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Abstract

The availability and flexibility of audio services on various digital platforms have
created a high demand for a large range of sound systems. The fundamental com-
ponents of sound systems such as docking stations, sound bars and wireless mobile
speakers consists of a power supply, amplifiers and transducers. Due to historical
reasons the design of each of these components are commonly handled separately
which are indeed limiting the full performance potential of such systems. To state
some examples the requirements of the amplifier distortion could be relaxed if the
distortion of the transducer was considered, the power requirement of the power
supply could be relaxed if the acoustical power requirement was known, the total
sound system efficiency could be optimized which would properly require a radi-
cal design change for all the components, communication between the components
could lead to intelligent control and protection functionality and so on. In this work
different strategies towards improvements of sound systems by electrical means was
investigated considering the interfaces between each component and the perfor-
mance of the full system. The strategies can be categorized by improvements of
sound quality, efficiency, size and cost as well as production.

The transducer is considered the weakest component when it comes to sound quality
which is especially apparent for micro-speakers. Historically the common voltage
drive of a transducer has been challenged by the alternative current drive in relation
to sound quality. Prior research points out that current drive provides a more direct
control of the force applied to the moving parts of a transducer resulting in less
distortion and thus improved sound quality but the information is quite sparse. In
this work multi-tone distortion related to voltage and current drive of transducers
with different characteristics were investigated using a non-linear transducer model.
The goal was to predict if and when current drive is advantageous. Current drive
was found to be most effective at higher audio frequencies where the non-linear
voice coil inductance has a major effect on distortion. At lower audio frequencies
transducer related distortions are more pronounced and an old motional feedback
technique was revisited. An accelerometer is mounted on the moving parts of the
transducer enabling motional control which lead to a 14 dB distortion reduction in
the best case. This technology is very promising since it compensates for most dis-
tortion mechanisms of the transducer such as non-linearities, production variation,
wear-n-tear, temperature changes and so on. Furthermore the accelerometer out-
put can be used for protection purposes. The only disadvantages are challenges in
terms of cost and system complexity. The noise floor of the accelerometer prevents
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motional control at very low displacements.

The main advantage of Class-D audio amplifiers is high efficiency which is often
stated to be more than 90 %. This is only true at high power levels but at low
power levels the efficiency unfortunately drops due to severe switching losses in the
semiconductors. This efficiency characteristic is an environmental concern since
the amplifier is operating at low power levels for background music in more than
89 % of the time and thus a lot of energy is wasted considering the amount of
sound systems around the world. Even when the music is played at higher levels
the average power is still quite low due to the dynamic behavior of music. In
this work energy consumption and sound quality for Class-D audio amplifiers using
a peak-tracking power supply scheme was investigated as a means to reduce these
losses. It was proven that the efficiency of a class-d amplifier could be increased from
approximately 55 % to 90 % at 1 W output power without sacrificing the distortion.
A full tracking power supply scheme would further improve these numbers but the
efficiency of the power supply also needs to be taken into account which should be
addressed in future work.

Power requirements of a sound system have been a large part of this project. There
is a surprisingly big lack of scientific information regarding this topic and the goal
has thus been to develop an intelligent approach to estimate the power requirements
to obtain a size and cost reduction. The greatest challenge was to develop an
analyzing tool to estimate the worst case power scenario versus time for a given
loudspeaker application. Models including the influence of the enclosure and the
most critical non-linearities were derived and experimental verified. Since the power
requirement is related to the music material more than 400 music tracks were
analyzed and it was proven that full power capability is only needed for a few
milliseconds which inspire radical design changes and large reduction of size and
cost for the power supply, the amplifiers and the transducers. The work on a power
supply based on this research was performed showing a 5 times size reduction
compared to a commercial power supply. Future work should expand this analysis
to a range of different sound system applications and audio material.

An alternative production method for the Class-D amplifier output inductor has
been proposed and investigated. A hybrid winding concept for toroids were pro-
posed where the traces in a printed circuit board completes the winding of bended
copper foil cut-outs placed in a handy former. The main potential is expected to
be production related and faster time to market since the former including the foil
cut-outs can be pre-fabricated and pre-shipped to different suppliers around the
world. A dynamic 3D model made in matlab and finite element analyses were used
to optimize the shape of the bended copper foils to optimize the DC resistance.
The DC resistance was reduced by 30 % compared to the starting point for a 10
turn toroidal inductor using this method.

The combined work indicate that large sound system improvements are in reach by
use of electrical means. Innovative solutions have been investigated and improve-
ments of sound quality, efficiency, size and cost as well as production have been
demonstrated.



Resumé

Tilgængeligheden og fleksibiliteten af audio tjenester på forskellige digitale plat-
forme har skabt en stor efterspørgsel til en lang række forskellige lydsystemer. De
fleste af disse lydsystemer såsom dockingstationer, lydbarer og trådløse mobile højt-
talere indeholder en strømforsyning, forstærkere og højtalerenheder. Af historiske
årsager bliver designet af hver a disse komponenter almindeligvis håndteret separat,
hvilket begrænser systemets fulde ydeevne. For eksempel kunne forvrængningskrav
til forstærkeren reduceres hvis forvrængingen af højtaleren blev taget i betragtning,
strømforsyningens effektkrav kunne reduceres hvis det aktuelle akustiske effektkrav
var kendt, effektiviteten af det samlede lydsystem kunne forbedres hvilket ville
kræve radikale design ændringer af alle komponenterne, kommunikation mellem
hver enkelt komponent kunne tilføre intelligente styrrings- og beskyttelses-funktioner
o.s.v. Dette arbejde præsenterer forskellige strategier til forbedringer af lydsyste-
mer ad elektrisk vej og grænsefladerne mellem hver komponent samt det samlede
systems ydelse er blevet taget med i overvejelserne. Strategierne kan kategoris-
eres under forbedring af lydkvalitet, effektivitet, størrelse og omkostninger samt
produktion.

Højtalerenheden betragtes som den svageste komponent når det kommer til lyd-
kvalitet, hvilket især er tydeligt med mikro-højttalere. Historisk er spændingsstyrrede
højtalere blevet udfordret af den alternative strømstyrring i forhold til lydkvalitet.
Tidligere forskning peger på, at strømstyrring giver en mere direkte kontrol af
kræftoverførslen til de bevægelige dele af en højtaler hvilket resulterer i mindre
forvrængning og dermed bedre lydkvalitet, men oplysningerne er ganske spar-
somme. I dette arbejde blev multi-tone forvrængning undersøgt i relation til
spændings- og strøm-styrring af højtalere med forskellige karakteristika ved an-
vendelse af en ulineær højtaler model. Målet var at forudsige i hvilke sammen-
hænge strømstyrring kunne vise sig fordelagtig. Strømstyrring viste sig at være
mest effektiv ved højere audio frekvenser, hvor den ulineære svingspoleinduktans
har stor betydning for forvrængning. Ved lavere audio frekvenser er en højtalers
forvrænginger mest udtalte og en gammel teknik baseret på positionsstyrrings blev
derfor undersøgt. Et accelerometer er monteret på de bevægelige dele af en høj-
talerenhed hvilket muliggør præcis positionsstyrring, som i bedste tilfælde førte til
14 dB mindre forvrængning. Denne teknologi er meget lovende, da den kompenserer
for mange forvrængningsmekanismer såsom ulineariteter, variationer i produktio-
nen, slitage, temperaturpåvirkninger m.m. Accelerometermålingen kan ydermere
bruges til beskyttelses funktioner. De største udfordringer angår pris og systemkom-

v/xi



pleksitet. Accelerometerets støjgulv forhindre brug af motional feedback ved lave
lydniveauer.

Den største fordel ved klasse-D forstærkere er høj effektivitet som ofte angives at
være højere end 90 % hvilket kun gælder for høje effektniveauer. Effektiviteten er
væsentlig lavere ved lave effektniveauer på grund af alvorlige skiftetab i halvled-
erkomponenter. Dette er en miljømæssig bekymring, idet forstærkeren arbejder ved
lave effektniveaur i mere end 95 % af tiden under afspilning af baggrundsmusik.
Dermed går en masse energi tabt når det totale antal af verdens lydsystemer tages
i betragtning. Selv når musikken afspilles med højere lydstyrker er den gennem-
snitlige effekt og effektivitet stadig relativ lav på grund af musikkens dynamik. I
dette arbejde er energiforbrug og lydkvalitet for klasse-D forstærkere blevet under-
søgt i relation til en metode hvor forstærkerens forsyningsspænding ændres som
funktion af lytteniveauet. En effektivitetsforbedring fra ca. 55 % til 90 % blev
påvist ved en udgangseffekt på 1 Watt uden særlig nedgradering af forstærkerens
forvrængning.

En stor del af dette arbejde har fokuseret på lydsystemers effektkrav. Der er over-
raskende lidt videnskabelig information om dette emne og målet har derfor været
at udvikle en intelligent fremgangsmåde til at estimere effektbehovet for at opnå en
størrelses og pris gevinst. Den største udfordring var udviklingen af et analysered-
skab til at estimere det værst tænkelige effektkrav som funktion af afspilningstid
for en given højtalerapplikation. Modeller som inkluderer indflydelsen af kabinettet
og de mest kritiske ulinearitet blev udviklet og verificeret eksperimentelt. Da effek-
tkravet er relateret til audio materialet blev mere end 400 musik numre analyseret
og det blev bevist at høj effekt kun kræves i få millisekunder hvilket kan medfører
radikale design ændringer og en stor reduktion i størrelse og pris af strømforsynin-
gen, forstærkerne og højtaleren. Et design af en strømforsyning baseret på denne
viden resulterede i en 5 gange mindre strømforsyning sammenlignet med en kom-
merciel strømforsyning. Fremtidigt arbejde burde udvide analysen til en større
variation af lydsystemer og audio-materiale.

En mere snæver forskningsindsats blev udført inden for en alternativ produktion-
smetode af klasse-d udgangsspoler. En hybrid viklingsmetode for ringkerner blev
foreslået hvor banerne i et printkort fuldender viklingen af en mængde bukkede
kobber stykker placeret i en simpel holder. Potentiallet forventes at være produk-
tionsrelateret og mulighed for en kort produkt til markeds tid da holderen med alle
kobber stykkerne kan præfabrikeres og være til rådighed hos forskellige distributører
rundt omkring i verden på forhånd. En 3D model baseret på matlab og ”finite el-
ement” analyse blev brugt til at optimere formen af de bukkede kopper stykker
i forhold til DC-modstanden. DC-modstanden blev med denne metode reduceret
med 30 % i forhold til udgangspunktet for en ringkernespole med 10 viklinger. Det
samlede arbejde indikere at store forbedringer af lydsystemer er i rækkevidde ved
brug af elektriske midler. Innovative løsninger er blevet undersøgt og forbedringer
af lydkvalitet, effektivitet, størrelse og pris samt produktion er blevet påvist.
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Chapter 1

Introduction

1.1 Background and Motivation

Originally two ideas gave hope and motivation for sound systems improvements by
electrical means. One concerning size and cost improvements of amplifiers using
a novel current driven class-d topology. The other concerning sound quality im-
provements by a change of the transducer driving principle from voltage to current
drive. Since the start of the project several additional ideas have occurred and the
main observations and considerations that this work is based upon are:

• The force acting on the moving parts of a transducer is proportional to the
voice coil current. Why don’t we control the voice coil current instead of the
voltage?

• The distortion of a transducer is displacement dependent. Why not use a
motion sensor to retain control of the moving parts?

• Loudspeakers cover a large power range. How is the actual power require-
ments of a sound system determined?

• The power supply in mains connected sound systems is much larger than the
amplifiers. What is the reason and can it be improved?

• The idle losses of class-d amplifiers are high? How can it be reduced?

• The winding fill factor of a typical inductor used in class-d amplifiers seems
low. What options exists to improve it?

These and more questions were asked and have been investigated in this work
since no satisfactory answers were found in the sparse literature dealing with these
subjects. As a matter of fact these questions are very hard to answer because a
correct answer depends on a vast number of variables. Furthermore the answers
require a full system understanding which require a wide electrical, mechanical and
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1.2. Thesis structure and content

Innovative sound system

Amplifier LoudspeakerPower supply

Interface barrier Interface barrier

Figure 1.1: Trend towards intelligent sound system design

acoustical understanding. This is however not supported by the traditional sound
system design practice where the power supply design, the amplifier design and the
loudspeaker design are split up and performed by specialists as illustrated in the
top of figure 1.1. In this work steps towards a holistic sound system design have
been taken as illustrated in the bottom of figure 1.1.

1.2 Thesis structure and content

The structure and content of this PhD thesis are visualized in figure 1.2. A short
introduction is followed by an overview and state-of-the-art chapter. The main
content are supplementing the already published information from scientific articles.
The work was naturally split into chapters related to improving of sound systems
by electrical means. The chapter titles are Sound Quality, Efficiency, Cost and
Size and Production. Each chapter starts with a short introduction to the topic,
presents the research in a condensed form and finishes with a discussion. At last
an overall conclusion and future work are presented. Relevant publications are
included in the appendix.
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Chapter 2

Overview and State-of-the-art

2.1 Power supplies and amplifiers

State-of-the-art amplifiers are shown in figure 2.1a and 2.1c. Figure 2.1a shows a
single 400 W amplifier from Hypex and figure 2.1c shows a 2 times 50 W amplifier
with integrated power supply from Bang & Olufsen IcePower. The total harmonic
distortion is 0.001 % and 0.002 % respectively at 1 W and 100 Hz. The switching
frequencies is about 500 kHz and the efficiency is above 90 % at full power for both.
A disadvantage of these amplifiers is a relative high idle loss which is addressed in
chapter 4. Figure 2.1d shows a 2 times 50 W amplifier designed during this work.
The amplifier is optimized for a small size by consideration of the dynamic behaviour
of music. The amplifier is based on a Texas Instrument chip where semiconductors,
control and protection are integrated in a single chip. The inductors are high
current power inductors from coilcraft, the components are placed on both sides
of the printed circuit board and no heatsinks are utilized. As a consequence the
amplifer occupies very little space which encourage a small power supply.

State-of-the-art power supplies from Hypex and Bang & Olufsen IcePower are
shown in figure 2.1b and 2.2c respectively. Since music is very dynamic the ra-
tio of the peak to average power is high and the full power capability is only needed
in short periods of time. This is apparent from the specifications where high power
ratings are given for time periods spanning from 80 to 90 seconds. The efficiency
of the Hypex power supply is just stated to be high and only the total efficiency
of 80 % including amplifiers are given for the IcePower module. The switching
frequencies are around 100 kHz which is low compared to state-of-the-art power
supplies for LED (light emitting diode) applications where switching frequencies of
hundreds of Mhz are applied. Figure 2.2e shows a power supply designed during
this work. The power capability is based on a power requirement analysis described
in chapter 5 and the peak power is only rated for 40 ms. The efficiency is 84 %
at the maximum continuous power level and the switching frequency is 500 kHz
which is 5 times higher than the state-of-the-art power supplies shown here. As
a consequence the size of the magnetic components are decreased, semiconductors
with lower continuous ratings are used and there is no need for heatsinks.
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d)
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Figure 2.1: Overview of state-of-the-art power supplies and amplifiers
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2.2 Transducers and loudspeakers

The principle behind the electro dynamic transducer has not changed since it was
invented in the 1930ies but all the processes from design to fabrication to evaluation
have been greatly improved. Figure 2.2a shows how the entire transducer is drawn
in 2D during the design phase which enables the designer to predict the performance
of a transducer and change the design before a prototype is build. Figure 2.2b shows
how the break up of the cone can be simulated which can lead to an optimized cone
shape. The fabrication is very critical when it comes to transducers. Figure 2.2c
show the crude manual fabrication done in 1954 and 2.2d shows the precise and
consistent automatic fabrication of today. When it comes to measuremnts and
evaluation of a transducer much has happened. Figure 2.2e shows a typical set up
for a laser displacement measurement. This kind of measurement can be used to
measure the characteristics of a transducer such as the cone break up modes. Figure
2.2f shows a measurement of a breakup mode which can be used to evaluate the
accuracy of the initial design. Listening tests as shown in figure 2.2g are still a very
important test when it comes to evaluation of a transducer. Often trained listeners
and standardized test procedures and listening environments are used. A new
measuring method where a laser is used to measure how sound propagates is shown
in figure 2.2h. To conclude, a state-of-the-art transducer and loudspeaker utilize
the latest knowledge and best design, fabrication and measurement techniques of
today. The transducers used in most applications are however far from state-of-
the-art transducers and the loudspeaker is thus often referred to as the weakest link
in a sound system. This issue is addressed in chapter 3.

2.3 Discussion

Figure 2.3 shows four sound systems that have emerged during the last decade. It
is not hard to imagine that size and cost of the power supply, the amplifiers and
the transducers are very critical. In portable sound systems the efficiency is of
equal importance because the operating time depends on it. Another matter is the
sound quality which is a great challenge due to size constraints. To deal with all of
these challenges, this work presents several sound system improvements concerning
sound quality, efficiency, cost and size as well as production.
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Design Simulation

Fabrication

Measurements and evaluation

1954 Today

a) From LoudSoft A/S b) From LoudSoft A/S

c) From www.audioholics.com d) From www.lavocespeakers.com

e) From www.klippel.de f) From www.klippel.de

g) From www.elektro.dtu.dk h) From www.phys.org

Figure 2.2: Overview of state-of-the-art transducer design
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Micro speaker

Audio dock

Soundbar

Mobile speaker

Figure 2.3: Overview of challenging loudspeaker applications
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Chapter 3

Sound Quality

3.1 Introduction

The rating of sound quality is typically limited to ”bad”, ”good enough” and ”hi
fidelity” justified by terms like ”clear”, ”boomy”, ”crisp”, ”dry”, ”musical” and
so on. The judgement is made while listening to a variety of well known music.
Unfortunately such listening tests are not accurate and efficient enough to be used
during a development phase. Instead engineers analyse the distortion which is
naturally related to sound quality and simple sine tones are used instead of music
signals due to simplicity. The most popular measurements are total harmonic
distortion (THD) and intermodulation distortion (IMD). THD is a ratio between
the fundamental and the harmonic content in a system excited by a pure sine signal.
If a signal is measured by voltages the THD is given by

THD =

√
∞∑

n=2
V 2

n

V1
(3.1)

The ratio is mostly presented in percentage and a low THD means low distortion.
More tones are typically present at one time in musical signals which is why the
two-tone IMD measure is popular. Two tones excites both difference and summed
frequency components of the original signal which reveal far more distortion. IMD
can be specified as the RMS value of the various sum-and-difference signals as a
percentage of the RMS voltage of the original signal. A multi-tone signal resem-
bles a music signal even better but is far more complex to analyse suggesting a
graphical or statistical analysis. These methods does however not relate well to
the perceived sound quality [3, 4] which makes it difficult to rate a sound system
due to a given change in the design or to compare two systems in terms of these
distortion measures. A lot of work have been done to solve this issue but due to the
complexity of the human hearing system no well proven solution is available today
[5–14]. The following was stated in 1953 and restated in 2001 in papers from the
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3.2. Non-linear distortion mechanisms in the electro-dynamic transducer

Spider

Voice coil

Surround

Frame
Dust cap

Magnet

Pole piece

Copper ring

Coil former

Cone

Figure 3.1: Cross-sectional view of an electro-dynamic transducer

Audio Engineering Society [5, 15]: “if any manufacturer or group of manufactur-
ers can carry out the necessary research required to correlate listening tests with
various methods of measuring nonlinear distortion, it will be a great and valuable
service to the industry. Until such a time, however, in the last analysis, the only
best test is to listen“. These words are just as pertinent today and this must be
kept in mind when talking about sound quality referred to measurements of THD,
IMD and alike.

The transducer is considered the weakest link in a sound system when it comes
to distortion and has thus been in focus. In this chapter the most critical distor-
tion mechanism of the electro-dynamic transducer is presented in addition to an
investigation of the driving scheme and motional feedback.

3.2 Non-linear distortion mechanisms in the electro-
dynamic transducer

An electro-dynamic transducer converts an electrical signal into sound waves. A
typical construction is seen in figure 3.1. An electrical coil referred to as the ”voice
coil” is wound on a cylindrical coil former which is attached to a cone. A dust cap
finishes the moving assembly. Two suspensions referred to as the ”surround” and
the ”spider” secures the moving assembly to a frame and provide linear guidance.
The voice coil is suspended in a gab of a magnet system consisting of a permanent
magnet and a pole piece made of steel. Sometimes a copper ring is incorporated
in the pole piece to reduce eddy current effects. When an alternating current is
applied to the voice coil a Lorentz force will push and pull the moving assembly
back and forth and in that way sound waves are generated.

A linear lumped model of the electro-dynamic transducer is shown in figure 3.2.
u(t) is the voice coil voltage, Re is the voice coil resistance, Le is the voice coil
inductance, R2 and L2 models the eddy current effect, i(t) is the voice coil current,
uemf is the voltage induced by the back electromotive force, Bl is the force factor
(flux in the gap times the length of the wire in the gap), v(t) is the velocity of the
cone, Rms is the suspension related loss due to friction, Mms is the mass of the
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3.2. Non-linear distortion mechanisms in the electro-dynamic transducer

Re Bl
RmsLe Mms CmsL2

R2

i(t)u(t)

uemf(t)=Blv(t) f(t)=Bli(t)

v(t)

+

- -

+

Figure 3.2: Electrical equivalent circuit diagram of a linear transducer.

moving assembly, Cms is the compliance of the suspension and f(t) is the Lorentz
force applied to the moving assembly.

The following fundamental equations can be derived by Kirchhoff’s voltage law and
Laplace transformation

u(s) = Rei(s) + sLei(s) + R2sL2
R2 + sL2

i(s) + sBlx(s) (3.2)

f(s) = Bl · i(s) (3.3)

f(s) = Mmss
2x(s) +Rmssx(s) + 1

Cms
x(s) (3.4)

The most critical distortions are displacement related and originates from the non-
linearity of the suspension compliance, the force factor and the voice coil inductance.
The dependency of the displacement x can be fitted to polynomials by

Le(x) =
N−1∑
n=0

anx
n Bl(x) =

N−1∑
n=0

anx
n Cms(x) =

N−1∑
n=0

anx
n (3.5)

where N is the order of the polynomial and an is the nth coefficient of the polyno-
mial.

Figure 3.3 shows the polynomials of a 6.5" woofer extracted from measured data
using the Klippel analyser. The dashed lines are mirrored data which were added
to aid in the visualising of unsymmetrical characteristics. Symmetrical and unsy-
metrical characteristics will generate uneven and even harmonics respectively. The
voice coil inductance is thus expected to generate even harmonic distortion. A
non-linear Matlab Simulink model of a transducer was created based on equation
(3.2) - (3.4) and Cms, Bl and Le was made dependent on the displacement x by
use of the polynomial regression in 3.5. The linear and non-linear parameters were
extracted from measurements done on a Klippel analyzer. The non-linear model
has been very intuitive to work with since the voice coil voltage and current as well
as the velocity, acceleration and displacement are easily available. The added input

15/221



3.2. Non-linear distortion mechanisms in the electro-dynamic transducer

−6 −4 −2 0 2 4 6

6

8

10

12

F
or

ce
 fa

ct
or

 [T
m

]

Displacement [mm]

−6 −4 −2 0 2 4 6
0.5

0.6

0.7

0.8

S
el

f i
nd

uc
ta

nc
e 

[m
H

]

Displacement [mm]

−6 −4 −2 0 2 4 6

0.4

0.6

0.8

C
om

pl
ia

nc
e 

[m
m

/N
]

Displacement [mm]

Figure 3.3: Non-linear polynomials based on Klippel measurement (solid). Mirrored val-
ues (dashed)

filter of the non-linear model can be used to apply a cross-over filter in addition to
equalization.

A Polytec Doppler laser was used to evaluate the accuracy of the model and the
experimental setup is shown in figure 3.5. A comparison of the measured and sim-
ulated harmonic and intermodulation distortion is shown in figure 3.6. The test
signal consisted of a low frequency tone of 16 Hz (half the resonance frequency)
mixed with a high frequency tone of 648 Hz. At this voltage level both harmonic
and intermodulation distortion are generated. It is noted that the simulation over-
estimates uneven harmonics and underestimates the even harmonics which indicates
that there is a higher degree of asymmetry in the non-linear values than expected.
A range of measurements were taken with various input voltages and frequencies.
Later on THD and IMD were analysed based on modelled and measured data and
the comparisons are shown in figure 3.7 and 3.8. In 3.7 it is noted that the simula-
tion underestimates the THD at low input voltages. A possible explanation is that
the noise floor of the measurements effect the calculated THD. In 3.8 it is noted
that the IMD is underestimated when the low frequency tone is twice the resonant
frequency of the transducer. At higher frequencies and lower displacements the
distortions are lower and thus the simulation result is more sensitive to model in-
accuracies. This analysis however show that it is possible to predict the non-linear
distortion quite well using only 3 displacement dependent non-linearities. Based
on this experience the model was used to investigate the individual influence of
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Figure 3.4: Non-linear voltage driven transducer model in Matlab Simulink

Figure 3.5: Experimental set up with the laser and the woofer

each non-linearity with similar test signal as used previously. The following was
concluded.

• The force factor generates large harmonic- as well as intermodulation distor-
tion.

• The self inductance generates low harmonic distortion and large intermodu-
lation distortion.

• The compliance generates large harmonic distortion and low intermodulation
distortion.
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3.3 Current Driven Transducers

Traditionally transducers are driven by voltage controlled amplifiers but from time
to time a simple question pops up: Would current drive be more beneficial? When
this work begun that exact question came up in relation to the sound quality of mi-
crospeakers. At first a literature study was performed on current driven transducers
in general but the literature was found to be very sparse and sufficient answers were
not found. Later on it became clear that the advantages of the driving scheme are
very application dependent and thus it is difficult to provide a set of general guide-
lines. A number of publications address current control [16–23] and speak about
all the advantages such as reduced compression caused by voice coil heating, elimi-
nation of the back electromotive voltage and reduced harmonic distortion and inter
modulation distortion due to elimination of the non-linear inductance effect. Un-
fortunately the disadvantages are not sufficiently highlighted and delt with which
casts a shadow over the full potential of current feedback. This work make use of
a non-linear transducer model to analyse a range of 5” woofers with distinct char-
acteristics under voltage and current drive. Figure 3.9 shows the 3 most critical
non-linearities as a function of displacement. The difference between Woofer 1 an
Woofer 2 is that a copper shorting ring has been implemented in Woofer 2 to re-
duce the effect of eddy currents. Thus the voice coil inductance of Woofer 2 is more
linear than Woofer 1. The 3rd woofer has very different non-linear characteristics
and in the displacement range used for comparison test (-5.7 mm to 5.7 mm) it
behaves very linear and symmetrical.

The model in figure 3.4 was used to simulate voltage drive and the model in figure
3.10 was used to simulate current drive. The main difference of the models is
that the current is directly controlled in the case of current drive. As a result the
distortion contribution from the non-linear inductor is removed and the distortion
contribution from the force factor is reduced.

The acceleration which is proportional to the sound pressure level can be described
by equation 3.6 and 3.7 for voltage- and current-drive respectively. It is noted that
the acceleration due to current drive is independent of Le, Re and less independent
of Bl.

Z(a/v) = Bls2

Bl2s+ (sLe +Re)(s2Mms + sRms + 1
Cms

)
(3.6)

Z(a/i) = Bls2

(s2Mms + sRms + 1
Cms

)
(3.7)

In 3.11 the calculated SPL is shown for the two driving schemes. The amplitude
of the sinusoidal signal used to calculate the SPL’s were 1 for both voltage and
current drive which explains the difference in SPL’s. In order to compare voltage
and current drive the power applied to the woofer in both driving schemes have
to be equalized, thus the SPL’s have to match. This is achieved using the filter
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shown in figure 3.12 and by applying the filter the resulting SPL’s optain the form
of a 4th order bandpass filter as shown in figure 3.13 The chosen bandpass char-
acteristic resembles a typical crossover design for a woofer in a 2 way loudspeaker.
Implementation of the filters makes it possible to use a signal with the same ampli-
tude as input for both voltage and current drive and it enables comparison of the
two driving schemes. The filters are designed to obtain a maximum SPL within the
maximum limits of the displacements just bellow xMAX (determined by the Klippel
measurement). In figure 3.14, 3.15 and 3.16 the simulated sound pressure level of
Woofer 1, Woofer2 and Woofer 3 are shown respectively. A multi-tone test signal
is used in the evaluation of the driving schemes since it resembles audio signals
to a higher degree than the signals used to predict THD and IMD as mentioned
previously. It is clearly seen that current drive is very effective on Woofer 1 where
attenuation in the order of 10 dB is obtained. The effect is less on Woofer 2 and
negligible on Woofer 3.

3.3.1 Discussion

Now, is current drive more beneficial than voltage drive? In theory current drive
seems advantageous compared to voltage drive even if a shorting ring is implemented
since current drive effectively eliminates inductor related distortions and reduces
the distortion contribution from the non-linear force factor. On the positive side
the cost of current controlled amplifiers is not expected to increase. However if
the transducer is highly linear the driving scheme seems irrelevant and voltage
control is thus sufficient. Even though current drive seems very attractive it has
several shortcomings. The filter applied to equalize the SPL under current drive
is not a valid solution in real applications since the resonant frequency tends to
drift as a function of usage, temperature and ageing. Only one viable but unproven
control solution to handle this problem could be found [24] and further work in
this topic is thus needed. The distortion levels from the non-linear compliance and
the force factor are however still high despite that current control was successfully
implemented. In micro-speakers the compliance related distortion is very severe
because space dos not allow for two suspensions and thus the spider is sacrificed.
Due to this reason and the fact that displacement related distortion is less critical
in high frequency transducers, current drive is not advantageous when it comes
to tweeters and micro-speakers as indicated in [23]. This is backed up by Klippel
who have rated the effect of different non-linearities for different tranducer types
as follows:

Woofers:

• 1. Force factor Bl(x)

• 2. Compliance Cms(x)

• 3. Inductance Le(x)

• 4. Flux modulation Le(i)

Tweeters
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• 1. Compliance Cms(x)

Micro speakers

• 1. Force factor Bl(x)

• 2. Compliance Cms(x)

• 3. Mechanical resistance Rms(x)
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Figure 3.9: Critical non-linear components
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Figure 3.10: Non-linear current driven transducer model in Matlab Simulink
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Figure 3.12: Applied filter
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Figure 3.13: Resulting response
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Figure 3.14: Woofer 1
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Figure 3.15: Woofer 2
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Figure 3.16: Woofer 3
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3.4. Motional feedback

3.4 Motional feedback

Motional feedback is an old concept which have been used in conjunction with
voltage drive as well as current drive. In principal a motional sensor is sensing the
movement of the cone which is compared to the input signal and any error between
the two is corrected by a controller leading to an accurate and close to distortion
free audio reproduction. This is however only applicable for low frequencies due
to problems with cone breakup at higher frequencies. The alternative feedforward
methods have received a lot of focus in recent years due to advances in digital
processors, loudspeaker characterization methods and loudspeaker modelling [25–
27]. The feed-forward method avoids a motional sensor but requires an accurate
model of the transducer that incorporates the non-linearities and adapts to sys-
tem changes caused by usage, temperature, ageing, production spread and so on
[28]. Even though feedforward compensation has come a long way and seems very
promising the alternative MFB technique is revisited in this work. The output or
motion of the loudspeaker can either be captured as acceleration [29–31], velocity
[32–37], pressure [38] or position [39–41]. Motional feedback is normally imple-
mented on closed box systems because only a single sensor is necessary to sense
the output. Attempts with higher order systems including passive radiators have
also been successfully implemented [42]. In [18, 21, 43] motional feedback was al-
ternatively used to control the undamped mechanical resonance of a current driven
loudspeakers. Loudspeaker protection using feedforward or feedback has also been
proposed [44, 45].

Despite the fact that both feed-forward and motional feedback have been investi-
gated intensively, this kind of active distortion cancellation is very rarely found in
commercial products. The motivation was to answer the question: Why is motional
feedback not used to improve the sound quality of woofers and subwoofers today?

A simplified schematic of the motional feedback implementation is shown in fig-
ure 3.17. The output of the accelerometer is DC-biased since the electronics are
supplied by a single supply voltage. Then the output is filtered by a forth order

Figure 3.17: Simplified motional feedback schematic
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Figure 3.18: Various measurements

lowpass filter to remove any high frequency noise and unwanted artefacts of the
accelerometer. The input signal is also DC-biased and compared to the filtered ac-
celerometer ouput. A compensation circuit is designed to obtain a desired open loop
response by considering the additional transfer functions of the amplifier and the
transducer. In this work two compensation circuits were designed and tested and
the measured open loop response of the first (old) and the second (new) is shown in
figure 3.18.a. The cone acceleration was measured with a Polytec Doppler laser in
order to validate the accuracy of the accelerometer. A comparison at differen input
voltage levels are shown in figure 3.18.b. A good coherence is seen up to 1 kHz
where cone break-up start to occur. Figure 3.18.c and 3.18.d shows the measured
frequency spectrum and the measured accelerometer output with and without the
first "old" compensation. During the measurements the transducer was feed with a
8VRMS , 20 Hz sine wave signal. The effect of the motional feedback implementatoin
is clearly visible. Table 3.1 list the final improvements in terms of THD obtained
by the second "new" compensation. It is clearly seen how the THD decrease as a
function of frequency and voltage level. A 5 time reduction of THD is obtained in
the best case.
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Frequency
(Hz)

THD w/o. / w. (%)

2Vrms 4Vrms 8Vrms

20 5.3 / 1.1 15.0 / 1.3 54.9 / 9.1

30 2.4 / 0.4 5.6 / 0.5 22.0 / 2.1

40 1.3 / 0.3 2.5 / 0.5 7.0 / 1.6

50 0.9 / 0.5 1.5 / 0.8 3.2 / 0.5

Table 3.1: Laser based THD measurements with and without compensation

3.4.1 Discussion

Based on this work it can be concluded that motional feedback is very straight
forward to implement and that it greatly improves total harmonic distortion. The
full potential of motional feedback in terms of transient response, perceived sound
quality, cost and power requirements is however still to be revealed. Future work
should include a way to adjust the amount of motional feedback as a function
of the displacement level in order to improve the signal to noise ratio. A digital
implementation would probably be advantageous in terms of added functionality.
Listening tests and transient response tests should also be conducted. The sound
quality and power requirements vs. enclosure size is another very interesting topic
to explore. To the authors opinion there is no good reason why motional feedback
is not being used to improve the sound quality of woofers and subwoofers today.
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Chapter 4

Efficiency

4.1 Introduction

4.2 Tracking power supply

Class-D amplifiers are known to be highly efficient compared to traditional linear
amplifiers [46–50]. On the other hand the efficiency advantage is relatively poor at
idle and at low power levels as indicated by the measured efficiency shown in figure
4.1.

