growing and dividing too rapidly or in an uncontrolled

way [133].

• RUNX3 This gene binds to the core DNA sequence 5’-PYGPYGGT-3’ found in several

enhancers and promoters. It also interacts with other transcription factors. It functions as a

tumor suppressor, and the gene is frequently deleted or transcriptionally silenced in cancer

[134].

• ZZZ3 It’s prortein binding gene which oftens promotes gene activation [135].

• H3K27ME3 This gene can function as silencers to regulate gene expression [136].

MNIST and Forest Cover

Now we present the results of Experiment 2, where we compare our sparse model with [7] on

MNIST and Forest Cover data.

Table 5.3: Classification result using the top features by various models on the MNIST data set. Results of
SG-L1-NN, L1-NN, and L2-NN are reported from [7].

Feature Selection Method Average no. of Features Accuracy
Sparse Centroid-Encoder 355.32 98.44± 0.08

SG-L1-NN 581.8 97.00
L1-NN 658.2 97.00
L2-NN 676.4 98.00

Table 5.3 shows the classification accuracy using the features selected by four methods. The

features of SCE produce the best accuracy beating the other sparse models SG-L1-NN and L1-

NN by a margin of 1.44%. Note that our classification accuracy is achieved using 355 number

of features on average, which is approximately 45% of the total number of pixels of an MNIST

image. On the other hand, SG-L1-NN, L1-NN, and L2-NN used 74%, 84%, and 86% of the total

number of features, respectively. We further analyze the features from a qualitative point of view.
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We present a visual representation of the selected variables of the SCE model in Figure 5.7 where

we show the spatial location of the selected pixels in a 28 x 28 grid.

Figure 5.7: Locations of selected features of MNIST image shown in a 28 x 28 grid. The selected pixels
are marked in white, and the ignored pixels are marked in black.

Observe that most of the selected pixels are located in the middle of the grid, making sense as

most MNIST digits are placed in the middle of the 28 x 28 bounding box. This fact establishes the

robustness of the features of the Sparse Centroid-Encoder.

The classification accuracy of the four models on the Forest Cover data is presented in Table

5.4. The result shares a similar trend to the MNIST set. The average test accuracy is better using

the SCE features. At the same time, the number of SCE features is considerably less than the other

sparse models of Scardapane et al. [7]. Note that the mean accuracy of our model is higher by a

margin of 3% − 4%. It’s noteworthy that the models of Scardapane et al. required most of the

features for classification. The data set lives in R
54 in the ambient space. Out of these 54 variables,

SG-L1-NN, L1-NN, and L2-NN utilized 52.7, 53, and 54 features, respectively. In contrast, our

model only used 38 features on average. The high test accuracy with a relatively small feature set

establishes the value of SCE as a robust variable selection technique.
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Table 5.4: Classification results using the top features by various models on the Forest Cover data set.
Results of SG-L1-NN, L1-NN, and L2-NN are reported from [7].

Feature Selection Method Average no. of Features Accuracy
Sparse Centroid-Encoder 38.1 87.37± 0.36

SG-L1-NN 52.7 83.00
L1-NN 53.0 83.00
L2-NN 54.0 84.00

Indian Pines

Here we discuss the result of our third experiment, which we did on the Indian Pine data set.

We chose a well know feature selection model, Sparse Support Vector Machine (SSVM) [8] to

compare with SCE. The task is to identify the bands which are essential to assign a test sample

correctly to one of the sixteen classes. We took all the 220 bands in the feature selection step,

including the twenty water absorption bands. Note, in the literature these noisy water absorption

bands are often excluded before the experiments [137, 138]. We wanted to check whether our

model was able to reject them. In fact, our model did discard them; we didn’t see any of the water

absorption bands in the top 100 features. It appeared that SSVM included some of these noisy

bands [8].

Figure 5.8 presents the accuracy on the test data using the top n bands (n = 1, 2, 3, 4, 5, 10, 20

40, 60, 80) which were calculated on the training set. Note we didn’t use spatial smoothing as

done in [8]. Classification using SCE features generally produces better accuracy. Notice that SCE

features yield better classification performance using fewer bands. In particular, the accuracy of

the top SCE feature (band 13) is at least 15% higher than the top SSVM feature (band 1).

We listed the top ten features from each model in Table 5.5. We have included the WaLuMI +

SSVM model, where SSVM is applied to the WaLuMI features to prune the set further. There is

no common feature among these three sets.

Respiratory Infections in Humans

Now we present the results of the last experiment on GSE73072 data set. The results on this

data set in shown in Table 5.6. The top 35 features of SCE produce the best Balanced Success
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Figure 5.8: Comparison of classification accuracy using SCE and SSVM features on Indian Pine data set.

Table 5.5: List of top ten bands from each model. Bands selected by SSVM and SSVM + WaLuMI are
reported from [8].

SCE SSVM WaLuMI + SSVM
13,148,51,47,49 1,34,2,3,29 5,25,100,55,183
43,45,17,134,44 32,41,39,28,42 129,79,52,68,88

Rate (BSR) of 90.61% on the test study DEE5. For the Random Forest model, the best result is

achieved with 30 features. We also included the results with 35 biomarkers, but the BSR didn’t

improve. Note both the models picked a relatively small number of features, 30 and 35 out of the

22,277 genes, but SCE features outperform RF by a margin of 7%. Although RF selects features

with multiple classes using a single model, it weighs a single feature by measuring the decrease

of out-of-bag error. In contrast, SCE looks for a group of features while minimizing its cost. We

think the multivariate approach of SCE makes it a better features detector than RF.
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Time Bin Model No. of Features BSR

1− 8
SCE 35 90.61± 2.38
RF 30 83.05± 2.42
RF 35 82.65± 2.51

Table 5.6: Balanced success rate (BSR) of LOSO cross-validation on the DEE5 test set. The selected
features from training set is used to predict the classes of control, shedder, and non-shedder.

5.3 Comparative Analysis between SCE and DFS

In this section, we conducted several experiments to further compare and contrast the SCE and

DFS models. We used the code provided by the authors to run the experiments with DFS. DFS

minimizes the cross-entropy loss and the ℓ1-norm of the sparse layer. On the other hand, SCE

minimizes the CE loss along with the ℓ1-norm of the sparse layer. The first experiment analyzed

how the costs change over λ for each model. Figure 5.9 showed the plots for DFS and SCE for

different values of λ. In panel (b), we compare the two terms that contribute to Equation 5.1, i.e.,

the centroid-encoder and ℓ1 costs, weighted with different values of λ. As expected, we observe

that the CE cost monotonically decreases with λ, while the ℓ1 cost increases as λ decreases. For

larger values of λ, the model focuses more on minimizing the ℓ1-norm of the sparse layer, which

results in smaller values. In contrast, the model pays more attention to minimizing the CE cost for

small λs; hence we notice smaller CE cost and higher ℓ1 cost.

In contrast, the DFS model exhibited a completely different pattern of the two costs over λ, see

panel (a). The cross-entropy for the network remains constant for λ = 100, 10, 1, 0.1, and after

that the value decreases. The ℓ1-norm of the sparse layer, i.e., ℓ1 cost, changes abruptly with λ.

For example, the ℓ1 loss for λ = 100 should be lower than λ = 10; but the values are exactly

the opposite. We see the same pattern for λ = 0.1, 0.01. This experiment suggests that the costs

change expectedly for SCE, whereas the behavior of DFS is not robust.

Now we compare the ability to promote sparsity of these two models. We plotted the absolute

values of weights in the sparse layer in descending order for the six values of λ and called this plot

a sparsity plot. Figure 5.10 and Figure 5.11 presents the sparsity plot of DFS and SCE respectively.
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Figure 5.9: (a) Change of the Cross-entropy loss and ℓ1 cost of DFS over different values of λ. (b) Change
of the Centroid-Encoder loss and ℓ1 cost of SCE over different values of λ. The experimrnt is done on
GM12878 data set.

Figure 5.10: Sparsity plot of DFS on GM12878 data set.

In general, SCE is a more robust approach for weight-sparsity promotion. Notice that a higher

value of λ doesn’t promote sparsity; rather, it shrinks the weights of the sparse layer. This phe-

nomenon is known as the shrinkage problem of the ℓ1 norm [139–141]. Note that the DFS model

provides a sparse solution only for λ = 0.01, which shows the sensitivity of the DFS to the choice

of λ. Our finding is consistent with the current literature where [10] Yamada et al. also reported
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Figure 5.11: Sparsity plot of SCE on GM12878 data set.

the lack of sparsity of DFS. Note for λ = 100, the model picks around 40 features, which gives a

classification accuracy of 33.33% on the test set; clearly, these features are not discriminatory.

5.4 Challenges of Minimizing 1-norm using Stochastic Opti-

mization

The previous section shows that the DFS is more sensitive to parameter tuning and fails to

induce robust feature-sparsity when compared to SCE. The optimization of the parameters of DFS

is done using stochastic optimization (stochastic gradient descent) on the mini-batches. On the

other hand, SCE uses scaled conjugate gradient descent (SCG [123]) on the entire training set. One

of the advantages of SCG is that it can find out a suitable stepsize/learning rate at each iteration.

On the other hand, stochastic optimizations like Adam [49] or stochastic gradient descent (SGD)

require hyper-parameters, e.g., learning rate, mini-batch size, momentum, etc. Calculating the

gradient on a random subsample (mini-batches) of a training set might add noise that may affect ℓ1-

norm minimization [49]. This section investigates the effect of stochastic optimization on ℓ1-norm
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optimization. We did an array of experiments to evaluate the dependencies of the hyper-parameters

on ℓ1-norm minimization.

