110 research outputs found

    Review on the conversion of thermoacoustic power into electricity

    Get PDF
    Thermoacoustic engines convert heat energy into high amplitude acoustic waves and subsequently into electric power. This article provides a review of the four main methods to convert the (thermo)acoustic power into electricity. First, loudspeakers and linear alternators are discussed in a section on electromagnetic devices. This is followed by sections on piezoelectric transducers, magnetohydrodynamic generators, and bidirectional turbines. Each segment provides a literature review of the given technology for the field of thermoacoustics, focusing on possible configurations, operating characteristics, output performance, and analytical and numerical methods to study the devices. This information is used as an input to discuss the performance and feasibility of each method, and to identify challenges that should be overcome for a more successful implementation in thermoacoustic engines. The work is concluded by a comparison of the four technologies, concentrating on the possible areas of application, the conversion efficiency, maximum electrical power output and more generally the suggested focus for future work in the field.Comment: The following article appeared in J. Acoust. Soc. Am 143(2) and the final version in a proper two-column format may be found at: http://scitation.aip.org/content/asa/journal/jasa/143/2/10.1121/1.502339

    Room Modal Equalisation with Electroacoustic Absorbers

    Get PDF
    The sound quality in a room is of fundamental importance for both recording and reproducing processes. Because of the room modes, the distributions in space and frequency of the sound field are largely altered. Excessive rise and decay times caused by the resonances might even mask some details at higher frequencies, and these irregularities may be heard as a coloration of the sound. To address this problem, passive absorbers are bulky and too inefficient to significantly improve the listening conditions. On the other hand, the active equalization methods may be complicated and costly, and the sound field might not be well controlled, because of the added sound energy in the room. Another approach is the active absorption, which consists in varying the impedance of a part of the enclosure boundaries, so as to balance the sound field thanks to the absorbed sound power into the active boundary elements. The thesis deals with the design and optimization of electroacoustic absorbers intended to specifically reduce the effect of the unwanted room modes. These active absorbers are closed box electrodynamic loudspeaker systems, whose acoustic impedance at the diaphragms is judiciously adjusted with passive or active components to maximize their absorption performance in the domain in which it is located. Several topologies merging sensor- and shunt-based methods are proposed resulting in an efficient and broadband sound absorption at low frequencies. A multiple degree-of-freedom target impedance that is assigned at the transducer diaphragms is then optimized to lower the modal decay times at best. The performance of the electroacoustic absorbers for the modal equalization is investigated in actual listening rooms, and their audible effect is subjectively evaluated. The overall combination of concepts and developments proposed in this thesis paves the way towards new active absorbers that may improve the listening experience at low frequencies in rooms

    Fourth Aircraft Interior Noise Workshop

    Get PDF
    The fourth in a series of NASA/SAE Interior Noise Workshops was held on May 19 and 20, 1992. The theme of the workshop was new technology and applications for aircraft noise with emphasis on source noise prediction; cabin noise prediction; cabin noise control, including active and passive methods; and cabin interior noise procedures. This report is a compilation of the presentations made at the meeting which addressed the above issues

    Sound Zone Control inside Spatially Confined Regions in Acoustic Enclosures

    Get PDF

    Improving Sound Systems by Electrical Means

    Get PDF

    Novel miniature matrix array transducer system for loudspeakers

    Get PDF
    Conventional pistonic loudspeakers, by employing whole-body vibration of the diaphragm, can reproduce good quality sound at the low end of the audio spectrum. Flat panel speakers, on the other hand, are better at high frequency operation as the reproduced sound at high frequency from a flat panel speaker is not omni-directional as in the case of a conventional loudspeaker. Although flat-panel speakers are compact, small and have a better high frequency response the poor reproduction of bass sound limits its performance severely. In addition, the flat panel speakers have a poor impulse response. The reason for such poor bass and impulse response is that, unlike the whole body movement of a conventional loudspeaker diaphragm, different parts of the panel in a flat panel loudspeaker vibrates independently. A novel loudspeaker has been successfully designed, developed and operated using miniature electromagnetic transducers in a matrix array configuration. In this device, the whole body vibration of the panel reduces the poor bass and impulse response associated with present flat panel speakers. The multi-actuator approach combines the advantages of conventional whole body motion with that of modern flat panel speakers. An innovative miniature electromagnetic transducer for the proposed loudspeaker has been designed, modelled and built for analysis. Frequency Responses show that this novel transducer is suitable for loudspeaker application because of its steady and consistent output over the whole audible frequency range and for various excitation currents. Measurements on various device configurations of this novel miniature electromagnetic transducer show that a moving coil transducer configuration having a magnetic diaphragm is best suited for loudspeaker applications. Finite element modeling has been used to examine single transducer operation and the magnetic interaction between neighbouring transducers in a matrix array format. Experimental results show the correct positioning of the transducers in a matrix configuration reduces the effects of interferences on the magnetic transducers. In addition, experimental results from the pressure response measurement show an improvement in bass response for the longer array speaker.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A novel miniature matrix array transducer system for loudspeakers

    Get PDF
    Conventional pistonic loudspeakers, by employing whole-body vibration of the diaphragm, can reproduce good quality sound at the low end of the audio spectrum. Flat panel speakers, on the other hand, are better at high frequency operation as the reproduced sound at high frequency from a flat panel speaker is not omni-directional as in the case of a conventional loudspeaker. Although flat-panel speakers are compact, small and have a better high frequency response the poor reproduction of bass sound limits its performance severely. In addition, the flat panel speakers have a poor impulse response. The reason for such poor bass and impulse response is that, unlike the whole body movement of a conventional loudspeaker diaphragm, different parts of the panel in a flat panel loudspeaker vibrates independently. A novel loudspeaker has been successfully designed, developed and operated using miniature electromagnetic transducers in a matrix array configuration. In this device, the whole body vibration of the panel reduces the poor bass and impulse response associated with present flat panel speakers. The multi-actuator approach combines the advantages of conventional whole body motion with that of modern flat panel speakers. An innovative miniature electromagnetic transducer for the proposed loudspeaker has been designed, modelled and built for analysis. Frequency Responses show that this novel transducer is suitable for loudspeaker application because of its steady and consistent output over the whole audible frequency range and for various excitation currents. Measurements on various device configurations of this novel miniature electromagnetic transducer show that a moving coil transducer configuration having a magnetic diaphragm is best suited for loudspeaker applications. Finite element modeling has been used to examine single transducer operation and the magnetic interaction between neighbouring transducers in a matrix array format. Experimental results show the correct positioning of the transducers in a matrix configuration reduces the effects of interferences on the magnetic transducers. In addition, experimental results from the pressure response measurement show an improvement in bass response for the longer array speake

    Optimization of demodulation rings in professional louspeakers

    Get PDF
    A new way to design demodulation rings in loudspeakers is explored, using the finite elements model.\nThe lossy inductance of the motor coil is characterized for small signals, then this process is extended to the large signals.\nThus a genetic algorithm, based on the differential evolution theory, is developed and coupled with the finite elements software Comsol:\nusing the Pareto optimality concept, the minimisation of impedance variation togheter with the amount of material used is found
    • …
    corecore