Figure 4.1: Measured efficiency of a 130 W class-D amplifier with a 1 kHz reference and
a supply voltage of ± 40 V

In previous research the generalized distribution of volume control positions in time
and the corresponding output power have been analysed [48]. The research showed
that the users were listening to background music in 89 % of the time corresponding
to a peak power of 1.3 W. This coupled with the fact that the average power is
much lower than the peak power when it comes to music indicate that the efficiency
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4.2. Tracking power supply

of a sound system should be optimized for lower power levels. An efficiency below
60 % at the background music level is actually an environmental concern when all
the sound systems around the world is considered.

Figure 4.2: Power losses analysis vs. supply voltage at 1.3 V constant output power in 4
Ω load

In [51] a detailed loss analysis of class-D amplifiers is presented. In this work that
model is used to predict the losses in a class-d amplifier driving 1.3 W constant
output power into a 4 Ω load as a function of the supply voltage - see figure 4.2. As
seen both power stage switching losses as well as the filter conduction and switching
losses are greatly decreased by lowering the supply voltage. Figure 4.3 shows a
handful of different power supply schemes. In order to illustrate the dynamics of
each supply scheme the left side show a high signal level and the right side show a
medium signal level. Figure 4.3.a shows a common fixed voltage supply that leaves
a large headroom when the audio signal is low. A few amplifiers control the supply
voltage as a function of the volume controller as shown in figure 4.3.b. This is a
huge improvement but due to the high peak to average content of audio material
a large headroom is still present. In figure 4.3.c a 2 level supply scheme is shown.
The advantage of this approach is a relative simple implementation that changes
the gain of the feedback loop in the power supply based on a simple trigger circuit.
When the user listens to background music the supply voltage will be low and the
supply voltage will go to its maximum level at other volume settings. Figure 4.3.d
shows a peak and hold supply voltage scheme where the supply voltage is turned up
during the peaks of the audio signal and is hold for a while before it begins to fall
again until it finds the next peak. This scheme is also quite simple to implement
using a peak and hold circuit but it will properly require more from the feedback
loop of the amplifier because the amplifier have to adjust its gain to the constantly
changing supply voltage. Figure 4.3.e illustrate a fast tracking power supply. This
is the ultimate scheme in terms of minimum supply voltage but on the other hand
it requires a lot from the control loop of both the amplifier and the power supply.
A fast and fully tracking power supply was presented in [52, 53]
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4.2. Tracking power supply

The goal of this work was to investigate the real efficiency improvement of a peak
and hold based tracking power supply and to investigate if the total harmonic
distortion of the amplifier is affected. The peak and hold based tracking power
supply was not implemented but the efficiency of a class-D amplifier as a function
of the output power was measured and for each power level the supply voltage
was adjusted to the peak value the amplifier output voltage. Figure 4.4 compares
the measured efficiency with and without a "peak and hold based tracking power
supply". As seen the efficiency is drastically improved at 1 W. If the power supply
rejection ratio of the amplifier is high due to a well designed feedback loop then
the total harmonic distortion should not be altered which is also the case for the
measured THD curves shown in figure 4.5.
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4.2. Tracking power supply

Figure 4.4: Comparison of measured efficiency with an without peak tracking power sup-
ply

Figure 4.5: THD vs. power for different supply voltages
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4.3. Non-linear transducer and electrical compensation

4.2.1 Discussion

This work demonstrate that the efficiency of a class-D amplifier can be significantly
improved at low power levels by the use of a peak and hold based tracking power
supply. In theory the amplifier efficiency could be further improved if a fast tracking
power supply scheme was applied. In future work the efficiency of the tracking
power supply should however be considered since a higher conversion ratio could
counteract the gained efficiency improvement to some extend. Previous research
has investigated the possibility of integrating the power supply and the amplifier
in a single stage but it seems like that approach has to many disadvantages [54].
To the authors knowledge the literature regarding this subject is very sparse and a
fixed supply voltage is common practice for class-D amplifiers.

4.3 Non-linear transducer and electrical compensation

This chapter describes a interesting concept for efficiency improvement that was not
investigated or published due to lack of time. It is well known that the transducer
is the weakest component in the sound reproduction chain as mentioned before.
The passband efficiency for a transducer is given by

η = Bl2

ReM2
ms

ρ0S
2
d

2πc (4.1)

To state an example the efficiency of the 8” woofer (HiVi-M8N) used in the work
on motional feedback [B] is

ηwoofer = 9.62

6.5 · 0.03652
1.18 · 0.02142

2π345 · 100 = 0.27% (4.2)

The efficiency of a 1” tweeter (BC25SC06-04) is a little higher

ηtweeter = 1.72

2.9 · 0.000272
1.18 · 0.000682

2π345 · 100 = 0.35% (4.3)

It seems very challanging to improve the efficiency when looking at equation 4.1.
The force factor Bl can be increased by the use of a larger and stronger magnet but
a physical limit exists and strong neodymium magnets are already applied. Further
more a larger magnet takes up more space inside the loudspeaker enclosure which
decrease the efficiency below the resonance frequency of the transducer. A larger
magnet also increase the weight of the transducer which is a disadvantage when it
comes to handling and shipping. The effective cone area Sd is constrained by the
size of the final loudspeaker design. Even if a larger cone area would be an option
the larger cone would increase the mass Mms. The mass could be reduced by using
a thin and lightweight material and apply cone optimization to avoid break up.
This approach has already been applied and there is a physical limit as well as a
economic limit to the choice of material and the fabrication. The mass could also
be reduced by the use of a lighter conductor such as alluminium but that would
cause the resistance to increase. The resistance could be lowered by adding fewer
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4.3. Non-linear transducer and electrical compensation

turnes, decreasing the diameter of the voice coil or by increasing the diameter of
the wire or by improving the fill factor using rectangular wire. The last two options
increase the mass and the two first options decrease the force factor Bl. The task
is thus to balance all of these parameters to optimize the efficiency of a transducer.
This task is actually very limited by the fact that the transducer needs to be linear
in a certain displacement range and due to the fact that the DC-resistance of the
voice coil Re needs to be fixed at 4Ω or 8Ω.

Klippel and Agerkvist have however showed that a non-linear transducer motor can
improve the efficiency at certain displacement ranges but non-linear compensation
methods such as motional feedback are required [1, 2]. A range of motor topologies
are shown in figure 4.6. Each topology produce a unique force factor characteristic
as shown in figure 4.7.

a) Over-hung coil b) Under-hung coil

d) Equal-length coilc) Split coil

Figure 4.6: Motor topologies
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Figure 4.7: Illustration of force factor vs. displacement for different motor topologies.
The curves are based on work by Klippel and Agerkvist [1, 2]
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4.3. Non-linear transducer and electrical compensation

4.3.1 Discussion

Considering the behavior of the listener and the behavior of music the displacement
is most frequently operating in the low range. Thus the equal length coil motor
topology is most attractive in terms of efficiency. Future work should focus on
the tradeof between a high force factor vs. a decreased number of turns leading
to lower voice coil resistance, lower DC resistance and lower voice coil inductance.
In professional audio equipment where the loudness level is constantly high the
split coil motor topology could be of interest. In both cases non-linear control is
required.
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Chapter 5

Cost and size

5.1 Introduction

For many years it seemed like the saying ”more is better” applied for amplifier
power in a sound system. In recent years the game has changed since many new
sound systems integrate the power supply, the amplifiers and the transducers in
a single unit leaving all of the technical details to the engineers - it just have to
play loud enough! New design possibilities arise as a consequence of the integration
but at the same time size and cost of the main components is a major challenge.
Present design practices relying on sinusoidal test signals and resistive amplifier
loads which are far from the actual audio signals and amplifier loads are hindering
improvements in this area [55–61]. The motivation has thus been to develop an
intelligent approach to estimate the realistic power requirements of a given sound
system to avoid over dimensioned sound systems and to obtain a highly appreciated
size and cost reduction [D,E].

5.2 Modeling of requirements specification

The power required during audio reconstruction is mainly a function of the audio
material being reproduced, the loudness level and the efficiency of the loudspeaker.
A more detailed scheme for estimation of the power requirements is shown in figure
5.1. The model uses a large database of music files (400 music tracks in total), the
music tracks are loudness normalized to enable a fair comparison of the individual
power requirements of each track, the same amount of gain is then applied to each
track to bring the loudness level to a specific loudness limit, the music is filtered by
a cross-over filter and the resulting signals are applied to a linear model of specific
transducers/drivers that are to be used in the given application.

The model used was similar to the Matlab simulink model shown in figure 3.4 but
with the non-linear dependencies of the displacement disabled. From the simula-
tions the voice coil voltage and current of each music track was stored. It was then
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Figure 5.1: Scheme for power requirement estimation
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relatively simple to extract the worst case peak voltage and current and to calculate
the worst case peak power and the apparent power for each track. The result are
shown in figure 5.3. As seen the peak voltage, the peak current and thus the peak
power was highest for the woofer. The average apparent power was however higher
for the subwoofer for less than half of the songs and it is noted that the worst case
peak power is approx. 100 times higher than the average apparent power. This
knowledge can be used to determine the supply voltage of the amplifier and the rat-
ting of the components in the power supply and the amplifiers. From these results
it is clear that the power requirement is related to the audio material. Figure 5.2
show 3music tracks of individual genres with applied loudness normalization. These
tracks sound equally loud despite their different characteristics. By eye inspection
the Dubstep track sees to have the highest average power requirement whereas the
Jazz track seems to have the highest peak power requirements. It is however hard
to distinguish the worst case power requirements for the woofer and the tweeter.

Figure 5.3: Analyse of worst case peak voltage, peak current, peak power and apparent
power

The most important information is however missing. What is the worst case power
requirement scenario during playback of these music tracks? How fast does the high
power levels decay? How frequently is the high power levels required? There is no
simple way to answer these questions and therefore the power vs. time for each track
had to be analyzed in more detail. Figure 5.4 illustrate the presented analyzing
scheme. The stored data of the voltage and current from the simulation were
multiplied to form the power signal. Then the power signal was multiplied in the
time domain with a square window with stepwise logarithmically increasing window
width. For each window width the window was moved forward with 1 sample until
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Figure 5.4: Power analysis

the window reaches the end of the music signal. Every time the window was moved,
the apparent power of the signal within the window was calculated by (5.1) and
the maximum value was stored for that particular window size. The result is the
worst case power requirement scenario vs. time. The result of the analysis for a
woofer can be seen in figure 5.5. As seen the worst case power is reduced from 500
VA to 40 VA in 0.1 second. In comparison the state-of-the-art power supplies and
amplifiers are rated for more than 80 seconds of peak power.

|S| = 1
N

√√√√ N∑
n

v(n)2i(n)2 (5.1)

40/221



5.3. Validation of requirements specification model

Figure 5.5: Worst case power vs. time (window width) for a woofer

5.3 Validation of requirements specification model

The previously presented power requirement model was based on a very simple
linear model. Further work expanded the model to include different types of enclo-
sures (closed and vented) and to include the most critical non-linearities Cms(x),
Bl(x) and Le(x). In order to verify the models a simple measurement setup was
established. A 2 way loudspeaker developed by PointSource Acoustic and suitable
amplifiers were acquired. The voice coil voltage and current was preconditioned on
a small circuit board before being send to a Data Acquisition Device (DAQ) from
National Instruments which was controlled via Matlab. The setup is seen in figure
5.6.

MATLAB AMPDAQ

DIFF AMP

DIFF AMP

VAMP

VRS

RL

RS

Figure 5.6: Simplified measurement setup

Figure 5.7 shows the result of the closed box woofer validation. At low voice coil
voltage (4.3 Vpk) the coherence of the linear model is better than the non-linear
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5.3. Validation of requirements specification model

model. On the contrary the linear model overestimates the peak power at higher
voice coil voltages (10.8 Vpk). This discrepancy could be caused by the fact that
the non-linear parameters are measured at high voltage levels and not low voltage
levels. Also the free air and the vented box model showed a good coherence to
the measurements. All models predict the fast decay of power very accurately as
function of time and thus the results from the previous research where 400 music
tracks were analyzed can be trusted and is useful. Figure 5.8 shows a comparison
of the measured tweeter with and without a passive cross-over filter and a linear
simulation. It is clearly seen that the power requirement of the tweeter is different
from that of the woofer.

Figure 5.7: Closed box woofer validation

Figure 5.8: Tweeter validation

A statistical analysis of the power requirements of 128 loudspeakers with similar size
(6.5”) was performed in collaboration with a master student [Ausin2015Experimental].
The linear parameters was acquired from various databases on the internet and pro-
cessed in Matlab. The frequency response of all the transducers were equalized to
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the same target response to enable a fair comparison and then each transducer was
simulated with the linear transducer model. Figure ?? shows a zoom of the power
curves obtained by simulation. As seen the variance in complex power (S) is large.
In future designs of general purpose power supplies and amplifiers the presented
power requirement model could be used to account for such variance.
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Figure 5.9: Power variance as a function different transducers

5.3.1 Discussion

Until now sound system engineers only had rough estimations of the power require-
ment at hand based on assumptions far from the real application. In this work
a first attempt towards a realistic requirement specifications is taken considering
audio material as input, loudness normalization of the audio material, crossover
filters, the desired maximum loudness level as well as a non-linear model of the
transducers in the most popular enclosure types. The next step is to implement
this knowledge in the design of future power supplies, amplifiers and transducers.

5.4 Power supply design

[F]

5.5 Discussion
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Figure 5.12: Temperature measurement during power test
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Chapter 6

Production

6.1 Introduction

Incductors wound on toriodal cores are used in many power electronic products. An
examble is shown in figure 6.1 where 6 of such inductors are used in an integrated
power supply and amplifier module from Pascal Audio. As illustrated in figure 6.2
the prototyping of such inductors are fairly quick and simple to create but the step
towards production require a lot of machinery and manual work which is typically
performed in countries where labor expenses are low. The lead time is thus high for
such inductors because it takes time to manufacture and ship the ordered inductors.
If the core diameter is small and the wire diameter is large each winding must be
made manually on a hook-pull type machine which is really labor extensive. Since
such inductors are quite bulky they are typically placed and soldered manually.
Another disadvantage of the wire wound toriodal inductor is that the copper fill
factor is low because the spacing between the windings increase gradually from the
inner diameter of the core to the outer diameter.

In this work a hybrid winding concept was investigated using the traces in a printed
circuit board to connect a number of bended copper foils resulting in a complete
winding. As usual a picture tells more than a thousand words - see figure 6.3. This
concept opens up the possibility for both an automated manufacturing process and
an automated production process of toroidal magnetics such as power inductors,
filtering inductors, air core inductors, transformers etc. Also a faster time to market
is expected since the former including the bended foils can be pre-fabricated and
pre-shipped to different suppliers around the world.
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Amplfier inductors Converter inductor EMC inductors

Figure 6.1: Power supply and 2.1 channel amplifier from Pascal Audio
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Figure 6.2: Road from prototype to finished product
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Figure 6.3: Conceptual drawings
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6.2 Hybrid winding concept for toroids

In the early phase of development many thoughts about the winding implementation
came up. Figure 6.4 show several ways to implement the hybrid winding. Both
stamped and bend foil pieces and cast copper pieces were considered. The resistance
of such winding arrangements are very complex to solve numerically and thus 3D
finite element analysis (FEA) was utilized.

Figure 6.4: Winding concepts

It was decided to make a prototype of the typical wire wound inductor and a
prototype of the hybrid wound inductor. Figure 6.5 shows the prototypes to the
left and the 3d drawn versions for simulation in the right. The prototypes was only
used to validate the simulation results and where never meant to be compared in
terms of resistance, inductance and such. The simulations showed a good coherence
up to 100 kHz where the core loss started to influence the measured resistance. Now
that the simulations could be trusted the influence of the copper layer thickness
of the PCB was simulated. The result shown in figure 6.6 it can be observed that
the DC resistance of the hybrid inductor with bended foils of 0.5 mm thickness
can be rduced by 60 % using a double sided PCB layer of 70um copper thickness.
It was concluded that the bottle neck for the hybrid inductor is the connections
done in the PCB. In order to reduce the conductor length in the PCB the bended
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copper foils need to go in an angle over the core in order to secure that the PCB
connections are as straight and short as possible.

Figure 6.5: Left: Prototypes, Right: FEM simulation

Figure 6.6: Simulated DC resistance as a function of the PCB copper thickness
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6.3 DC resistance optimization of a foil wound inductor

It is very difficult and time consuming to do several 3D FEA simulations. A 2D
FEA simulation was therefore chosen to attempt an optimization of the DC re-
sistance by simulation of various winding possibilities. A Matlab program with a
graphical user interface was created enabling various winding implementations to
be generated and inspected visually. The program enabled the user to change the
angle of each vertical or horizontal section of the winding, the number of turns
and the amount of insulation between each turn. Figure 6.7 illustrate the GUI and
examples of different settings and visual outputs. An optimization routine could
be lunched which generated a vast range of winding configurations. Each winding
configuration was automatically imported into Comsol and simulated using FEA.
A 31 % improvement of the DC resistance compared to previous results where the
bended copper foils went straight over the core. As mentioned earlier the thickness
of the PCB traces were a bottle neck for high power inductors. Another way to
cope with this problem is illustrated in figure 6.8 and 6.9.

F1

F2

F3

F4

Figure 6.7: Graphical user interface and output
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6.4. Discussion

Figure 6.8: High power hybrid concept 1

Figure 6.9: High power hybrid concept 2

6.4 Discussion

The first publication describing the hybrid winding concept won the best paper
award at the ECCE Asia down under conference in 2013. The concept is still very
young and the full potential is not yet exploded. The next step could be to test the
hybrid inductor in a real application such as class-D amplifiers or as air inductors
for very high frequency converters.
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Chapter 7

Other research

A great knowledge within magnetic component design and converter optimization
was acquired through a fruitful collaboration with several researchers at the elec-
tronic department at DTU. The work contributed to the development of efficient
drivers for actuators based on dielectric electro active polymer which has a potential
to increase the efficiency and weight of future audio transducers [62–66]. Further
more a huge amount of this research is relevant for the design of power supplies
used in sound systems. The flyback topology has been in focus during this work
and it is also a popular topology for power supplies in sound system. It is out of
scope for this thesis to present this work in further detail but the conference and
journal publications related to this work are to be found in the publication list.
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Chapter 8

Conclusion and Future work

This work has investigated the improvement of sound systems by electrical means.
The major parts of this thesis and the associated publications correspond to the
following contributions:

• Non-linear models of voltage- and current-controlled electro dynamic trans-
ducers have been derived and the accuracy have been verified using a laser
measurement. Both total harmonic distortion and total intermodulation dis-
tortion as a function of frequency and displacement have been presented. The
knowledge gained are crucial for the design of sounds systems with improved
sound quality. Future work should focus on auralization of the non-linearities
and focus on ways to determine the perceived audio quality. This will help
future engineers to make meaningful design choices leading to better sound
systems.

• Multi-tone distortions of voltage- and current-controlled transducers have
been compared using non-linear models. It was found that current control is
an alternative to the use of passive shorting rings in the pole piece that are
used to linearize the voice coil inductance as a function of the displacement.
Future work could focus on the combination of current control and motional
feedback as sparsely presented in previous research. Listening tests would be
of great future value.

• Accelerometer based motional feedback have been successfully implemented
as an electrical mean to improve the sound quality. A 14 dB reduction of the
total harmonic distortion was obtained in the best case. Motional feedback
opens up for radical design changes such as non-linear transducer designs
that has a potential to improve the very poor efficiency of linear transducers.
More work is required to optimize the performance and implementation cost
of motional feedback. Also the power requirement of small loudspeakers with
motional feedback could be investigated in the future.

• The concept of a tracking power supply has been investigated as a mean to
lower the amplifier losses at low power levels which is an environmental con-
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cern. The measurements on a prototype and a commercial class-D amplifier
shows a considerable efficiency improvement at low output power without sig-
nificant degradation of the sound quality. Future work should implement a
tracking power supply to reveal the full potential of this concept.

• A first attempt towards realistic power requirements specifications for sound
systems have been taken. A new analyzing tool has been developed and
experimentally validated. It is found that the full power capability of the
power electronics in a sound system is only needed for a very short time in
the range of milliseconds. Based on this research a huge potential in terms
of size and cost of future sound systems is expected. Future work should
expand this research to include a range of different sound system applications
and different audio material.

• A novel hybrid winding concept for toroidal magnetic components have been
proposed. The winding implementation has been optimized in terms of DC
resistance with the aid of a comprehensive optimization routine incorporating
finite element analysis. The proposed hybrid winding scheme should be tested
in different applications such as class-D amplifiers in the future. Also very
high switching frequency converters could be an interesting test application.
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ABSTRACT

Current driven loudspeakers have previously been investigated but the literature is limited and the advantages
and disadvantages are yet to be fully identified. This paper makes use of a non-linear loudspeaker model to
analyse loudspeakers with distinct non-linear characteristics under voltage and current drive. A multi tone
test signal is used in the evaluation of the driving schemes since it resembles audio signals to a higher degree
than the signals used in total harmonic distortion and intermodulation distortion test methods. It is found
that current drive is superior over voltage drive in a 5” woofer where a copper ring in the pole piece has not
been implemented to compensate for eddy currents. However the drive method seems to be irrelevant for
a 5” woofer where the compliance, force factor as well as the voice coil inductance has been optimized for
linearity.

1. INTRODUCTION

Traditionally loudspeakers are driven by volt-
age controlled amplifiers exhibiting low output
impedance. The electromagnetic driving force act-
ing on the diaphragm is however proportional to
the coil current which is inversely proportional to
the non-linear loudspeaker impedance in the case of
voltage drive. Current controlled amplifiers exhibit a
much higher output impedance than the loudspeaker
impedance and thus changes in the voice coil resis-
tance due to heating, changes in voice coil induc-
tance as a function of the displacement and the con-
tribution from the loudspeakers electro motive force

(EMF) dos not have any effect on the electromag-
netic driving force. Even though these are great ben-
efits current drive was probably turned down since
an individual filter is needed to dampen the mechan-
ical resonance of the loudspeaker unit adding com-
plexity and cost to the electronic implementation as
indicated in this paper from 1943 [1]. A static filter
is unfortunately not sufficient since the mechanical
resonance of a loudspeaker can drift due to ageing
of the suspensions components, due to production
variance, temperature change and so on. Other re-
search has dealt with mechanical damping and elec-
trical damping by advanced amplifier control to al-
leviate this problem [2, 3]. Another disadvantage of
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Fig. 1: Example of non-linearites as a function of displacement for 25 different 5” woofers
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Fig. 2: Example of non-linearites as a function of displacement for 25 different 5” woofers

current drive is the requirement of an extra circuity
to deal with a no-load situation and while this isn’t
a problem in many present audio applications where
the amplifier and loudspeaker is integrated in a sin-
gle unit, historically this was a disadvantage due to
interchangeable demands of the amplifier and loud-
speakers. Current controlled amplifiers are simple to
implement in existing amplifier topologies control-
ling the voltage and in fact some voltage controlled
amplifiers already have an inner current feedback
loop [2]. As indicated by Klippel [4], other critical
non-linearities such as the displacement dependent
compliance and force factor dominate at lower fre-
quencies where current control dos not have a strong
impact. In [5–7], motional feedback was combined
with current drive to deal with the non-linearities
and at the same time deal with the previously men-
tioned damping issue inflicted by current drive. Re-
cent publications questions the voltage drive prin-
ciple and compare it to current drive [8–11]. Only
in [8,9] a comparison related to distortion of different
types of loudspeaker units from woofers to micros-
peakers is found. In this work the limited evaluation

of current drive is expanded by analysis of three 5”
woofers with distinct non-linear characteristics. A
model of voltage and current drive of the woofers
is implemented and a static filter is utilized to en-
able comparison of the drive methods. Even though
a static filter can not be used in a real application
because of the drifting issue mentioned previously
this is not the case for the model. The model can be
used to examine the potential of current drive before
a great effort is put into the actual implementation.

2. LOUDSPEAKER MODELLING

Large signal measurements performed with the Klip-
pel analyzer [12] of 25 individual 5” loudspekaer
drivers was collected for this work. As seen in fig-
ure 2 the measured force factor Bl, compliance Cms

and voice coil inductance Le as a function of dis-
placement x show a huge deviation in both level and
form. The benefit of each driving scheme will also
deviate and . Eleven of the woofers originates from
a study of eddy current compensation (with differ-
ent implementations of copper and aluminium rings
in the pole piece) and thus exhibit nearly the same
force factor and compliance characteristics.
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In this work two of the eleven woofers from this
study is chosen to represent a woofer with and with-
out eddy current compensation. A third driver is
chosen because of a flat force factor, a soft and sym-
metric compliance and a low and flat voice coil in-
ductance which are characteristics that are expected
to result in very low distortion. The chosen woofers
will be referred to as woofer 1, 2 and 3 respectively
in the rest of this paper. Their non-linear charac-
teristics are shown in figure ??. The displacement
was limited to the maximum displacement xMAX

of woofer 1 and 2 during the examination. In this
displacement span it is noted that the voice coil in-
ductance of woofer 1 is very displacement sensitive
and that the characteristics of woofer 3 are less sen-
sitive to displacement and are more symmetric in
comparison to woofer 1 and 2.

The loudspeaker models used in this work are based
on the fundamental loudspeaker equations

u(t) = Rei(s) + sLei(s) +
R2sL2

R2 + sL2
i(s) + sBlx(s)

F (s) = Bl · i(s) (1)

F (s) = Mmss
2x(s) + Rmssx(s) +

1

Cms
x(s)

2.1. Impedance

The electromagnetic driving force is inversely pro-
portional to the impedance in voltage drive. An
investigation of the impedance variance as a func-
tion of displacement is therefore relevant and has
been performed in this work. In (2) the impedance
is derived based on (1). Bl, Cms and Le are made
dependent on the displacement x and the impedance
for the 3 chosen woofers are illustrated in figure 3 by
varying x from -5.7 mm to +5.7 mm in incremental
steps. This is equivalent to a small signal analysis
at various displacement offsets. From this analysis
it is expected that woofer 3 will be less effected by
the driving scheme.

Zload(s) =
u(s)

i(s)
= Re + sLe(x) +

ResL2

Re + sL2
(2)

+
Bl(x)2

sMms + Rms + 1
sCms(x)
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(a) Woofer 1: Without copper ring
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(b) Woofer 2: With copper ring
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(c) Woofer 3: With very linear characteristics

Fig. 3: Non-linear impedance variation as a function
of displacement

AES 138th Convention, Warsaw, Poland, 2015 May 7–10

Page 3 of 7



Schneider et al. Current Driven Loudspeakers

10
2

10
3

10
4

60

70

80

90

100

110

Frequency [Hz]

S
P

L 
@

 1
 m

, r
e 

20
 u

P
 [d

B
]

 

 
voltage
current
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Fig. 6: Resulting 4th order bandpass response

2.2. Sound pressure level

The fundamental equations in (1) can be used to
derive the transfer functions from voltage to accel-
eration and from current to acceleration respectively

Z(a/v) =
Bls2

Bl2s + (sLe + Re)(s2Mms + sRms +
1

Cms
)

Z(a/i) =
Bls2

(s2Mms + sRms +
1

Cms
)

(3)

It is noted that the acceleration due to current drive
is independent of Le, Re and less independent of Bl.
The acceleration is proportional to the sound pres-
sure level (SPL) and the resulting SPL of voltage and
current drive is shown in figure 4. The characteristic
peak in the frequency response around the resonant
frequency of the loudspeaker using current drive is
evident. The amplitude of the sinusoidal signal used
to calculate the SPL’s were 1 for both voltage and
current drive which explains the difference in SPL’s.
In order to compare voltage and current drive the
power applied to the woofer in both driving schemes
have to be equalized, thus the SPL’s have to match.
This is achieved using the filter shown in figure 5 and
by applying the filter the resulting SPL’s optain the
form of a 4th order bandpass filter as shown in fig-
ure 6. The chosen bandpass characteristic resembles
a typical crossover design for a woofer in a 2 way
loudspeaker. Implementation of the filters makes it
possible to use a signal with the same amplitude as
input for both voltage and current drive and it en-
ables comparison of the two driving schemes. The
filters are designed to obtain a maximum displace-
ments just bellow xMAX (determined by the Klippel
measurement).

3. DISTORTION ANALYSIS

The models used to predict the distortion due to
the woofer non-linearities are implemented in matlab
simulink. The models are inspired by [8, 9]. The
input stimuli consists of 10 sinusoidal signals with
equal amplitude spread over a frequency range of
20 Hz to 2 kHz. In figure 9 the output spectrum
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Fig. 8: Simulink model of current driven transducer

caused by low displacements (around ± 2.7 mm) and
high displacements (around ± 5.7 mm) are shown for
Woofer 1, 2 and 3.

In figure 9.a and figure 9.d, the advantage of cur-
rent drive is clearly seen at both displacement levels
for Woofer 1 since the distortion is significantly re-
duced. At high displacement level even Woofer 2
with low variance in voice coil inductance has an
advantage of current drive as seen in figure 9.e but
at lower displacements only a small difference is ob-
served as seen in figure 9.b. In the case of woofer
3 the driving scheme seems irrelevant as seen in fig-
ure 9.c and 9.f. These results support the predicted
performance based on plots of the impedance as a
function of displacement.

4. FUTURE WORK

Future works should investigate the advantages of

current drive for loudspeaker drivers used in a higher
frequency range above the resonant frequency such
as fulltone units and tweeters. The model of the
tweeter should be expanded to include the non-
linear viscous damping Rms. Furthermore elec-
tronic damping at the resonance frequency could be
considered using amplifier control techniques. And
finally the real cost-benefit should be experimentally
verified.
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(a) Woofer 1 (xMAX = ± 2.7 mm)
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(b) Woofer 2 (xMAX = ± 2.7 mm)
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(c) Woofer 3 (xMAX = ± 2.7 mm)
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(d) Woofer 1 (xMAX = ± 5.7 mm)
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(e) Woofer 2 (xMAX = ± 5.7 mm)
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(f) Woofer 3 (xMAX = ± 5.7 mm)

Fig. 9: Distortion analysis
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5. CONCLUSION

This paper present a comparison of voltage and cur-
rent drive for 3 distinct 5 inch woofers. A non-
linear Matlab Simulink model including the major
displacement related non-linear distortions is imple-
mented including a loudspeaker specific filter to ob-
tain a target response. It is found that current drive
is superior to voltage drive in the case where the
voice coil inductance is non-linear due to eddy cur-
rents. It seems that voltage drive is sufficient for
loudspeakers where a shorting ring is implemented
to reduce the eddy current effect and even more so
if the compliance and the force factor has been opti-
mized for linearity. Current drive is a welcome low
cost alternative to shorting rings, since the cost of
current controlled amplifiers is not expected to in-
crease.
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ABSTRACT
The electro dynamic loudspeaker is often referred to as the weakest link in the audio chain due to low
efficiency and high distortion levels at low frequencies and high diaphragm excursion. Compensating for
loudspeaker non-linearities using feedback or feedforward methods can improve the distortion and enable
radical design changes in the loudspeaker which can lead to efficiency improvements. In combination this
has motivated a revisit of the accelerometer based motional feedback technique. Experimental results on a 8
inch subwoofer show that the total harmonic distortion can be significantly reduced at low frequencies and
large displacements.

1. INTRODUCTION

In 1973 Edward R. Hanson from Phillips [1]
stated the most important loudspeaker conditions
to comply with being

• Size as small as possible

• Frequency response as wide as possible

• Frequency response as flat as possible

• Distortion as little as possible

• Efficiency and power handling capability must
be considered

Back then the size condition was stressed by the
advent of 4 channel sound and today this condition
is still actual with the advent of 3D sound which
require 12 loudspeakers in a 7.1.4 set up. A
small transducer will have to move the diaphragm
further to provide the same sound pressure level
compared to a larger transduceer and this tends
to increase the distortion due to displacement
dependent non-linearities of the compliance, the
force factor and the self inductance [2]. Further
more a small loudspeaker enclosure will have a high
impedance which will limit the low frequency range
resulting in a narrow and non flat frequency response
if no action is taken. It was noted that the efficiency
and power-handling capability must be considered
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in any attempt to correct these problems. Today,
efficient and powerful class-D amplifiers and switch
mode power supplies are up for this task.