All the experiments in this section use Sparse Centroid-Encoder on MNIST data set. This time

we use Adam to optimize the network parameters over mini-batches. We used one hidden layer

with 500 ReLU activation units with a learning rate and λ set to 0.01 and 0.0001, respectively. In

Figure 5.12, we present the result of the first experiment, where we show the effect of the size of

the mini-batch. The three columns (A, B, and C) show results for a specific choice of mini-batch,

i.e., 512, 1024, and 5000. For each column, the upper panel shows the position of the top 200

selected pixel, and the lower panel shows the absolute weight of the sparse layer in descending

order.

Figure 5.12: Effect of the size of mini-batch on ℓ1-norm minimization using SCE for three choices of mini-
batches- 512 in (A), 1024 in (B), and 5000 in (C). For each case, the upper panel shows the position of the
selected pixels in a 28 x 28 grid, and the lower panel presents the absolute weight of the sparse layer in
descending order.
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Minimizing the ℓ1-norm with smaller mini-batches (512) doesn’t induce sparsity. Surprisingly,

the ℓ1-norm of the sparse layer put higher weight on the pixels around the border, ignoring the

pixels in the center of the image. The model selects only 8 pixels (color teal) for mini bath 1024;

among them, four pixels reside at the image’s border. The position of the pixels and the sparsity

plot improves significantly for mini-batch size 5000, selecting around 300 pixels from the center

of the picture. Also, notice that the scale of the absolute weight increases with the size of the min-

batch. We saw similar observations while working with a hyperbolic tangent (’tanh’) activation

function, i.e., the relation between the mini-batch size and the sparsity doesn’t change if we switch

from ReLU to tanh.

Figure 5.13: Effect of λ on ℓ1-norm minimization using SCE for three values 0.01 in (A), 0.001 in (B), and
0.0001 in (C). For each case, the upper panel shows the position of the selected pixels in a 28 x 28 grid, and
the lower panel presents the absolute weight of the sparse layer in descending order.

Figure 5.13 shows the result of the second experiment where we study the effect of penalty

term λ for three different values 0.01 (panel A), 0.001 (panel B), and 0.0001 (panel C) for a fixed

mini-batch size of 5000 and learning rate of 0.01. We used one hidden layer of 500 ReLU units.
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Notice that the model didn’t promote sparsity for λ = 0.01, 0.001. The ℓ1-norm of the sparse layer

selects pixels from all over the image when λ = 0.01; in contrast, λ = 0.001 ignores the middle

of the images and picks pixels from the boundary. Interestingly, the selected pixels for λ = 0.001

form a circle. Clearly, these two values of λ won’t pick the most informative features from an

MNIST image. On the other hand, we see a sparser solution for λ = 0.0001, selecting around 325

features from the middle of the 28 x 28 grid. The position of the selected pixels also makes sense

as the digits lie in the center of the grid.

Figure 5.14: Effect of learning rate on ℓ1-norm minimization using SCE for three values 0.1 in (A), 0.01 in
(B), and 0.001 in (C). For each case, the upper panel shows the position of the selected pixels in a 28 x 28
grid, and the lower panel presents the absolute weight of the sparse layer in descending order.

In the last set of experiments of this section, we show the effect of the learning rate/step size

on the model’s sparsity for λ = 0.0001 and mini-batch size of 5000. Figure 5.14 shows the results.

For a relatively larger step size (0.1), the model didn’t induce sparsity, and a lot of selected pixels

(top 200) lie on the border of the image, suggesting the presence of noise. In contrast, the model
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produces sparse solutions for learning rates of 0.01 and 0.001. In both cases, the selected pixels

also reside in the middle of the image.

Stochastic optimizations have been successfully used in deep neural networks, especially for

image data classification, where feature selection is not the primary objective. To the best of

our knowledge, Scardapane et al. [7] and Li et al. [6] used ℓ1-norm in their work. But the au-

thors didn’t present a detailed analysis of sparsity in their work. Recently, Yamada et al. [10]

reported that the work of Scardapane et al. for feature selection didn’t promote sparsity on high-

dimensional biological data sets. Although, the authors didn’t investigate the reason. The in-depth

analysis of this Section reveals an essential aspect of stochastic optimization when minimizing the

ℓ1-norm. We have observed that the hyper-parameters of stochastic optimization play a crucial

role. Smaller minibatch size and higher λ don’t promote feature sparsity, and the selected features

perhaps contain noise. The learning rate also dictates the sparsity when other hyper-parameters are

kept constant. These challenges can be overcome by carefully tuning the hyper-parameters using a

validation set. So, in summary, minimizing ℓ1-norm using stochastic optimization is challenging;

and requires a careful selection of hyper-parameters to induce feature sparsity.

5.5 Application of SCE on High Dimensional Biological Data

set

The experimental results in Section 5.2 show the efficacy of SCE features on four bench-

marking data sets while comparing to other methods. These data sets have more samples than

the number of features. Now, we present applications of SCE on high-dimensional biological data

sets where the number of cases is much less than the number of features. To this end, we picked

three infectious disease data sets, namely Salmonella, and Ebola. In the following sections, we

present the data sets’ descriptions and experimental setups, and results.
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5.5.1 Feature Selection of Salmonella Data set

Here we analyzed the transcriptomic data (RNAseq) associated with the Collaborative Cross

Mice model of Salmonella. The data was collected by the biologists of the Texas A&M team to

investigate the mechanisms of tolerance to Salmonella. Samples were taken from the Liver and

Spleen of mice. Each instance is represented by a vector of 55471 elements(genes) that belong to

either tolerant, susceptible, or resistant class. With this data set, we ran four experiments to extract

discriminative features. We further validated the discriminatory power of the selected features

using classification on unseen data and visualization. Table 5.7 shows the sample statistics of the

data set.

Table 5.7: Number of samples in each class of Salmonella data.

Organ
Category

Tolerant Resistant Susceptible
Liver 75 57 72

Spleen 75 57 71

Experimental Setup: We ran the following experiments:

• Tolerant vs Resistant vs Susceptible using Liver Samples

• Tolerant vs Resistant vs Susceptible using Spleen Samples

• Tolerant vs Susceptible using Liver Samples

• Tolerant vs Susceptible using Spleen Samples

For each of these experiments, we use a separate test set, which was not used in the feature selection

process, to test the efficacy of the selected features. After the feature selection process, we trained

a model on the training set with the chosen features; then, we tested the model with the sequester

data set. To create the sequester test set, we split the original data set into training and test sets.

We took 80% of total samples from each class into the training set and the rest of 20% in the test
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set. Table 5.8 shows the count of samples of each class in training and test sets. We kept 10% of

training samples as a validation set to find the optimal number of features.

Table 5.8: Number of samples per class in training and test set for the three class problem.

Organ
Train Test

Tolerant Resistant Susceptible Tolerant Resistant Susceptible
Liver 60 45 57 15 12 15

Spleen 60 45 56 15 12 15

Results: In Table 5.9 we present the number of features extracted by SCE in each experiments.

Table 5.9: Number of features extracted by SCE for different classification experiments.

Experiment Organ No. of features
Tolerant vs Resistant vs Susceptible Liver 17
Tolerant vs Resistant vs Susceptible Spleen 27

Tolerant vs Susceptible Liver 9
Tolerant vs Susceptible Spleen 5

Once the feature extraction is done, we trained a Linear SVM model on the training set using

the extracted features. Then we predicted each test sample (test samples are represented with the

selected features) using the trained model and reported the balanced success rate in Table 5.10. In

two of the four cases, the selected features predicted the test samples with 100% accuracy, and in

the other two cases, the balanced success rate is over 95%. The high prediction accuracies prove

the efficacy of the selected features. The 100% accuracy on the tolerant vs. susceptible experiment

indicates a possible tolerant mechanism of the mice model.

We further support the high classification accuracy using the three-dimensional visualization

of PCA. Figure 5.15 shows the PCA embedding of the three classes of liver and spleen samples.

The projections were calculated using all the 55, 471 genes. The classes are not separable in the

3D PCA space.
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Table 5.10: BSR on test set for different classification experiments.

Experiment Organ BSR
Tolerant vs Resistant vs Susceptible Liver 95.56%
Tolerant vs Resistant vs Susceptible Spleen 97.78%

Tolerant vs Susceptible Liver 100.00%
Tolerant vs Susceptible Spleen 100.00%

Figure 5.15: Three dimensional PCA projection of liver and spleen samples using all 55471 features.

We calculated the PCA projection using the SCE features. In Figure 5.16 we present the three

dimensional projection of liver and spleen samples of training and test cases. The separation among

the three classes is readily visible, with some occasional overlap. The test samples are closely

mapped to the training data of the respective class. Note PCA is an unsupervised method, i.e.; it

doesn’t use the class label to build the projection. The separation among the tolerant, resistant,

and susceptible classes in PCA embedding emphasizes that SCE pulled the discriminative features

from the original gene set. The visualization also supports the high classification accuracy of the

test data.
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Figure 5.16: Three dimensional PCA projection of liver and spleen samples using 17 and 27 SCE features
respectively.

Figure 5.17 presents the three dimensional PCA plot of tolerant and susceptible classes us-

ing liver and spleen samples. The embedding was built using the top 9 and top 5 SCE features,

respectively. In both cases, there are two clusters for each class.

Figure 5.17: Three dimensional PCA projection of liver and spleen samples using 9 and 5 SCE features
respectively.
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The clusters of the liver samples are more dispersed than the spleen. This fact suggests that

the gene expression of spleen samples may give more information to understand Salmonella’s

tolerance mechanism. Again the separation in 3D space supports the high classification rate on the

test samples.