The distortion and frequency response can be
corrected by equalization combined with motional
feedback (MFB) or model based feedforward
methods. Feedforward methods have received a lot
of focus in recent years due to advances in digital
processors, loudspeaker characterization methods
and loudspeaker modelling [3–5]. Feedforward
compensation avoids a motional sensor but requires
an accurate model of the loudspeaker that is able
to adapt to time drifting loudspeaker parameters,
and non-linearities [6]. Even though feedforward
compensation has come a long way and seems
very promising the alternative MFB technique is
revisited in this work. The output or motion
of the loudspeaker can either be captured as
acceleration [1, 7, 8], velocity [9–14], pressure [15]
or position [16–18]. MFB is normally implemented
on closed box systems because only a single sensor
is necessary to sense the output. Attempts with
higher order systems including passive radiators
has also been successfully implemented [19]. In
[20–22] MFB was alternatively used to control
the undamped mechanical resonance of a current
driven loudspeakers. Loudspeaker protection using
feedforward or feedback has also been proposed
[23,24].

2. CONTROL THEORY

A block diagram of the control scheme used in
this work is shown in figure 1. The design of the
controller is based on the transfer function of the
Plant which consist of an amplifier, a loudspeaker
and an accelerometer. The Feedback applies a gain
to control the level of feedback compared to the
input level.

2.1. Class-d amplifier

The class-D amplifier can be modeled as a 2nd order
butterworth filter given by

Gamp =
G0ω

2
c

s2 +
√

2ωcs+ ω2
c

(1)

where

ωc = 2πfc =
1√
LfCf

(2)

Controller Plant

Disturbances

u

Feedback

r e y

−

ym

Figure 1: Block diagram of negative feedback

2.2. Loudspeaker

The transfer function from voltage to acceleration
given in equation (3) is derived from the well known
equations (4) of the lumped loudspeaker model [5].

G(a/v) =
Bls2

Bl2s+ (sLe +Re)(s2Mms + sRms +
1

Cms
)

(3)

u(s) = Rei(s) + sLei(s) + sBlx(s)

F (s) = Bl · i(s) (4)

F (s) = Mmss
2x(s) +Rmssx(s) +

1

Cms
x(s)

Re and Le are electrical resistance and inductance,
Bl is the force factor, Mms, Rms and Cms are
respectively the mechanical mass, resistance and
compliance.

2.3. Sensor

The accelerometer has a bandwidth of 10 kHz and a
sensitivity of 6.7 mV/G with a supply voltage of 5 V.
The accelerometer can be modelled as a 2nd order
peaking low-pass filter with a peak located around
21 kHz, and a peaking magnitude of 7 dB.

2.4. Control

A bode plot of the Plant which consist of Gamp ·
Gv/a · Gsens is shown in figure 3. As seen the
magnitude of the Plant needs to be raised at low
frequencies in order to obtain a higher loop gain
at lower frequencies. The controller consists of two
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Figure 2: Simplified schematic.
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Figure 3: System transfer functions

poles at DC, 2 zeroes at the lower cut-off frequency
of the Plant and 2 poles at 600 Hz. This is done
to attenuate noise and high frequency break up
modes of the cone as seen in the sound pressure level
measurement in figure 5a.

The compensation transfer function is given by

Gcomp = Kc
(τz1s+ 1)(τz2s+ 1)

(τp1s)(τp2s)
, τz,p =

1

2πfz,p
(5)

The resulting open loop transfer function Gopen

is plotted in figure 3. It resembles a low-pass
characteristic with an open loop phase margin of
around 70 degrees at 630 Hz.

3. EXPERIMENTAL WORK

The transducer used during this work is an 8”
woofer, HiVi-M8N. The cone of the transducer
is an aluminium/magnesium blend, which gives
a light weight and stiff cone. Severe breakup
modes appear from 1 kHz and up as seen in
figure 5a. The sensor is implemented with an
of the shelf one-axis accelerometer from Analog
Devices (ADXL001-250BEZ) that can handle up
to 250 G and provides a 10 kHz bandwidth.
The accelerometer is glued to the center of the
transducer, figure 4a. Small wires run from the
accelerometer to the printed circuit board (PCB)
connecting supply voltage, ground, and the output
signal of the accelerometer. The wires goes in a soft
arc from the accelerometer to the loudspeaker frame
to avoid bending stress on the wires.

3.1. Implementation

It is out of scope to fully describe the analogue
design and implementation of the MFB scheme.
However figure 2 can be used to get a rough idea
of the implementation. Vref is a bias voltage, equal
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(a) Loudspeaker with attached accelerometer.

(b) Control PCB prototype.

Figure 4: Hardware

to half of the supply voltage of the operational
amplifiers. The operational amplifiers use a single
supply voltage of +12 V. Figure 4b shows a picture
of the prototype. Three BNC connecters are
mounted on the PCB to be able to measure the input
signal, the output signal (signal to amplifier) and the
output of the accelerometer. A set of jumpers makes
it possible to enable/disable the controller and the
MFB.

The gain G0, as described in equation 1, of the used
amplifier is 20 and the cut-off frequency is 61kHz.
It is noted that the accelerometer has a relatively
high noise floor at low accelerations. Two series
connected 2nd order butterworth low-pass filters are
therefore utilized and they are modelled with (1).

The gain is set to 1.5 and the cut-off frequency is set
to 600 Hz.

3.2. Sensor verification

A Polytec Doppler laser is used to investigate the
influence of the accelerometer mounted to the cone.
The sound pressure response is measured with and
without the accelerometer mounted on the speaker
cone, figure 5a. It is found that the response is not
affected particularly until around 1 kHz. Since the
design is intended for a subwoofer, this is beyond the
required frequency range.

Laser measurements were also used to verify the
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output of the accelerometer. A comparison of laser
and accelerometer measurements at different voltage
levels is shown in figure 5b. The measurements show
a very good coherence up to around 900 Hz. The
bandwidth of the controller was chosen to be lower
than 900 Hz based on this observation.

3.3. Results

A comparison of a 20 Hz measurement with and
without MFB can be seen in figure 6a and 6b. As
seen in figure 6a the harmonics are lowered and the
THD is improved by more than 2 times from 54.9
% to 20.6 %. Figure 6b illustrates the time domain
signals where it is clearly seen that the distortion
has been improved greatly with MFB.
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Figure 6: 20 Hz and 8 VRMS comparison

Frequency
(Hz)

THD w/o. / w. (%)

2Vrms 4Vrms 8Vrms

20 5.3 / 1.2 15.0 / 3.7 54.9 / 20.6

30 2.4 / 0.8 5.6 / 1.8 22.0 / 6.7

40 1.3 / 0.7 2.5 / 1.2 7.0 / 2.8

50 0.9 / 0.7 1.5 / 1 3.2 / 1.7

Table 1: Laser THD Measurements Without and
With Compensation
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Figure 7: Measured original (RED) and improved
(BLUE) open loop response

Frequency
(Hz)

THD w/o. / w. (%)

2Vrms 4Vrms 8Vrms

20 5.3 / 1.1 15.0 / 1.3 54.9 / 9.1

30 2.4 / 0.4 5.6 / 0.5 22.0 / 2.1

40 1.3 / 0.3 2.5 / 0.5 7.0 / 1.6

50 0.9 / 0.5 1.5 / 0.8 3.2 / 0.5

Table 2: Improved Laser THD Measurements
Without and With Compensation

In table 1 the THD at low frequencies with and
without MFB are shown at different voltage levels.
The magnitude of the open loop response will
drop at low frequencies and high excursions due to
the non-linear behaviour of the loudspeaker which
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was not accounted for in the small signal analysis.
In order to improve the open loop gain at lower
frequencies an integrator was added to the control
circuit. A comparison of the old and new open
loop response is shown in figure 7. New laser
measurements where performed and the improved
results are listed in table 2. The THD is improved
over the whole measuring range and at 20 Hz and 8
VRMS the THD is lowered by more than 5 times.

4. FUTURE WORK

In future work the MFB could be limited as a
function of displacement in order to improve the
signal to noise ratio. Listening tests and transient
response should also be performed in order to
reveal the full acoustical potential of MFB. As
mentioned previously the power requirement will
increase when the transducer is forced to deliver
a certain frequency response which is the case
with MFB. The power requirement and protection
must thus also be investigated. The sound quality
and power requirements vs. enclosure size is
another interesting topic to explore. A digital
implementation would probably be advantageous in
terms of added functionality. The added cost of
the MFB implementation may be compensated for
by cost savings on the transducer, since the linear
requirements of the transducer is lowered.

5. CONCLUSION

Accelerometer based MFB of an 8 inch woofer is
designed and validated. Experimental results show
that the accelerometer is useful as a sensor and
the feedback loop was successfully implemented.
The worst case THD was substantially reduced by
more than 5 times. The full potential of motional
feedback in terms of transient response, perceived
sound quality, cost and power requirements is still
to be revealed.

6. REFERENCES

[1] E. R. Hanson, “A motional feedback
loudspeaker system,” in Audio Engineering
Society Convention 46, Audio Engineering
Society, 1973.

[2] W. Klippel, “Prediction of speaker performance
at high amplitudes,” in Audio Engineering

Society Convention 111, Audio Engineering
Society, 2001.

[3] J. Suykens, J. Vandewalle, and
J. Van Ginderdeuren, “Feedback linearization
of nonlinear distortion in electrodynamic
loudspeakers,” Journal of the audio engineering
society, vol. 43, no. 9, pp. 690–694, 1995.

[4] H. Schurer, Linearization of electroacoustic
transducers. University of Twente, 1997.

[5] W. Klippel, “Direct feedback linearization of
nonlinear loudspeaker systems,” Journal of the
Audio Engineering Society, vol. 46, no. 6,
pp. 499–507, 1998.

[6] A. Bright, “Tracking changes in linear
loudspeaker parameters with current feedback,”
in Audio Engineering Society Convention 115,
Audio Engineering Society, 2003.

[7] M. A. Beerling, C. H. Slump, and O. E.
Hermann, “Reduction on nonlinear distortion
in loudspeakers with digital motional
feedback,” in Audio Engineering Society
Convention 96, Audio Engineering Society,
1994.

[8] R. Valk, “Control of voice coil transducers,”
Master’s thesis, TU Delft University of
Technology, The Netherlands, 2013.

[9] H. Holdaway, “Design of velocity-feedback
transducer systems for stable low-frequency
behavior,” Audio, IEEE Transactions on, no. 5,
pp. 155–173, 1963.

[10] C.-Y. Chen, G. T. Chiu, C. Cheng, and
H. Peng, “Passive voice coil feedback control of
closed-box subwoofer systems,” Proceedings of
the Institution of Mechanical Engineers, Part
C: Journal of Mechanical Engineering Science,
vol. 214, no. 7, pp. 995–1005, 2000.

[11] S. A. Lane and R. L. Clark, “Improving
loudspeaker performance for active noise
control applications,” Journal of the Audio
Engineering Society, vol. 46, no. 6, pp. 508–519,
1998.

AES 138th Convention, Warsaw, Poland, 2015 May 7–10

Page 6 of 7



Schneider et al. Accelerometer based Motional Feedback

[12] Y. Li and G.-C. Chiu, “Control of loudspeakers
using disturbance-observer-type velocity
estimation,” Mechatronics, IEEE/ASME
Transactions on, vol. 10, no. 1, pp. 111–117,
2005.

[13] E. De Boer, “Theory of motional feedback,”
Audio, IRE Transactions on, no. 1, pp. 15–21,
1961.

[14] C. Peplinski and A. Miller, “Motional voltage
as a distortion mechanism in loudspeakers,”
in Audio Engineering Society Convention 99,
Audio Engineering Society, 1995.

[15] F. Blasizzo, P. Desii, M. Di Cola, and
C. Lastrucci, “Practical applications of a closed
feedback loop transducer system equipped
with differential pressure control,” in Audio
Engineering Society Convention 131, Audio
Engineering Society, 2011.

[16] D. Birt, “A motion transducer for
low-frequency loudspeakers,” in Audio
Engineering Society Convention 91, Audio
Engineering Society, 1991.

[17] W. Geiger, “Servo control of loudspeaker cone
motion using an optical linear displacement
sensor,” Journal of the Audio Engineering
Society, vol. 53, no. 6, pp. 518–524, 2005.

[18] F. A. Medrano, “Optical Position Sensors with
Applications in Servo Feedback Subwoofer
Control,” Master’s thesis, University of
California, USA, 2009.

[19] S. Willems and G. D?Hoogh, “On the use of
motion feedback as used in 4th order systems,”
in Audio Engineering Society Convention 126,
Audio Engineering Society, 2009.

[20] R. A. Greiner and T. M. Sims Jr, “Loudspeaker
distortion reduction,” Journal of the Audio
Engineering Society, vol. 32, no. 12,
pp. 956–963, 1984.

[21] P. G. Mills and M. J. Hawksford,
“Transconductance power amplifier systems
for current-driven loudspeakers,” Journal of
the Audio Engineering Society, vol. 37, no. 10,
pp. 809–822, 1989.

[22] P. Robineau and M. Rossi, “Current-controlled
vented-box loudspeaker system with motional
feedback,” in Audio Engineering Society
Convention 108, Audio Engineering Society,
2000.

[23] C. Bortoni, R. Bortoni, S. Noceti Filho, and
R. Seara, “Real-time voice-coil temperature
and cone displacement control of loudspeakers,”
in Audio Engineering Society Convention 117,
Audio Engineering Society, 2004.

[24] Y.-T. Tsai and J. H. Huang, “The dynamics
detection and processing method for preventing
large displacement transducer damage
problem,” in Audio Engineering Society
Convention 137, Audio Engineering Society,
2014.

AES 138th Convention, Warsaw, Poland, 2015 May 7–10

Page 7 of 7



Appendix C
Investigation of Energy

Consumption and Sound Quality
for Class-D Audio Amplifiers using

Tracking Power Supplies

138th Convention of the Audio Engineering Society 2015

81/221



Audio Engineering Society 

Convention Paper 
Presented at the 138th Convention 
2015 May 7–10 Warsaw, Poland 

This paper was peer-reviewed as a complete manuscript for presentation at this Convention. Additional papers may be obtained 
by sending request and remittance to Audio Engineering Society, 60 East 42nd Street, New York, New York 10165-2520, USA; 
also see www.aes.org. All rights reserved. Reproduction of this paper, or any portion thereof, is not permitted without direct 
permission from the Journal of the Audio Engineering Society. 

 Investigation of Energy Consumption and 
Sound Quality for Class-D Audio Amplifiers 

using Tracking Power Supplies 
Akira Yamauchi1, Henrik Schneider1, Arnold Knott1, Ivan H.H. Jørgensen1 and Michael A.E. Andersen1 

1 Technical University Denmark 2800 Kgs. Lyngby, Denmark 

Correspondence should be addressed to Akira Yamauchi (afuno1@gmail.com) 
 

ABSTRACT 

The main advantage of Class-D audio amplifiers is high efficiency which is often stated to be more than 90 % but at 
idle or low power levels the efficiency is much lower. The waste energy is an environmental concern, a concern in 
mobile applications where long battery operation is required and a concern in other applications where multiple 
amplifier channels are generating heat problems. It is found that power losses at low power levels account for close 
to 78 % of the energy consumption based on typical consumer behavior investigations. This paper investigates the 
theoretical limits of stepless power supply tracking and its influence on power losses, audio performance and 
environmental impact for a 130 W class-D amplifier prototype as well as a commercialized class-D amplifier. Both 
modeled and experimental results verify that a large improvement of efficiency can be achieved. The total harmonic 
is found to be unaffected by stepless power supply tracking due the high supply rejection ratio of the used amplifiers 
under test. 

 

1. INTRODUCTION 

Class-D audio amplifiers have a great advantage in high 
power efficiency over traditional linear amplifier 
designs [2, 3, 4, 5, 6]. With the major trends in power 
electronics towards decreasing energy consumption, this 
technology is promising since the maximum efficiency 
improves along with advances in the power 
semiconductor technology towards its inherent 
theoretical efficiency of 100 %. On the other hand, the 
efficiency advantage is relatively poor at idle and low 

power levels as confirmed in a measurement (Fig. 1), 
which is not usually emphasized on published data 
where a linear scale is commonly used [17]. The energy 
consumption in a specific case is therefore considered to 
shed light on the environmental impact of this efficiency 
characteristic.  

The amplifier energy consumption in a given period of 
time is an important parameter because it affects 
requirements specification for a preceding power 
supply, or system cost. However, there is only little 
correlation between the power efficiency (Fig. 1) and 
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the energy consumption. The power efficiency is 
typically specified at a certain constant output power, 
while the energy consumption depends on consumer 
behavior, that is, a distribution of volume positions and 
music contents over a given period of time.  
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Fig. 1: Measured power efficiency of a 130W class-D 
amplifier vs output power (4 Ω) with 1 kHz reference 
signal under the supply voltage, Vs = ±40 V. 

From previous research [4, 7], generalized distribution 
of volume control positions in time and corresponding 
output power which is categorized by four subjective 
listening levels is recalled. In order to make it more 
specific in this paper, the case of a 130 W class-D 
power amplifier is considered based on the 
measurement (Fig. 1). Accordingly, the energy 
consumptions are calculated and summarized (Table 1). 

 

Due to the fact that the amplifier operates at the 
subjective “background” level most of the time, it is 
obvious that the power efficiency at low power (at 1.3 
W peak power) leads to the main cause of the energy 
consumption which accounts for close to 78 %. On the 
other hand, music is dynamic and full power 
(“clipping”) is only reached for a very short time during 
the peaks in the music. Therefore, the efficiency at full 
power may arguably not be the most critical factor when 
optimizing the losses in an amplifier or power supply 
intended for audio applications. In order to make a 
rough estimation of the CO2 emission generated per 
year, it is assumed that around 5 % of the world 
population (about 0.36 billion) listen to music in stereo 
(2 amplifiers). Using a CO2 emission factor 0.537 
kg/kWh [9], it is found that a ½ million tons of CO2 is 
generated per year. 

In this paper, the power losses at low power levels are 
analyzed based on the author’s previous work [1]. 
Accordingly, a concept of Class-D audio amplifiers 
using tracking power supply is investigated. The 
experimental results with an ideal stepless supply 
voltage demonstrate that a great efficiency improvement 
can be achieved at low power and that 72 % of energy 
consumption can be. Finally, the effect on the audio 
performance is also studied. 

 

 

 

 

 

Table 1:  Average distribution of volume control positions and corresponding amplifier energy consumption based 
on the measurement [1, 4, 7, 8, 9]. 

      Optimized Class-D Amplifier (Vs = ±40 V) 

Subjective level Distribution Hour/day Peak Power Peak Loss Efficiency 
Energy Consumption 

(person & day) 
Clipping 0 .001 % 0.00 h 130 W 11.6 W 92 % 0.0 Wh 

Party 0.999 % 0.04 h 45 W 5.2 W 90 % 0.2 Wh 
Listening 10 % 0.36 h 8 W 1.7 W 82 % 0.6 Wh 

Background 89 % 3.20 h 1.3 W 0.9 W 60 % 2.8 Wh 
            
        Energy Consumption per year 3.6 Wh 

CO2 Emission per year 510,585 ton 
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2. INVESTIGATION OF ENERGY 
CONSUMPTION AT LOW POWER 

2.1. POWER LOSS MODELING 
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Fig. 2: A half-bridge with N-type MOSFETs and a 
second order LC low pass output filter 

Power loss modeling was done with an analytical model 
of class-D audio amplifiers, which consist of a half-
bridge with N-type MOSFETs (the power stage) and a 
second order LC low pass output filter (Fig. 2) [1]. The 
model is briefly summarized in this section. 

2.1.1. MOSFET conduction loss 

Conduction loss of MOSFETs is modeled as the energy 
loss dissipated in the on-resistance of the MOSFETs 
RON by its conducting current IOUT during each on-
period. 

2.1.2. MOSFET switching loss 

At every switching transition of the PWM, the stored 
energy in the parasitic capacitances of the MOSFETs 
CGD and CDS is dissipated. This is called switching loss. 
The four switching scenarios are defined depending on 
the relation between the output current IOUT and the 
drive current for the MOSFETs IPU and IPD at the 
transition. Since the non-linear characteristics of the 
parasitic capacitance need to be taken into account for 
the accurate loss estimation [1], they are characterized 
from the published manufacture data by curve fitting. 

2.1.3. Inductor core switching loss 

Core loss in the inductor LOUT in the output filter is 
estimated by Steinmetz equation [10], where most of the 
parameters are determined from the manufacture’s 
published data. 

2.1.4. Inductor conduction loss 

Conduction loss of the inductor LOUT  (copper loss) is 
given by the sum of the DC loss and the AC loss in the 
winding of the inductor LOUT. The AC loss is affected by 
the skin effect and the proximity effect [11]. 

Loss in the capacitor COUT in the filter typically 
contributes to less than 50 mW [2]. Compared with the 
power losses in the Table 1 (in the row “Peak Loss”), 
this contribution is quite small. Therefore, it is ignored 
from the analysis. 

2.2. LOSS ANALYSIS 
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Fig. 3:  Power losses analysis vs supply voltage at 
1.3 W constant output power (4 Ω) 

The introduced model allows us to separate each 
contribution to the total power loss. The loss analysis 
for the case of 1.3 W constant output power 
(“background”) is conducted by changing the supply 
voltage from the original value (40 V) down to a 
minimum supply voltage (Fig. 3). By applying the 
approach in [1], each power loss contribution at 40 V is 
compromised to minimize the total loss. The minimum 
supply voltage is determined from the minimum 
required voltage to reproduce 1.3 W output power in a 4 
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Ω resistive load without clipping. Provided the 
maximum modulation index is 0.8, it becomes around 
3.6 V as shown in the Fig. 3.  

The findings about the power losses in such low 
modulation index are : 

• In the power stage 

- The conduction loss of MOSFETs is less 
dependent on the power supply because it is 
mainly dissipated by the on-resistance of the 
MOSFETs RON and DC current (constant 
regardless of supply voltage). 

- When a supply voltage is fixed at 40 V, the 
switching loss dominates about one third of the 
total losses and strongly relates to the supply 
voltage as a well-known simplified expression  

SWfCV 22/1  expects. 

• In the output filter 

- The core loss strongly depends on the supply 
voltage because pulse amplitude which equals the 
supply rails changes the peak flux. 

- The conduction loss of the inductor LOUT is more 
dependent on the supply voltage than the 
conduction loss of the MOSFETs because the 
former is affected by the AC loss. The AC loss in 
the inductor LOUT is dependent on the supply 
voltage because the ripple current IRIP varies with 
the supply voltage. 

Although these finding are based on a certain design, 
more or less the similar voltage dependency can be 
generally assumed for any Class-D amplifier. The main 
difference is that each loss contribution may differ in 
different designs. 

2.3. CLASS-D AUDIO AMPLIFIERS USING 
TRACKING POWER SUPPLY 

Since dominant power loss sources highly depend on 
the supply voltage, using a stepless power supply 
tracking audio reference for a class-D amplifier allows a 
considerable amount of power savings (Fig. 4).  

Analog or 
digital input

Class D amplifier

PSU

Speaker

Fig. 4: Class-D audio amplifiers using tracking power 
supply. 

Such power supply rails can vary depending on the 
content of the music (Analog or digital input). In this 
work, the power supply was related to the peak 
amplitude plus given headroom. The minimum required 
power supply voltage 

SV  is found by : 

   iS vAV max    (1 ) 

,where A  is a gain which includes the power stage gain 
and the additional gain.   is an optional headroom, and 

iv  is a input reference signal. 

Similar ideas are introduced in [3, 11], even though 
further study or real implementation haven’t been 
reported yet. The envelope tracking power supply is 
often used in RF application [12]. In mobile 
applications, a two-level supply voltage approach 
instead of stepless has been adopted to improve the 
efficiency at low power levels. A boost converter is 
switched on if the amplitude of the music signal exceeds 
a certain threshold and more power is needed. The 
combined solutions of tracking power supplies with 
audio amplifiers for audio application are studied in 
[13]. 

3. EXPERIMENTAL RESULT 

The experimental measurements are conducted with a 
130 W hysteretic self-oscillating class-D amplifier [5], 
which is originally designed to operate with a fixed 40 
V power supply voltage and the switching frequency is 
optimized in terms of the power efficiency at idle in the 
author’s previous work [1]. The prototype is shown in 
Fig. 5.  

As for the equation (1), it is worth mentioning that the 
parameters ,A  need to be chosen carefully to ensure 

some headroom between the reproduced signal and the 
supply voltage to have enough open loop gain for the 
self-oscillating class-D amplifier. For this measurement, 
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32A  and 0  are selected. An external power 
supply was supplying the control circuit. 

 

Fig. 5: The power stage and the output filter for the 
prototype. 

3.1. POWER EFFICIENCY 

The efficiency of the power stage and the output filter is 
measured with varying power supply rails for the 
amplifier (Fig. 6). The considerable amounts of losses 
are reduced at low output power as predicted by the loss 
analysis. Again, the energy consumptions of both cases 
are calculated and compared in Table 2. It is concluded 
that 72 % of energy consumption is deducted (From 3.6 
Wh to 1 Wh) by varying the power supply voltage 
depending on the required output power. This may 
account for 373 thousand tons of CO2 reduction per 
year. 
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Fig. 6:  The comparison of measured power efficiency 
between a traditional system (Fig. 1) and the system 
with a tracking power supply, 4 Ω load, 1 kHz reference 
signal. 

3.2. TOTAL HARMONIC DISTORTION (THD) 

Measurement of THD vs output power and THD vs 
frequency are conducted as shown in Fig. 7 and Fig. 8. 
Each power supply rail where adjusted to ±5V, ±13 V, 
±30 V, and ±40 V targeting for the 1.3 W, 8 W, 45 W, 
and 130 W power levels, respectively in the same way 
as done in the efficiency measurement. 

 

Table 2: The comparison of energy consumption between a traditional system and the system with a tracking 
power supply based on the measurement. 

  Optimized Class-D Amplifier (Vs = ±40 V) The system with a tracking power supply 
Subjective 

level 
Peak 
Loss 

Efficiency 
Energy consumption per 

(person & day) 
Peak 
Loss 

Efficiency 
Energy consumption per 

(person & day) 
Clipping 11.6 W 92 % 0.0 Wh 11.6 W 92 % 0.0 Wh 

Party 5.2 W 90 % 0.2 Wh 4.4 W 91 % 0.2 Wh 
Listening 1.7 W 82 % 0.6 Wh 0.8 W 91 % 0.3 Wh 

Background 0.9 W 60 % 2.8 Wh 0.2 W 90 % 0.5 Wh 
              

Energy Consumption per year 3.6 Wh     1.0 Wh 

CO2 Emission per year 510,585 ton 136,770 ton 
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Fig. 7:  Measured THD vs output power (4 Ω), 1 kHz 
reference signal. 

In the Fig. 7, only minor changes in the THD vs power 
measurements are observed up to the point where 
clipping is reached due to varying power supply 
voltages.  
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Fig. 8:  Measured THD vs frequency, 1.3 W output 
power (4 Ω). 

On the contrary, there is a certain difference in 
frequency dependency of THD (Fig. 8). This is 
especially apparent when the supply voltage is ±5 V. 
The reason is that the open loop bandwidth of the 
comparator in a hysteretic self-oscillating class-D 
amplifier decreases due to the significant drop of the 
switching frequency at higher duty cycles [14, 15]. 
Thus, the open loop gain is not enough to suppress the 
error sources at high frequencies. To avoid this, a higher 
open loop bandwidth for the controller by increasing the 

switching frequency (Fig. 9), a lower limit of the 
tracking power supply voltage (Fig. 10), or constant 
switching frequency technique might be helpful [14, 
16]. 
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Fig. 9:  Measured THD vs frequency, 1.3 W output 
power (4 Ω), increasing the switching frequency. 
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power (4 Ω), increasing headroom for the supply 
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3.3. A COMMERCIALIZED CLASS-D 
AMPLIFIER 

 

Fig. 11:  The PCB board with a commercialized class-D 
amplifier. 

The investigation is extended to a commercialized 
clocked class-D amplifier (Fig. 11) in terms of the 
power efficiency and the THD performance [17]. 

The amplifier gain of the commercial amplifier is 26 
dB. Since the supply voltage is supplied through the 
common terminal  CCPV , the minimum voltage 

 minCCPV  needs to be secured to keep the controller 

operational. Therefore, a small modification is applied 
to determine the required supply voltage.  

  ),maxmax( minCCiCC PVvAPV   (2 ) 

,where the parameters are the same as in (1). 

The efficiency measurement is conducted by varying 
the power supply rails of the amplifier (Fig. 12).  

24A  and 0  are selected to find the required 
supply voltage. 
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Fig. 12: The comparison of measured power efficiency 
between a traditional system and the 2nd example with 
1 kHz reference signal. 

As confirmed in the previous prototype, the 
considerable amounts of losses are reduced at the low 
power as well.  

THD performance is measured in respect to the output 
power dependency (Fig. 13) and the frequency 
dependency (Fig. 14). Every plot shows the same 
performance until clipping occurs. It is observed that the 
THD is less affected by a decreased supply voltage 
compared to the self-oscillating amplifier previously 
investigated. It is however noticed in both cases that a 
lower supply voltage limit must be utilized in order to 
avoid THD degradation. Based on this study the THD 
vs. frequency measurement is an efficient tool to find 
the actual limit. 
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Fig. 13:  Measured THD vs output power of the 2nd 

example with 1 kHz reference signal. 
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Fig. 14:  Measured THD vs output power of the 2nd 
example with 1 kHz reference signal. 

4. CONCLUSION AND FUTURE WORK 

In this paper, one of main concerns about Class-D audio 
amplifiers, significant amount of power losses at low 
power levels is emphasized based on the consumer 
behavior. The power losses at such condition are 
analyzed in detail and the theoretical limits of ideal 
stepless power supply tracking are studied in terms of 
the power efficiency and the audio performance. The 
experimental results show that the energy consumption 
can be reduced by 72 % and that the environmental 
impact can be drastically decreased. Another 
demonstration with a commercialized Class-D amplifier 
is found to verify the same benefit. As for the audio 
performance, with a self-oscillating controller, the 
designer needs to notice the switching frequency starts 

to drop at lower power levels by decreasing supply 
voltage. This leads to the performance degradation due 
to the decreased open loop gain of the controller. To 
avoid this, some applicable solutions are suggested. 
Apart from that, no significant performance difference 
is found from the amplifier with the fixed supply 
voltage. 

The remaining work is to implement a whole system 
with a class-D amplifier and a tracking power supply. 
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ABSTRACT

The actual power requirement of an active loudspeaker during playback of music has not received much
attention in the literature. This is probably because no single and simple solution exists and because a
complete system knowledge from input voltage to output sound pressure level is required. There are however
many advantages that could be harvested from such knowledge like size, cost and efficiency improvements. In
this paper a recently proposed power requirement model for active loudspeakers is experimentally validated
and the model is expanded to include the closed and vented type enclosures in addition to the main
loudspeaker non-linearities.

1. INTRODUCTION

Recent analysis of the actual power requirements
of an active loudspeaker during playback of music
predicts that full power capability is only needed
for a very short time in the range of a few
milliseconds [1]. However, the main parts of an
active loudspeaker, the power supply (PSU), the
amplifier and the loudspeaker are normally designed
for significantly higher continuous power in the range
of seconds to minutes [2–4]. One reason is that
the design and test process, due to simplicity, are
based on an amplifier with a sinusoidal input and
a resistive load. A second reason is that general

purpose PSU and amplifier modules are produced
and sold due to mass production benefits etc.

This work is a step towards a method for proper
characterization of required voltage, current and
thus power for playback of music in an active
loudspeaker in order to facilitate a quantum leap
in performance relative to size, cost and efficiency.
In this work a commercial 2-way loudspeaker
is targeted and used to validate and expand
the work done in [1]. A future goal is to
develop a testing framework for active loudspeaker
components for evaluation of system performance
(acoustic, thermal, magnetic and electrical), making
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it possible to optimize individual components with
respect to overall system performance in realistic
conditions.

The importance of considering reactive loads has
been verified in [5–8] instead of just resistive loads.
In [9] passive crossover filters were also considered.
In previous work the dynamic range or crest factor
(CF) as well as the statistical loudness of different
music genres have been analysed [10,11].

2. POWER REQUIREMENT FUNDAMENTALS

The end user has final control of the level at which
a sound system is operating. Power consumption
is thus influenced by parameters in the path from
power mains to the perceived sound level. Since
active loudspeakers are designed for music playback,
the power requirements should match a highly
dynamic signal with a relatively low continuous
power consumption. On the contrary, a sinusoidal
input has the same continuous apparent power
independent of signal length. The influence of a
music signal on a woofer and tweeter is evident in
Figure 2.

distance

max. dBlevel

Room

Figure 1: Simple illustration of main parts that
influence the power requirements.

Music genres are dynamically different. In addition,
the perceived loudness of the human ear is not a
flat gain and is dependent on the room acoustics
and the distance to the loudspeaker, which may
exhibit non-linear behaviour. These parameters,
together with subjective evaluation of sound level,
set the power requirements for the PSU, amplifier
and loudspeaker. However, this work focuses on the
influence from the loudspeaker non-linearities and
enclosure type.

3. LOUDSPEAKER MODELLING

Modelling of a loudspeaker driver in free air, in
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Figure 2: Comparison of measured power
requirements of a 5.5” woofer and a 1” tweeter
including amplifier, crossover and vented box
enclosure.

a closed box and in a vented box was done in
Simulink. A model of the loudspeaker in free air
is shown in Figure 4. In this model the three main
non-linearities LE(x), Bl(x) and CMS(x) have been
included. A linear model for a loudspeaker in free
air can be found in [1].

The voice coil is modelled with a lossy inductance R2

in parallel with L2, which is then in series with LE .
The Klippel analyzer used to measure the values of
these components uses the same model for a lossy
inductor.