5.5.2 Feature Selection of Ebola Data set

We analyzed the second biological data set of Collaborative Cross (CC) mice data of Ebola

disease. The biologist of Columbia University compiled the data set where each sample in rep-

resented by 55, 471 genes. This data set has two groups, mock mice, which were not infected by

Ebola Virus, and the Ebola mice infected by the virus. Each mock and Ebola group has tolerant

and lethal mice. The tolerant group survived the infection, whereas the lethal group didn’t. As in

Salmonella data, the samples were collected from the tissues of the liver and spleen. Table 5.11

presents the sample count of each group.

Table 5.11: Number of samples per class for various combinations in Ebola data set.

Mock Ebola

Liver
Tolerant: 56 Tolerant: 53
Lethal: 38 Lethal: 35

Spleen
Tolerant: 51 Tolerant: 55
Lethal: 39 Lethal: 36

Experimental Setup: We ran the following experiments:

• Tolerant Mock vs Lethal Mock using Liver Samples

• Tolerant Mock vs Lethal Mock using Spleen Samples

• Tolerant Ebola vs Lethal Ebola using Liver Samples

• Tolerant Ebola vs Lethal Ebola using Spleen Samples

In each of these experiments, we partitioned the samples into training and test sets into 80:20

ratio. We further kept 10% of training samples as a validation set to find the optimal number of
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features. We ran feature selection using Sparse Centroid-Encoder (SCE) on the training set. The

feature selection step produced an ordered list of genes. We chose n = 1, 2, ... features from the

ranked gene list to train a linear SVM on the training set and monitor the accuracy of the validation

set. We stopped the process once the validation accuracy didn’t improve. Once we got the top

n features, we merged the training and validation set and built a linear SVM model with those

n features. At last, we used the trained model to predict the test samples. Table 5.12 shows the

partition of training and test samples.

Table 5.12: Number of samples per class in training and test set.

Organ
Training Test

Mock Ebola Mock Ebola

Liver
Tolerant: 44 Tolerant: 42 Tolerant: 12 Tolerant: 11
Lethal: 30 Lethal: 28 Lethal: 8 Lethal: 7

Spleen
Tolerant: 40 Tolerant: 44 Tolerant: 11 Tolerant: 11
Lethal: 31 Lethal: 28 Lethal: 8 Lethal: 8

Results: Now we present the results from a quantitative and qualitative perspective.

Table 5.13: Number of features extracted by SCE for different classification experiments on the Ebola data
set.

Experiment Organ No. of features
Tolerant Mock vs Lethal Mock Liver 6
Tolerant Mock vs Lethal Mock Spleen 11
Tolerant Ebola vs Lethal Ebola Liver 6
Tolerant Ebola vs Lethal Ebola Spleen 7

Table 5.14: BSR on test set for different classification experiments on the Ebola mice data set.

Experiment Organ BSR
Tolerant Mock vs Lethal Mock Liver 100.00%
Tolerant Mock vs Lethal Mock Spleen 100.00%
Tolerant Ebola vs Lethal Ebola Liver 100.00%
Tolerant Ebola vs Lethal Ebola Spleen 100.00%
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(a) Tolerant Mock vs Lethal Mock Liver (b) Tolerant Mock vs Lethal Mock Spleen

(c) Tolerant Ebola vs Lethal Ebola Liver (d) Tolerant Ebola vs Lethal Ebola Spleen

Figure 5.18: Three-dimensional PCA projection of Lethal and Mock samples of the four experiments. In
each of the cases, PCA is applied on the training data where each sample consists of the features selected by
sparse centroid-encoder as shown in Table 5.9. The first three eigenvectors were used to project the training
and test samples.

In Table 5.13 we show the number of optimum features selected by our model. Surprisingly,

the number of features for each experiment is considerably low, given the total number of features

in the data set is over 55,000. Our sparse model picked about 0.01% − 0.02% of total features

for the classification task. In table 5.14 we show the classification result for the four experiments.

Notice that the classification accuracies of the four experiments are 100% on the sequester test data.

To understand the high accuracies, we analyzed the features from a qualitative visual perspective.

Figure 5.18 shows the three-dimensional visualization of training and test samples of the four

experiments using PCA. The separation between the two classes is easily visible in all four cases.

Notice that the test samples are mapped close to the training, demonstrating the robustness of

selected features. The visual analysis using PCA further supports the high test accuracies.
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5.6 Comparison of SCE with Current State-of-the-art Methods

In this section, we compared SCE with recent state-of-the-art neural network-based techniques

on twelve data sets as shown in Table 5.15. We did two bench-marking experiments using these

data sets. We didn’t run SCE with the feature selection workflow for a fair comparison.

Table 5.15: Descriptions of the data sets used for benchmarking experiments.

Dataset No. Features No. of Classes No. of Samples Domain
ALLAML 7129 2 72 Biology
GLIOMA 4434 4 50 Biology

SMK_CAN 19993 2 187 Biology
Prostate_GE 5966 2 102 Biology

GLI_85 22283 2 85 Biology
GM12878 93 3 6468 Biology

Mice Protein 77 8 975 Biology
COIL20 1024 20 1440 Image

Isolet 617 26 7797 Speech
Human Activity 561 6 5744 Accelerometer Sensor

MNIST 784 10 70000 Image
FMNIST 784 10 70000 Image

In our first set of experiments, we compared SCE with LassoNet [9] and Stochastic Gate (STG)

[10] on six publicly data sets taken from different domains, including image (MNIST, Fashion

MNIST, COIL-20), speech (ISOLET), activity recognition (Human Activity Recognition Using

Smartphones), and a biological data set (Mice Protein data). These data sets have been used in

the literature for benchmarking [9, 105]. Following the experimental protocol of Lemhadri et

al., we randomly partitioned each data set into a 70:10:20 split of training, validation, and test

set. We normalized the training partition by subtracting the mean and dividing each feature by

its corresponding standard deviation. We used the mean and standard deviation of the training

to standardize the test samples. We used the training set for feature selection and the validation

set for hyperparameter tuning. After the feature selection, we used a one hidden layer neural

network classifier to predict the class label on the test set. We ran the classifier ten times (K = 10)

and presented the mean accuracy with standard deviation in Table 5.16. Apart from showing
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the accuracy with top-50 features, we also give classification results with an optimum number of

features selected using the validation set.

Table 5.16: Classification results using LassoNet, STG, and SCE features on six publicly available data
sets. The column ’#Centers for SCE’ denotes how many centroids per class are used to train SCE. Numbers
for LassoNet and STG are reported from [9] and [10] respectively. All the reported accuracies are measured
on the test set. NA means the result has not been reported.

Data set
Top 50 features #Centers All features

LassoNet STG SCE for SCE ANN
Mice Protein 95.8 NA 98.4 1 100.00

MNIST 87.3 91.0 93.8 3 97.60
FMNIST 80.0 NA 84.7 3 90.16
ISOLET 88.5 85.0 91.1 5 96.96
COIL-20 99.1 97.0 99.3 1 98.87
Activity 84.9 NA 89.4 4 92.81

As we can see from Table 5.16, the features of the Sparse Centroid-Encoder produce better

classification accuracy than LassoNet and STG in all the cases. Especially for Mice Protein, Ac-

tivity, Isolet, FMNIST, and MNIST, our model has better accuracy by 2.5%−4.5%. The results for

Stochastic Gates (STG) in [10] are not in a table form, but our eyeball comparison of classification

accuracy with the top 50 features on ISOLET, COIL20, and MNIST suggests that stochastic gate

is not more accurate than SCE. For example, using the top 50 features, STG obtains approximately

85% accuracy on ISOLET while SCE obtains 91.1%; STG obtains about 97% on COIL20 while

SCE obtains 99.3%; on the dataset, MNIST STG achieves approximately 91% while SCE 93.8%.

In this experiment, we ran SCE with multiple centroids per class and observed an improved pre-

diction rate than one center per class on Isolet, Activity, MNIST, and FMNIST. The observation

suggests that the classes are multi-modal, providing a piece of valuable information. The optimum

number of centers was picked using the validation set, see Figure 5.4.
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In Table 5.17 we present the comparison of SCE with FsNet [11] and supervised Concrete

Autoencoders (SCAE) [105]. These experiments comprise five high-dimensional real-world bio-

logical data sets available at ASU’s feature selection database11.

Table 5.17: Comparison of mean classification accuracy of FsNet, SCAE, and SCE features on five real-
world high-dimensional biological data sets. The prediction rates are averaged over twenty runs on the test
set. Numbers for FsNet and SCAE are being reported from [11].

Data set
Top 10 features Top 50 features All features

FsNet SCAE SCE FsNet SCAE SCE ANN
ALLAML 91.1 83.3 92.5 92.2 93.6 95.9 89.9

Prostate_GE 87.1 83.5 89.5 87.8 88.4 89.9 75.9
GLIOMA 62.4 58.4 63.2 62.4 60.4 69.0 70.3

SMK_CAN 69.5 68.0 68.6 64.1 66.7 69.4 65.7
GLI_85 87.4 88.4 84.1 79.5 82.2 85.5 79.5

Following the experimental protocol of Singh et al., we split each data set into a 50-50 ratio

of training and test partition. We ran our feature selection framework on the training set and then

predicted the test samples using the selected features. We repeated the experiment on each data

set 20 times and calculated the average accuracy, as shown in Table 5.17. Apart from the results

using a subset (10 and 50) of features, we also provide the prediction using all the features. In

most cases, feature selection helps improve classification performance. Generally, SCE features

perform better than SCAE and FsNet; out of the ten classification tasks, SCE produces the best

result on eight. Notice that the top fifty SCE features give a better prediction rate than the top ten

in all the cases. Interestingly, the accuracy of SCAE and FsNet drop significantly on SMK_CAN

and GLI_85 using the top fifty features.