LE

R2

L2

Figure 3: Model of lossy inductor [12].

3.1. Including the enclosure
An enclosure adds additional impedance to the
system seen from the input terminals. Modelling
the enclosure is done using the impedance analog
method described in [12]. For this work, the closed
and vented box enclosures were investigated. When
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Figure 4: Model of the non-linear loudspeaker in free air.

a loudspeaker is mounted in a closed box, acoustical
mass MAB , compliance CAB and losses RAB of
the back volume are added. RAB was in this case
negligible because the box is not filled with damping
material. By referring acoustical parameters to the
mechanical domain, the mechanical parameters in
Figure 4 can be changed to

Ctot = CMS + S2
DCAB (1)

Mtot = MMS + S2
DMAB (2)

where SD is the effective area of the diaphragm
and CMS , MMS and RMS are the mechanical
compliance, mass and resistance of the diaphragm,
respectively. The air load on the diaphragm is
included in MMS .

Compared to the closed box, the vented box
introduces additional acoustical impedance with the
mass of air in the vent MAP and acoustical resistance
RAL that models air leaks. A transfer function was
added to the feedback loop in the model (Fig. 4)
as depicted in Figure 5, where u(t) is the velocity of
the diaphragm and i(t) is the current.

Figure 5: Vented box transfer function feedback.

3.2. Including the non-linearities
The non-linear behaviour of the loudspeaker
introduces compression and distortion in the signal
waveform and is due to a displacement dependent
force factor Bl(x), suspension compliance CMS(x)
and voice coil inductance LE(x). Using the Klippel
analyzer, the displacement dependent parameters
were estimated by a 6th order polynomial. The
coefficients for the polynomials are shown in Table
2. MATLAB functions containing these polynomials
were introduced as shown in Figure 4, effectively
including the non-linearities in the model.

4. VALIDATION OF LOUDSPEAKER MODELS

To validate the loudspeaker models a commercial
loudspeaker developed by PointSource Acoustics,
the Medium model, was used which utilizes a 5.5”
woofer and a 1” tweeter. The small and large signal
parameters of the drivers were measured with a
Klippel analyzer and are listed in Table 1 and 2.

4.1. Measurement setup
MATLAB is used to generate and capture the

signal data using a Data Acquisition Device (DAQ)
from National Instruments (USB-6356). The DAQ
sampling rate was set to 50 kHz (dividable with the
maximum sampling frequency of the specific DAQ,
which is 1.25 MHz). The signal was amplified and
sent through a 0.1 Ω sense resistor, RS , in series
with the load, RL. The current was measured by
capturing the voltage across RS . A digital lowpass

AES 138th Convention, Warsaw, Poland, 2015 May 7–10
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Parameter Woofer Tweeter Units
fs 40 978.5 Hz
VAS 35.26 3.5 l
QTS 0.42 0.954
QES 0.49 2.105
QMS 3.14 1.738
SD 153.94 6.16 cm2

RE 3.47 3.18 Ω
LE 0.216 0.008 mH
R2 5.52 0.67 Ω
L2 0.421 0.015 mH
CMS 1.05 0.124 mm/N
RMS 1.20 0.757 kg/s
MMS 15.05 0.214 g
Bl 5.2 1.410 N/A

Table 1: Loudspeaker parameters of the 5.5” woofer.

n Bln CMSn
LEn

0 5.14 1.78 381.08e-6
1 -63.30e-3 2.33e-3 -43.03e-6
2 -21.75e-3 -18.19e-3 17.08e-6
3 320.09e-6 712.57e-6 610.27e-9
4 -840.06e-6 -3.55e-6 -15.18e-9
5 6.29e-6 -8.70e-6 -4.94e-9
6 8.39e-6 662.45e-9 0.40e-12

Table 2: Polynomial coefficients of non-linear woofer
parameters.

MATLAB AMPDAQ

DIFF AMP

DIFF AMP

VAMP

VRS

RL

RS

Figure 6: Simplified measurement setup.

filter was applied in MATLAB to simulate the
passive crossover from the commercial loudspeaker.

An ICEpower 50ASX2 amplifier was used to amplify
the signal as this has an outer control loop ensuring
a constant gain in the audible frequency range

independent of the load. A comparison with a Texas
Instruments evaluation board amplifier is shown in
Figure 7. Compensation of the input-to-output
transfer function of the amplifier must be considered
if the gain is not flat.

102 103 104
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G
ai
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B
] 50ASX2 - 4 Ω

50ASX2 - loudspeaker
TI EB amp - 4 Ω
TI EB - loudspeaker

Figure 7: Measured amplifier gain of an ICEpower
ASX2 and a Texas Instrument evaluation board.

4.2. Power requirement analysis
The power requirement analysis method was used
according to [1]. The music signal was multiplied in
the time domain with a square window with stepwise
logarithmically increasing window width. For each
window width the window was moved forward with
10 % of the window width until the end of the music
signal met the end of the window. Every time the
window was moved, the apparent power of the signal
within the window is calculated and the maximum
value is stored for that particular window size.

PRMS =
1

N

√√√√
N∑

n

v(n)2i(n)2 (3)

N is the number of samples in the window. The
results of this algorithm can be analysed visually to
grant information about the power requirement with
a specific signal at a specific level.

The commercial loudspeaker was mounted
in different enclosures to measure the power
requirement, i.e. free air, closed box and vented
box. Since the commercial loudspeaker is designed
as a vented box, the same enclosure was used for
the closed box measurements with the vent sealed.
For the main part of the measurements, 30 seconds

AES 138th Convention, Warsaw, Poland, 2015 May 7–10

Page 4 of 7



Schneider et al. Validation of Power Requirement Model for Active Loudspeakers

10−4 10−2 100
0

1

2

3

4

5

Window Width [sec]

A
p

p
ar

en
t

P
ow

er
[V

A
]

Vpeak: 4.3 V

Meas
Sim
SimNL

10−4 10−2 100
0

5

10

15

20

25

30

35

Window Width [sec]

Vpeak: 10.8 V
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Figure 9: Closed box power comparison.

of a rock music track was used as the test signal to
ensure wide frequency range content and a broad
dynamic range. The measurement results were
compared with simulations to verify coherence.

Mounting a loudspeaker in an enclosure adds
acoustic impedance to the system based on the
order of the enclosure. Measurements show that
power is slightly reduced as expected when a closed
box (2nd order enclosure) is used in comparison
with the driver in free air. In addition, power
is further reduced for a vented box (4th order
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Figure 10: Vented box power comparison.
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Figure 11: Ttweeter power comparison.

enclosure). Measured results and linearly and
non-linearly simulated results are shown in Figures
8, 9, 10 and 11.

For high input levels, measurements begin to
resemble simulations where the non-linearities of the
loudspeaker have been included. It is apparent that
the power requirements, especially at peak levels, are
higher for the woofer than for the tweeter. This is
expected as low frequencies have peak levels that are
present for longer periods of time and because the
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Title Artist Genre ReplayGain
What She Came For Franz Ferdinand Rock -14.2 dB
Nardis Bill Evans Trio Jazz -4.5 dB
Kill Everybody (Bare Noize remix) Skrillex Dubstep -16.2 dB

Table 3: Measured music tracks.

efficiency of a woofer is comparatively lower. The
woofer is thus of most importance when looking at
the power requirement for a 2 way loudspeaker.

The linear model overestimates the peak power
compared to the non-linear model thus providing
a small design headroom. To the authors opinion
the linear model is sufficient in most cases. The
additional precision that the non-linear model
provides comes at the cost of much longer simulation
time and require the non-linear parameters of the
loudspeaker drivers to be known.
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Figure 12: Time signals for three different music
tracks normalized with ReplayGain.

The choice of music has shown to have a great
influence on the measured apparent power due to the
dynamics of the signal. Prior to comparison of music
tracks a ReplayGain [13] normalization was added.

Figure 13 shows the apparent power comparison of
the tracks in Table 3.
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Figure 13: Different music tracks perceived equally
loud (normalized) measured for the complete active
speaker.

5. FUTURE WORK

For future work it could be interesting to compare
the power requirements of different loudspeaker
enclosures having the same volume and frequency
response. Furher more there is an increasing
demand for smaller loudspeakers in consumer
electronics. The effect on the power requirements
of these loudspeakers is therefore an obvious choice
for further investigations. In addition, passive
crossovers vs. active crossovers could be examined
in terms of power requirements. A simplified
worst-case apparent power model could be derived
based on analysing a large music library. The
model used to predict the power requirements can
also be used to get worst case current and voltage
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information. This is very valuable in the design
phase of the power components in a sound system.

6. CONCLUSION

In this paper the fundamentals behind the power
requirements of active loudspeakers have been
discussed and models including the influence of
the enclosure and the main non-linearities of
the loudspeaker drivers have been presented and
validated experimentally. The non-linearities were
found to have influence on the accuracy at
higher sound pressure levels where the peak power
requirements are defined. However, the linear
model was found to overestimate the peak power
requirements providing a small design headroom
and is expected to be sufficient in most design
cases. In addition, the selected music content for
playback was confirmed to have a great influence
of the power requirements. This work is a step
towards improved design of power components like
the amplifier, the power supply and the loudspeaker
in an active loudspeaker. The models and methods
presented in this work is applicable in other sound
system applications.
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ABSTRACT

This work aims to provide designers with a method to develop a requirements specification for power supplies
and amplifiers in active loudspeakers. The motivation is to avoid over-sizing and unnecessary cost. A realistic
estimation of the power supplied during playback of audio in a given loudspeaker is obtained by considering
a wide range of audio source material, loudness normalization of the source material, crossover filtering,
driver characteristics as well as a perceived maximum loudness/volume level. The results from analysing
a sub-woofer and a woofer reveals the peak power, peak voltage, peak current and apparent power - thus
providing a solid foundation for a requirement specification.

1. INTRODUCTION
Imagine that a loudspeaker has been designed,
tested and approved. Now it is time to match it with
amplifiers and a power supply unit (AMPs+PSU)
to create an active loudspeaker. A requirements
specification is in demand for the AMPs+PSU
since it influence the cost, size and weight of the
final product. The task is thus to estimate the
maximum power supplied to the loudspeaker during
playback. The supplied power is mainly a function
of the input (music), the desired perceived loudness
level (volume) at a given distance and the load
(loudspeaker).

The power rating of current commercial audio AMPs
and PSUs are however based on sinusoidal input
excitation into a resistive load [1–3] and their power
capabilities are stated for a limited time period at
a given frequency (typically at 1 kHz) resulting
in a given Total Harmonic Distortion (typically
1% THD). The limited time period was found to
vary from 20 ms. to 5 min. and it is typically
determined by thermal shut down. The importance
of considering reactive loads has been verified in
[4–7] instead of just resistive loads. In [8] passive
crossover filters were also considered. In previous
work the dynamic range or crest factor (CF) as
well as the statistical loudness of different music
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genres have been analysed [9, 10]. However these
studies are not suitable for this work since the music
has been peak normalized which doesn’t correlate
with perceived loudness. Further more the signal
amplitude isn’t proportional to the supplied power
to a non-linear load such as a loudspeaker.

The importance of considering loudness normalized
audio material instead of sinusoidal input stimuli
is investigated in this work. The proposed scheme
for a realistic estimation of the supplied power is
illustrated in Fig. 1. As seen it interoperates audio
material as input, loudness normalization for fair
comparison, crossover filtering, a maximum volume
setting based on listening tests and measurements of
sound pressure level (SPL) as well as a model of the
drivers and enclosure forming the loudspeaker. In
this work the enclosure was however not taken into
account.

2. LOUDSPEAKER POWER REQUIREMENTS

In this section the concepts behind the proposed
scheme for estimation of the loudspeaker power
requirements is explained.

2.1. Audio material
The audio material should ideally resemble the audio
material played by the end user. Since this is very
difficult to predict a wide range of audio material
of different music genres could be studied. In this
work more than 400 music tracks in lossless format
were collected based on the most popular music
of different genres using various music charts. A
dynamic range database including 58900 albums at

Amplifier

i(t)

Audio
v(t)

Listening test

Measurement

Maximum perceived loudness level

Loudness 

normalization
Crossover

Drivers (1,2,...n) 

+ enclosure

Figure 1: Scheme for estimation of loudspeaker
power requirements

present time [11] was also used to select music with
high, medium and low dynamic range values.

Considering music as input stimuli comes with
the price of increased computation complexity.
Conversely more than 400 songs were analysed in
this work which corresponds to more than 24 hours
of music with an average song length of 4 minutes.
With a sampling frequency of 44100 samples per
second more than 3.8 billion samples are to be
processed.

2.2. Loudness normalization

In order to compare the power consumption during
playback of two or more audio tracks, all tracks
needs to sound equally loud.

Algorithms for objectively determining the
perceived loudness of various broadcast content were
investigated using extensive listening tests in [12].
Based on this work the European Broadcasting
Union (EBU) published a recommendation about
loudness normalisation [13] with a goal of preventing
loudness difference between programs and channels.
The algorithms which are published in [14] can be
used to normalize the loudness of mono, stereo and
multichannel signals with a minor discrepancy due
to listeners, audio material and listening conditions.
The numerical result of the loudness is given in
LKFS (Loudness K-weighted Full Scale) or LUFS
(Loudness Units Full Scale) which are identical
scales. One unit of LKFS or LUFS is equivalent to
one dB, thus a gain of 1 dB of the audio signal will
cause a 1 dB gain in LKFS. In order to normalize
the loudness of a track with loudness of LKG to
a reference loudness of Lref (Typically −23 dB), a
gain of G = Lref − LKG is applied to the track.

Fig. 2 shows the composition of the ITU-R BS.1770
algorithm. The K-filter consists of two stages used to
do a frequency based weighting of the audio signal.
The first stage takes into account the acoustic effect
of the human head by modelling it as a rigid sphere.

Figure 2: Block diagram of stereo loudness
determination algorithm
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Figure 3: Frequency response of the two filters
constituting the K-filter

The second stage of the filter is a simple high pass
filter referred to as the revised low-frequency b-curve
(RLB) used to mimic the frequency sensitivity of the
human ear. Fig. 3 shows the frequency response of
the two filters.

The signal is split into 400 ms blocks, each
overlapping the previous block by 75 %. The mean
square calculation is employed to give a signal which
is proportional to the energy content of the signal.
The weighting factors GR and GL are used to
compensate for the fact that the sound from the rear
speakers in a 5.1 setup is perceived to be louder than
sound from the front and center speakers. When
dealing with stereo signals, only the front speakers
is used and thus the gain factor is simply set to unity.

Gating is used to remove quiet periods which should
not be taken into account when determining the
loudness. Both an absolute and a relative gate
threshold is employed. An absolute gate threshold
is used to remove very low sounds and a relative
gate threshold is used to remove any intervals with a
loudness lower than -10 LKFS compared to the mean
loudness. In essence the gating makes it possible
to loudness align a 2 hour movie with a 20 seconds
commercial.

A full description of the objective loudness
perception algorithm as well as filter coefficients
and weightings for the individual audio channels is
available in [14].

2.3. Crossover filters
The crossover filter design has a huge impact on
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Figure 4: Frequency response of crossover filters
(f#1 to f#3) and total frequency response

the power supplied to each individual driver in
a loudspeaker. Due to the difference in driver
efficiency high frequency drivers are often attenuated
to the level of the lower frequency drivers in order
to achieve some targeted frequency response. In
this work a 4th order crossover filter was crudely
designed with a flat target response to investigate
the proposed scheme. The frequency response is
shown in Fig. 4. The cut-off frequencies of the
1st filter f#1 is 20 Hz and 200 Hz, the cut-off
frequencies of the 2nd filter f#2 is 240 Hz and 2.5
kHz and the cut-off frequencies of the 3rd filter f#3
is 3.3 kHz and 20 kHz.

2.4. Desired loudness level

The desired maximum loudness level (volume max.
setting) is determined by the application. As an
example a 60 dB a-weighted SPL was found to be the
average preferred listening level for public domain
television in [15]. In this work a listening level of
85 dB a-weighted SPL was experimentally found to
be the desired maximum listening level. This level
was also found to be the preferred level in portable
audio players [16]. The maximum volume level
should be limited by the tolerable distortion level
of the amplifier and the loudspeaker rather than the
maximum power ratings. A listening test on a new
loudspeaker design is therefore a must. A distortion
vs. power plot is often found in amplifier data
sheets. The same doesn’t apply for loudspeakers but
sometimes the linear excursion is specified. These
factors is considered as out of scope tor this work.
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Figure 5: Model for finding the maximum volume
gain

The normalized audio material needs to be gained to
obtain a SPL equal to the reference of 85 dBa found
experimentally. This gain was manually found by
tuning a gain in a model of the loudspeaker and by
the use of a SPL meter model similar to the SPL
meter used in the experimental test as shown in Fig.
5. The input is any audio track and the V2SPL
block is the transfer function from voltage to SPL
for a given driver.

2.5. Linear driver model
A linear MATLAB Simulink model is used to model
the loudspeaker as done in [17]. The inputs to
the model is typical parameters found in driver
datasheets. The model which is based on (1)-(3)
is shown in Fig. 6. The output of the model is
the recorded input voltage and input current which
can be used to calculate the power supplied to the
loudspeaker. In future work a non-linear model
could be investigated for improved accuracy.

u(t) = Rei(t) + Le
di(t)

dt
+ Blv(t) (1)

F (t) = i(t)Bl (2)

F (t) = mma(t) + rmv(t) +
1

cm
x(t) (3)

3. ANALYSIS
It is time to analyse the data from the model and
create the requirements specification when the audio
material has been gathered, normalized, filtered and
passed through the model of the speaker. The most

1/Mms
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e(t)
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RE

x(t)a(t)
i(t)
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1/CMS

Bl

Bl1
s 1

s
1
s

Figure 6: Linear model of the driver

obvious is to inspect the peak voltage, the peak
current, the peak power and the average apparent
power which is plotted in fig. 10-13. The average
apparent power of a track is given by

Pavg =

√√√√
N∑

n

v(n)2
N∑

n

i(n)2 (4)

where N is the total number of samples.

The knowledge of worst case average apparent power
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Figure 7: Power sweep with short window width
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Figure 13: Tracks sorted per average apparent power
for woofer and subwoofer

is very valuable if the design goal is to design the
smallest possible AMP and PSU. The size may
be limited to the maximum allowed temperature
of the AMP + PSU which shouldn’t be exceeded
under continuous use. The maximum ratings of the
components could be decided based on the peak
power. The thermal design is however limited by
the worst case supplied power as a function of time.
Unfortunately there is no easy way to acquire such
data. Each audio track considered needs to be
analysed and for each track the worst case supplied
power during a given time period needs to be
found. Since no existing solutions was found a new
technique was developed to resolve this issue. The
concept is illustrated in fig. 7 - 9. The instantaneous

power stored during simulation of an audio track is
sweept by a short time window. The window is only
moved one sample instant at a time and every time
the window moves the average apparent power of
that time frame is stored. When the window reaches
the end of the audio track the worst case average
apparent power can be found by the maximum value
of the stored data. As the window width is increased
the maximum average apparent power will decrease
as seen in fig. 8. The final plot will reveal the
maximal power supplied as a function of time for
a given audio track. Fig. 14 and 15 shows the
result of this special ankalysis for more than 400
audio tracks. The resulting knowledge could be
used as a new power test methods for AMP’s and
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Artist Title Ppeak Pavg CF
The Oscar Peterson Trio Things Ain’t What They Used to Be 231 0.75 15.8
Wolfgang Amadeus Mozart Symphony No.41 in C, K.551 - ’Jupiter’ 208 0.75 14.9
Ludwig Van Beethoven Symphony No.6 - Andante molto mosso 159 0.49 11.4
Art Tatum Hallelujah 115 0.17 13.7
Louis Armstrong Makin’ Whoopee ft. Oscar Peterson 105 0.47 11.1
Wolfgang Amadeus Mozart Concerto per Clarinetto K622 106 0.91 11.3
The Beatles Love You To 30 0.81 4.8
Art Tatum A Foggy Day 25 0.76 6.6
Skrillex With Your Friends (Long Drive) 18 0.72 2.9
Bill Evans Trio Autumn Leaves 43 0.71 6.8
Metallica Orion 10 0.15 4.7
D-A-D True Believer 10 0.26 5.5
Beastie Boys Beastie Boys 11 0.26 4.8
Skrillex Rock N’ Roll 11 0.30 2.3
Slayer Reborn 12 0.35 6.1
Green Day F.O.D./All By Myself 30 0.14 8.4
Metallica The Thing That Should Not Be 11 0.15 4.8
Beastie Boys Sabrosa 50 0.16 6.4
Bill Evans Trio Nardis 115 0.17 8.6
Vivaldi Autumn - Adagio 84 0.21 18.5

Table 1: Woofer: 5 worst case peak power tracks, 5 worst case average power tracks, 5 best case peak power
tracks and 5 best case average power tracks

PSU’s in integrated sound systems such as mobile
phones, audio docks and active loudspeakers. It
must however be mentioned that the results are
the first results obtained using this new method.
These results will be evaluated further in future

work. One known error source is that the high peak
values in a minority of the audio material analysed
was caused by clicks and noise in the tracks that
properly shouldn’t be reproducible. Further more
a more accurate result can be obtained by the use
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Artist Title Ppeak Pavg CF
The Oscar Peterson Trio Things Ain’t What They Used to Be 166 0.86 15.8
Bill Evans Trio Nardis 100 2.16 8.6
Vivaldi Summer - Adagio 71 0.19 14.9
Art Tatum Hallelujah 57 0.14 13.7
Beastie Boys Slow And Low 54 1.02 5.4
Bill Evans Trio Nardis 100 2.1 6.0
Beastie Boys Twenty Questions 50 1.8 5.1
Common: I Used To Love H.E.R [Explicit] 37 1.6 3.7
Skrillex Kill Everybody (Bare Noize remix) 21 1.15 2.6
Metallica Suicide & Redemption J.H. 33 1.01 6.9
Vivaldi Spring - Largo 0.2 0.01 7.4
R. Wagner Die Walkure-Solti 0.9 0.03 5.8
Louis Armstrong Nobody Knows the Trouble I’ve Seen 2.8 0.03 10.1
Wolfgang Amadeus Mozart Sinfonia Concertante K364 2.8 0.03 10.5
Verdi Giuseppe: O patria mia (Aida) 3.3 0.01 6.1

Table 2: Subwoofer: 5 worst case peak power tracks, 5 worst case average power tracks and 5 best case peak
power tracks

of a non-linear driver model and by adding the
loudspeaker box to the model. Despite the above
mentioned issues it is still interesting to point out
the most power demanding tracks found in this work
and a list is provided in table 1 - 2.

4. CONCLUSION
Until now designers of active loudspeakers only
had rough estimations of the power requirements
at hand based on sinusoidal input excitation and
a resistive load. In this work a first attempt
towards a realistic requirements specification is
taken considering audio material as input, loudness
normalization of the audio material, crossover filters,
the desired maximum loudness level as well as a
model of the drivers of the loudspeaker. The
proposed method has the potential to decrease the
size and cost of the AMP’s + PSU because it enables
a customized design. In this work more than 400
audio tracks were analysed which is a minuscule
sample compared to existing audio material. The
search for worst case audio tracks should therefore
be continued and the accuracy of the method should
be improved and validated experimentally. Finally
the designers of AMP’s and PSU should start to take
advantage of the fact that a minimal design instead
of a conservative and over sized design is durable for
audio applications.
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Abstract

The actual power requirements of a given sound system during playback of music has not received

much attention in the literature. This is probably because no single and simple solution exists and

because a complete system knowledge from input voltage to output sound pressure level is required.

There are however many advantages that could be harvested from such knowledge like size, cost and

efficiency improvements. In this paper a model for sound system power requirements is presented and

experimentally validated. The model is used to analyze a huge collection of different music genres and

different transducers with varying characteristics. Finally the knowledge obtained from these studies is

applied in a radical low cost and low size power supply design customized for sound system applications.

Introduction

For many years it seemed like the saying ”more is better” applied for amplifier power in a sound system.

In recent years the game has changed since many new sound systems integrate the power supply, the

amplifiers and the transducers in a single unit. New design possibilities arise as a consequence of the

integration but at the same time size and cost of the main components is a major challenge. Present

design practices relying on sinusoidal test signals and resistive amplifier loads which are far from the

actual audio signals and amplifier loads are hindering improvements in this area [1–7]. Previous work

presented a power requirements model and provided an experimental validation [8,9]. This paper presents

this research in a condensed form and expand the analysis to cover the power requirements of 128 different

6.5” transducers enabling a one-fit-all design approach for the power supply and amplifier design. The

combined knowledge is applied in a radical low cost and low size power supply design customized for

sound system applications.
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Power Requirements Model

The power required during audio reconstruction is mainly a function of the audio material being repro-

duced, the desired loudness level and the efficiency of the loudspeaker as illustrated in figure 1. In order

to ensure a fair power requirements comparison of different audio tracks a loudness normalization can

be performed. A gain that is equivalent to the maximum desired loudness level can be applied after the

normalization each audio track. A listening test revealed that a measured value of 85 dB a-weighted

performed with a SPL-meter from a distance of 3 meters was very loud. In the end it is up to the designer

to specify the desired maximum sound pressure level for a given application.

distance

max. dBlevel

Room

Figure 1: Simple illustration of the main parts that influence the power requirements of a sound system

At model of the loudspeaker was implemented in Matlab/Simulink (figure 2) based on the following

fundamental loudspeaker equations.

u(s) = Rei(s) + sLei(s) +
R2sL2

R2 + sL2
i(s) + sBlx(s) (1)

f(s) = Bl · i(s) (2)

f(s) = Mmss
2x(s) + Rmssx(s) +

1

Cms
x(s) (3)

where u(t) is the voice coil voltage, Re is the voice coil resistance, Le is the voice coil inductance, R2

and L2 models the eddy current effect, i(t) is the voice coil current, uemf is the voltage induced by the

back electromotive force, Bl is the force factor (flux in the gap times the length of the wire in the gap),

v(t) is the velocity of the cone, Rms is the suspension related loss due to friction, Mms is the mass of

the moving assembly, Cms is the compliance of the suspension and f(t) is the Lorentz force applied to

the moving assembly. The model was inspired by [10–12]

The major non-linearities such as the suspension compliance Cms(x), the force factor Bl(x) and the

voice coil inductance Le(x) is also included in the model. Measurements of the non-linear parameters as

a function of the displacement can be fitted to polynomials by
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Le(x) =
N−1∑

n=0

anx
n Bl(x) =

N−1∑

n=0

anx
n Cms(x) =

N−1∑

n=0

anx
n (4)

where N is the order of the polynomial and an is the nth coefficient of the polynomial.

The filter block in the Matlab/Simulink model can be used to implement a crossover filter and

equalization wich will also influence the power requirements of the individual transducer in a given

sound system. As the voice coil voltage and current are stored during a simulation of a given audio track

the instantaneous power can be calculated and the power requirements can be analyzed.
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Figure 2: Simulink model of voltage driven transducer

Proposed Power Analyzes

The peak and average power can easily be calculated based on a simulation but the worst case power

requirements scenario during playback of an audio track is harder to predict. Figure 3 illustrate the

recommended scheme for analysis of the power requirements as a function of time (window width). The

stored data of the voltage and current from the simulation were multiplied to form the power signal. Then

the power signal is multiplied in the time domain with a square window with stepwise logarithmically

increasing window width. For each window width the window is moved forward with 1 sample until the

window reaches the end of the music signal. Every time the window is moved, the apparent power of

the signal within the window is calculated by (5) and the maximum value is stored for that particular

window size. The result should be the worst case power requirement scenario vs. time.

|S| = 1

N

√√√√
N∑

n

v(n)2i(n)2 (5)
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Figure 3: Power analysis

Validation of Power Requirements Model

In order to verify the model a simple measurement setup was established. A 2 way loudspeaker developed

by PointSource Acoustic and suitable amplifiers were acquired. The voice coil voltage and current was

preconditioned on a small circuit board before being send to a Data Acquisition Device (DAQ) from

National Instruments which was controlled via Matlab. The setup is seen in figure 4.

Figure 5 shows the result of the closed box woofer validation. At low voice coil voltage (4.3 Vpk) the

coherence of the linear model is better than the non-linear model. On the contrary the linear model

overestimates the peak power at higher voice coil voltages (10.8 Vpk). This discrepancy could be caused

by the fact that the non-linear parameters are measured at high voltage levels and not low voltage

levels. Based on these results the linear model is considered to be sufficient for the purpose of analyzing

the power requirements of sound systems. It will provide a small overhead in terms of the peak power

requirement and the simulation complexity and simulation time will be drastically reduced which is a
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Figure 4: Simplified measurement setup

huge advantage.

Figure 6 shows a comparison of the measured tweeter with and without a passive cross-over filter and

a linear simulation. It is clearly seen that the power requirement of the tweeter is different from that

of the woofer. It is commonly seen that two identical amplifiers are used to drive the woofer and the

tweeter. It is also commonly seen that several hundreds of watt are allocated for the tweeter. Knowledge

like this could prevent such over dimensioned designs and be used to optimize both the transducers, the

amplifiers and the power supplies in sound systems.

Figure 5: Closed box woofer power analyzis
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Figure 6: tweeter power analyzis

Power Analysis of 400 Music Tracks

Since the worst case power requrements are depending on the dynamics of a given audio track the search

for the worst case tracks were initiated. 400 music tracks of various genres were gathered and analyzed

using the linear loudspeaker model. The result of the analysis for a woofer can be seen in figure 7. As seen

the required peak power of the 400 audio tracks varies from 20 W to 500 W indicating the importance of

a continuous search for the worst case audio tracks. The worst case power requirements of this analysis

is reduced from 500 VA to 40 VA in 0.1 second. In comparison the state-of-the-art power supplies and

amplifiers are rated for more than 80 seconds of peak power [13–15]. It can also be observed that the

power peaks can be expected to be 250 times higher than the average power. This is a true inspiration

to radical design changes.

Figure 7: Simplified measurement setup
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Power Analysis of 128 different 6.5” Woofers

As mentioned earlier the characteristics of each transducer in a loudspeaker is influencing the power

requirements. A statistical analysis of the power requirements of 128 loudspeakers with similar size

(6.5”) was therefore conducted. The linear parameters was acquired from various databases on the

internet and processed in Matlab. The frequency response of all the transducers were equalized to the

same target response to enable a fair comparison and then each transducer was simulated with the linear

transducer model and the same audio material. Figure 8 shows a zoom of the power curves obtained by

simulation. As seen the variance in complex power (VA) is large. Results like this could be important

for future designs of general purpose (one-fit-all) power supplies and amplifiers modules.
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Figure 8: Power variance as a function different transducers

Examble of a radical power supply design

This chapter briefly presents an universal mains (90 VRMS - 264 VRMS) active clamp forward converter

designed to deliver 25 V out and 200 W peak power for a short period of time. A schematic is shown

in figure 9. The active clamp circuit (QC and CC) enables zero voltage switching which enable a high

switching frequency without severe switching loss as a penalty. The operational switching frequency is

set to 500 kHz which is about 5 times higher than typical audio power supplies. Future work will aim

to increase the switching frequency up to 1 Mhz in order to futher decrease the size of the magnetic

components. A prototype of the converter is seen in the left of figure 10 and a commercial power supply

with similar specifications is shown in the right of figure 10. The big difference between the two power

supplies is the operating switching frequency and the amount of time that they can drive 200 W peak

power. As a consequence the magnetic components are much smaller and no heatsinks are required which

7



result in more than 5 times smaller prototype compared to the commercial power supply. The cost are

expected to decrease in a similar manner.
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Figure 9: Schematic of the active clamp forward converter
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Figure 10: Power supplies: prototype (left) and commercial (right)

The prototype was initially tested with an electrical load that was programmed to simulate a deep

bass rhythm with 160 beats per minute. The power test is illustrated in figure 11. Thermal sensors

were placed near the semiconductors and inside the magnetic components between the windings and the

core. The temperature measurements confirmed that no severe temperature hot spots occurred during

the tests. The hottest measured temperature with the sensors and an infrared temperature camera

was 89 ◦C. Later on the prototype was setup to drive a 2.1 stereo where an extreme bass boost was

utilized. Even when this sound system was pushed to its limits the maximum measured temperature of

the power supply was 69 ◦C. This work indicate the importance of considering audio signals instead of

rough simplifications of audio signals in both the design phase and test phase.
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Figure 11: Power supply test signal simulating a deep bass rhythm with 160 beats per minute

Conclusion

Until now sound system engineers only had rough estimations of the power requirement at hand based on

assumptions far from the real application. In this paper a method for realistic requirement specifications

are presented and used to investigate the influence of different music and different transducers of similar

size. It was found that full power capability is only needed for a few milliseconds which inspire radical

design changes and large reduction of size and cost for power supplies, amplifiers and transducers. A

radical design of a power supply prototype was investigated and despite a size reduction of more than 5

times compared to a commercial power supply the prototype was able to drive a 2.1 stereo setup with

a huge bass boost without thermal issues. Future work should expand this power requirements analysis

to a range of different sound system applications and investigate a broader range of audio material. The

common design practice of power supplies, amplifiers and transducers should be reconsidered in regards

to the acquired knowledge.
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Abstract - This paper proposes a hybrid winding concept for 
toroids using the traces in a printed circuit board to make 
connection to bended copper foil cutouts. In a final product a 
number of strips with a certain thickness would be held by a 
former and the whole assembly could be placed by pick and 
placement machinery. This opens up the possibility for both an 
automated manufacturing process and an automated production 
process of toroidal magnetics such as power inductors, filtering 
inductors, air core inductors, transformers etc. Both the 
proposed hybrid and the common wire wound winding 
implementation is simulated using finite element modeling and 
the DC and AC resistance of the inductors are verified with 
experimental measurements on prototypes. It is found that 
commercial available layer thickness of printed circuit boards is 
a bottleneck for high power applications. Furthermore, the 
winding configuration is crucial for performance.  