11http://featureselection.asu.edu/datasets.php

103



5.7 Discussion and Conclusion

In this chapter, we presented Sparse Centroid-Encoder as an efficient feature selection tool for

binary and multi-class problems. The benchmarking results span thirteen diverse data sets and six

methods providing evidence that the features of SCE produce better generalization performance

than other state-of-the-art models. We compared SCE with FsNet, mainly designed for high-

dimensional biological data, and found that our proposed method outperformed it in most cases.

The comparison also includes Supervised CAE, which is not more accurate than SCE. On the data

sets, where the no. of observations are more than the no. of variables, SCE produces the best

classification results than LassoNet, Stochastic Gate, and DFS in each case. These experiments

involve image, speech, and accelerometer sensor data. Moreover, the survey of the sixteen SCE

genes of GM12878 indicates plausible biological significance. The empirical evaluation using

an array of diverse data sets establishes the value of the Sparse Centroid-Encoder as a nonlinear

feature detector.

We have also demonstrated that our feature selection algorithm often selected fewer features

than other models—the MNIST, Forest Cover experiments show this. These experiments include

the comparison to some neural network-based models where group-sparsity is applied for variable

selection. In addition to extracting the most robust features, the model shows the ability to discard

noisy features. On the Indian Pine data set, our model didn’t pick any of the water absorption

bands considered noisy.

Our model has the advantage over the class of linear techniques, where a binary feature se-

lection method is used as a multi-class method by one-against-one(OAO) or one-against-all(OAA)

class pairs. For example, Chepushtanova et al. used 16C2 = 120 binary class SSVM models on the

Indian Pine data set. Similarly, Lasso needed three models for the GM12878 data. These models

will suffer a combinatorial explosion when the number of classes increases. In contrast, SCE uses a

single model to extract features from a multi-class data set. The result of the Indian Pine data also

shows that the features of sparse centroid-encoder have more discriminatory signatures than the
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OAO SSVM model. We also showed empirically that the SCE features captured more statistical

variance than SSVM and WaLuMI features.

SCE compares favorably to the neural network-based model FsNet, SCAE DFS, LassoNet, and

STG, where samples are mapped to class labels. SCE employs multiple centroids to capture the

variability within a class, improving the prediction rate of unknown test samples. In particular,

the prediction rate on the ISOLET improved significantly from one centroid to multiple centroids

suggesting the speech classes are multi-modal. The two-dimensional PCA of ISOLET classes

further confirms the multi-modality of data. We also observed an enhanced classification rate on

MNIST, FMNIST, and Activity data with multiple centroids.

In contrast, single-center per class performed better for other data sets (e.g., COIL-20, Mice

Protein, GM12878, etc.). Hence, apart from producing an improved prediction rate using fea-

tures that capture intra-class variance, our model can provide extra information about whether the

data is unimodal or multi-modal. This aspect of sparse centroid-encoder distinguishes it from the

techniques which do not model the multi-modal nature of the data.
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Chapter 6

Principal Centroid Component Analysis

Let X ∈ R
d×n is the data matrix where n is the total number of samples and d is the dimension

of each sample xi ∈ R
d. Assume X has M classes {Cj}Mj=1 where the set of pattern indices of

class Cj is denoted by Ij . We define centroid of each class as

cj =
1

|Cj|
∑

i∈Ij

xi (6.1)

where |Cj| is the cardinality of class Cj . Define a matrix C̃ ∈ R
d×n which contains the correspond-

ing c′js for each sample xi. Note C̃ will have non-unique entries. For example, consider the data

set X = {x1, x2, x3, x4, x5} which has two classes, say, C1, C2 where I1 = {1, 3, 5} ; I2 = {2, 4}

and c1, c2 are the corresponding centroids. In this case C̃ = {c1, c2, c1, c2, c1}. With this set up, we

present the formulation of Principal Centroid Component Analysis (PCCA).

6.1 Formulation

Given the transformation vector a ∈ R
d, consider the following optimization problem

minimize
a

‖C̃ − aaTX‖2F

subject to aTa = 1

(6.2)

The Lagrangian of Equation (6.2) is

L(a, λ) = ‖C̃ − aaTX‖2F − λ(aTa− 1) (6.3)
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where λ is the Lagrangian multiplier. Notice that, setting ∂L
∂λ

= 0 implies aTa = 1. Further

simplifying the equation 6.3,

L = Tr[(C̃ − aaTX)T (C̃ − aaTX)]− λ(aTa− 1) (6.4)

L = Tr(C̃T C̃)− Tr(C̃TaaTX)− Tr(XTaaT C̃) + Tr(XTaaTaaTX)− λ(aTa− 1) (6.5)

L = Tr(C̃T C̃)− Tr(C̃TaaTX)− Tr(XTaaT C̃) + (aTa)Tr(XTaaTX)− λ(aTa− 1) (6.6)

Note that, Tr(C̃TaaTX) = Tr(aTXC̃Ta), Tr(XTaaT C̃) = Tr(aT C̃XTa), and

Tr(XTaaTX) = Tr(aTXXTa). Using these equalities, we get

L = Tr(C̃T C̃)− Tr(aTXC̃Ta)− Tr(aT C̃XTa) + (aTa)Tr(aTXXTa)− λ(aTa− 1) (6.7)

L = C̃T C̃ − aT X̃C̃Ta− aT C̃XTa + (aTa)(aTXXTa)− λ(aTa− 1) (6.8)

Taking the derivative of Equation 6.8 w.r.t. a and setting it to 0,

∂L
∂a

= −2XC̃Ta− 2C̃XTa + 2(aTa)XXTa + 2(aTXXTa)a− 2λa = 0 (6.9)

Using aTa = 1, we get,

−XC̃Ta− C̃XTa +XXTa + (aTXXTa)a− λa = 0 (6.10)
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Rearrenging terms,

(XXT −XC̃T − C̃XT )a = (λ− aTXXTa)a (6.11)

Setting µ = (λ− aTXXTa)

(XXT −XC̃T − C̃XT )a = µa (6.12)

Given, (XXT −XC̃T − C̃XT ) is symmetric the solution of Equation 6.12 can be found by eigen-

decomposition of (XXT − XC̃T − C̃XT ). This optimization is similar to Principle Component

Analysis [24], except that the principle directions are governed by the pre-computed centroids of

the data set.

To solve for the second projection direction b we require,

minimize
a

‖C̃ − bbTX‖2F

subject to bTb = 1 bTa = 0

(6.13)

The Lagrangian of the above constraint optimization is

L = ‖C̃ − bbTX‖2F − α(bTb− 1)− β(bTa) (6.14)

where α and β are the Lagrangian multipliers. Taking the partial derivative of Equation 6.14 w.r.t.

b and setting it to 0,

∂L
∂b

= 2(XXT −XC̃T − C̃XT )b− 2αb− βa = 0 (6.15)

Hitting the Equation 6.15 by aT and using aTa = 1,

2aT (XXT −XC̃T − C̃XT )b− 2αaTb− β = 0 (6.16)
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From Equation 6.12, it’s easy to verify that aT (XXT −XC̃T − C̃XT ) = µaT . Using these results,

2µaTb− 2αaTb− β = 0 =⇒ β = 0 (6.17)

Using β = 0 in Equation6.15 we get,

(XXT −XC̃T − C̃XT )b− αb = 0

(XXT −XC̃T − C̃XT )b = αb

(6.18)

We see that b is the second eigenvector of the symmetric matrix (XXT −XC̃T − C̃XT ) and from

the constraint b is orthogonal to a.
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Figure 6.1: The geometric intuition of the PCCA algorithm using toy data. In panel (a), we used an arbitrary
line to compute the cost in Equation6.2. The original samples were reconstructed using the line, and then
the distances from the corresponding class centroid were denoted using the black lines. On the other hand,
panel (b) shows the reconstruction of all the samples using the PCCA solution and the distances from the
corresponding class centroids. Notice that the sum of the distances (d1, ..., d6) using PCCA is less than
using an arbitrary line; PCCA explicitly searches for a line that minimizes the sum of the distances.

6.1.1 Relation Between the Eigenvalue and the Objective

Hitting both side of equation 6.12 by aT ,

aT (XXT −XC̃T − C̃XT )a = aTµa (6.19)

aT (XXT −XC̃T − C̃XT )a = µ (6.20)

aTXXTa− aTXC̃Ta− aT C̃XTa = µ (6.21)

Tr(XXTaaT )− Tr(XC̃TaaT )− Tr(C̃XTaaT ) = µ (6.22)
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Now adding Tr(C̃T C̃) to the both side of Equation 6.22

Tr(C̃T C̃) + Tr(XXTaaT )− Tr(XC̃TaaT )− Tr(C̃XTaaT ) = µ+ Tr(C̃T C̃) (6.23)

Tr(C̃T C̃)− Tr(C̃TaaTX)− Tr(XTaaT C̃) + Tr(XTaaTX) = µ+ Tr(C̃T C̃) (6.24)

Tr(C̃T C̃)− Tr(C̃TaaTX)− Tr(XTaaT C̃) + Tr(XTaaTaaTX) = λ+ Tr(C̃T C̃) (6.25)

Using the linearity property of trace,

Tr(C̃T C̃ − C̃TaaTX −XTaaT C̃ +XTaaTaaTX) = µ+ Tr(C̃T C̃) (6.26)

Tr(C̃T C̃ − C̃TaaTX −XTaaT C̃ +XTaaTaaTX) = λ+ Tr(C̃T C̃) (6.27)

Tr[(C̃ − aaTX)T (C̃ − aaTX)] = µ+ Tr(C̃T C̃) (6.28)

‖C̃ − aaTX‖2F = µ+ Tr(C̃T C̃) (6.29)

The above equation establishes the relationship between the cost of the objective and the eigen-

value.