Keywords—inductor; toroid; toroidal; FEM, winding resistance 

I.  INTRODUCTION 

The spacing between the windings in a single layer wire 
wound toroidal inductor increases gradually from the inner 
diameter towards the outer diameter of the core.  This limits the 
utilization of the available winding space for a single layer 
winding – see Fig. 1a. Furthermore, in the manufacturing 
process of a toroidal inductor with a large diameter wire and a 
small core a hook/pull type winding machine is utilized. Under 
manufacturing a tool must pass through the center of the  
toroidalcore to grab and pull the wire which is manually feed to 
the hook for each turn. Utilizing more of the windings space by 
customization of the winding leads to either a constant 
resistance with  increased number of turns or constant number 
of turns with decreased resistance for the same core size [1-6]. 
In Fig. 1b a manufacturing process that alters the width of the 
wire periodical along the length of the wire was used to take 
advantage of winding customization. However the altering of 
the wire requires special machinery and must also use the 
manual operated hook/pull machine for thick wires. The PCB 
integrated toroid shown in Fig. 1c has the potential to utilize 
the full winding space and simplify the manufacturing. 
However the DC resistance of the winding is limited by the 
PCB layer thickness and a core is difficult to embed. The foil 
wound toroid shown in Fig. 1d eliminates the disadvantages of 
the PCB integrated toroid except the manufacturing process 
which is even more difficult than the wire wound process and 
completely manual.   

 

 

 

In this work a hybrid winding solution is proposed – see 
Fig. 1e. The winding consist of bended copper foil cutouts 
which are connected through the PCB. The obvious advantages 
compared to the other single layer toroids is great utilization of 
the winding space together with a potential of a fully automatic 
process from manufacturing to assembly with pick and place 
machinery.  

 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

Fig. 1 Single layer toroidals a) Conventional wire wound. b) Squized wire 
wound [1] . c) PCB integrated [2] d) Foil wound [3] e) Foil based hybrid. 



The outline of this work is split into sections describing the 
pros and cons of the hybrid winding concept in section II, 
deriving the geometry and dimension of the winding in section 
III, Validating FEM with experimental results for the winding 
resistance and exploring the opportunities of the solution in 
section IV.  

II. HYBRID WINDING CONCEPT 

The basic idea is to cut and bend copper foils into “U” 
shaped foil cutouts that fits the core as shown in Fig. 2. To 
complete the winding the foil pieces needs to be connected 
through the PCB traces. The number of foil cutouts determines 
the maximum number of turns, thus the designer has the 
flexibility to customize the connections in the PCB as suited. In 
a final product the foil pieces would be pre-attached to a former 
for easy handling and alignment on the PCB. The hybrid 
winding concept may have the following benefits compared to 
the conventional single layer wire wound inductor:  

 

 Large scale production and distributed stock of foil 
assemblies reduce cost and delivery time. 

 Fully automated manufacturing process. Foil pieces are 
stamped, bended and attached to a plastic former. The 
core and the foil assembly can be placed by a pick and 
place machine.  

 Better utilization of winding space. Constant resistance 
with  increased number of turns or constant number of 
turns with decreased resistance for the same core size 

 Low AC resistance due to increased surface area using 
foil. 

 Configurable winding structure. The connections of the 
foil pieces through the PCB can be freely defined by the 
design engineer. The number of turns can be decreased 
by paralleling the foils pieces. It enables the same foil 
assembly to be used for inductors, common mode EMC 
chokes, transformers etc. 

 Different core materials can be used with the same foil 
assembly. 

 

The disadvantages may be  as followed: 

 

 Commercial available PCB layer thickness and 
interconnections between the foil cutouts and the PCB 
tracks is a bottle neck for high power applications. 

 The assembly of the foil cutouts is limited to a specific 
core size. 

 

III. DERIVING THE DIMENSIONS OF THE FOIL CUTOUT 

Fig. 3a shows a cross section view of the core and the foil 
cutout through the symmetry axis of a winding space. The foil 
is divided into five segments S1-S5. Fig. 3b shows a top view 
of a half winding space used for calculating the dimensions of 
the foil cutout. The angle WSA that determines the full winding 
space is determined by the number of turns N and thus 

 

 2 /  (1) 

 

In this section the details of each segment of the foil cutout 
is explained and formulas governing the dimensions are 
derived using simple geometry. The parameters known in 
advance is the number of turns N, the inner radius of the core 
CIR, the outer radius of the core COR, the height of the core CH, 
the clearance between the windings WC and the foil thickness 
FT. 

A. Segment S1 

The length of the inner solder tap FIT depends on the inner 
radius of the toroid, the foil thickness, the clearance and the 
number of turns. 
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where FW is given in equation (9) and    
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Fig. 2 Exploded view of the hybrid toroidal principle 



In this design the tip of the tap is shortened to avoid sharp 
angles. The maximum width of the tap depends on the width of 
the inner foil bend FIW. 

B. Segment S2  

The width of the inner foil bend FIW depends on the 
clearance between the windings WC, the inner radius of the 
toroid CIR and the thickness of the foil FT. FIW is given by 
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where 
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C. Segment S3 

The section covering the top of the toroid FW is given by 

 

 	 (9) 

 

D. Segment S4  

The width of the outer bend FOW is limited by the clearance. 

 

 	 2 	 (10) 

  

where 
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E. Segment S5 

The outer foil tap must be as small as possible to reduce the 
footprint area of the inductor but long enough to secure the foil.  

 

IV. RESULTS 

The resistance of the winding is hard to predict analytically 
due to changes in the cross sectional area of the foil and PCB 
tracks and therefore FEM analysis is used. A 3D model as well 
as a prototype of both the wire wound and the hybrid toroidal 
inductor is created in order to validate the FEM models with 
measurements.  

In order to simplify the cut and bending of the foil cutouts  
for the hybrid prototype a total of 10 turns is implemented as 
shown in Fig. 4a. The thickness of the foil is 0.5 mm and the 
PCB is CNC milled on a single layer board with 70um copper. 
The wire wound inductor shown in Fig. 4b. have 11 turns and 
the diameter of the wire is 1.5mm. It is important to note that 
the prototypes were not created for a specific application or for 
direct comparison of the winding technology but for validating 
the FEM model. The validated model is later used to explore 
the properties of the hybrid inductor. 

Fig. 5 illustrates two of the FEM simulations to calculate 
the AC resistance of the inductors as a function of frequency. 
The colors of the winding illustrate the current distribution. As 
expected the current is running close to the core.  

 
a) 

 
b) 

Fig. 3 a) Cross sectional view of assembly.  b) Top view of a halve winding
space. 



The result of the resistance for the hybrid inductor is shown in 
Fig. 6 for both the measured and simulated values. A low 
frequency the resistance is simulated to a lower value than the 
measured. The source of deviation might be caused by 
soldering material, imprecise cuts and clearance of the bended 
foils, all of which are not included in the FEM simulation. 
Therefore, an offset of 2.5 mΩ is added to the result from the 
FEM simulation to compensate for any static sources of 
resistance. This additional line with an offset of 2.5 mΩ is 
added in Fig. 6. The simulation with offset fits the measured 
results close 10 Hz to 100 kHz.  

The result of the resistance as function of frequency for the 
wire wounded inductor is shown in Fig. 7. The FEM simulation 
fits the measurement from 10 Hz to 100 kHz.  

For both the hybrid and the wire wounded FEM model the 
resistance starts to deviate above 100 kHz. As the same core 
material is used for both prototypes the deviation above 100 
kHz might be caused by an improper loss model for the 
magnetic core material - which is out of the scope  in this work. 

From the FEM simulation of the hybrid inductor in Fig. 5a 
it can be observed from the colors that the highest current 
density is in the PCB that connects all the bended copper foils. 
This is reasonable as the PCB thickness is only 70 µm 
compared to the foil which is 500 µm thick. A simulation of 
the PCB thickness impact on the total DC resistance of the 
hybrid inductor is plotted in Fig. 8. The DC resistance of the 
hybrid prototype with foil thickness of 0.5 mm is reduced by 
60 % using a double sided PCB layer of 70 µm copper 

 
a) b) 

Fig. 5 FEM simulation illustrating current density and the magnetic flux 
density. a) Bottom view of the hybrid inductor. b) Wire wounded inductor 

Fig. 6. Plot of resistance as a function of frequency for the hybrid inductor 

Fig. 7. Plot of resistance as a fuction of frequency for the wire wounded 
inductor. 

Fig. 8. Simulated DC resistance of the hybrid inductor as a function of PCB 
copper thickness. Foil thickness is fixed at 500 µm. 

 

a) 

 

b) 

Fig. 4 a) Hybrid prototype. b) wire wound prototype 



compared to a single layer of 35 µm copper. Thus the bottle 
neck for the hybrid inductor is the commercial available PCB 
copper thickness. One way to decrease the resistance is to 
straighten the path of the PCB trace to make it shorter by 
angling the copper foil cutouts. A plot of the winding 
configuration for the hybrid prototype is illustrated in Fig. 8a. 
The same winding configuration is repeated in Fig. 9b but only 

a single turn is shown for a clear visual understanding. For this 
particular winding configuration only the bottom segment of 
the turns are angled to complete the turns. In Fig. 9c.d.e only 
the outer, top and inner segment of the turns are angled 
respectively in order to complete the turn. These simplified 3D 
models are used by FEM to simulate the DC winding 
resistance. The DC winding resistance and the improvement 
compared to the prototype is shown in Table 1. A reduction in 
DC resistance of 30 % is achieved in this case by choosing a 
top angled winding configuration. Further investigation is 
needed to explore combinations of top, bottom, outer and inner 
angled winding segments to take fully advantage of the hybrid 
winding concept.  

CONCLUSION 

A hybrid winding concept for toroids using the traces in a 
printed circuit board to make connection to bended copper foil 
cutouts has been proposed which inherit most of the 
advantages from the foil wound toroid while offering the 
potential of a fully automated process from manufacturing to 
production. The technical principles of the solution have been 
described and equations governing the dimensions of the foil 
cutouts needed for an assembly have been derived. Several 
FEM analyses have been carried out and the models have been 
experimentally validated. Results shows that the ratio between 
thickness of copper foil cutouts  and PCB traces together with 
the winding configuration are critical in terms of DC 
resistance. Future work requires research in optimal winding 
configurations.   
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TABLE I.  

Foil thickness: 500 µm, PCB thickness: 70 µm 

Winding configuration Bottom Outer Top Inner 

DC resistance [mΩ] 6.46 4.75 4.52 4.85 

Improvement [%] Ref. 27 30 25 

 

 
a) 

 

b) Bottom c) Outer 

 

d) Top e) Inner 

Fig. 9 a) Winding configuration of the 10 turn hybrid prototype with bottom 
angled. b) Bottom angled. c) Outer angled. d) Top angled. e) Inner angled. 
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Abstract—an optimization routine is presented to optimize the 
shape of a foil winding of a toroid inductor in terms of the DC 
resistance. MATLAB was used to define the geometry of the foil 
winding and COMSOL was used to import the geometry and 
create a 3D finite element model. The initial parameters, the 
execution and the results of the optimization routine were all 
managed from a graphical user interface and the feedback from 
COMSOL in terms of DC resistance was used to find and plot the 
optimal shape of the foil. The DC resistance was improvement by 
31 % compared with previous work for a 10 turn toroidal 
inductor. 

Keywords—Inductor;Toroid;FEM;Foil;Optimization;GUI 

I. INTRODUCTION 
The conventional wire wound toroid is used in many 

power electronic applications such as EMC filters, power 
inductors, transformers and so on. However it has the 
following disadvantages regarding the winding scheme and 
the manufacturing/production process [1, 2]: 

• The spacing between the windings increases gradually 
from the inner diameter towards the outer diameter of 
the core limiting the utilization of the winding area.  

• For large wire diameters a hook/pull type 
manufacturing machine is used. The space required for 
the hook and the wire being pulled through the center 
of the core further decrease the utilized winding area.  

• For large wire diameters manual work is required for 
feeding the hook with the wire leading to increased 
cost. 

• Complex manufacturing machines are needed for 
winding due to non-separable core. 

• Manufacturer lead time and price strongly depends on 
the purchase history and number of ordered magnetic 
components. 

• The leaded toroid may be placed and soldered 
manually in a production increasing time to market and 
cost. 

By using thinner wires in parallel the disadvantages 
regarding the winding space can be improved [1]. However 
this work focus on a different approach using a hybrid foil +
printed circuit board (PCB) based winding scheme in an 

attempt to improve both the utilized winding space and 
improve the time to market by creating more freedom in the 
manufacturing and production process.  

The basic idea is to cut and bend copper foils into “U” 
shaped pieces that fit around the toroidal core as shown in 
Figure 1.b and Figure 1.c. The number of bended foil pieces 
determines the number of turns and in a final product all the 
foil pieces would be pre-attached to a plastic former for easy 
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Figure 1. a) Conventional toroidal wire wound inductor. b) Surface mounted 
hybrid inductor. c) Exploded view of a hybrid inductor. d) Example of a DC 

resistance vs. PCB layer thickness plot for a hybrid inductor. 



handling and alignment on the PCB. This assembly is referred 
to as the winding assembly. The foil pieces needs to be 
connected through the PCB traces to complete the winding. In 
the case of an inductor the completed inductor (winding 
assembly + connecting PCB tracks) is referred to as the hybrid  
inductor. A single patent [3] was found late in this work 
describing the same idea. However no commercial product or 
relevant publications have been found on the subject.  

 Different arrangements of the winding assembly with 
different foil thicknesses, number of turns and core 
dimensions for various purposes could be sold via component 
distributors all over the world. Due to large scale production 
and distributed stock of winding assemblies this could reduce 
cost and time to market. In addition a fully automatic 
production process could be utilized where the core and 
winding assembly were placed by pick and place machinery 
and soldered along with other surface mount devices (SMD’s).  

In previous work [4] a hybrid inductor with 15 turns, a foil 
thickness of 500um and a single layer PCB with a layer 
thickness of 70um was implemented as a prototype. The 
measurements were used to evaluate a 3D Finite element 
model (FEM) created in COMSOL with good agreement. The 
DC resistance of a 15 turn hybrid inductor with a foil 
thickness of 500um was simulated and plotted vs. varying 
PCB layer thicknesses as shown in fig. 1.d. The results 
showed that typical available PCB layer thicknesses (18um – 
210um) are a bottle neck for the DC resistance in a hybrid 
inductor.  

In the implemented model the bended copper pieces went 
straight over the core and the traces in the PCB was angled to 
complete the winding as shown in Figure 1.a. and Figure 1.b. 
It is easy to imagine how the DC resistance would be 
improved if the thin traces in the PCB were straight and short 
and the thicker copper pieces were angled over the core 
connecting the winding. It is however hard to predict the 
optimum angles of each segment in a turn and to predict the 
impact on the DC resistance. It is necessary to find an answer 
to these questions in order to take full advantage of the hybrid 
inductor. 

II. GEOMETRY 
In order to find the optimum shape of the foil winding a set 

of equations governing the geometry of a bendable foil around 
a toroid was setup in MATLAB. The initial parameters used to 
define and draw the foil shape was the core dimension, 
number of turns, clearance between the turns, starting position 
of the winding following the tangent of the core, angle of each 
segment in a turn and the thickness of each segment in a turn. 

A graphical representation of these parameters is shown in 
Figure 2. The four segments of a turn are labeled F1, F2, F3 
and F4. 

A. Procedure of geometry 
The bendable turn is based on 10 points, connecting the 

point by straight lines forms four faces as shown in Figure 3.  
For a winding to be continuous point P5a and P5b must equal 
point P1a and P1b rotated the angle of a wingding space. The 
winding space angle is given by (1) where N is the number of 
turns.  

 
2

Aws N

π
=  (1) 

 

The position of point P1a is defined on the tangent line 
(Mtangent) by a starting position angle (Asp). This is illustrated 
on Figure 4. P2a is based on the location of P1a and rotated 
according to its predefined segment angle. Likewise is P3a 
defined by the position of P2a. For the turn to be bendable P4a 
is based on the interception with the line formed between P3a 
and P4b in the x-y plan. The remaining “b”-points are 
calculated from there respected “a”-points by rotating a 
winding space angle subtracted the distance of clearance.  
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Figure 3. Geometry of the winding and the related parameters 

 

 

 
Figure 2. Geometry of the winding and the related parameters 
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Figure 4: Definition of starting position for point P1a 

 
 



B. Illustation  
In Figure 5.a the starting position is offset to the left of the 

core center line. In Figure 5.b-e the angle of the individual 
segments of a single turn is varied with a non  offset starting 
position. At first the bottom layer (F4) is angled 100% which 
indicates that all the other segments in the turn are not angled. 
Then the remaining segments are angled 100% one at a time. 
In Figure 5.f the number of turns is very low to verify the 

geometry of only 3 turns. In Figure 5.g a larger number of 
turns are selected and finally the clearance is increased in 
Figure 5.e. The thickness of each segment in a turn can also be 
set individually even though the final simulation is made in 
2D. This was accomplished by multiplying the resistance by a 
thickness factor.   

A graphical user interface (GUI) was created in order to 
verify the geometry in terms of the dynamic parameters of the 
inductor. Optimizing visualization and user friendliness paid 
off quickly and the GUI soon became an invaluable tool. As 
an example the GUI was used to plot the different winding 
geometries in Figure 5.a – 4.h. showing each parameter varied 
at a time. 

III. COMSOL 
In COMSOL the AC/DC module and the LiveLink to 

MATLAB was used to implement the optimization routine [5, 
6]. COMSOL uses FEM to calculate the DC resistance of any 
2D shape. The resistivity for each segment in a turn is utilized 
to model the thickness of the individual sections.  

A. 2D mapping 
2D FEM simulations, as opposed to 3D FEM simulations, 

speeds up the simulation time and lower the computer 
resources needed.  

The turns shown in Figure 7 are on purpose bendable 
shapes in the sense that the whole winding can be unfolded in 
one piece to a flat 2D structure by a 2D mapping. An example 
of an unfolded winding is shown in Figure 6.a. The plain 2D 
structure is imported to COMSOL through Matlab live-link. 
Unfortunately, bendable structures when unfolded can overlap 
them self as seen in Figure 6.b. importing an overlapping 
structure to COMSOL will lead to non-real result. To avoid 
the issue of overlap each single 2D mapped turn is taken apart 
and placed above each other and then imported to COMSOL. 
Within COMSOL each turns are mathematical linked together 
again by a boundary condition pair of continuity. This 
approach is illustrated in Figure 6.c. with 4 2D mapped turns 

 

  
a) b)  

  
c) d) 

  
e) f) 

  
g) h) 

Figure 5. 3D plots generated using the GUI. a) Full bottom (F4) twist and left 
shifted start position. b) Full bottom (F4) twist and centered start position. c) 
Full inner (F3) twist. d) Full top (F2) twist. e) Full outer (F1) twist. f) A few 

number of turns. g)  Many number of turns. h) Increased clearance. 

 
a) 

 

 

 

b) c) 
 

Figure 6 a) Foil folded out b) Foil folded out with overlapping c) 2D 
continuity 

 



placed above each other, the arrows indicates how the 4 
shapes are linked together with boundary condition pairs of 
continuity. 

IV. OPTIMIZATION 
Based on the FEM simulation of the DC resistance the 

segment angle parameters of a turn are optimized. The 
optimization targets the lowest DC resistance by an iterative 
process of narrowing down the angle span for each segment 
based on the parameters for previous solution. A predefined 
minimum and maximum value for the angle span of each 
segment limits the span of solution. The angle span is divided 
into five values. The DC resistance for the combinations of 
segment angels is simulated. The combination resulting in the 
lowest DC resistance is used to derive the set of angle spans 
for the next iteration. The optimization routine is ended when 
the preset number of iterations is reached. The lower plot in 
Figure 7 illustrates how the optimization routine works by 
stepping through the combination of angels for each segment. 
The resulting DC resistance is shown in the top plot of Figure 
7.   

V. RESULTS 
The optimization routine was tested with a 106-2 core 

from Micrometals given the following parameters. 

• Core height: 11.1 mm 

• Core outer radius: 26.9 mm 

• Core inner radius: 15.5 mm 

In the first test case the following winding setup was used: 

• Segment thicknesses: F1,F2,F3 = 500 µm and F4 = 70 
µm 

• Number of turns: 10 

• Clearence: 1 mm  

Resulst for three different setups are shown in TABLE I. 
In the “PCB 100%” the angle is 100% in the PCB trace. Since 
the PCB layer thickness is much thinner than the bended foil 
pieces it is obvious that this setup result in a high DC-
resistance. The “Optimal shape” is found using the 
optimization routine. The resistance is reduced by 32% 
compared to the “PCB 100%”. Only the angles in the outer 
and the top segment has been angled and the starting position 
is 20%. Due to the offset of the starting position and the angle 
on outer segment the overall footprint of the hybrid inductor is 
increased. A much simpler implementation that dos not take 
up more space is the “Top 100%” where only the top segment 
is angled 100%. Here an improvement off  31% is reached 
compared to the “PCB 100%”. 

In the next test case only the number of turns was 
increased with a factor of 10 and the clearence was decreased 
with a factor of 10. The same three setups as in case 1 was 
simulated. The results shown in TABLE II. indicates that the 
“PCB connection” is sufficient because the degree of fredom 
in terms of starting position and segment angles is decreased 
as a function of number of turns. In the second test case the 
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Figure 7. Illustration of optimizing routine for a single integration. The x-axis is the combination number for the given angle span. Angle combinations are 

shown in the lower plot and the corresponded DC resistance is shown in the top plot.      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE I.  CASE 1 

 PCB 100% Optimal 
shape 

Top 100% 

SP 0 20% 0 

F1 0 63% 0 

F2 0 37% 100% 

F3 0 0 0 

F4 100% 0 0 

DC resistance 6.78 mΩ 4.64mΩ 4.71mΩ 

Improvement Ref. ≈32% ≈31% 
 

 



following setup was used: 

 

• Segment thickness: F1,F2,F3 = 500 µm and F4 = 70 
µm 

• Number of turns: 100 

• Clearence: 0.1 mm  

 

In the last test case the thickness of each segment in a turn 
was kept constant. The result of this case could also be used in 
the design of a foil wounded toroidal inductor. In the third 
case the following setup was used: 

 

• Segment thickness: F1,F2,F3,F4 = 500 µm 

• Number of turns: 10 

• Clearence: 1 mm  

 

The results shown in TABLE III. indicates that the 
“Optimal shape” is superior to both the “PCB 100%” and the 
“Top 100%” in this case. The Optimal shape is 11% better 
than the “PCB 100%” and 5% better than the “Top 100%”. 

VI. CONCLUSION 
The shape of a bendable foil piece for a hybrid inductor 

has been optimized regarding the DC-resistance. It has been 
found that a complex optimization isnt nessesary because the 

added advantage is small compared to a simpler 
implementation using a 100% top angled segment. It is also 
shown that as the number of turns increases an angle of 100% 
in the PCB is sufficient as the number of turns increases. This 
leads to a simplified winding assembly of the hybrid inductor.  

It is observed that the optimization routine has an 
advantage when the thickness of each segment in a turn is 
constant. The conclusions in this work is only based on the 
DC-resistance. In future work the influence of other factors 
like the AC-resistance and parasitic capacitance will be taken 
into account. This may enable a fair comparison between the 
hybrid inductor vs. a conventional wire wound toroidal 
inductor. 
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TABLE II.  CASE 2 

 PCB 100% Optimal 
shape 

Top 100% 

SP 0 0 0 

F1 0 75% 0 

F2 0 25% 100% 

F3 0 0 0 

F4 100% 0 0 

DC resistance 435 mΩ 432 mΩ 432 mΩ 

Improvement Ref. ≈0.8% ≈0.8% 
 

 

TABLE III.  CASE 3 

 PCB 100% Optimal 
shape 

Top 100% 

SP 0 100% 0 

F1 0 38% 0 

F2 0 21% 100% 

F3 0 0.5% 0 

F4 100% 40.5% 0 

DC resistance 2.60 mΩ 2.31 mΩ 2.46 mΩ 

Improvement Ref. ≈11% ≈6% 
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Abstract: This paper investigates a hybrid 
winding concept for a toroidal inductor by 
simulating the winding resistance as a function 
of frequency. The problem of predicting the 
resistance of a non-uniform and complex 
winding shape is solved using 3D Finite Element 
Modeling. A prototype is built and tested 
experimentally to verify the simulation results. 
Finally COMSOL LiveLink to CAD is utilized 
to highlight a bottleneck for this kind of winding 
scheme. 
 
Keywords: Inductor, Resistance, Mesh, 
Boundary layers, LiveLink. 
 
1. Introduction 
 

The conventional wire wound toroid shown 
in Figure 1 is used extensively in switch mode 
power supplies in EMC filters and as inductors 
and transformers. However the space between 
the windings increases gradually from the inner 
diameter towards the outer diameter of the core 
which limits the utilization of the available 
winding space. This effect can increases the 
resistance and thus the conduction loss of the 
component [1,2].  
 

 
 

 
 

Figure 1. Conventional toroidal inductor 
 

Furthermore, in the manufacturing process of 
a toroidal inductor with a large diameter wire 
and a small core a hook/pull type winding 
machine must be utilized. Under manufacturing a 
tool pass through the center of the toroidal core 
to grab and pull the wire which is manually feed 
to the hook for each turn. 

To overcome these disadvantages a hybrid 
winding scheme may be used [3]. The basic idea 
of the hybrid winding scheme is to cut and bend 
copper foils into “U” shaped pieces that fit 
around the toroidal core as shown in Figure 2. To 
complete the winding the foil pieces are 
connected through the traces in a printed circuit 
board (PCB). In a final product the foil pieces 
would be pre-attached to a former for easy 
handling and alignment on the PCB.  
 

 
 

Figure 2. Exploded view of the hybrid winding 
concept for a toroidal inductor. 



 

 

The hybrid winding concept has the 
following benefits compared to the conventional 
single layer wire wound inductor: 

 Large scale production and distributed stock 
of foil assemblies reduce cost and delivery 
time. 

 Fully automated manufacturing process. Foil 
pieces are stamped, bended and attached to a 
plastic former. The core and the foil assembly 
can be placed by a pick and place machine.  

 Better utilization of winding space. Constant 
resistance with  increased number of turns or 
constant number of turns with decreased 
resistance for the same core size 

 Low AC resistance due to increased surface 
area using foil. 

 Configurable winding structure. The 
connections of the foil pieces through the 
PCB can be freely defined by the design 
engineer. The number of turns can be 
decreased by paralleling the foil pieces. It 
enables the same foil assembly to be used for 
inductors, common mode EMC chokes, 
transformers etc. 

 Different core materials can be used with the 
same foil assembly. 

The disadvantages may be  as follows: 

 Commercial available PCB layer thickness 
and interconnections between the foil cutouts 
and the PCB tracks is a bottleneck for high 
power applications. 

 The assembly of the foil cutouts is limited to a 
specific core size. 

 
2. Use of COMSOL Multiphysics 
 
The challenge of predicting the resistance as a 
function of the frequency of such a complex 3D 
winding geometry is solved using the COMSOL 
AC/DC module[4]. The greatest challenge was to 
create the mesh since eddy currents need to be 
considered and the thickness of the foil to the 
PCB traces in this work vary from 0.5mm to 
70µm. A boundary layer mesh with 4 layers and 
a stretch factor of 2.5 was used. The first layer 
fitness was set manually to 5µm. A free 
tetrahedral mesh was used for the DC resistance 
simulation. 

 
3. Results 
 
 In Figure 3 the current density at 100kHz in 
the foil cutouts and the PCB traces are shown. 
The 3D model of the hybrid inductor is shown 
from beneath in order to inspect the PCB traces. 
Some of the windings and the core are hidden in 
order to look at the inner part of the winding. 
From the colors it is easy to see that the current 
density is highest closest to the core where the 
current path is shortest and in the places where 
the width of the foil cutout is lowest. This 
suggests that the foil cutouts should be angled 
instead of the PCB traces in order to reduce the 
resistance. 
 
 The implemented prototype is shown in 
figure 4. The PCB were milled with a router and 
the foil pieces were cut with a scissor and 
soldered manually. It is clear that the prototype 
has rounded corners and unequal spacing 
compared to the 3D drawing shown in figure 3.    
 
 In Figure 5 the simulated and measured 
resistance as a function of the frequency is 
shown. An offset is added to the simulation 
result to compensate for any static error sources 
such as imprecise cuts and clearance of the bent 
foils, all of which is not included in the 3D 
model. The simulation with offset fits the 
measured results from 10 Hz to 100 kHz which 
is the common operating frequency range. It is 
eddy currents in the core that causes the increase 
in the measured AC-resistance beyond the 100 
kHz which is not accounted for in the simulation 
model. 
 
 A LiveLink to a computer aided design 
(CAD) program [5] was also implemented and 
several simulations were performed in order to 
investigate the DC-resistance versus the PCB 
Thickness.  The result shown in figure 6 
indicates that the DC-resistance could be halfed  
by using 220 um thick PCB traces compared to 
the common 70 um PCB trace thickness. The 
simulation prove that the PCB trace thickness is 
a bottleneck for high power applications. 



 

 

 
 

Figure 3. Simulated current density and magnetic 
flux density 

 

 
Figure 4. Prototype used for validation of the 

simulation results 
 

 
Figure 5. Resistance as a function of the frequency 

 

 
Figure 6. Simulated DC-resistance as a function of 
PCB copper thickness. Foil thickness is fixed at 500 

µm. 
 
4. Conclusion 
 
A hybrid winding concept for toroids using the 
traces in a printed circuit board to make 
connection to bent copper foil cutouts has been 
evaluated in terms of AC-resistance and the DC-
resistance as a function of PCB trace thickness. 
 A FEM analyses have been carried out and 
the model have been experimentally validated. 
 It is found that the commercially available 
layer thickness in a PCB  is a bottleneck for high 
power applications. Finally a plot of the 
simulated current density in the winding reveals 
that the winding configuration can be optimized 
which is crucial for performance. 
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Abstract: An optimization routine is presented 
to optimize a hybrid winding geometry for a 
toroid inductor in terms of the DC resistance. 
The hybrid winding geometry consist of bended 
foil pieces connected through traces in a printed 
circuit board. MATLAB is used to create a 
graphical user interface that visually plots the 
winding using input parameters such as core 
dimensions, number of turns, clearance between 
windings, and the winding angle of each segment 
of the winding. COMSOL LiveLink is used to 
import the winding geometry from MATLAB 
and create a 2D finite element model to simulate 
the DC reisistance. Finally the winding 
configuration  with the lowest DC resistance is 
found by sweeping the parameters of the 
winding geometry and simulate and save the 
result in each step. An improvement of more 
than 30% compared to previous work where 
achieved in this way  
 
Keywords: Inductor, Resistance, Mesh, 
Boundary layers, LiveLink. 
 
1. Introduction 
   

 The conventional wire wound toroid is used 
in many power electronic applications such as 
EMC filters, power inductors, transformers and 
so on. However it has the following 
disadvantages regarding the winding scheme and 
the manufacturing/production process [1, 2]: 

 The spacing between the windings increases 
gradually from the inner diameter towards 
the outer diameter of the core limiting the 
utilization of the winding area.  

 For large wire diameters a hook/pull type 
manufacturing machine is used. The space 
required for the hook and the wire being 
pulled through the center of the core further 
decrease the utilized winding area.  

 For large wire diameters manual work is 
required for feeding the hook with the wire 
leading to increased cost.  

 Complex manufacturing machines are needed 
for winding due to non-separable core.  

 Manufacturer lead time and price strongly 
depends on the purchase history and number 
of ordered magnetic components.  

 The leaded toroid may be placed and 
soldered manually in a production increasing 
time to market and cost. 

 
Figure 1. Surface mounted hybrid toroidal inductor. 

 
This work focus on a hybrid foil combined 

with printed circuit board (PCB) trace winding 
scheme in an attempt to improve both the 
utilized winding space and improve the time to 
market by creating more freedom in the 
manufacturing and production process. 

 The basic idea is to cut and bend copper foils 
into “U” shaped pieces that fit around the 
toroidal core. The number of bended foil pieces 
determines the number of turns and in a final 
product all the foil pieces would be pre-attached 
to a plastic former for easy handling and 
alignment on the PCB.  

In previous work [4] a hybrid inductor with 
15 turns, a foil thickness of 500um and a single 
layer PCB with a layer thickness of 70um was 
implemented as a prototype. The measurements 
were used to evaluate a 3D Finite element model 
(FEM) created in COMSOL with good 
agreement. The results showed that typical 
available PCB layer thicknesses (18um – 210um) 

 



 

 

are a bottle neck for the DC resistance in a 
hybrid inductor. 

In the implemented model the bended copper 
pieces went straight over the core and the traces 
in the PCB was angled to complete the winding. 
It is easy to imagine how the DC resistance 
would be improved if the thin traces in the PCB 
were straight and short and the thicker copper 
pieces were angled over the core connecting the 
winding. It is however hard to predict the 
optimum angles of each segment in a turn and to 
predict the impact on the DC resistance. It is 
necessary to find an answer to these questions in 
order to take full advantage of the hybrid 
inductor. 
 
2. Use of COMSOL Multiphysics 

COMSOL is used to simulate and find the 
DC resitance of the windings in the inductor. 
The system is set up as a 2D simulation to 
improve simulation time, which is needed for the 
optimization algortihm solution time not to get 
extremely long.  

The 3D model is based on four segments per 
turn, labeled F1-F4 as shown in Figure 2. The 
optimization algortihms input parameters is the  
coil dimensions, number of turns, minimum 
clearance between turns, the starting position of 
the winding following  the tangent of the core, 
the angle of each segment and the thickness of 
each segment.  

. 
 
 
 
 
 

 
 
Figure 2. Geometry of the winding and the related 
parameters. 

 
 
Figure 3. The designed MATLAB GUI with LiveLink 
to COMSOL. 
 
 
 To control the optimization rutine a 
MATLAB program was developed, that can take 
all the inputs, and set the different constraints, 
and in general control the optimization. For 
setting up the 2D structure in COMSOL the 
LiveLink for MATLAB [5] was used. The 
following steps were implemented in the 
MATLAB code in order to automate the 
calculation of the DC resistance with changing 
winding geometry: 
 
 Creating a MATLAB GUI – See Figure 3 
 Creating the winding geometry  

o The geometry of a single turn is 
created based on the parameters set 
by the GUI for the winding such as 
size of the core, clearance, thickness 
of the foil and the angle of each 
segment in a turn. The coordinates 
positions are translated from 3D to 
2D by unfolding the each turn. 

o A for loop creates the desired turns 
by copying the coordinates of the 
single turn by rotating them in a 
polar coordinate system. Every 
section of a turn is created as a 
polygon and the coordinates is saved 
for later selection of domains and 
boundaries. Each segmet is shifted 
so they lay in layers. This is done to 
ensure that the windings will not 



 

 

cross each other, as shown in Figure 
4. 
 

 Selecting the boundaries. As the specific 
boundaries are not number as the are 
generated, it is nessary to find them in order 
to set up the rest of the simulation. This is 
done by using the LiveLink method 
“mphselectbox”. The saved positions used 
to generate the turns are used and the 
boundary are stored for later use.  

 
 The material setup is defined for each 

segment in the simulation, instead of using 
the standard Copper material, this is done 
since the different segments can (and usaully 
have) different thickness of the copper. The 
differrence is used to define an electrical 
conductivity for each segment modelling the 
thickness.  

 
 The physics is set up as an “Electrical 

Currents” model, with a stationary study, 
and the discretixation of the electric 
potential to (the standard) quadratic. To 

enforce a voltage over the entire structure a 
Terminal is added on the first structure 
(bottom structure, red boundary).  Here a 
voltage of 1V is set. On the last (top) 
structure a Ground node is added. To ensure 
the connection betweeen each turns structure 
the Periodic Condition is used, between the 
boundaries of the end of one structure and 
the input of the next, as indicated by the 
arrows in Figure 4. 

 
 The geometry is meshed using the standard 

mesh Free Triangular, with the seize set to 
“Normal”. This gives an simple, yet accurate 
enough approximation. 

 
 The study is set as a stationary standard 

study, with direct solving.  
 
 The results are taken in two parts  

 
o A global variable is used to calculate 

the DC resistance seen from the 
terminals. The conductance G is 
available directly from the solution and 
the DC resistance is then calculated as 
The current density was evaluated in the 

Figure 2 Ilustration of an unfold winding which is copied and 
connected in series via “Periodic Condition” 

Figure 1 Current density plot of each of the turns structures. 



 

 

𝑅𝑅   =   
1
𝐺𝐺

 
same way but as a surface maximum 
and minimum, as well as plotted using 
in COMSO, see Figure  and shown in a 
MATLAB figure using the function 
“mphplot”. 

 
3. Results 
 
 The result of the optimization routine is 
shown in Figure 5. The plot shows the simulated 
resistance for a given number of solutions where 
the previously mentioned parameters of the 
winding were altered. In this specific case the 
resistance don’t change much as a function of the 
winding parameters as in other cases. In this 
work the following 3 cases were examined: 
 
 Case 1: Few turns, 

PCB layer thickness << Foil thickness 
 Case 2: Many turns,   

PCB layer thickness << Foil thickness 
 Case 3: Few turns,   

PCB layer thickness = Foil thickness 
 

In table 1-3 the parameters and result for each of 
the 3 cases are summarized. In each case 3 
winding configurations are compared. One 
where only the PCB trace is angled called 
“Bottom”, one where the lowest DC-resistance 
were found called “Opt.” for optimized and one 
where only the top segment of the bended foil 
was angled called “Top”. 
 
In Case 1 the optimized solution resulted in an 
improvement of 32 % compared with only 
angling the PCB trace. However an 31 % 
improvement was achieved by only angling the 
top segment of the bonded foil piece. If few turns 
and a big difference in foil and PCB trace is 
utilized the “Top” solution may be sufficient 
since it will result in a low DC-resistance and 
may be easier to fabricate. 
 
In Case 2 a very small improvement of 0.8 % for 
both the “Opt.” and the “Top” compared to the 
“Bottom” is achieved. The limited space due to 
many turns reduce the influence of angling the 
segments in the winding and obviate the 
optimization. 
 

In Case 3  the “Opt.”  and “Top” configuration 
resulted in 11 % and 6 %  improvement 
respectively. For few turns and equal winding 
thickness the optimized solution is therefore 
attractive. This could be an important conclusion 
since this configuration is highly suitable for 
high frequency operation which is in high 
demand. However this must be confirmed in a 
3D simulation of the AC-resistance which is out 
of the scope in this work. 
 
 

 
 
Figure 5. Illustration of optimizing routine for a single 
integration. The x-axis is the combination number for 
the given angle span and the y-axis is corresponded 
DC resistance. 
 
Table 1: Case 1 (Few turns,  PCB layer thickness << 
Foil thickness) 
 

Number of turns: 10, Segment thickness: F1, 
F2, F3 = 500 µm, F4 = 70um, Clearance  = 1mm  

Winding angle 
configuration  Bottom  Opt.  Top 

Starting point SP  [%]  0  20  0  
Outer Foil Segment F1 [%]  0  63  0  
Top Foil Segment F2 [%]  0  37  100  
Inner Segment F3 [%]  0  0  0  
Bottom Segment F4 [%]  100  0  0  
DC resistance [mΩ] 6.78 4.64 4.71 
Improvement [%] Ref. 32 31 
 



 

 

Table 2: Case 2 (Many turns,  PCB layer thickness << 
Foil thickness) 
 

Number of turns: 100, Segment thickness: F1, 
F2, F3 = 500 µm, F4 = 70um, Clearance  = 1mm  

Winding  angle 
configuration  Bottom  Opt.  Top 

Starting point SP  [%]  0  0  0  
Outer Foil Segment F1 [%]  0  75  0  
Top Foil Segment F2 [%]  0  25  100  
Inner Segment F3 [%]  0  0  0  
Bottom Segment F4 [%]  100  0  0  
DC resistance [mΩ] 435  432  432  
Improvement [%] Ref. 0.8  0.8  
 
Table 3: Case 3 (Few turns,  PCB layer thickness = 
Foil thickness) 

 
 
4. Conclusion 
 
 A MATLAB program for optimizing the 
structure of an inductor in order to minimize the 
DC resistance have been created. The program 
sets up the 2D simulation of the structure 
dividide into turns, again dividede into 4 
segments, each with different thickness. The 
system is simlated and the numerical as well as 
grapical results are extracted. The program 
shows that it is capacble of finding the optimum 
winding geometry, leading to an improved DC-
resistance. The findings are in general: 
 
 Few turns and large difference in foil and 

PCB trace thickness 
o Angeling the top segment (F2) is a 

suitable solution 
 Many turns 

o Less degree of freedom to alter the 
shape of the winding 

 Same thickness of all the segments in a turn 
o An optimized solution is preferred 
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Number of turns: 10, Segment thickness: F1, 
F2, F3, F4 = 500 µm, Clearance  = 1mm  

Winding  angle 
configuration  Bottom  Opt.  Top 

Starting point SP  [%]  0  100  0  
Outer Foil Segment F1 [%]  0  38  0  
Top Foil Segment F2 [%]  0  21  100  
Inner Segment F3 [%]  0  0.5  0  
Bottom Segment F4 [%]  100  40.5  0  

DC resistance [mΩ] 2.6  2.3  2.5  

Improvement [%] Ref. 11  6  
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Abstract — This paper presents an efficiency optimization approach for a high voltage bidirectional flyback dc-dc 

converter. The main goal is to optimize the converter for driving a capacitive actuator, which must be charged and 

discharged from 0 V to 2.5 kV dc and vice versa, supplied from a 24 V dc supply. The energy efficiency is optimized 

using a proposed new automatic winding layout (AWL) technique and a comprehensive loss model. The AWL 

technique generates a large number of transformer winding layouts. The transformer parasitics such as dc resistance, 

leakage inductance and self-capacitance are calculated for each winding layout. An optimization technique is 

formulated to minimize the sum of energy losses during charge and discharge operations. The efficiency and energy 

loss distribution results from the optimization routine provide a deep insight into the high voltage transformer design 

and its impact on the total converter efficiency. The proposed efficiency optimization approach is experimentally 

verified on a 25 W (average charging power) with 100 W (peak power) flyback dc-dc prototype. 

Index Terms — switched-mode power supply, high voltage dc-dc power converter, transformer design, optimization, 

energy efficiency, actuators, dielectric films 

Statement: A part of this manuscript was presented at the IEEE APEC 2014 conference [24]. It is not currently under review 

for publication in any other journal. Compared with the conference papers, the proposed automatic winding layout technique 

is explained in detail, the detailed information about the proposed efficiency optimization technique is provided, and the loss 

modeling has been improved and updated. Furthermore, the calculated and experimental results are updated.  

 

 



NOMENCLATURE 

auC, buC  Coefficients of Fourier series of the magneto motive force (MMF) during charge process (AT: 

Ampere-turns) 

BmC / BmD  Maximum flux density during charge / discharge process (T) 

BnC   Magnitude of negative flux density at the beginning of a switching cycle during charge process (T) 

ΔB   Peak-to-peak flux density of the current excitation (T) 

Cin / Cload  Input capacitance / Capacitance of the load or actuator (F) 

Cs   Self-capacitance of secondary winding (F) 

Cossp / Cosss   Output capacitance of low voltage MOSFET Mp / high voltage MOSFET Ms (F) 

CDb   Junction capacitance of high voltage diode Db (F) 

dp / ds   Diameter of primary / secondary winding of transformer (mm) 

D2 / Db   High voltage (5 kV) freewheeling diode / blocking diode 

dinsulation    Uniform spacing or thickness of the insulating tape, between secondary layers (mm) 

DonC / DoffC  On-time / Off-time duty cycle of low voltage MOSFET Mp during charge process 

DonD / DoffD  On-time / Off-time duty cycle of high voltage MOSFET Ms during discharge process 

Eload(Vout)  Stored energy in the load at an output voltage Vout (J) 

fswC / fswD   Switching frequency during charge / discharge process (kHz) 

FFLL   Fill factor of the last layer in the high voltage winding 

FuC(0) / FuC(h) MMF amplitude of uth harmonic at x=0 / x=h, h is the thickness of layer (AT) 

G1, G2 Constants used in the power loss expressions and are functions of εu 

HW Window height of transformer bobbin (mm) 

iin / ip / is   Input current / Primary current / Secondary or load current (A) 

imp / ims   Primary / Secondary magnetizing current (A) 

IppkC / IppkD  Primary peak current during charge process / discharge process (A) 

IspkC / IspkD  Secondary peak current during charge process / discharge process (A) 

imin   Magnitude of the negative primary current at the beginning of charge process (A) 

IpavgC / IsavgC  Primary / Secondary average current during charge process (A) 

kz Core loss constant in the improved generalized Steinmetz equation (iGSE)  

Lmp / Lms   Primary / Secondary magnetizing inductance of transformer (H) 



Llkp / Llks   Leakage inductance referred to primary / secondary side of transformer (H) 

Mp / Ms   Low voltage MOSFET / High voltage (4 kV) MOSFET 

Np / Ns / n  Number of primary / secondary turns / Turns ratio of transformer from secondary to primary 

nlp / nls   Number of layers in primary / secondary winding of transformer 

nparp / npars  Number of parallel wires in primary / secondary winding of transformer 

Nh / Nc   Total number of harmonics considered / Total number of switching cycles during charge process 

k
layerCP    Power loss in kth layer during charge process (W) 

PwindC / PTwindC  Winding loss at each switching cycle / Total winding loss during charge process (W) 

PswC / PswD   Capacitive switching loss due the self-capacitance during charge / discharge process (W) 

PsnC / PsnD   Snubber loss due leakage inductance during charge / discharge process (W) 

Rp / Rs   dc resistance of primary / secondary winding of transformer (Ω) 

Rpsense / Rssense  Primary / Secondary current sense resistance (Ω) 

Rlayer   dc resistance of a given layer (Ω) 

tonC / toffC   On-time / Off-time of low voltage MOSFET Mp during charge process (s) 

tonD / toffD   On-time / Off-time of high voltage MOSFET Ms during discharge process (s) 

TsC / TsD   Switching period during charge / discharge process (s) 

Tch   Charging time to reach the target output voltage from 0 V (s)  

Tlayer   Number of turns in a given layer (primary or secondary) of transformer 

VleakD   Increase in the steady state drain-to-source voltage of Ms due to leakage inductance Llks (V) 

Vin / Vout   Input voltage / Output or load or actuator voltage (V) 

WW   Window width of bobbin (mm) 

Wsqp / Wsqs  Width of square for primary / secondary in the automatic winding layout generator routine (mm) 

γs / γp   Height allocation factor for secondary / primary winding with γp=(1-γs) 

δu / δ   Skin depth of the conductor at uth harmonic frequency / fundamental (u=0) frequency (mm) 

εu   Ratio of conductor diameter to the effective skin depth of uth harmonic 

φuC(0) / φuC(h)  Phase of uth harmonic of the MMF during charge process at x=0 / x=h (h is thickness of layer) 

ρ / μ0   Resistivity of copper (Ω-m) / Magnetic permeability of vacuum (H/m) 

α, β, k   The constants related to core material which are provided by the core manufacturer  

δC   Capacitance ratio factor on the high voltage side 



I. INTRODUCTION  

Dielectric electro active polymer (DEAP) [1]-[3] is an evolving smart material that can be used in actuation, sensing and 

energy harvesting applications [4]. DEAPs, when used as linear actuators, have the potential to be an effective replacement for 

many conventional linear actuators because of their unique properties, including light weight, low noise operation, high 

flexibility, large strain, and autonomous capability. The axial DEAP actuator as shown in Fig. 1(a) is ideally equivalent to a 

capacitive load. When a DEAP actuator is driven with high voltage (2-2.5 kV), it converts a portion of the electrical energy into 

mechanical displacement, which is of the order of mm (~1-1.5 mm) [5]-[7]. Three of such axial DEAP actuators are used to 

create a DEAP incremental actuator [8] as shown in Fig. 1(b). The DEAP incremental actuator technology has the potential to be 

used in various industries, e.g. automotive, aeronautics, and medicine. For using the DEAP actuators in such applications, the 

high voltage drivers should have low volume to fit inside or above the actuators. The overall energy efficiency of battery 

powered high voltage driver influences, the distance travelled by the incremental actuator. Hence, for DEAP actuator 

applications, both volume and energy efficiency of high voltage drivers are extremely important and need to be optimized. 

The flyback converter is suitable for high voltage and low power applications due to its simple structure and a low 

component count [9].  High voltage switch-mode power supplies for charging the capacitive loads are implemented in [10]-

[12]. Bidirectional dc-dc power converters are needed for the DEAP based capacitive actuators [13], to increase the lifetime of 

the battery, also to discharge the high voltage across them. Bidirectional flyback converter [14]-[17], and a forward-flyback 

bidirectional converter [18] are implemented for various applications. Due to high reverse recovery time (~2.6 μs) of high 

voltage MOSFET, a modified high voltage bidirectional flyback converter topology [19] as shown in Fig. 2, is proposed and 

implemented for driving a DEAP actuator. The loss analysis of the same converter is performed in [20].  

Transformer design plays a very important role in high voltage dc-dc power converters employed in low, medium and high 

power applications. The design methodologies for transformers used in conventional switch-mode power supplies are well 

documented [9], [21]-[23]. Often, a transformer for a given application is designed based on some assumptions such as, 
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Fig. 1. a)  DEAP actuator; b)  DEAP incremental actuator. 



constant switching frequency, maximum temperature rise, estimated converter efficiency, winding fill factor, and winding 

current density. However, those assumptions are not valid or suitable for some applications. Hence, more customized 

procedures are needed to design efficient transformers, for specific applications. In a high voltage capacitor charge and 

discharge application, the high voltage transformer will have a large amount of (> 200) secondary turns. For such application, 

it is very difficult to select an optimum winding diameter and number of winding layers beforehand, which decide the values 

of the transformer parasitics. To avoid this difficulty, an automatic winding layout (AWL) technique is introduced in [24], for 

the winding design of a high voltage transformer. The high voltage flyback converter operation is very sensitive to the 

transformer parasitics. The proposed AWL technique, utilizes the entire available space in a given transformer bobbin and 

provides an optimum winding diameter that minimizes the total loss due to the transformer parasitics. 

In the initial design phase, it is difficult to predict which core type is optimal for a given application. In a flyback converter, 

a long transformer window width is often preferred, in order to minimize the leakage inductance and ac resistance by providing 

a close coupling between windings, and to decrease the number of winding layers. For high output or input voltage flyback 

converters, this could be different, since the self-capacitance of the high voltage winding has significant impact on the 

performance of the converter. In this paper, an efficiency optimization algorithm is proposed, which provides an optimum 

solution for a given transformer core, by using the proposed AWL technique and the comprehensive loss model. Different 

transformer winding architectures (TWAs) for the high voltage capacitor charge and discharge application are investigated in 

[25]. In [26], a digital control technique is proposed for improving the energy efficiency and charge/discharge speed. Control 

algorithms for optimal-flyback charging of a capacitive load are proposed in [27]. A number of switch-mode power supply 

design optimization methods have been described in the literature [28]-[34].  

The proposed efficiency optimization technique has the following features:  
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Fig. 2. Circuit configuration of the high voltage bidirectional flyback converter for driving a capacitive load. 



1. an automatic winding layout (AWL) technique, which produces the information about winding diameters, number of 

layers, and number of parallel windings, for both primary and secondary windings;  

2. an accurate calculation of transformer parasitics using the outputs of AWL technique;  

3. calculation of energy losses during charge and discharge modes using a comprehensive loss model;  

4. an objective function that minimizes the sum of energy losses during charge and discharge modes, over a range of 

operating points. 

This paper is organized as follows: Section II describes the proposed automated winding layout (AWL) technique. Section 

III provides the loss modeling of the bidirectional flyback converter. Section IV discusses the proposed optimization routine. 

Section V provides the optimization and experimental results, followed by the conclusions in Section VI. 

II. AUTOMATIC WINDING LAYOUT (AWL) TECHNIQUE  

The bidirectional flyback converter design specifications are provided in Table I. The magnetic transformer is the most 

critical component in the high voltage bidirectional flyback converter. The leakage inductance causes voltage spikes across 

drain-to-source of the MOSFET, and this can be avoided by a dissipative snubber circuit or by using an over rated MOSFET. 

The self-capacitance of secondary winding creates large resonating current spikes in the leading edge of the MOSFET current 

waveform [19]. Additional switching losses will be created due to those two parasitics, respectively [30]. The remaining losses 

in the transformer are core loss, and the winding loss due to dc and ac resistances. The losses due to the high voltage 

transformer need to be minimized to improve the bidirectional flyback converter efficiency and reliability.  

The transformer design decisions considered for the proposed AWL technique are given in Table II. The core types are 

limited to ETD, EFD, E, RM and PQ. The N87 core material is chosen for most of the cores, due to its lower core losses at high 

frequency up to 500 kHz. For those cores for which N87 material is not available, other core materials which are suitable for 

operation up to 500 kHz are considered. A simple non-interleaved winding structure (P/S; P: Primary, S: Secondary), is 

considered in this paper to limit the complexity of the proposed AWL technique. Nevertheless, the proposed AWL technique 

TABLE I.  CONVERTER DESIGN SPECIFICATIONS 
Parameter Value 

Input voltage Vin 24 V 
Output voltage Vout 0-2500 V 

Capacitance of load Cload 400 nF 
Stored energy in the load Eload at 2.5 kV 1.25 J 

Target charging time Tch 50 ms 
Turns ratio of the transformer n 25 

Primary magnetizing inductance Lmp 44 μH 
Primary peak current during charge process IppkC 4.2 A 

Primary peak current during discharge process IppkD 5.3 A 
 



can be easily extended for the interleaved transformer structures (P/S/P or S/P/S). The proper insulation between the low voltage 

(primary) and high voltage (secondary) windings is achieved by using a triple insulated (TEX-E) solid wire for primary winding. 

To avoid the high insulation thickness (0.2 mm) of TEX-E wire, single insulated solid wire is used for a large number of 

secondary turns. A maximum transformer temperature limit of 130 °C is chosen. These limitation values can be altered based on 

the experience of the user or the initial design specifications. The AWL technique is described below: 

A. AWL technique: 

The space allocated for the primary and secondary windings for a given transformer bobbin with winding width WW and 

window height HW are shown in Fig. 3(a). Different steps associated with the proposed AWL technique for an example of Np=6 

primary turns and Ns=18 secondary turns, are explained below: 

1. The first step is, to split the available winding space for primary (see Figs. 3(a)) and secondary (Figs. 3(f)) into a number 

of squares, with a square width equal to height allocated for that winding. As shown in Figs. 3(d) and 3(g), it results into 4 

squares and a crossed non-square, which is considered as an unusable space for both primary and secondary windings. In 

each square, a solid round wire could be placed with a diameter equal to the width of square or a bundle of round wires 

with an outside bundle diameter equal to the width of square.  

2. Since the number of available squares is 4 in Figs. 3(d) or 3(g), which is less than the required 6 primary and 18 secondary 

turns, more squares are required to fill the needed turns. Hence, the width of square for primary or secondary is decreased 

from its maximum value of γpHW or γsHW, respectively.  

3. The fill factor of the last layer FFLL for a given winding is defined as the ratio of number of squares used in the final layer 

to the number of squares available in it. For example, in Fig. 3(i), 9 squares are available and 9 squares are occupied in the 

final layer, hence FFLL=1. Similarly, in Fig. 3(j), 16 squares are available and 13 squares are occupied in the final layer, 

TABLE II.  TRANSFORMER DESIGN DECISIONS 
Description Design decision Comments 

Ferrite core and bobbin 
type 

ETD, EFD, E, RM and PQ Typically used in switch-mode power supplies. 

Core material N87 Suitable for switching frequencies up to 500 kHz. 
Winding structure P/S Simple implementation and decreases analytical complexity. 

Primary winding type Solid wire Flexible winding type in terms of design and prototyping. 
Primary winding 

insulation 
Triple insulation (TEX-E) 

Edge tape can be avoided. No need for interlayer insulation tape 
between the primary and secondary windings. 

Secondary winding type Solid wire Suitable winding type, for a large number of turns. Flexible winding 
type in terms of design, prototyping and different winding structures. 

Secondary winding 
insulation 

Single insulation Provides minimum insulation thickness for a large number of turns. 

Air gap All legs Simplifies the prototyping. 
Maximum transformer 

temperature 
130 °C 

With a predicted ambient temperature of 35 °C, this enables 
transformer temperature rise of 95 °C. 



hence FFLL=0.81. In the proposed AWL technique a maximum limit of 0.85 is set for FFLL, since the calculation of 

transformer parasitics are based on fully occupied layers. 

4. When the square width is reduced as shown in Figs. 3(e) and 3(h), the new square size limits the use of a shaded space 

above the squares. For primary winding since only 6 turns are needed, this will be a valid solution. However, for 

secondary winding, since 18 turns are needed, the shaded space can be occupied by the other windings, by reducing the 

square width further. 

5. When the square width is reduced further as shown in Fig. 3(i), the winding space contains 18 squares in 2 layers, and a 

shaded space. The non-square horizontal space is utilized to provide an insulation tape (with thickness dinsulation) between 

the secondary layers. This is the final step of AWL technique for 6 primary and 18 secondary turns. 

6. If 45 turns are required for secondary winding, the square width is decreased again, as shown in Fig. 3(j), the solution 

contains 3 layers and 16 squares in each layer. The last layer fill factor FFLL in this case is 0.81, which is less than 0.85. 

Hence, this is not a valid solution and the square width needs to be decreased further. 

7. In Fig. 3(b), a solution from the AWL technique is shown. The primary and secondary squares are filled with triple 

isolated and single isolated solid wires, respectively. The same steps described above apply for the real high voltage 

transformer design which will have more than 200 secondary turns.  

8. Finally, the outputs of AWL technique are various winding implementations, including specific winding details such as, 

diameters of primary and secondary windings, number of primary and secondary winding layers, and insulation 

thicknesses for placing between secondary windings, for which FFLL>0.85, respectively. 

B. Calculation of transformer parasitics using the results of AWL technique: 

The outputs of the AWL technique are used to calulate the transformer parasitics [20], [24], [35]-[37] such as dc resistance, 

leakage inductance and self-capacitance. In Fig. 4, one output of AWL technique such as the insulation thickness (dinsulation) for 

a PQ 20/20 core, and calculated transformer parasitics are shown with respect to square width (Wsqs) of secondary winding. As 

the width of the secondary square (or secondary winding) decreases, the insulation spacing dinsulation between secondary 

winding layers increases, dc resistance Rs increases, leakage inductance Llkp slightly decreases, and the self-capacitance Cs 

decreases. 

III. LOSS MODELLING  

In order to investigate the bidirectional flyback converter efficiency, it is necessary to calculate the losses associated with 

each circuit component in the converter. The loss model is a function of transformer parasitics. Different losses in the 

bidirectional flyback converter are given below:  



A. Transformer winding loss 

In a flyback converter the primary and secondary currents are 180° out of phase, hence the conventional equations cannot 

be used to calculate the ac resistance [38], [39]. The calculation of the total winding loss in a flyback converter using the 

magneto motive force (MMF) analysis [40], [41] is described below. 

1) Winding loss in a flyback transformer during charge process: 

1 2 3 4

Winding space allocation for
primary

WW

γpHW

1 2 3 4 5 6

c)

d)

e)

Wsqp Wsqp=γpHW

Wsqp Wsqp<γpHW

HW

WW

γsHW

Top view of the bobbin for horizontal E and ETD, EFD cores
Side view of the bobbin for verticle E cores and PQ, RM cores

Symmetrical line

10 11 12 13 14 15 16 17 18

98721 43 5 6

γpHW

HW

WW

γsHW

Symmetrical line

γpHW

Winding space allocation for
secondary

Winding space allocation for
primary

Transformer
Bobbin

1 2 3 4

Winding space allocation for
secondary

WW

γsHW

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18

f)

g)

h)

i)

Space equally distributed
between secondary layers

Crossed space which is not utilized
by the windings

Wsqs Wsqs=γsHW

Wsqs Wsqs<γsHW

Wsqs Wsqs<0.5γsHW

Transformer
Bobbin

a) b)

1 2 3 4 16
32

5 6 7 10 128 9 11 14 1513
171819 20 2122 23 26 2824 25 27 30 3129
3334 3536 37 38 39 42 4440 41 43 45

j)

Wsqs

1 2 3 4 5 6

1 2 3 4 5 6

Squares Non-square

Non-square

γpHW

γpHW

γsHW

γsHW

γsHW

γsHW

dinsulation

dinsulation

dinsulation

 
Fig. 3. a) Allocated winding space a) before applying AWL technique; b) after applying AWL technique;  c) - e) Different steps 

involved in AWL technique for primary winding; f) - j) Different steps involved in AWL technique for secondary winding; 



For the winding loss modeling, a non-interleaved transformer with 2 layers on the primary side (P1 and P2) and 5 layers on 

the secondary side (S1, S2, S3, S4 and S5), is considered as an example. The MMF distribution in a flyback transformer is different 

from that of a normal transformer [40]. Figure 5 shows different MMF distributions during both turn-on (0<t<tonC) and turn-off 

(tonC<t< tonC +toffC) periods in a non-interleaved flyback transformer. In Fig. 5, Np1 and Np, are the number of turns in the primary 

layer 1 and the total primary turns, respectively, and H0, H1,….H7 are the magnetic field intensities between the layers. The 

terms N1, N2, N3, N4, N5 are defined as follows: N1=Ns1, N2=Ns1+Ns2, N3=Ns1+Ns2+Ns3, N4=Ns1+Ns2+Ns3+Ns4, and 

N5=Ns1+Ns2+Ns3+Ns4+Ns5=Ns where Ns1, Ns2, Ns3, Ns4, Ns5 and Ns are the number of turns in the secondary layers 1, 2, 3, 4, 5, and 

the total number of secondary turns, respectively. The primary imp(t) and secondary ims(t) magnetizing current waveforms in a 
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Fig. 4. Variation of transformer parasitics with the diameter of secondary winding, for PQ 20/20 core (when γs=0.8). 

 



given switching cycle, during charge and discharge processes are shown in Figs. 6(a) and 6(b), respectively. The MMF 

distribution in each transformer winding layer in the time domain is decomposed into sinusoidal harmonics by Fourier series 

analysis [24]. The power loss is then computed for each harmonic, and the power loss densities over all harmonics are summed 

to find the power dissipated in each layer.  

The power loss expression in kth layer k
layerCP  is given by [24], [40], [41] 
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where FuC(0) and FuC(h) are the MMF amplitudes of the uth harmonic at the beginning (x=0) and end (x=h) of a layer, 

respectively, d is the diameter of the given winding, h is the thickness of a given layer, with the suffix u being the harmonic 

number [24]. 

The magnitude uCF  and phase φuC of uth harmonic of the MMF during charge process are given by 
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Fig. 6. a) Primary magnetizing current in a given swithcing cycle during charge process, and b) Secondary magnetizing current 

discharge process. 



where auC and buC are the coefficients of Fourier series of the MMF during charge process and are provided in [24], and is 

the difference between the phase angles of the uth harmonic at the beginning (x=0) and end (x=h) of a layer, respectively. 

The expression for the winding loss in a flyback transformer at each switching frequency (each switching cycle) index j during 

charge process is  
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The total winding loss during charge process having Nc switching cycles is  
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2) Discussion 

The winding loss during discharge process is calculated similar to that during charge process. The AC loss due to air-gap 

fringing field [28] has not been considered because of difficulties in interfacing the 2-D/3-D finite element analysis (FEA) 

simulation results with the optimization process. The negative current at the beginning of the turn-on process during charge 

process in Fig. 6(a) is due to the high voltage winding self-capacitance. When the secondary winding current becomes zero, the 

drain to source voltage VMp tends to decrease. Since the control IC, LT3751 [42] operates under boundary mode control, the 

next switching cycle starts before the high voltage winding capacitance completely discharges. Hence, the current flows in the 

reverse direction to discharge the high voltage winding capacitance.                                                                                                            

B. Transformer core loss 

The time-average core loss per unit volume Pv due to non-sinusoidal excitation is calculated using the improved generalized 

Steinmetz equation (iGSE) [43] which is given by  

0
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T dt
                                                                         (9) 

where 
dB t

dt
 is the absolute value of the change rate of the flux density, ∆B is the peak-to-peak flux density, Ts is the 

switching period, and k, α and β are the constants provided by the core manufacturer. The core loss coefficient kz in (9) is 

calculated using the following expression 
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The angle θ in (10) represents the phase angle of the sinusoidal excitation. For a given values of k, α and β, the value of 

coefficient kz in (10) is fixed, irrespective of shape of flux density waveform.

                                                                          

 

The core loss per unit volume using iGSE during charge operation (where mC nCB B B  during the turn-on period and 

mCB B  during the turn-off period), in each switching cycle is given by  

1 1z
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sC

kP B B t B t
T                                                        

(11) 

Similarly, the core loss per unit volume during discharge operation (where mDB B ), in each switching cycle is given by  
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(12) 

C. Switching loss due to transformer self-capacitance  

The capacitive turn-on or switching loss due the self-capacitance when the converter employs valley switching/boundary 

conduction mode (BCM) control during charge process is given by [26], [44], [45] 

2
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P n C V f
n

                                                                 (13) 

When the output voltage Vout is greater than nVin, the capacitive switching loss PswC is 0 W, since the converter operates with 

zero voltage switching (ZVS). The capacitive switching loss due the self-capacitance when the converter employs DCM 

control during discharge process is [26] 

21
2swD s Ms swDP C V f                                                                             (14) 

In DCM, the drain-to-source voltage VMs at the beginning of next switching cycle can be anywhere between 

out C in C leakDV nV V  and 2 1out C in C leakDV nV V . The expression for c  is given by [26] 

osss
c

osss Db

C
C C

                                                                                     (15) 

The output capacitance Cosss of Ms and junction capacitance CDb of diode Db are approximately 15 pF and 1 pF, respectively. 

D. Switching loss due to transformer leakage inductance 

The loss due to the dissipative RCD snubber during charge process is given by 
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(16) 

The loss due to the dissipative RCD snubber during discharge process is given by 
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where VsnC and VsnD are the snubber clamp voltages for low and high voltage MOSFETs, respectively. 

E. Remaining losses in the bidirectional flyback converter 

The remaining losses in the converter during charge process are: switching loss of Mp, conduction losses of Mp, D2 and 

Rpsense, gate drive loss of Mp, and power consumption of charge control IC. Similarly, the remaining losses in the converter 

during discharge process are: switching loss of Ms, conduction losses of Ms, Db and Rssense, gate drive loss of Ms, and power 

consumption of discharge control IC. Since during both charge and discharge operations the converter employs BCM and 

DCM control, respectively, there are no diode reverse recovery losses in both modes.  