In Figure 6.2, we demonstrated it visually. Equation 6.29 explains higher value of cost com-

pared to the eigenvalue. Note that the centroid reconstruction cost with the first eigenvector, which
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Figure 6.2: We show how the one-dimensional reconstruction cost (Equation 6.2) changes for each eigen-
vector along with the corresponding eigenvalue. The experiment is run using MNIST digits 4 and 9.

has the smallest eigenvalue, is also the smallest. The eigenvector associated with the largest eigen-

value produces the highest reconstruction cost.

6.1.2 Connection with PCA

PCA can be derived from the reconstruction perspective as follows,

minimize
a

‖X − aaTX‖2F

subject to aTa = 1

(6.30)

where a is the transformation vector. Comparing equation 6.30 with 6.2 we can say PCA recon-

structs each samples, whereas PCCA reconstructs the centroid of a class. As PCCA uses the class

labels to calculate the centroids, hence it can be thought of as supervised PCA.
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Figure 6.3: Comparison of PCA and PCCA solution on toy data.

6.1.3 Connection with Centroid-Encoder

The nonlinear mapping of centroid-encoder (CE) [142] is defined as,

minimize
θ

M∑

j=1

∑

i∈Ij

‖cj − f(xi; θ))‖22 (6.31)

where f(·) = h(g(·)), composition of dimension reducing encoder mapping g followed by a

dimension increasing decoder mapping h with θ being the parameter set for the mapping function.

Both PCCA and CE reconstruct a class-centroid from the samples belonging to that class, but

unlike CE, PCCA incorporates a linear mapping with orthogonality constraints. Hence PCCA can

be thought of as a linear counterpart of CE.

6.2 Visualization and Classification Results

We present some visualization and classification experiments on five real-world data: USPS,

MNIST, Human Activity, Mice Protein, and Arcene. These data sets have been used in the liter-
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ature for benchmarking [9, 143]. We compare our method with PCA and a supervised version of

PCA (SPCA) [50]. The comparison is made using a 5-NN classifier on reduced 2D space. We

split each data set into a ratio of 80:20 of training and test partition, except for MNIST, which has

a separate test set. After fitting all three models using the training set, we project the training and

test samples using the first two eigenvectors; and then predict the test cases using a 5-NN classifier.

We repeat the process 25 times and report the average accuracy with standard deviation.

Figure 6.4: Comparison of PCCA(a) and PCA(b) projection on MNIST digits 4,7, and 9.

Before analyzing the results, we show the visualization on MNIST digits 4, 7, and 9 in Figure

6.4. These three digits are not separable in two-dimensional PCA space, and we want to verify

whether PCCA can produce better visualization. In panel (a), we present the 2D PCCA projection.

The three test classes are clearly separated, creating three blobs for each category.

Now we turn our attention to the low-dimensional classification results comparing PCCA, PCA,

and SPCA as presented in Table6.1. Not surprisingly, the PCCA and SPCA perform better than
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Table 6.1: Classification accuracies (%) of 5-NN classifier on the 2D embedded data by various dimension-
ality reduction techniques.

Dataset
Model

PCCA PCA SPCA
USPS 55.64 ± 0.95 39.54± 0.85 46.27± 0.93

MNIST 45.74 ± 0.00 42.43± 0.00 44.17± 0.00
Activity 65.20 ± 0.87 51.83± 1.46 63.26± 1.26

Mice Protein 66.17 ± 2.83 44.91± 2.82 51.54± 3.59
Arcene 85.37 ± 5.02 65.59± 8.09 63.71± 7.91

PCA, which doesn’t use the label. Note, on Arcene, the accuracy of PCA is better than SPCA. Our

model provides the best 5-NN accuracy across all the data sets. The standard deviation on MNIST

is 0 for all the models, which is not surprising as MNIST has a fixed training and test partition.

6.3 Conclusions

This chapter presented a linear formulation for Centroid-Encoder, called Principle Centroid

Component Analysis (PCCA). Unlike the iterative method of Centroid-Encoder, PCCA has a

closed-form solution using eigendecomposition. Both CE and PCCA are nonconvex, but the so-

lution of PCCA can be ordered on the eigenvalues. We have shown the connection between the

eigenvalues and the PCCA cost. The proposed optimization of PCCA has similarities to PCA;

where PCA reconstructs each sample using a linear transformation, PCCA reconstructs the cor-

responding centroid using the class labels. We have compared our method with standard PCA

and a supervised PCA, and the experimental results favor our approach. The current formulation

of PCCA doesn’t employ any repulsive force on the nearby classes to push them apart; thus, if

two classes are close in ambient space, PCCA will keep them close in reduced space, increasing

misclassification. In the future, we will explore these limitations.
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Chapter 7

Centroid Component Retrieval

This chapter presents a supervised dimensionality reduction technique called Centroid Compo-

nent Retrieval (CCR). Unlike Centroid-Encoder, CCR is convex and uses a linear transformation.

The proposed model optimizes a multi-objective cost function by balancing two complementary

terms. The first term pulls the samples of a class towards its centroid by minimizing a sample’s

distance from its class centroid in low dimensional space. The second term pushes the classes far

apart by maximizing the scattering volume via the logarithm of the determinant (log det) of the

outer product matrix formed by the class-centroids in embedded space. Using the negative of the

log det, we pose the final cost as a minimization problem, which balances the two terms. Although

the design principle of the proposed model is similar to LDA (Linear Discriminant Analysis), un-

like multi-class LDA, CCR is convex. We have also presented an initialization technique using

eigendecomposition, which allows faster convergence of CCR. Our experimental results show that

CCR has a performance advantage over LDA on several high-dimensional data sets, including,

COIL20, Yale Faces, and ORL.

7.1 Problem Formulation

Let X ∈ R
d×n be the data matrix where n is the total number of samples and d is the dimension

of each sample xi ∈ R
d. Assume X has M classes {Cj}Mj=1 where the set of sample indices

associated with class Cj is denoted by Ij . We define centroid of each class as

cj =
1

|Cj|
∑

i∈Ij

xi (7.1)

where |Cj| is the cardinality of class Cj . Define a matrix C̃ ∈ R
d×n which contains the correspond-

ing c′js for each sample xi. Note C̃ will generally have non-unique entries. Define another matrix

Ĉ which only contains the unique centroids c′js of each class. More precisely, each column of Ĉ is
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a distinct centroid cj . For example, consider the data set X = {x1, x2, x3, x4, x5} which has two

classes, say, C1, C2 where I1 = {1, 3, 5} ; I2 = {2, 4} and c1, c2 are the corresponding centroids.

In this case C̃ = {c1, c2, c1, c2, c1} and Ĉ = {c1, c2}. Under this set up we seek a transformation

matrix A ∈ R
d×p to achieve the following two goals in the reduced space:

• each point should be mapped approximately to its class centroid

• the centroids should be maximally scattered in the reduced space

To achieve the first goal we minimize the quantity ‖AT (C̃ −X)‖2F where ‖.‖F denotes the Frobe-

nius norm. Minimizing this quantity will map each sample xi ∈ Cj close to its corresponding

class centroid cj in the reduced space. It is useful to use the fact ‖AT (C̃ − X)‖2F = Tr[(C̃ −

X)(C̃ −X)TAAT ]. To achieve the second goal, we maximize log det(AT Ĉ(AT Ĉ)T + γI) where

γ is small positive number (in our experiments we keep this value very small). The quantity

det(AT Ĉ(AT Ĉ)T ) gives the square of the scattering volume of the hyper-ellipsoidal formed by

the low dimensional centroids [144]. Maximizing this volume will scatter the centroids maximally

in low dimensions. Taken together, we are proposing the following minimization problem over the

transformation matrix A:

minimize
A

Tr[(C̃ −X)(C̃ −X)TAAT ]

−λ log det(AT ĈĈTA+ γI)

(7.2)

where λ is a positive quantity which is used to balance the two terms. The crucial property of this

multi-objective optimization is that it’s a convex function of the matrix A.

7.2 Proof of Convexity

We write the original objective as a sum to two parts, L(A) = L1(A) + λL2(A) where

L1 = Tr[(C̃ −X)(C̃ −X)TAAT ]

L2 = − log det(AT Ĉ(AT Ĉ)T + γI)
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First, observe that the domain, the set of d × p matrices, is a convex set. Now we will show that

L1 is convex. Differentiating L1 w.r.t. A gives

∆L1 = 2(C̃ −X)(C̃ −X)TA (7.3)

Differentiating again

∆2L1 = 2(C̃ −X)(C̃ −X)T (7.4)

Observe that the Hessian of L1 is the sample co-variance matrix therefore it’s positive semidefinite.

Hence by the second-order condition of convexity [45], L1 is a convex function.

Now we show L2 = − log det(AT ĈĈTA + γI) is convex. Observe that the matrix M =

(AT ĈĈTA + γI) is a positive definite matrix when γ > 0. Consider the value of L2 on an

arbitrary line segment given by M = P + tQ where P and Q are positive definite matrices. Note

that the domain of positive definite matrices is also convex. Now define a function g as

g(t) = − log det(P + tQ) (7.5)

As P is positive definite, we can write P = P 1/2P 1/2 where P 1/2 is also positive definite. Hence

we can write,

g(t) = − log det(P 1/2(I + tP−1/2QP−1/2)P 1/2) (7.6)

Using the fact det(AB) = detA detB and the properties of logarithms we conclude

g(t) = − log detP − log det(I + tP−1/2QP−1/2) (7.7)
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The det(I + tP−1/2QP−1/2) is the product of the eigenvalues of (I + tP−1/2QP−1/2). Let

σ1, σ2, ..., σn are the eigenvalues of tP−1/2QP−1/2. Hence,

g(t) = − log detP − log
n∏

i=1

(1 + tσi) (7.8)

g(t) = − log detP −
n∑

i=1

log(1 + tσi) (7.9)

Differentiating w.r.t. t twice gives

∆2g(t) =
n∑

i=1

σi
2

1 + tσi
2 ≥ 0

Since g is convex we concludeL2 is convex. So the cost is a summation of two convex functions

over a convex set, hence it’s also convex function12.

7.3 Calculation of Gradient

The gradient of the cost function Equation 7.2 is given by

∂L
∂A

= 2(C̃ −X)(C̃ −X)TA− 2λ(ĈĈTA)(AT ĈĈTA+ γI)−1 (7.10)

7.4 Initialization Techniques

The model parameters which are the elements of matrix A can be initialized in two ways.

First, we used a uniform random distribution from the range (−1/√p,+1/
√
p) to initialize the

matrix A.

Alternatively, we may solve an eigenvector problem and use the solution to initialize the matrix

A. Consider the set up of the problem described at the beginning of chapter 7 where X ∈ R
d×n

is the data matrix with n samples and M classes, cj is the centroid of each class, and the matrix

C̃ ∈ R
d×n contains the centroids cj corresponding to each sample xi. We seek a transformation

12The sum of two convex functions is also convex [45]
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vector a that solves

minimize
a

‖aT C̃ − aTX‖22

subject to aTa = 1

(7.11)

The Lagrangian of Equation (7.11) is

L = ‖aT C̃ − aTX‖22 − β(aTa− 1) (7.12)

where β is the Lagrangian multiplier. After differentiation of the Lagrangian we conclude that

(C̃ −X)(C̃ −X)Ta = βa (7.13)

As (C̃−X)(C̃−X)T is symmetric, the solution can be obtained from the eigen decomposition of

the matrix (C̃ −X)(C̃ −X)T . This optimization is similar to Principle Component Analysis [24],

except that the principle directions are governed by the pre-computed centroids of the data set.

After initializing the the model by the solution (eigenvectors) of the optimization in Equation 7.11,

we fine tune the model using the gradient as shown in Equation 7.10. Note that in the fine tuning

step the orthogonality constraint is not obeyed anymore.

7.5 Experiments to Analyze the CCR Model

In this section we describe the details of our numerical experiments.

7.5.1 Experiment to analyze the effect of Lambda

The CCR model requires the tuning of the hyper parameter λ which is used to control the

separation between the classes. A bigger value will make the classes more separated compared

to a smaller one. To demonstrate this we conducted experiment with the following values of λ:

0.1, 1.0, 10.0, 100.0 on a subset of MNIST. We took all the samples from digit class 0, 1 and 2 and

trained the CCR to get a two-dimensional representation of each sample. Then we calculated the
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Hausdorff distances (dh(A,B) = max
a∈A

min
b∈B

dist(a, b) where A,B are two non− empty sets)

of each pair of classes and present the result in Table 7.1.

Table 7.1: The effect of λ on a subset of MNIST. The 3-dimensional data is represented in 2D by CCR
model3. Hausdorff distances among the class pairs are measured for each value of λ.

Hausdorff Dist. λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0
Digit 0 vs Digit 1 10.9114 13.4852 17.9494 44.3374
Digit 1 vs Digit 0 0.5410 1.6782 5.2770 16.6911
Digit 0 vs Digit 2 9.6558 11.7688 11.9953 28.9347
Digit 2 vs Digit 0 343.7246 473.9643 475.3801 498.0760
Digit 1 vs Digit 2 0.4137 1.3104 4.1407 13.0951
Digit 2 vs Digit 1 353.1745 485.9086 483.7695 503.1173

It’s clear that as the value of λ increases the Hausdorff distances also increases thus increasing

the class separation.

7.5.2 Trade-off of the Optimization

The experiments in Section 7.5.1 demonstrates that the class separation increases with the

increase of λ. But increasing λ will also increase the scatter of each classes. The explanation

lies in the objective function. The term L1 brings the samples of a class near to its centroid while

L2 serves to increase the separation among the classes. As we increase λ the gradient of the

second part of the objective function will start to dominate and the model will focus more on class-

separation. As a result the scatter of each class will start to increase. To examine this further we ran

an experiment on a subset of MNIST data as mentioned in Section 7.5.1. To objectively quantify

the class-scatter and class-separation, we define two measures. The scatter of a class Cj is defined

as :

CS =
1

|Cj|
∑

i∈Ij

dist(cj, xi) (7.14)
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Now we define the Mean Set Distance (MSD) to measure the separation among two class C1 and

C2

MSD =
1

|C1|
∑

i∈I1

1

|C2|
∑

j∈I2

dist(xi, xj) (7.15)

In Table 7.2 we present the CR score for each digit class over different values of λ. Higher values

of λ increase the scatter. We also observe in Table 7.3 that increasing λ also increases the pair-wise

class separation.

Table 7.2: The effect of λ on class-scatter on a subset of MNIST digits. First, the 784 dimensional data is
represented in 2D by CCR model. After that the CR and MSD are measured on 2D space.

Class Scatter λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0
Digit 0 2.8746 4.0491 6.6547 11.7280
Digit 1 5.0957 9.0666 16.1205 28.6672
Digit 2 13.1986 15.5978 18.2859 27.1962

Table 7.3: The effect of λ on class-separation on a subset of MNIST digits. First, the 784 dimensional data
is represented in 2D by CCR model. After that the CR and MSD are measured on 2D space.

Class Separation λ = 0.1 λ = 1.0 λ = 10.0 λ = 100.0
Digit 0 vs Digit 1 1.2339 2.1895 3.8876 6.9136
Digit 0 vs Digit 2 1.1300 1.9907 3.5181 6.2386
Digit 1 vs Digit 2 1.0188 1.7988 3.1827 5.6430

We have also plotted the sub-costs L1 and L2 for different values of λ in Figure 7.1. We see

that the sub-cost L1 increases as we increase the value of λ. Increase of L1 means that the samples

of a class are not tightly clustered, which is not desirable. On the other hand we observe that L2

decreases as we increase λ. The reduction of L2 indicates that the classes are being separated as

we expect. This is the trade-off of the model. So the λ balances the two terms. For the purposes of

supervised visualization, we can pick the value of λ which will produce low generalization error

(e.g. k-NN error on embedding space) on a validation set.
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Figure 7.1: Plot of L1 and L2 across λ.

7.5.3 Comparison between Random vs Deterministic Initialization

In Section 7.4 we mentioned two types of initialization. As the optimization is convex, the

choice of the initialization is not critical since the algorithm converges to the final solution. How-

ever, we found that random initialization may take a long time to converge. To this end, we ran

an experiment on a subset of MNIST (only considering digit class 0,1, and 2) with both types of

initialization. We train the model to project the data on 2D space. The training was done until the

absolute difference of the cost of two consecutive iteration reaches the threshold of 10−6. For each

type of initialization, we repeat the process ten times. The random initialization took about 208

iteration to converge, whereas the deterministic one reaches the optimum with just 94 iteration.

7.6 Classification and Visualization Experiments

In this section we describe the low dimensional classification and visualization experiments.
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7.6.1 Data Sets

Here we provide a brief description the data sets used in the bench-marking experiments.

MNIST Digits: This is widely used collection of digital images of handwritten digits (0..9)13 with

separate training (60,000 samples) and test set (10,000 samples). Each sample is a grey level image

consisting of 1 byte pixels normalized to fit into a 28 x 28 bounding box resulting in vecced points

in R
784.

USPS Data: A data set of handwritten digits (0 . . . 9)14, where each element is a 16x16 image in

gray-scale resulting in vecced points in R
256. Each of the ten classes has 1100 digits for a total of

11,000 digits.

Iris Data: The UCI Iris data set is comprised of three classes and is widely used in the Machine

Learning literature. Each class has 50 samples and each sample has four features.

Wine: This data set contains 178 samples across three types of wines. Each samples is a 13 di-

mensional vector. It’s available in UCI repository.

Ionosphere (Ion): The data was collected to detect structure of ionosphere using radar signal.

There are 351 samples divided into two classes, ’good’ and ’bad’; and each sample is represented

by a 34 dimensional vector. The data is also available in UCI repository.

Balance Scale: The data was collected to conduct psychological experiment by measuring four

attributes. A total of 625 samples were put together which were spread across three classes: bal-

anced, left and right and it’s available in UCI repository.

Sonar: This UCI data set has two classes: mine and rock. Each sample is represented by a 60

dimensional vector. The mine class has 111 patterns whereas rock has 97 samples.

Yale Face: The data set contains 165 gray scale images of 15 individuals15. Images were taken

under different lighting condition, facial expression and with/without glass. Original images are

cropped to fit into a square box of size 32 × 32 which is represented by a R
1024 dimensional vec-

13The data set is available at http://yann.lecun.com/exdb/mnist/index.html

14The data set is available at https://cs.nyu.edu/ roweis/data.html

15For details see http://vision.ucsd.edu/content/yale-face-database
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ORL: The data set contains 400 face images (32 x 32) from 40 subjects, and each subject repre-

sents a class that includes ten images in grayscale. Some pictures have different facial expressions

(e.g., open/closed eyes, smiling / not smiling) and facial details (glasses / no glasses). Images were

taken with a dark background with the subjects in an upright, frontal position. The data set can be

found here: The data set is available at https://jundongl.github.io/scikit-feature/datasets.html.