IV. EFFICIENCY OPTIMIZATION FOR A DC-DC CONVERTER DRIVING CAPACITIVE LOAD 

Efficient design of a high voltage bidirectional flyback converter, necessitates many trade-offs and iterations with a large 

number of design variables. The first step of the optimization routine is to determine the design specifications of the converter. 

The low voltage and high voltage MOSFETs, high voltage diode, turns ratio and magnetizing inductance are used as the 

constraints in the optimization, and are kept constant throughout the optimization routine. The flow chart of the proposed 

optimization routine is shown in Fig. 7. The converter specifications are used to calculate the number of primary and 

secondary turns, for a given ferrite core. The outputs of AWL technique are used to calculate the transformer parasitics. The 

energy losses during both charge ElossC and discharge ElossD modes are calculated and added to represent the total energy loss 

for that specific core. Finally, the energy efficiencies during charge ηC and discharge ηD modes are calculated as a function of 

output voltage.  

The design decisions presented in Table II are used, to limit the solution space of the optimization routine. The ranges for 

the cores and parameters to be optimized are shown in Table III. The optimization routine iterates through all design 

possibilities, and finally presents an optimized (most efficient) solution for each core. The outputs of the AWL technique are 

represented as OAWL.  

TABLE III.  RANGES OF THE DESIGN PARAMETERS 
Parameters Ranges for optimization 

Transformer cores 
EFD12, EFD 15, EFD 20, EFD 25, E 16, E 20, E 25, E 30, ETD 

29, ETD 34, ETD 39, RM 8, RM 10, RM 12, PQ 20/20 
and PQ 26/20 

Height allocation factors for secondary winding (γs) [0.5, 0.6, 0.7, 0.8] 
Outputs from AWL technique OAWL  see Section II and Figure 7 



The proposed optimization routine is described in the following steps: 

1. Transformer turns ratio, peak currents (for charge and discharge operations), magnetizing inductance are selected from the 

design specifications and constraints. Number of primary and secondary turns are calculated for a given transformer core.  

2. The proposed AWL technique is applied to calculate an array of the outputs (diameter, number of layers, turns per layer, 

number of parallel wires, for both primary and secondary windings). The condition for the last layer fill factor is 

FFLL>0.85, this is to approximately make, equal number of turns per layer in final secondary layer and remaining 

secondary layers).  

3. The transformer parasitics are calculated for each set of outputs resulted from AWL technique.  

4. The objective function fobj is defined as sum of the total energy losses in the bidirectional flyback converter over a set of 

operating points, and is given by 

, ,obj lossT s AWLf E Core   O                                                                           (18) 

5. The efficiency optimization or loss minimization of function fobj is 

Initialize the design specifications
and constraints

Objective function: Total energy loss
fobj = ElossT (Core, γs, OAWL)

Core data base

Winding height allocation
factor (γs)

Diameters, number of
layers of secondary and
primary windings, etc.

Calculate transformer parasitics

AWL
Technique

Np, Ns

Efficiency maximization or loss
minimization:

Minimize function fobj over Core, γs, OAWL

Optimum design parameters:
Coreopt, γsopt, OAWLopt

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6
 

Fig. 7. Flow chart of the proposed efficiency optimization procedure. 
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min min min
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obj lossT lossC lossDCore  , O Core  , O Core  , O

f E E E                                             (19) 

6. The end results of the optimization routine are the set of parameters which contributes to the minimum total energy loss. 

Finally, the optimum charge and discharge energy efficiencies are calculated as a function of output voltage  
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V. EFFICIENCY OPTIMIZATION RESULTS AND EXPERIMENTAL VALIDATION 

A. Details of the optimizaton results 

The components used in the bidirectional flyback converter except the transformer are shown in Table IV. All losses in the 

bidirectional flyback converter are calculated in MATLAB using the proposed comprehensive loss model. The winding loss is 

calculated during both charge and discharge processes, up to 100th order harmonics (Nh=100). The optimum secondary height 

allocation factor γs, for each core is provided in Fig. 8.  Figure 9 provides the results of the optimum charge, discharge and 

overall (product of charge and discharge) energy efficiencies, and an overall energy efficiency of a typical design where 50 % 

space is allocated for primary and secondary windings, at an output voltage of 2.5 kV, with respect to different core volumes.  

The total energy loss ElossC at an output voltage of 2.5 kV is the loss occurred in all components of the converter, for charging the 

capacitive load from 0 V to 2.5 kV. Similarly, the total energy loss ElossD at an output voltage of 2.5 kV is the loss occurred in all 

components of the converter, for discharging the capacitive load from 2.5 kV to 0 V. The most efficient and smallest transformer 

(or core) designs are two important outcomes of the proposed efficiency optimization routine. Table V shows a comparison of 

smallest core (SCD) and optimized core (OCD) designs.  
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Fig. 8. Optimum secondary winding height allocation factor γs vs. core volume. 



The smallest and optimized core designs are described below: 

1) Smallest core design (SCD) 

The smallest core is selected as the core whose temperature rise is less than the maximum temperature limit (130 °C). 

Several small cores such as, EFD 12, EFD 15, E 16 have been used in the optimization routine, out of those E 16 is the smallest 
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charge energy efficiency at 2.5 kV output voltage with proposed AWL method
discharge energy efficiency at 2.5 kV output voltage with proposed AWL method
overall energy efficiency at 2.5 kV output voltage with proposed AWL method
overall energy efficiency at 2.5 kV output voltage when 50% space is allocated
for both primary and secondary windings

Optimized core PQ 20/20Smallest core E 16

 
Fig. 9. Calculated optimized energy efficiencies at an output voltage of 2.5 kV vs. core volume. The sequence of the 14 cores is:  

[E 16, EFD 20, E 20, RM 8, PQ 20/20, E 25, EFD 25, RM 10, E 30, PQ 26/20, ETD 29, ETD 34, RM 12, ETD 39]. 

 

TABLE IV.  COMPONENTS USED IN THE BIDIRECTIONAL FLYBACK CONVERTER 
Component Name / Manufacturer 

Low voltage MOSFET Mp IPB600N25N3 G [250 V, 25 A, 60 mΩ] 
High voltage MOSFET Ms IXTV03N400S [4 kV, 300 mA, 290 Ω] 

High voltage diode D2 or Db SP5LFG [5 kV, 400 mA, 50 ns (trr)] 
Film capacitive load Cload WIMA [400 nF, 3 kV] 

Analog control IC LT3751 

TABLE V.  RESULTS OF THE OPTIMIZATION FOR SMALLEST CORE DESIGN (SCD) AND OPTIMIZED CORE DESIGN (OCD)  
 

Parameter SCD OCD 
Core name E 16 PQ 20/20 

Core volume 0.75 cm3 2.85 cm3 
Maximum flux density BmC 0.33 T 0.26 T 

Total number of turns of primary Np / secondary Ns winding 29 / 720 12 / 300 
Number of layers of primary nlp / secondary nls 2 / 8 1 / 4 

Number of parallel wires (or squares) of primary nparp / secondary npars 1 / 1 1 / 1 
Number of turns (or squares) per layer of primary / secondary  15 / 90 12 / 75 

Diameter of primary dp / secondary winding ds 0.4 mm / 0.1 mm (0.5+0.2) mm / 0.143 mm 
Primary magnetizing inductance Lmp 40 μH 44 μH 

Height allocation for secondary winding γs 0.6 0.8 
Spacing (or insulation) between secondary layers dinsulation 66 μm 0.9 mm 

Transformer maximum temperature rise in a single bidirectional charge and 
discharge cycle 94 °C 30 °C 



core with a maximum temperature rise of 94 °C (in a single bidirectional charge and discharge cycle). In the optimization 

routine, for all small cores (EFD 12, EFD 15, E 16), a maximum flux density of 0.33 T is chosen, hence for E 16, Np becomes 

29. As shown in Fig. 8, the optimum secondary height allocation factor for E 16 core is 0.6, this is for accommodating the 29 

primary turns on the small core. The spacing between the secondary winding layers for SCD is 66 μm. 

2) Optimized core design (OCD) 

The core which has a lower volume and a better overall energy efficiency compared to other cores, is selected as an 

optimized core. In Fig. 9, most of the cores whose volume is above 2.85 cm3 have overall energy efficiency between 74 % and 

76 %. The EFD 25 core with volume 3.3 cm3 has lower discharge efficiency (hence lower overall efficiency), since its window 

height HW is less compared with the neighboring cores, such as EF 25 and RM 10 (see Fig. 9). For a better trade-off between the 

core volume and overall efficiency, the cores whose volume is between 2.85 and 4 cm3 could be more suitable for the high 

voltage driver (with specifications shown in Table I). The cores with volumes 4 cm3 (E 30) and 2.85 cm3 (PQ 20/20) have overall 

efficiencies of 75 % and 74 %, respectively. However, PQ 20/20 core is selected as an optimized core, as 40 % increase in the 

core volume provides only 1 % increase in the overall energy efficiency. In the optimization routine, a maximum flux density of 

0.26 T is chosen for all cores whose volumes are greater than equal to 1.46 cm3 (EFD 20). As shown in Fig. 8, for all cores 

except the smallest core, the optimum secondary winding height allocation factor varies between 0.7 and 0.8. For PQ 20/20 core, 

the secondary height allocation factor is 0.8. The spacing between the secondary winding layers for OCD is 0.9 mm. 

The energy loss distributions for PQ 20/20 core during charge and discharge processes are shown in Figs. 10(a) and 10(b), 

respectively. During charge process, the converter operates with boundary conduction mode (BCM) control; hence the 

capacitive switching loss due to the self-capacitance is very low compared with other losses. The significant losses during 

charge process are: switching loss of low voltage MOSFET Mp, switching loss/snubber loss due to the transformer leakage 

inductance and transformer winding loss. During discharge process, the converter operates with discontinuous conduction 
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Fig. 10. Energy loss distribution of the optimized core (PQ 20/20), a) during charge and b) during discharge process. 



mode (DCM) control; hence the capacitive switching loss due to the self-capacitance cannot be neglected. The significant 

losses during discharge process are: switching loss of high voltage MOSFET Ms, switching loss due to the transformer leakage 

inductance, and capacitive switching loss due to the transformer self-capacitance.  

B. Experimental Results 

The experimental prototype of the bidirectional flyback converter is shown in Fig. 11 a). The comparison of measured [19] 

and calculated charge and discharge energy efficiencies for the smallest and optimized cores is provided in Figs. 12(a) and 

12(b), respectively. In Figs. 12(a) and 12(b), the maximum difference between the calculated and measured energy efficiencies 

during charge and discharge modes is less than ±5%, except for the smallest core design at very high output voltage (>2.2 kV). 

The total loss due to the transformer parasitics for SCD is higher than that of OCD by 5 times, and the remaining losses in the 

converter, are the same for both designs.  

In the bidirectional flyback converter an input capacitance Cin of 1800 μF (100 V) is used. The primary Rpsense and 

secondary Rssense sense resistors used in the converter are 25 mΩ and 0.5 Ω, respectively. The Z-type winding scheme [25] is 

implemented for the secondary winding of the flyback transformer, to reduce the self-capacitance. To remove the interlayer 

insulation tape between primary and secondary windings, triple insulated wire (TEX-E) from Furukawa [46] is used for the 

primary winding, and it has an insulation thickness of 0.2 mm. As shown in Table VI, 0.7 mm overall diameter wire (0.5 mm 

TEX-E wire) is used in the primary winding of PQ 20/20 core, and 0.4 mm overall diameter normal single insulated wire is 

used in the primary winding of E 16 core, due to non-availability of 0.2 mm TEX-E wire during practical implementation.  
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Fig. 11. a) Experimental prototype of the bidirectional flyback converter with PQ 20/20 core; b) Optimized 

(PQ 20/20) and smallest (E 16) transformers. 



For PQ 20/20 core, no snubber is used on either low voltage or high voltage side. Since the leakage inductance of E 16 core 

is very high, RCD snubbers are used on both primary and secondary sides and the loss model is updated accordingly. The loss 

model automatically considers RCD snubbers, when the leakage inductance Llkp in the optimization is higher than 1.2 μH. The 

low voltage VsnC and high voltage VsnD RCD snubber clamp voltages are chosen as 2 out ,maxV
n

 and 2 innV , respectively, with a 

maximum output voltage Vout,max of 2.5 kV. The insulation between the secondary layers of transformer is provided by the 

kapton tape which has a single layer thickness of 66 μm. The calculated and measured transformer parasitics for both SCD and 

OCD are provided in Table VI. The comparison shows that the model used for calculating the parasitics, for multiple solutions 

in the optimization routine is accurate enough. 

VI. CONCLUSIONS  

This paper presents an efficiency optimization approach for a high voltage bidirectional flyback dc–dc converter. The energy 

efficiency is optimized using a proposed new automatic winding layout generator technique and a comprehensive loss model. 

The proposed optimization technique is experimentally validated on a 25 W (charging power) high voltage bidirectional flyback 

converter. The measured charge and discharge energy efficiencies of the converter, with PQ 20/20 core at an output voltage of 
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Fig. 12. Comparison of calculated and measured a) charge and b) discharge energy efficiencies for the optimized (PQ 20/20) and  

smallest (E 16) cores. 

TABLE VI.  COMPARISON OF CALCULATED AND MEASURED TRANSFORMER PARAMETERS FOR SMALLEST AND OPTIMIZED CORE 

DESIGNS 

Parameter of Transformer SCD OCD 
Calculation Measurement Calculation Measurement 

Leakage inductance referred to primary Llkp  3.22  μH 3.3 μH 818 nH 857 nH 

Self-capacitance of secondary (high voltage) winding Cs 18.1 pF 21.62 pF 4.5 pF 6.23 pF 
DC resistance of secondary (high voltage) winding Rs 46.54  Ω 44 Ω 15.3 Ω 18.2 Ω 

 



2.5 kV are 89 % and 77.1 %, respectively. For both optimized and smallest core designs, energy efficiency during discharge 

process is less compared to that during charge process, mostly due to the switching loss of output capacitance of high voltage 

MOSFET.  

The important conclusions of this paper are as follows: 

1. The proposed AWL technique is highly recommended for high input or high output voltage applications which need a 

transformer with many turns (primary or secondary). It automatically calculates and provides the necessary winding design 

data such as wire sizes, number of winding layers, number of turns per layer, and number of parallel wires. 

2. The AWL technique can be easily extended to interleaved and/or sectioned transformer structures.  

3. Transformer parasitics are calculated for each set of outputs from AWL technique, which are needed to estimate the energy 

efficiency. By iteratively changing the spacing between secondary winding layers, the loss due to self-capacitance, leakage 

inductance and dc resistance of transformer are balanced.  

4. Providing a very thick insulating tape between the secondary winding layers reduces the self-capacitance. The self-

capacitance can be reduced significantly by allocating more space (or height) for the secondary winding. 

5. Non-sectioned bobbins with larger window height are suitable for minimizing the self-capacitance, hence are recommended 

for high voltage capacitor charge and discharge application. 

6. The output of the proposed efficiency optimization (overall energy efficiency vs. core volume curve) gives the flexibility for 

the designer to choose the necessary core and winding configurations. 
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Abstract— This paper presents an overview of the widely used 
conventional linear actuator technologies, and already existing 
electro active polymer based linear and rotary actuators. It also 
provides conceptual, control and driver design considerations for 
a new dielectric electro active polymer (DEAP) based 
incremental actuator. The DEAP incremental actuator consists of 
three electrically-isolated and mechanically-connected capacitive 
actuators. To accomplish the incremental motion, each actuator 
needs to be independently charged and discharged by a high 
voltage bidirectional dc-dc converter. The topology used for the 
high voltage driver is a peak-current controlled bidirectional 
flyback converter. The high voltage drivers are experimentally 
tested with both film capacitive loads and DEAP incremental 
actuator. The proposed DEAP incremental actuator moves with a 
maximum velocity of 1.5 mm/s, at 2.78 Hz incremental actuation 
frequency, when all actuators are driven with 1.8 kV.  

Index Terms—linear actuators, switch-mode power supplies, dc-
dc power converters, actuators, energy efficiency, dielectric 
electro active polymer (DEAP) 

I. INTRODUCTION 
CTUATORS providing linear motion are used in a vast 
variety of applications ranging from large size 

machineries (e.g., cranes) to small scale micro-electro-
mechanical system (MEMS) devices used for micro 
positioning. Linear actuators are typically characterized by 
their maximum stroke length, force, speed, and precision (or 
resolution). The typical linear actuators include mechanical, 
electro-mechanical, hydraulic, pneumatic, and piezo, etc.  

Mechanical linear actuator as shown in Fig. 1 operates by 
converting the rotary motion into linear motion. The 
advantages of mechanical actuators are low price, precision 
positioning, and no need of a power source. The disadvantage 
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is that they have to be operated manually. An 
electromechanical linear actuator use DC motor and stepper 
motor to control as shown in Fig. 2, a linear-action shaft 
output. Rotary motion of the motor is converted to linear 
displacement. These actuators are heavier than their motor 
counterparts due to the addition of the actuator assembly. 
Piezoelectric actuators can achieve extremely fine positioning 
resolution, but have a very short range of motion. The piezo 
actuator as shown in Fig. 3 is expensive and fragile. 
Pneumatic linear actuators as shown in Fig. 4 operate with an 
external source of compressed air. They are efficient, but 

relatively complex to control via pressure valves and 
compressor manipulation. Hydraulic linear actuators are used 
in many industrial applications requiring higher levels of force 
than provided through equivalently sized electromechanical 
systems. Hydraulic linear actuator as shown in Fig. 5 requires 
an external source for fluid pressurization. Unlike pneumatic 
actuators, a leak from hydraulic equivalents can foul 
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Fig. 1. A mechanical linear actuator [1]. 
 

 
 

Fig. 2. An electro-mechanical linear actuator [2]. 
 



 

 

 

equipment and require additional clean up procedures 
depending on the type of fluid used. Control is complex, 
involving compressor control and hydraulic valves. 

Dielectric electro active polymer (DEAP) is an emerging 
smart material that has experienced substantial development 
and has gained increasing attention by the researchers from 
academia and industry [6]-[8]. The DEAP material is a very 
thin (35-55 μm) incompressible silicone elastomer film with a 
compliant electrode layer on both sides [9]-[12]. DEAP can be 
used in actuation, sensing and energy harvesting applications. 
The basic operation of the DEAP is the reduction in the 
polymer’s thickness and increase in its area, due to an applied 
electric field. The unique properties of DEAP are large strain 
(5-100%), light weight (7 times lighter than steel), high 
flexibility (100,000 times less stiff than steel), low noise 
operation, and low power consumption. DEAP, when used as 
actuators, have the potential to be an effective replacement for 
many conventional actuators viz. electro-mechanical, piezo, 
pneumatic, hydraulic, etc. The linear DEAP actuator shown in 

Fig. 6 is ideally equivalent to a pure capacitive load [12], [13]. 

Several researchers have investigated and implemented 
electro active polymer based linear and rotary type actuators. 
Numerous applications of dielectric elastomers including 
inchworm robot and rotary motors have been described in 
[14]. The robotic inchworm as shown in Fig. 7 uses 
electrostatic clamps which enable it to travel over both vertical 
and horizontal surfaces, for tasks such as inspection in narrow 
pipes [14]. The walking robot using a multifunctional electro 
elastomer (MER) spring roll as each of the robot’s six legs is 
shown in Fig. 8 [15]. Each spring roll leg was a linear 
actuator, with 3-6 mm stroke at 1-10 Hz frequency. The speed 
was as high as 2.7 in/s. A rotary motor made with a pair of 
bow tie elastomer actuators as shown in Fig. 9, with an output 
power of 4 W at 100 RPM has been demonstrated in [14]. The 
emerging DE technology has been thoroughly reviewed 
presents exciting possibilities across a wide range of 
applications including soft robotics [16]. An earthworm robot 

 
 

Fig. 3. A piezo linear actuator [3]. 
 

 
 

Fig. 4. A piezo linear actuator [4]. 
 

 
 

Fig. 5. A hydraulic linear actuator [5]. 
 

 

 

Fig. 6. A prototype of linear DEAP actuator. 

 

 

Fig. 8. A walking robot with MER spring rolls as legs [15]. 

 

Fig. 7. An inchworm robot with a dielectric elastomer body [14]. 



 

 

 

as shown in Fig. 10 has been made using a novel soft actuator 
based on a dielectric elastomer. It has been demonstrated that 
the actuator moved with 1 mm/s at 5 Hz [17]. A simple rotary 
motor based on dielectric elastomers as shown in Fig. 11, has 
been proposed in [18]. A new way to achieve the rotary 
motion using the DEAP actuators has been reported in [19]. 
Furthermore, several researchers have investigated piezo, 
pneumatic and hydraulic based actuators. The gain scheduling 
control of a walking piezo actuator is proposed in [20]. 
Bipolar piezo electric actuators are proposed in [21]. High-
accuracy tracking control of hydraulic actuators is discussed in 
[22].  

The DEAP incremental actuator concept, recently proposed 
in [23], consists of two grippers at both ends (to enable 
gripping operation) and an extender (to move the grippers), as 
shown in Fig. 12. These grippers connect with the extender 
mechanically. The grippers A1 and A3 and the extender A2 are 
similar to the DEAP actuator shown in Fig. 6. For moving the 
DEAP incremental actuator, the three DEAP actuators (which 
behave as electrically isolated capacitive loads) need to be 
controlled. Details of the DEAP incremental actuator 
operation can be found in [23]. The DEAP incremental 
actuator technology has the potential to be used in various 

industries, e.g., automotive, space and medicine. Table I, 
provides a short comparison of the DEAP and piezo 
incremental actuator technologies. To summarize, the DEAP 
incremental actuator technology has a coarser resolution and a 
lower force density, but has the potential for higher velocity, 
higher structural flexibility and robustness compared to piezo 
technology. The DEAP technology is still a new technology 
and future performance improvements are expected. 

Driving the DEAP incremental actuator has three main 
challenges from a power electronics standpoint. Firstly, it 

requires high voltages (2-2.5 kV), to generate sufficient force 
and stroke from each DEAP actuator. Suitable energy sources 
for this application are lithium batteries with a voltage range: 
9-24 V DC. This necessitates the need of high voltage step-up 
circuits as a driving mechanism for the DEAP actuator. 
Secondly, DEAP actuators convert only a small fraction of the 
input electrical energy into mechanical work, while they store 
the remainder in the capacitive structure of the actuator, and 
must be recovered to maximize the system efficiency. This 
necessitates the need of bidirectional converters [24]-[26]. 
Finally, to move the incremental actuator with the required 
speed and direction, the three DEAP actuators needs to be 
driven by a specific sequence of high voltage signals. 

The flyback converter is suitable for high voltage and low 
power applications due to its simple structure and low 
component count [27]. Control algorithms for optimal-flyback 
charging of a capacitive load have been proposed in [28]. High 

 

Fig. 10. Earthworm robot with the actuator module [17], [16]. 

 

 

 
 
Fig. 12. Conceptual diagram of the proposed DEAP incremental actuator. 

 

 

Fig. 11. A simple rotary motor based on dielectric elastomers [18]. 

 

 

Fig. 9. A simple rotary motor based on dielectric elastomers [14]. 

 

TABLE I 
COMPARISON BETWEEN DEAP AND PIEZO INCREMENTAL ACTUATOR 

TECHNOLOGIES  
Parameter Piezo Technology DEAP Technology 

Strain 
(Resolution) 

Small               
(~ 0.02-0.1 %) 

Large                
(~ 1-100 %) 

Force density High 
(~ 20 N/mm2 ) 

Medium 
(~ 0.5 N/mm2 ) 

Structural flexibility 
Low 

(Young’s Modulus 
Y= ~ 40-60 GPa) 

High 
(Young’s Modulus 
Y= ~ 1.1-1.8 MPa) 

Incremental 
actuation frequency ~ 100-5000 Hz ~ 1-15 Hz 

Linear velocity per 
unit length = 

Strain×incremental 
actuation frequency 

Medium 
(~ 20-500 Hz) 

High 
(~ 1-1500 Hz) 
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voltage switch-mode power supplies for charging the 
capacitive loads have been implemented in [29], [30]. The 
bidirectional flyback converters are proposed in [31]-[33] to 
transfer the power in both directions. Prior work on the high 
voltage drivers for the DEAP actuators demonstrated a low 
voltage piezoelectric transformer based DEAP solution, and it 
was incorporated into a coreless DEAP actuator [34], and a 
bidirectional flyback converter topology to drive the 
PolyPower Push Inlastor DEAP actuator [35]. In [36] an 
efficiency optimization technique is proposed for a 
bidirectional flyback converter in a high voltage capacitor 
charging application. Several transformer winding 
architectures have been investigated in [37] for the high 
voltage capacitor charge and discharge application. 
Experimental study of DEAP actuator energy conversion 
efficiency is performed in [38]. Intelligent control of electro 
active polymer actuators based on fuzzy and neuro fuzzy 
methodologies is proposed in [39]. Digital control of the 
bidirectional flyback converter is proposed in [40] for driving 
capacitive actuators. The objectives of this paper are, to 
provide the conceptual design of the DEAP actuator, and the 
necessary control and driving circuits for the newly proposed 
DEAP incremental actuator.  

The paper is organized as follows: Section III provides 
different concepts for the DEAP incremental actuators 
proposed by Danfoss Poly Power A/S. Section IV discuss the 
conceptual design of an axial DEAP actuator. Section V 
describes the basic idea and operational diagrams of the DEAP 
incremental actuator concept. Section VI presents high voltage 
driving circuits for the incremental actuator. Section VII 
discusses the experimental results, and the implementation 
issues. Section VIII provides the system integration, followed 
by the conclusion in Section IX.  

II. DIFFERENT CONCEPTS OF DEAP INCREMENTAL 
ACTUATORS  

Two different concepts (1 and 2) of DEAP incremental 
actuators are provided in this section. Each concept has its 
unique characteristics which can demonstrate various unique 
properties of DEAP as described in earlier sections. 

A. Concept 1 
Figures 13 (a) shows the Concept 1 of DEAP incremental 

actuator. It is designed to operate outside a cylindrical bar and 
consists of three sub components, namely one extender and 
two grippers at either end. The corrugation profile of the 
extender and the grippers are 90° shifted. When in operation, 
one gripper holds the bar while the other gripper is in the 
released position. The extender either pushes or pulls the 
released gripper.  

The grippers are rolled on a core with radial tension. Rigid 
mechanical connections of type M2 are subsequently applied. 
The extender sub component can be realized by simply using 
platforms Axial 1 component. The grippers and extender are 
joined by gluing or screwing their mechanical connections 
together (green plates in Fig. 13 (a)). Mechanical constrainers 
can be applied to the grippers in order to avoid the axial 

extension of the grippers when in operation. Such constrainers 
enable the gripper to exhibit only radial movements. Soft 
encapsulation for protection and/or aesthetics can be applied 
as shown in Fig. 13 (b). 

B. Concept 2 
Concept 2 is designed to operate inside a cylindrical tube as 

opposed to Concept 1. Concept 2 consists of one extender and 
two grippers on either end. Both the grippers and the extender 
of Concept 2 are platforms Axial 1 standard components. 
Additional gripping mechanisms are applied to the grippers 
(red structures in Fig. 14). The gripping mechanism extends or 
contracts radially when the grippers are, respectively, 
contracting or extending axially as illustrated by the arrows in 
Fig. 14. The three Axial 1 actuators are joined together, at 
their mechanical connections, by gluing or screws. 

Fast and precise adjustment, low noise operation, and high 
energy efficiency are the key advantages of the proposed 
DEAP incremental actuators compared to other linear 
incremental actuators or other sliding dielectric elastomer 
actuators. 

III. CONCEPTUAL DESIGN OF AN AXIAL DEAP ACTUATOR 
The conceptual design of an axial DEAP actuator is a 

tubular structure being formed by rolling a DEAP sheet as 
shown in Fig. 15. The generic dimension of such structure is 
its height h0, the inner diameter Ri, and the wall thickness (Ro- 
Ri). All these dimensions have to be calculated based on the 
material’s electric field strength E, blocking force Fblock, and 
the required stroke Δh.  

 
(a) 

 
(b) 

Fig. 13.  Concept 1 of DEAP incremental actuator. (a) Cross section view of 
the actuator, (b) incremental actuator with protective and/or aesthetic 

encapsulation. 
 

 
Fig. 14.  Concept 2 of DEAP incremental actuator: Cross section view of the 

actuator with operation arrows. 
 



 

 

 

A. Functional characteristics during the static operation 
The equation governing the electrostatic, elastic and 

blocking forces in a DEAP actuator system during static 
operation is given by 

electrostatic elastic loadF F F                             (1) 

Assuming low strain (S<10 %) operation, (1) can be simplified 
as [6]                             

2
0

2
0

r act DEAP act
load

A V YA h F
hd

                      (2) 

The cross sectional area of the DEAP actuator is given by 

0
2

0

block ,max h
act

r

F
A

E
                                 (3) 

For an electric field strength of E=40 V/μm, with a 
permittivity of vacuum ε0= 128.854 10  F/m, relative 
permittivity of the dielectric material εr=3.1, and maximum 
blocking force of Fblock,max=40 N, the calculated area of cross 
section of the actuator from (3) is Aact=910 mm2.  

If Ro and Ri are the outer and inner diameters of the actuator 
then, 

2 2
act o iA R R                                  (4) 

By choosing one of the inner or outer diameters of the 
actuator, the other diameter can be calculated from (4). The 
height of the actuator h0 is calculated from (2), based on the 
following specifications: blocking force of Fblock=10 N, stroke 
of Δh=1 mm, applied voltage to the actuator VDEAP=2400 V, 
thickness of the polymer film d=40 μm. The calculated height 
is h0=25 mm.  

The maximum stroke that can be achieved for a given DEAP 
actuator height h0 is given by 

2
0 0

0
1 3 mm

block

r
max F

E h
h .

Y
                   (5) 

where Y is the modulus of elasticity, its value is 1.8 MPa, at 
the limited strain range. The strain S of the DEAP actuator is 
given by 

0

100 4 %hS
h

                        (6) 

The length of DEAP sheet to be rolled Lact is given by 

10.12 mact
act

A
L

d
                              (7) 

The operating region of a DEAP actuator can be 
represented by the relationship between its force, stroke and 
applied voltage. The force-stroke, stroke-voltage and force-
voltage characteristics of a DEAP actuator are shown in Figs. 
16, 17 and 18, respectively. In Fig. 16, for an applied voltage 
of VDEAP=2.4 kV, the blocking force becomes Fblock=10 N at a 
stroke Δh of 1 mm. As shown in Fig. 4, to achieve a certain 
stroke, the blocking force decreases with the applied voltage. 
As shown in Fig. 17, at a given applied voltage, the stroke 
decreases as the load on the DEAP actuator increases. 
Similarly, as shown in Fig. 18, at a given applied voltage, the 
blocking force decreases as the stroke increases. 
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 Fig. 17.  Applied voltage vs. stroke curves at different load forces. 

 
 Fig. 18.  Applied voltage vs. blocking force curves at different strokes. 
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Fig. 15.  Conceptual drawing of an axial DEAP actuator. 
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Fig. 16. Stroke vs. blocking force curve at different applied voltages. 
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B. Discussion 
The calculated height h0 (25 mm) of the DEAP actuator 

described in the above section differs from the real value (110 
mm) due to the following reasons: 

1. Real DEAP actuators will have 20-30 mm extra height 
because of the stabilizing passive areas at each end.  

2. Real DEAP actuators are not driven with electric field 
strength of 60 V/μm, but much lower to avoid breakdown 
which would need larger height to achieve the same 
stroke.  

3. Real DEAP actuators don’t have 40 μm uniform film 
thicknesses. There is always ±5 μm tolerance on the film 
thickness (35-45 μm), but mechanically the actuator will 
have a higher thickness which again reduces the stroke. 
Hence, a larger height is needed for the DEAP actuator to 
achieve a certain stroke. 

4. Real DEAP actuators are made of corrugated films which 
reduce the stroke, hence require longer actuator height for 
a certain stroke.  

5. Real DEAP actuators become stiffer by 2 to 4 times when 
rolled i.e. the stiffness or Young’s modulus Y of the 
DEAP actuator is 2 to 4 times higher than the stiffness of 
the DEAP film. 

IV. CONTROL OF INCREMENTAL MOTOR 
The DEAP incremental actuator consists of three axial 

DEAP actuators (one extender and two grippers). The 
incremental actuation sequence and the driving voltage 
waveforms for the grippers and the extender are shown in 
Figs. 19 and 20, respectively. Each gripper is connected to 
mechanical supports on either side. It expands and clamps to 
the guiding bar (e.g., a rod) surface when charged (with high 
voltage), and unclamps from it, when discharged. The 
extender expands axially along the guiding bar. During the 
operation, one gripper holds the guiding bar while the other 
gripper is in a released position. The extender either pushes or 
pulls the released gripper. The incremental actuator performs 6 
different steps, to achieve a single incremental actuation stroke 
Δx as shown in Fig. 19.  

A. Moving sequence of the linear incremental motion 
towards the positive x-axis direction  

1.  Start: All actuators are in the discharged state. 

2. Step 0 (S0): A1 is charged and clamps to the guiding bar. 
A2 and A3 are in the discharged state.  

3. Step 1 (S1): A1 remains in the charged state. A2 is 
charged and pushes the mechanical structure towards 
right, and A3 remains in the discharged state. 