COIL20: The data set is a collection of 32x32 grayscale images from 20 toy objects (e.g., car,

duck, cup, box, etc.). Pictures were taken 5 degrees apart for each object, resulting in 72 (360/5)

images for each class. The data set is available at https://jundongl.github.io/scikit-feature/datasets.html.

7.6.2 Supervised Models

With these data sets, we compare our model with the following supervised models:

• Linear Discriminant Analysis (LDA) [27]

• Neighborhood Component Analysis (NCA) [145]

• Maximally Collapsing Metric Learning (MCML) [67]

• Supervised PCA (SPCA) [50]

Apart from our own model, we have also implemented NCA and SPCA in Python. We used the

package pyDML [146] to run LDA and MCML.

7.6.3 Generalization Performance

Given we are comparing supervised methods, we restrict our attention to the generalization

performance as measured by a test data set. To this end we calculated the class prediction accuracy

as defined below:

Accuracy (%) =
100

N

N∑

i=1

I[li = f(x̃i)] (7.16)

16A processed version is available at http://www.cad.zju.edu.cn/home/dengcai/Data/FaceData.html
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Here N is total number of test samples, li is the true label of the ith test sample, and f is a

classification function which returns the predicted label of the embedded test sample x̃i. Here I

denotes the indicator function, which has the value 1 if the argument is true (label correct), and 0

otherwise (label incorrect).

Experiment 1

For the first experiment we used data sets where number of samples are greater than the sample-

dimension. In this bench-marking experiment, we split each data set into a separate training and

test set by a ratio of 80:20 (except for MNIST as it has separate training and test sets), and then

trained each model on the training set17. Then we used the trained model to represent both the

training and test samples into low dimensional space (2D). After that, we used k−NN (k=5) clas-

sifier to calculate the accuracy on test data in low dimensional space. We repeat the process 25

times and present the average test accuracy with standard deviation in Table 7.4.

Table 7.4: Classification accuracies (%) of 5-NN classifier on the 2D embedded data by various dimension-
ality reduction techniques. We don’t have the result on MNIST and USPS for MCML as it was taking too
long to complete.

Dataset
Model

CCR NCA MCML LDA SPCA
Balance 90.83± 1.96 90.88± 1.86 88.57± 3.89 89.43± 2.56 89.97± 2.26

Ion 85.92± 3.47 85.96± 1.95 84.85± 3.97 84.79± 3.33 82.99± 4.12
Wine 99.14 ± 1.47 96.51± 2.57 93.30± 4.78 98.59± 2.18 71.27± 4.91
Iris 97.07 ± 2.55 96.18± 2.70 98.00± 2.83 96.67± 3.40 94.93± 2.22

Sonar 74.79± 5.33 75.94± 5.34 68.93± 5.42 73.12± 6.58 67.88± 7.06
USPS 65.42 ± 0.94 59.09± 4.93 64.87± 0.56 46.27± 0.93

MNIST 53.72± 0.00 55.08± 5.59 52.31± 0.00 44.17± 0.00

In all of the cases CCR outperforms SPCA, particularly in Wine, Sonar, USPS and MNIST.

CCR also outperforms MCML in most of the data sets, especially in Sonar. We note that for

relatively bigger data sets, e.g. USPS and MNIST, we didn’t get the results for MCML as they

17A 5-fold internal cross-validation on the training set is used to find the optimal λ for CCR.

126



were taking too long to finish. The performance of LDA and CCR is almost identical except for

the the data sets USPS and MNIST. On USPS data set, CCR performed slightly better in 5-NN

classification by a margin of 0.55%. On the MNIST set, the generalization performance of CCR

is better than LDA by a margin of 1.41%. It’s noteworthy that the variance of the classification

result for LDA, CCR and SPCA is 0 as these are deterministic models so the solution is fixed

for the fixed MNIST training set. Now we compare our model with NCA which is a non-convex

optimization problem. NCA produced better classification performance in Balance, Ion, Sonar and

MNIST data whereas CCR did better on Wine, Iris and USPS data. It’s noteworthy that in USPS,

CCR outperforms NCA by a margin of 6.33%. In each of these cases the variance of the result is

higher in NCA compared to CCR. Similar to USPS, NCA has higher variance in MNIST as well.

The higher variances suggest that the model often stuck to a poor local minimum in training.

Table 7.5 presents the average training time taken by each model on seven data sets. We used

an "HP-Z440-XeonE5-1650v4" machine with 6x3.6 GHz processor and 32 Gb RAM. Amongst

all the models, MCML is the slowest. We don’t have the average training time for MCML on

USPS and MNIST data as the model took too long to finish. After MCML, NCA is the second

slowest model. In Balance, Ion, and Wine, SPCA took longer time to train than CCR and LDA,

whereas, in Iris, Sonar, USPS, and MNIST, CCR took more time than SPCA LDA. Among all

the models, LDA turns out to be the fastest algorithm. SPCA, LDA are methods that depend on

eigendecomposition; the package we used uses fast code for that. That’s why we see the relatively

quicker training time for those two methods. The models NCA and MCML are slower because

both require the pair-wise distance calculation, which prohibits them from scaling up as the data

set size increases.

Now we show the visualization of two dimensional embedding of CCR on Wine, Iris, Ion

and USPS sets. The clustering of the three classes in Wine (Figure 7.2) and Iris (Figure 7.3) is

prominent which supports the high classification accuracy of these two data sets in two dimensional

space.
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Table 7.5: Average training time in seconds for each model on different data sets. We don’t have the time
for MCML on USPS and MNIST data as the model was taking too long to finish.

Dataset
Average Training Time

CCR NCA MCML LDA SPCA
Balance 0.02571 2.08642 189.91499 0.00177 0.08842

Ion 0.02572 0.31745 53.39456 0.00674 0.02905
Wine 0.00685 0.10010 14.82072 0.00111 0.00723
Iris 0.00647 0.37909 4.91297 0.00093 0.00494

Sonar 0.10282 0.23940 18.05541 0.00220 0.01066
USPS 26.36772 862.40248 0.22244 16.97416

MNIST 1330.10100 121644.25098 5.30934 909.81591

Figure 7.2: Two dimensional plot of Wine samples training and test digits using CCR.

Figure 7.3: Two dimensional plot of training and test samples of Iris data set using CCR.
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We present the visualization of Ion in Figure 7.4. The ’Bad’ samples are tightly clustered

whereas the ’Good’ ones are scattered a lot. There is some overlap between the two classes which

affects the classification accuracy in 2D space. At last the USPS data is shown in Figure 7.5.

Figure 7.4: Two dimensional plot of training and test samples of Ionosphere data set using CCR.

The digit classes ’3’, ’8’ and ’6’ are clustered at the left in both training and test set. Perhaps

the similarities among these digits are making them neighbors in 2D space. Digits ’5’ and ’9’ are

placed at the top right corner. There is a lot of overlap among the classes ’7’, ’4’, ’2’ and ’1’. Digit

’0’ is put next to the digits ’3’, ’8’ and away from digit ’1’ which is dissimilar to ’0’.

Figure 7.5: Two dimensional plot of USPS training and test digits by CCR.
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Experiment 2

We did our last classification experiment with three high dimensional data sets Yale Face,

ORL, and COIL20. Our goal is to compare the models by performing classification on different

Figure 7.6: Classification accuracy of different DR methods on (a) Yale Face (b) ORL and (c) COIL20 data
sets. Classification is performed on 5, 10, 15 and 20 dimensional embedding space. As Yale Face has 15
classes so the maximum embedding dimension for LDA is 14 (#class− 1).

embedding dimensions 5, 10, 15, and 20. We split each dataset into training and test sets by taking

50% random samples from each class into the training set and the rest into the test set. After that,

we trained each model on the training set and projected the training and test cases on different

embedding dimensions to run a 5−NN classification to measure the accuracy of the test set. We

repeated the steps 25 times and reported the average test accuracy. In Figure 7.6 we plotted the
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test accuracy across the embedding dimensions for the three data sets. We see that in each model,

the accuracy increases with the increase of the projection dimension across the three data sets. In

Yale Face and ORL data, CCR outperformed all the models across different projection dimensions.

In the COIL20 data, the performance of our model is comparable to SPCA. The high accuracy of

CCR in most cases can be attributed to the class separation L2 terms in the optimization. The

models SPCA and NCA learn an embedding by keeping the samples of a class close together.

These two models don’t have any mechanism to push the classes from each other. Therefore if two

classes are close in ambient space, SPCA and NCA won’t make any effort to separate them in low

dimensional space; and as a result, the k-NN classification will suffer. On the other hand, LDA

incorporates class separation by maximizing the volume of the between-class scatter matrix along

with minimizing the within-class scatter. Although for high dimensional data sets, the within-class

scatter matrix becomes singular, which deteriorates the performance of LDA [51]. Please note that

CCR won’t suffer from the matrix singularity problem; see Section 7.7 for more details.

7.7 Difference between CCR and LDA

While our algorithm has similarities to LDA, there are three fundamental differences between

the formulation of classical LDA and CCR that we now describe.

• The objective of multi-class LDA is the ratio of the between-class scatter to within-class

scatter where the scatters are calculated using determinant [144]. In contrast, our proposed

objective is the sum of two parts, where the first part L1 controls the within-class scatter

and the second part L2 controls the between-class scatter. We used trace to measure the

within-class scatter.

• The optimization problem of multi-class LDA is not convex while the optimization of CCR

is convex. Note, Kim et al. [147] have shown that the two-class LDA can be solved under a

convex optimization problem.
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• The generalized eigenvalue solution of LDA assumes that the within-class scatter matrix

(Sw) is non-singular. But researchers have reported that when the dimension of input data is

larger than number of samples, the Sw becomes singular [51] which results in poor perfor-

mance. We observed that in the last experiment with Yale Face, ORL and COIl20 data. In

contrast, CCR doesn’t suffer from this problem. As a result the classification performance

of CCR is significantly higher than LDA on Yale Face data.

7.8 Conclusions

This section introduces a new supervised linear dimensionality reduction technique called Cen-

troid Component Retrieval (CCR). We showed that the proposed method is convex. We also pre-

sented a novel initialization technique that makes the convergence fast. We demonstrated that

in most cases, the 2D embedding of CCR yields better classification accuracy than other meth-

ods. Although the classification performance of CCR is very similar to LDA, CCR has shown

significant improvement when the input dimension of data is relatively higher than the number of

samples, e.g., COIL20, Yale Face, and ORL. The advantage of CCR over other data visualization

techniques, e.g., NCA and MCML, is that it does not require the pairwise distance calculation. The

only overhead of CCR is the calculation of centroids of each class, but this is linear with the num-

ber of classes. Therefore our method scales easily compared to NCA and MCML, which becomes

prohibitively slow with the increase of data.
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Chapter 8

Conclusion and Future Research

In this dissertation, we proposed several new tools for dimensionality reduction, visualization,

and feature selection using convex and nonconvex optimization problems. We formulated the

following nonconvex models Centroid-Encoder (CE), Bottleneck Centroid-Encoder (BCE), Sparse

Centroid-Encoder (SCE), Principal Centroid Component Analysis (PCCA), and one convex model

called Centroid Component Retrieval (CCR). Note that PCCA is a nonconvex model, but it can

be solved in closed-form using eigendecomposition; hence the solution can be ordered, unlike

the iterative nonconvex methods, e.g., CE, SCE, and BCE. The empirical evaluation suggests the

potential utility of these models.

Centroid-Encoder (CE), a deep neural network-based model designed for supervised dimen-

sionality reduction, is an implementation of nonlinear supervised principal component analysis.

The experimental results show that CE often produces better, if not optimal, generalization perfor-

mance than other methods. The algorithms with the most similar prediction errors compared to

CE require the computation of distances between all pairs of points. Our examples illustrate that

CE captures the topological structure, i.e., class neighborhoods of the data, comparable to Lapla-

cian Eigenmaps (LE) without calculating the neighborhood graph. In addition, CE exploits data

labels to minimize the within-class variance to improve the localization of the mapping such that

points are mapped more faithfully to their Voronoi regions in low dimensions. Unlike many other

methods, e.g., Laplacian Eigenmaps and t-SNE, CE gives a mapping that can be applied to the new

data. CE is well suited to visualize very large data sets, e.g., over a million data points, such as the

SUSY analysis. We also showed empirically that the model globally captures high statistical vari-

ance relative to optimal linear transformations, i.e., more than PCA. We have also extended the CE

by adding constraints in the bottleneck layer, called Bottleneck Centroid-Encoder (BCE), which

improves the class localization and separability in the low-dimensional space compared to CE.
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In the future, we plan to extend these models to the setting of unsupervised and semi-supervised

learning.

We have demonstrated how Centroid-Encoder can be turned into an effective nonlinear feature

selection tool by adding the 1-norm into the objective on CE to promote sparsity. The resulting

model, Sparse Centroid-Encoder (SCE), extracts discriminatory features in groups by minimiz-

ing the 1-norm along with the centroid-encoder loss. The benchmarking results with six methods

provide evidence that the features of SCE produce better generalization performance than other

state-of-the-art models. We compared SCE with FsNet, mainly designed for high-dimensional bi-

ological data, and found that our proposed method outperformed it in most cases. The comparison

includes neural network-based current state-of-the-art, e.g., Supervised CAE, LassoNet, Stochastic

Gate, and DFS. SCE features consistently outperform these models on data sets where number of

samples is significantly lower than number of features and cases where the number of observations

is more than the number of variables. The empirical evaluation using an array of diverse data sets

establishes the value of the Sparse Centroid-Encoder as a nonlinear feature detector. Our analysis

of the Sparse Centroid-Encoder in Section 5.1.1 demonstrates that the 1-norm induces good feature

sparsity. We chose the λ from the validation set from a wide range of values and saw that smaller

values work better for classification. The visualization of the MNIST pixels (panel (a) of Figure

5.5) provides a qualitative justification for a high prediction rate. SCE selected most of the pixels

from the central part of the image, ignoring the border, making sense as the digits lie in the center

of a 28 x 28 grid. The ℓ1 penalty on the SPL layer induces sharp sparsity on the SMK_CAN data

(panel (b) and (c) of Figure 5.5) without shrinking all the variables. Our feature cut-off technique

correctly demarcates the important features from the rest.

SCE compares favorably to the neural network-based model FsNet, SCAE DFS, LassoNet, and

STG, where samples are mapped to class labels. SCE employs multiple centroids to capture the

variability within a class, improving the prediction rate of unknown test samples. In particular,

the prediction rate on the ISOLET improved significantly from one centroid to multiple centroids

suggesting the speech classes are multi-modal. The two-dimensional PCA of ISOLET classes
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further confirms the multi-modality of data. We also observed an enhanced classification rate on

MNIST, FMNIST, and Activity data with multiple centroids. In contrast, single-center per class

performed better for other data sets (e.g., COIL-20, Mice Protein, GM12878, etc.). Hence, apart

from producing an improved prediction rate using features that capture intra-class variance, our

model can provide extra information about whether the data is unimodal or multi-modal. This

aspect of sparse centroid-encoder distinguishes it from the techniques which do not model the

multi-modal nature of the data.

In the final two chapters of this dissertation, we presented two linear models for dimensionality

reduction. The Centroid Component Retrieval (CCR) shares a similar design principle to Linear

Discriminant Analysis, but unlike multi-class LDA, CCR is a convex optimization problem. We

have presented an initialization technique leveraging eigendecomposition and empirically showed

that the initial condition significantly improves convergence time. Our experimental results favor

CCR over LDA on high-dimensional data sets, outperforming LDA in k-NN classification in all

cases. We have also observed that for those data sets, Yale Faces, ORL, and COIL20, CCR is

consistently more accurate than other supervised techniques. Although CCR and LDA have a

similar design principle, we haven’t studied whether their solution is equivalent in theory. In the

future, we would like to investigate this avenue.

We proposed Principle Centroid Component Analysis (PCCA) as a linear Centroid-Encoder.

The objective function of PCCA is similar to PCA; thus, it can also be thought of as a new for-

mulation of Supervised PCA. The solution of PCCA is in closed form using eigendecomposition,

and we established a connection between the eigenvalue and the final cost. At last, we evaluated

this model with five real-world data sets and found that it performed better than PCA and a version

of supervised PCA. In the current formulation, the embedding is driven by the position of class

centroids in the ambient space. If two centroids are close in the original space, the solution will

put those two classes nearby in reduced space, increasing the misclassification. In the future, we

will explore different ideas to push the nearby classes apart in low-dimensional space.
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8.0.1 Limitations

In this section, we comment on the limitations of our work. We discuss some of the limitation

of each of the five models.

Centroid-Encoder

Although the results show that Centroid-Encoder produces better visualization with relatively high

accuracy compared to other models, it has some limitations which we elaborate below.

1) Data where class-centroids coincide: Centroid-encoder runs on the assumption that the mean

of each class is different, therefore mapping all the samples to its class-centroid will capture the

discriminative features among the classes. Our model will work as long as the centroids of each

class do not overlap in the ambient space. For example, let’s consider a synthetic data of concentric

circles as shown in Figure 8.1. Each color represents a class. The position of the centroids of each

class is the same which is the center of the circles. In this case, centroid-encoder will map all the

points from different classes to the same location. In practice, it’s very rare to have a data set where

the class-centroids coincide.

Figure 8.1: Concentric circles.

2) Non-convexity: The nature of the optimization of our model is strictly non-convex. Therefore

the model runs with the risk of stopping in a local minimum. Because of this, multiple runs on the

same data set can produce different embeddings. In this case one can pick the solution with lowest

error.
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Bottleneck Centroid-Encoder

Like Centroid-Encoder, Bottleneck Centroid-Encoder (BCE) is a nonconvex optimization prob-

lem. Therefore, we recommend running the model multiple times and picking the solution with

minimum training error. If a validation set is available, then the best model should be selected,

which gave the minimum validation error. We also comment that the BCE incorporates a repulsive

force to separate the classes in low-dimensional space, and this force may change the geometric

structure of classes. Therefore it’s recommended to study the BCE embedding along with a CE

embedding to explore the geometric relationships among classes.

Sparse Centroid-Encoder

Sparse Centroid-Encoder uses ℓ1-norm to promote sparsity. Note, ℓ1-norm shrinks the variables

when used with a large value of λ. In our experiments, we used small values and didn’t observe

the shrinkage problem. So, running the model with a small λ is recommended. The SCE model

uses the Centroid-Encoder cost, and the model may not pick discriminatory features if two class

centroids are close in the ambient space.

Principal Centroid Component Analysis

Being a line technique, the model won’t capture nonlinear relationships. PCCA uses eigendecom-

position of the data matrix, which becomes significantly large with the number of features. In these

scenarios, it may take a long time to get the solution.

Centroid Component Retrieval

Like PCCA, the model won’t capture the nonlinear relationships.
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