4. Step 2 (S2): A1 and A2 still remain in the charged state. 
A3 is charged. 

5. Step 3 (S3): A1 is discharged and is in the released 
position. A2 and A3 still remain in the charged state. 

6. Step 4 (S4): A1 remains in the discharged state. A2 is 
discharged, and A3 remains in the charged state. 

7. Step 5 (S5): A1 is charged. A2 remains in the discharged 
state, and A3 remains in the charged state.  

8. Step 6 (S6): A1 remains in the charged state. A2 remains 
in the discharged state, and A3 is discharged. 

9. End: All actuators are discharged at the end. 

The Step 0 is only used for charging the actuator A1. The 
Steps 1-6 (S1-S6) repeat for achieving continuous incremental 
actuation cycles. The End step is used to discharge all 
actuators. The moving sequence for the reverse linear 
incremental motion towards the negative x-axis direction can 
be easily drawn similar to Fig. 19. For moving towards the 
negative x-axis (reverse) direction, the driving voltages of 
actuators A1 and A3 need to be reversed, without changing the 

 
Fig. 19.  Moving sequence of the DEAP incremental actuator for incremental 

motion towards the positive x-axis direction. 
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driving voltage of actuator A2. The driving voltages for 
moving with the certain incremental frequency are shown in 
Fig. 20. To move the actuator with maximum  incremental 
frequency, zero delay (tD=0) is needs to be provided between 
the charge and discharge cycles of actuators A1, A2 and A3.  

B. Incremental actuation frequency 
Assuming the same charge Tch and discharge Tdch times for 

all DEAP actuators, the maximum incremental actuation 
frequency increment_maxf  or minimum incremental period 

increment _ minT  is given by 

1 1
6

increment _ max
ch dch increment _ min

f
T T T

                   (8) 

The incremental actuator speed can be changed, by proving a 
delay tD between the charge and discharge cycles of actuators 
A1, A2 and A3. The expression for the variable incremental 
actuation frequency incrementf  or variable incremental period 

incrementT  is given by 

1 1
6 6increment

ch dch D increment

f
T T t T

                   (9) 

When the DEAP incremental actuator is loaded during the 
operation, the delay between the steps S1 and S2 can be 
skipped. This can prevent the pulling of the incremental 
actuator by the load when actuator A2 is charged.  

V. POWER ELECTRONICS: HV DRIVERS 
. The complete circuit schematic of the DEAP incremental 

actuator driven by multiple bidirectional high voltage dc-dc 

converters is shown in Fig. 21. The topology is a peak current 
controlled bidirectional flyback converter. Three bidirectional 
flyback converters are powered by the same source. Each 
converter independently controls the charge and discharge 
operations of the three axial DEAP actuators (two grippers and 
an extender) in the incremental actuator.  

 

Three high voltage bidirectional flyback converters are 
experimentally tested with both film capacitor loads and the 
DEAP incremental actuator. The picture of the experimental 
prototype with film capacitor loads is shown in Fig. 22. The 
setup of the DEAP incremental actuator is shown in Fig. 23. 
The converter specifications are provided in Table II. During 
the experimental work 3 different implementations of the 
flyback transformer are investigated. The parameters of the 
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Fig. 20.  Enable signals and driving voltages of all DEAP actuators, to achieve 
the incremental motion with variable speed, towards the positive x-axis 

direction. 
 

TABLE II 
CONVERTER DESIGN SPECIFICATIONS 

Parameter Value 
Input voltage 24 V 

Output voltage 0-2500 V 
Capacitance of each DEAP acator in 
the DEAP incremental actuator setup 400 nF 

Capacitance of film capacitor load 200 nF 

Incremental actuation frequency ~ 1-5 Hz 

Primary peak current during 
charging/discharging process 4.2 A / 5.3 A 
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Fig. 21.  Circuit schematic of the DEAP incremental actuator driven by 

multiple high voltage bidirectional dc-dc converters. 



 

 

 

flyback transformer 1 are given in Tables III. The capacitance 
of each film capacitor load is 200 nF. The capacitance of each 
axial DEAP actuator in the setup shown in Fig. 23 is 400 nF.  

The experimental test results with the film capacitor loads 
are provided in Figs. 24-20. During the charging process the 
converter operates in boundary conduction mode (BCM), and 
during discharge process it operates in discontinuous 
conduction mode (DCM). In Fig. 24, the output voltages of all 
converters are shown when the film capacitor loads are driven 
with a single incremental cycle (similar to Fig. 20, with tD=0) 
with a maximum driving voltage of 2.5 kV. The maximum 
incremental actuation frequency is Δfincrement_max=4.34 Hz. 
Since the real DEAP actuator has a capacitance of 400 nF, the 
maximum incremental frequency is less than 4.34 Hz, and it is 

explained in the following sections. 

In Fig. 25, the output voltages of all converters are shown 
when the film capacitor loads are driven with multiple 
incremental actuation cycles with a maximum driving voltage 
of 2.5 kV. In Fig. 25, the film capacitor loads are driven with 
multiple incremental actuation cycles with a maximum driving 
voltage of 2.5 kV, and with a delay time tD=100 ms. The 
incremental actuation frequency in this case is Δfincrement=1.4 
Hz. 

The energy efficiency [35] is measured for all converters 
with film capacitors as loads. The charging and discharging 
energy efficiency measurement results with film capacitor 
loads are provided in Figs. 27 and 28, respectively. The 
maximum energy efficiency of the converters during charging 
operation (transferring the input energy to the actuator) was 
87%, and during discharging operation (transferring the 

 
Fig. 23.  Setup of the DEAP incremental actuator driven by three high 

voltage drivers. 

TABLE III 

FLYBACK  TRANSFORMER 1 PARAMETERS 
Parameter Value 

Flyback transformer core type / Material EF20 / N87 
Primary / Secondary magnetizing 

inductance 29.5 μH / 16 mH 

Number of primary turns / secondary turns 16 / 375 
Leakage inductance of transformer 

primary / secondary  1.11 μH / 633 μH 

Secondary winding self / Interwinding 
capacitance  17 pF / 41 pF 

DC resistance of primary / secondary 
winding 62 mΩ / 28.5 Ω 

Number of primary / secondary layers 1 / 5 

Diameter of primary / secondary winding 0.5 mm / 0.1 mm 

 
Fig. 26.  Experimental results for demonstrating multiple incremental 

actuation cycles,when the 3 dc-dc converters are driving the film capacitor 
loads with a delay time tD=100 ms; CH1: 1AV ; CH2: 2AV ; CH3: 3AV ; CH4: 

1chV ; Δfincrement = 1.4 Hz. 

 
Fig. 22.  Experimental setup picture with film capacitive loads. 

 
Fig. 24.  Experimental results for demonstrating a single incremental 
actuation cycle, when the 3 HV dc-dc converters are driving the film 

capacitor loads; CH1: 1AV ; CH2: 2AV ; CH3: 3AV ; CH4: 1chV ; Δfincrement_max = 
4.34 Hz. 

 
Fig. 25.  Experimental results for demonstrating multiple incremental 

actuation cycles,when the 3 dc-dc converters are driving the film capacitor 
loads; CH1: 1AV ; CH2: 2AV ; CH3: 3AV ; CH4: 1chV ; Δfincrement_max = 4.34 Hz. 



 

 

 

actuator energy back to the source) it was 79%. As shown in 
Figs. 21 and 22, the energy efficiency of all converters is not 
identical, because 3 different transformer designs are utilized. 
For any dc-dc converter, the discharge energy efficiency is 
less than the charge energy efficiency, due to very high 
conduction losses, switching loss due to leakage inductance 
and capacitive switching losses of the HV MOSFET. 

Practical experience reveals that careful design of the 
flyback transformer with low leakage inductance and low self-
capacitance is required for achieving high energy efficiency in 
high voltage bidirectional operation.  The HV MOSFET used 
for this research is IXTV03N400S (4 kV, 300 mA, 290 Ω).  
The available high voltage MOSFETs for this application, in 
the current market is IXTA02N450HV (4.5 kV, 200 mA, 750 
Ω). Improper flyback transformer designs may lead to failure 
of the HV MOSFET during the discharging operation.  

VI. SYSTEM INTEGRATION 

A. Incremental motion with different speeds  

The integrated system shown in Fig. 23 was tested for its 
variable speed and repeatability. In Fig. 23, the height and 
outer diameter of each DEAP actuator are 110 mm and 33 
mm, respectively. 100 increments are generated using the 
digital controller and the total displacement and travel time is 
recorded. The applied voltage level is fixed to a maximum 1.8 
kV to avoid any potential damage to the transducers. Table IV 
shows the acquired data of the experiments. It can be seen that 
the system has repeatability within 5% (of stroke) for different 
speed levels. Moreover, the speed of the system could have 
been doubled if the maximum operating voltage (2.4 kV) is 

applied to all actuators, i.e. a maximum speed of 3 mm/s could 
be achieved.  

B. Bidirectional motion:  

The above test is repeated with a maximum voltage of 1700 
V for bidirectional motion at three different speed settings 
(delay times tD) in the controller. Table V shows the results 
which indicate a larger total displacement in the forward 
motion compared to the reverse motion.  

C. Discussion 
The DEAP incremental actuator system indicated a non-

repeatable motion when operated bidirectional resulting in a 
drift from original position. This drift increased with the 
number of bidirectional iterations resulting in an even larger 
drift from original position. Such drift might be primarily 
caused by non-identical grippers differing in their gripping 
force. As the extending transducer is activated, it excites both 
grippers with the same force. The activated gripper should 
have enough gripping force to not slip backward due to 
transient forces generated by the extender. If the two grippers 
have different gripping forces, the one with smaller force will 
exhibit larger backward slipping resulting cumulatively in a 
drift of the whole system from the original position. 

 
Fig. 27.  Charging energy efficiency measurement results of three high 

voltage converters. 

 
Fig. 28.  Discharging energy efficiency measurement results of three 

high voltage converters. 

TABLE IV 
EXPERIMENTAL DATA OF DEAP INCREMENTAL ACTUATOR MOVING 
WITH DIFFERENT SPEEDS TO ACHIEVE 100 INCREMENTS/STEPS 

Total 
stroke* 
(mm) 

Actuator 
total 
travel 

time (s) 

Delay 
time tD 
(ms) 

Average 
Speed 
(mm/s) 

Increment 
size/ 

stroke per 
step (mm) 

Incremental 
actuation 
frequency 

Δfincrement (Hz) 

39 50 50 0.78 0.39 1.53 
39 45 40 0.86 0.39 1.68 
39 40 30 0.97 0.39 1.87 
38 35 20 1.07 0.38 2.11 
40 30 10 1.33 0.40 2.41 
40 28 5 1.43 0.40 2.60 
39 25 2 1.56 0.39 2.73 
39 26 1 1.50 0.39 2.78 

*All 3 DEAP actuators are driven with a maximum voltage of 1800 V. 
Charing time Tch=23 ms, discharging time Tdch=36 ms. 

TABLE V 
EXPERIMENTAL DATA FROM BIDIRECTIONAL DEAP INCREMENTAL 

ACTUATOR TESTS FOR 100 INCREMENTS 

Direction 
of 

movement 

Total 
stroke* 
(mm) 

Incremental 
actuator 

total travel 
time (s) 

Delay 
time tD 
(ms) 

Average 
Speed 
(mm/s) 

Incremental 
actuation 
frequency 
Δfincrement 

(Hz) 
Forward 40 71 100 0.56 1.08 
Forward 44 35 10 1.26 2.60 
Forward 43.7 32 1 1.36 3.03 
Reverse 37 71 100 0.52 1.08 
Reverse 41 41 10 1.00 2.60 
Reverse 35 37 1 0.94 3.03 
*All 3 DEAP actuators are driven with a maximum voltage of 1700 V. 
Charing time Tch=21 ms, discharging time Tdch=33 ms. 
Forward: positive x-axis direction. 
Reverse: negative x-axis direction. 
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D. Future work 
Subsequent iteration of the DEAP incremental actuator will 

consider the improvement of both the mechanical and 
electronics concepts. Specific attention will be given to the 
design of the grippers to, i) achieve a more identical 
performance, and ii) have enough grip force to overcome the 
inertial effects and as such increased speed and repeatability. 
The focus will be given to develop a more compact and 
autonomous system where the electronics are carried by the 
actuator. The weight and form factor of DEAP are to be 
exploited and demonstrated. This is potentially achieved by 
reducing the actuator size, redesigning the auxiliary 
mechanics, and integrating the electronics on a single PCB 
print. Moreover, the form factor can be demonstrated by 
developing a concept which can travel on curved and inclined 
paths which is challenging for other technologies to achieve. 

VII. CONCLUSIONS 
A new DEAP incremental actuator concept has been 

designed, built and tested. It is demonstrated that the DEAP is 
feasible for providing incremental motion with variable speed 
and bidirectional motion. Control and high voltage electronics 
also demonstrated good performance in providing the 
appropriate stimuli to the transducers with reasonable 
efficiency and compactness. The conceptual design 
considerations and control of the DEAP incremental actuator 
are discussed in detail. Experimental test results with the three 
high voltage bidirectional dc-dc converter are presented. The 
maximum charging energy efficiency of converter 2, for a 
non-optimized flyback transformer was 87 %.  

The proposed incremental actuator moves with a 
maximum velocity of 1.5 mm/s, at 2.78 Hz incremental 
actuation frequency, when all actuators are driven with 1.8 
kV. It is possible to achieve a speed of 3 mm/s, when the 
actuators are driven by 2.4 kV. The final conclusion is that the 
proposed new DEAP incremental actuator will have promising 
and demanding applications in the future. 
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Abstract—This paper evaluates two different implementations
of a bidirectional flyback converter for driving a capacitive
electro active actuator, which must be charged and discharged
from 0 V to 2.5 kV DC and vice versa, supplied from a 24
V battery. In one implementation, a high voltage MOSFET (4
kV) in series with a high voltage blocking diode is added, in
parallel with a high voltage freewheeling diode of a conventional
flyback topology, to enable bidirectional operation. Experimental
result from a digitally controlled bidirectional flyback converter
shows that the discharge energy efficiency is limited by the
parasitics of the high voltage active components, which also
prevent full utilization of valley switching during discharge
process. A second implementation is therefore proposed, where
the secondary of flyback transformer winding is split into multiple
windings which are connected in series by lower voltage rating
MOSFETs driven by a gate drive transformer. Simulation results
to compare the operation of conventional and proposed converters
are provided. The advantages of proposed implementation are
improved energy efficiency and lower cost. Experimental results
with two series connected secondary windings are provided to
validate the proposed implementation.

NOMENCLATURE

Cin/Cload Input capacitance / Load capacitance.
Cout1 Balancing capacitor across a series combina-

tion of one of the splitted secondary winding
and a secondary MOSFET.

Cossp Output capacitance of the low voltage MOS-
FET Mp.

Cosss Output capacitance of the high voltage MOS-
FET Ms.

Cosss1 Output capacitance of one of the several series
connected MOSFETs (Ms1) on the secondary
high voltage side.

Cj Junction capacitance of the high voltage
diodes D2 or Db.

Cs Self capacitance of secondary high voltage
winding of the flyback transformer.

Cs1 Self capacitance of one of the secondary high
voltage splitted windings of the flyback trans-
former.

D2 High voltage (5 kV) freewheeling diode which
conducts while charging the capacitive load.

Db High voltage (5 kV) blocking diode which
conducts while discharging the capacitive

load.
Dbp/Dbs Body diode of the MOSFET Mp/Ms.
Dbs1 Body diode of one of the several series con-

nected MOSFETs (Ms1) on the secondary
high voltage side.

iin/ip/is Input / Primary / Secondary current.
iload Current through the load.
Lmp/Lms Primary / Secondary magnetizing inductance

of a non-splitted flyback transformer.
Lms1 Secondary magnetizing inductance of one of

the splitted winding of the flyback trans-
former.

Llkp/Llks Leakage inductance referred to primary / sec-
ondary of a non-splitted flyback transformer.

Llks1 Leakage inductance referred to secondary of
one of the splitted winding of the flyback
transformer.

Mp/Ms Low voltage / High voltage (4 kV) MOSFET.
Ms1 One of the several series connected MOSFETs

on the secondary high voltage side.
n Turns ratio from secondary to primary of the

non-splitted flyback transformer.
n1 Turns ratio from one of the splitted secondary

to primary of the splitted flyback transformer.
Np/Ns Number of primary / secondary turns of the

non-splitted flyback transformer.
Ns1 Number of secondary turns on one of the split-

ted secondary winding of the flyback trans-
former.

Rp/Rs DC resistance of low voltage / high voltage
winding of the transformer.

Rs1 DC resistance of one of the splitted secondary
high voltage winding of the flyback trans-
former.

VDb/VD2 Voltage across the high voltage (5 kV) block-
ing / freewheeling diode.

VMp/VMs Voltage across the low voltage / high voltage
(4 kV) MOSFET.

VMs1 Voltage across one of the several series con-
nected MOSFETs (Ms1) on the secondary
high voltage side.

Vin/Vout Input voltage / Output or load voltage.



I. INTRODUCTION

Dielectric electro active polymer (DEAP) is an emerging
smart material that has experienced substantial improvement
and has gained increasing attention over the last decade from
the researchers [1]–[3]. The DEAP material is a very thin (40
μm) incompressible silicone elastomer film with a compliant
electrode layer on both sides [5], [7]. DEAP can be considered
as a pure capacitive load from an electrical perspective [6].
The basic behaviour of the DEAP actuator is the reduction
in the polymer thickness and the increment in its area, due
to an applied electric field (40-60 V/μm) [7], [8]. The axial
DEAP actuator as shown in Fig. 1 is ideally equivalent to
a capacitive load. When a DEAP actuator is driven with high
voltage (2-2.5 kV), it converts a portion of the electrical energy
into mechanical displacement, which is of the order of mm (1-
1.5 mm) [4], [5]. Three of such axial DEAP actuators are used
to create a DEAP incremental actuator [9] as shown in Fig.
2. DEAP, when used as linear incremental actuators, has the
potential to be an effective replacement for many conventional
(e.g., piezo, pneumatic and hydraulic) linear actuators due to
its unique properties such as large strain, light weight, and
high flexibility.

33 mm

110 mm

Fig. 1. A linear DEAP actuator manufactured by Danfoss PolyPower A/S.

The DEAP actuator applications [10], [11] require high
voltage (HV) bidirectional power electronic converters, to
charge and discharge the actuator, and to transfer part of the
energy stored in it to the source. Switch-mode power supplies
for charging the capacitive loads have been implemented in
[12]–[15]. The flyback converter is suitable for low power
(< 150 W) and high voltage (2.5 kV) applications, due to
its simple structure and low component count [16]. In [17],
[30], [32]–[36], [44], [45] bidirectional flyback converters with
various power stages and control techniques, for charging
and discharging DEAP actuators have been proposed and
implemented. The proposed converter with multiple series con-

Fig. 2. A DEAP incremental actuator.

nected secondary windings is different from aforementioned
converters, since it is aimed for bidirectional operation, by
replacing the diode with a MOSFET on the secondary HV
side. This paper is organized as follows: Section II describes
the conventional and proposed HV drivers. Section III provides
the simulation results. Section IV discusses the gate driver for
the secondary HV side. Section V provides the experimental
results and efficiency measurements. Section VI concludes the
paper followed by the futur work in Section VII.

II. HIGH VOLTAGE DRIVERS: CONVENTIONAL AND
PROPOSED

High efficient flyback based converters have been widely
investigated and implemented by several researchers [18]–[24].
Several bidirectional flyback converter topolofies have been
proposed and implemented in [25]–[29]. The conventional high
voltage bidirectional flyback converter [30], [31], for driving
(charging and discharging) a DEAP actuator with a certain
actuation frequency, is shown in Fig. 3.
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Fig. 3. Conventional HV bidirectional flyback converter.

An efficiency optimization technique has been proposed in
[32], [33] to improve the energy efficiency of the converter.
Investigation of different transformer winding architectures
(TWAs) for the same topology has been proposed in [34]. A
new digital control technique to achieve the valley switching
during both charge and discharge processes in a bidirectional
flyback converter is proposed in [35], for better energy ef-
ficiency and improved charge and discharge speed. Primary
parallel, secondary series flyback converter with multiple trans-
formers is proposed in [36], to reduce the equivalent self-
capacitance on the secondary HV side. The HV converter used
in [9], [30], [32], [35], requires a HV (4 or 4.5 kV) MOSFET
Ms and two HV (5 kV) diodes D2 and Db as shown in Fig.
3.

The 4 kV, 300 mA high voltage IXYS MOSFET [37] has
the following features:

• high on-resistance of 290 Ω.

• high output capacitance of 19 pF.

• high reverse recovery time of 2.8 μs.

The 5 kV, 150 mA VMI high voltage diode [38] has the
following features:



• on-state voltage drop of 7 V.

• junction capacitance of 3 pF.

• reverse recovery time of 70 ns.

Therefore, using a HV MOSFET Ms and two HV diodes
D2 and Db on the secondary side of the HV bidirectional DC-
DC converter, make it very expensive and inefficient.

To reduce the voltage rating of the high voltage MOSFETs,
series input and parallel output DC-DC converters have been
proposed and implemented in [39]–[43]. The proposed HV
bidirectional flyback converter is shown in Fig. 4. Using this
topology, it is possible to series connect several lower voltage
(< 4 kV) rated MOSFETs each having a better body diode
(with less reverse recovery time).
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Fig. 4. Proposed HV bidirectional flyback converter with 5 series connected
secondary transformer windings and MOSFETs on the secondary HV side.

The advantages of the proposed topology are:

• reduction in the voltage rating and price of the HV
MOSFET.

• elimination of blocking and freewheeling HV diodes.

• possibility to achieve perfect valley switching of HV
MOSFET, unlike the semi-valley switching [35] (due
to series connection of HV diode Db and HV MOS-
FET Ms during the discharge process).

• improved overall (charge and/or discharge) energy
efficiency.

However, the difficulties associated with the proposed
converter are:

• the need of high side gate drivers for driving some of
the secondary MOSFETs.

• synchronous switching of secondary MOSFETs.

• voltage sharing among the secondary windings and the
secondary MOSFETs.

III. SIMULATION RESULTS

Simulations have been performed in pSpice software to
validate the proposed method, and the results are provided in
Figs. 5 and 6.
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Fig. 5. Simulation results during charge process for p = 5 stages.
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Fig. 6. Simulation results during discharge process for p = 5 stages.

The simulation parameters used for the conventional fly-
back converter (Fig. 3) are: Vin=24 V, Cload=400 nF, Lmp=48
μH, Lms=30 mH, Rp=60 mΩ, n=25, Rs=13 Ω. Peak cur-
rent control has been implemented during both charge (with
current limit 5 A) and discharge (with current limit 200
mA) processes with a fixed time period of 22 μs (switching
frequency fsw=45.54 kHz). The simulation parameters used
for the proposed flyback converter (Fig. 4) are the same
as above, except the turns ratio (n1=5) and the secondary
magnetizing inductance (Lms1=1.2 mH). In the simulations,
the leakage inductance and self-capacitance are ignored and
ideal switches and diodes are being used. Figure 5, provides
the comparison between the output voltages, and the voltage
across the secondary HV free wheeling diode VD2, and body
diode VMs1, for the conventional and proposed converters,



during charge process. Figure 6, provides the comparison of
the output voltages and the drain-to-source voltage across
the secondary MOSFET, for the conventional and proposed
converters, during discharge process.

When p series connected transformer and MOSFET stages
are used in the secondary HV side of the proposed converter:

• the turns ratio n1 is reduced by p.

• the magnetizing inductance Lms1 is reduced by p2.

• the drian-to-source across the body diode of the
secondary MOSFETs during the charge process is
reduced by p.

• the drian-to-source across the secondary MOSFETs
during the discharge process is reduced by p.

Hence, to charge and discharge the capacitive load to and
from 2.5 kV output voltage, the 4 kV or 4.5 kV MOSFET on
the secondary HV side, could be easily replaced by a 800 V
MOSFET, when p = 5 stages are used in the secondary side.

Table I provides the comparison between the conventional
and proposed converters in terms of losses due to the HV
active components (at the maximum output voltage during both
charge and discharge modes). Table II provides the comparison
between the conventional and proposed converters in terms
cost and the volume occupied, when the real MOSFETs and
HV diodes are used in the converter.

TABLE I. LOSS COMPARISON BETWEEN THE CONVENTIONAL AND
PROPOSED CONVERTERS

Converter Loss during Loss during Total
Type charge process (W) discharge process (W) loss (W)
Conventional L1 = 0.168 L3 = 0.133 5.201

L4 = 4.9
Proposed L2 = 0.192 L5 = 0.61 0.8

TABLE II. COST AND VOLUME COMPARISON BETWEEN THE
CONVENTIONAL AND PROPOSED CONVERTERS

Converter Cost ($) Volume Total Total
Type ∗low quantity occupied cost volume

prices (mm3) ($) (mm3)
Conventional 20 (∗10 for each 128 (64 each 50 1162

HV diode) diode)
∗30 (HV MOSFET) 1034 (MOSFET)

Proposed 5 (1 for each 440 (88 each 8 1000
MOSFET), 3 (for gate MOSFET),
driver) 560 (gate driver)

In Table I the loss expressions are given by:
L1 = iavgCVonD2 (for HV diode D2);
L2 = piavgCVonDbs (for p = 5 HV body diodes);
L3 = iavgDVonDb (for HV diode Db);
L4 = i2rmsDRdsons +0.5CosssV

2
Ms,maxfsw + VgsfswQgs (for

4 kV MOSFET Ms);
L5 = p(i2rmsDRdsons1 + 0.5Cosss1V

2
Ms1,maxfsw +

VgsfswQgs1) (for p = 5 HV MOSFETs Msi, i = 1, 2...5);

The parameters used are: iavgC= 24 mA, iavgD =19 mA,
irmsD=52 mA, VonD2=VonDb=7 V, VonDbs=1.6 V, Rdsons =
290 Ω (4 kV), Rdsons1 = 13 Ω, Cosss=19 pF, Cosss1 = 9.5 pF,
VMs=3100 V, VMs1=620 V, Vgs=12 V, Qgs=16.3 nC, Qgs1=7.7
nC;

In the above iavgC , iavgD, irmsD are the average current
during charge and discharge modes, and RMS current during
discharge mode, respectively. Those values are extracted from
the pSpice simulations. Also VonD2, VonDb, and VonDbs are the
on-state diode drops of diodes D2, Db and Dbs1, respectively.

IV. DRIVING THE SECONDARY SERIES CONNECTED
MOSFETS USING A GATE DRIVE TRANSFORMER (GDT)

In the proposed topology as shown in Fig. 4, the secondary
HV side MOSFETs, need to be driven with p−1 high side gate
drivers, for p series connected stages. It is possible to drive all
secondary MOSFETs using a gate drive transformer (GDT).
Figure 7a) provides the full schematic of the gate driver for 2
series connected stages (p = 2). The microcontroller generates
enable signals for the dual low-side gate driver, whose outputs
are fed to the GDT. The GDT as shown in Fig. 7a) has a single
primary and two secondary windings with 1:1 turns ratio.
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Fig. 7. a) Schematic of the gate driver for driving two secondary series
connected MOSFETs; b) Driving signals at different nodes in the gate driver
schematic.

The GDT is made using a RM 6 core, each winding has
15 turns with 0.2 mm diameter. The two isolated outputs of
the GDT are used to drive the 2 secondary series connected
MOSFETs. To protect the secondary MOSFETs from the
voltage spikes, a 12 V Zener diode is placed across the gate
to source terminals of the two MOSFETs. Driving signals
at different nodes in the secondary gate driver are shown in
Fig. 7b). The two primary winding terminals of gate drive
transformer (nodes C and D) are driven with two out-of-phase
signals. Positive signal at the primary dot terminal of GDT
(node C), produces positive gate-to-source driving signals,
and positive signal at the primary non-dot terminal of GDT
(node D), produces negative gate-to-source driving signals,
for the two MOSFETs, respectively. In Fig. 7b), G1, G2, S1

and S2 represents the gate nodes and source nodes of the two
MOSFETs, respectively. The idea of driving the two series



connected MOSFETs, using a GDT described above, can be
used to drive more than 2 series connected MOSFET stages
(p > 2). However, the type of core used for the GDT can be
changed depending on the number of stages.

V. EXPERIMENTAL RESULTS

The experimental prototype of the conventional HV bidi-
rectional flyback converter is shown in Fig. 8 [35]. The
experimental results showing the bidirectional operation at
2.5 kV output voltage are provided in Fig. 9. The primary
MOSFET Mp is 250 V, 16 A [FQD16N25CTM], the secondary
side MOSFETs are 4 kV, 300 mA, 290 Ω [IXTV03N400S]
and 4.5 kV, 200 mA, 750 Ω [IXTA02N450HV], and the HV
diodes D2 and Db are 5 kV, 150 mA [SXF6525]. However,
for evaluating the conventional and proposed converters, only
4 kV MOSFET is considered. The secondary MOSFET used
in the proposed converter is 800 V, 1 A, 13 Ω [STN1NK80Z,
[46]].

Flyback transformer

High voltage sideLow voltage side

High voltage
MOSFET

Low voltage
MOSFET

High voltage
Diodes

z

To
Microcontroller

Gate
driver

Comparator

90 mm

30
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m

Fig. 8. Experimental prototype of the digitally controlled conventional HV
bidirectional flyback converter with 4.5 kV MOSFET on the HV side [35].
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ip
Input current

iin

Fig. 9. Experimental results showing a single charge (0 V to 2.5 kV) and
discharge cycle (2.5 kV to 0 V) [35]; CH1: 500 mA/div, CH2: 500 V/div,
CH3: 5 A/div, CH4: 50 V/div, Time scale: 20 ms/div.

A digital control technique was recently proposed in [35]
to achieve valley switching control during both charge and
discharge processes. In Fig. 9 a full charge/discharge cycle
is shown. Figure 10 confirms the valley switching operation
in charge mode. However, during discharge mode the valley
voltage of the drain of HV MOSFET Ms is limited by the
series connected HV diode Db as seen in Fig. 11. The energy
efficiency measurements during both charge and discharge
modes as a function of output voltage are provided in Fig.
12. The proposed converter is expected to achieve ideal valley
switching during the discharge process leading to improved
energy efficiency.

Drain voltage ofMp
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Primary current
ip

Gate drive signal ofMp Input voltage Vin

Vout= 500 V, Vin= 24 V

Fig. 10. Experimental waveforms when the converter is operated with valley
switching during charge process; CH1: 2 A/div, CH2: 20 V/div, CH3: 5 V/div,
CH4: 20 V/div, Time scale: 5 μs/div.
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Fig. 11. Experimental waveforms when the converter is operated with valley
switching during discharge process; CH1: 200 mA/div, CH2: 500 V/div, CH3:
5 V/div, CH4: 20 V/div, Time scale: 5 μs/div.
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Fig. 12. Energy efficiency measurements with a 4 kV MOSFET on HV side.

The converter specifications are provided in Table III. The
details of flyback transformer are shown in Table IV. To verify
the concept of proposed converter, only two series connected
secondary stages are considered. The 300 secondary turns are
split into two for each series connected secondary winding
(Ns1 = 150). The parameters of the flyback transformer are
provided in Table V. It is a non-optimized (non-interleaved,
non-sectioned) transformer.

The flyback transformer used for the experiment is of non-
interleaved and non-sectioned, and it is not propoerly opti-
mized. However, for this application, transformer with multiple
sections would be better choice to reduce the self-capacitance.
The experimental results from the proposed converter with 2
series connected secondary stages (p = 2) are shown in Figs.
13, 14 and 15, respectively.

Figure 13 provides a single charge and discharge cycle us-
ing the proposed topology, when the capacitor load is charged
and discharged from 0 V to 200 V, and vice versa. To verify the



proposed concept, during both charge and discharge processes,
the converter is driven with fixed switching frequency. During
the charge process the switching time period is 59 μs, and
during the discharge process, the switching time period is
100 μs. In Figs. 14 and 15, a comparison of drain-to-source
voltage across the two secondary MOSFETs during a charge
and discharge swithcing cycle are provided.

TABLE III. CONVERTER SPECIFICATIONS

Parameter Value
Input voltage 24 V
Capacitance of load 400 nF
On-time of primary MOSFET during the charge process 9 μs

TABLE IV. DETAILS OF THE SPLITTED FLYBACK TRANSFORMER WITH
A TURNS RATIO OF 25

Parameter Value
Number of primary / secondary turns 12 / 300
Diameter of primary / secondary winding 0.5 mm / 0.12 mm
Number of layers of primary / secondary winding 1 / 4
Type of core / material EF25 / N87

TABLE V. PARAMETERS OF THE SPLITTED FLYBACK TRANSFORMER

Parameter Value
Primary / Each splitted secondary magnetizing inductance 42 μH / 6.3 mH
Secondary non-splitted magnetizing inductance 25 mH
Leakage inductance referred to primary / splitted secondary 1.1 μH / 53 μH
Leakage inductance referred to non-splitted secondary 721 μH
Primary / Secondary splitted winding DC resistance 64 mΩ / 6.3 Ω
Secondary non-splitted winding DC resistance 12.4 Ω
Self-capacitance of each splitted secondary winding 78.2 pF
Self-capacitance of non-splitted secondary winding 37 pF

Output voltage

Gate drive signal ofMp

Vout,max= 200 V,
Vin= 24 V

Gate drive signal ofMs1 and
Ms2

Fig. 13. A charge and discharge cycle with the proposed topology; CH1: 10
V/div, CH2: 100 V/div, CH3: 10 V/div, Time scale: 500 μs/div.

Drain to ground voltage of high side
secondary MOSFET

Source to ground voltage of high
side secondary MOSFET
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Fig. 14. Comparison of the voltage stress across the two secondary MOSFETs
during the charge process using the proposed topology; CH1: 200 V/div, CH2:
200 V/div, CH4: 100 V/div,F3=C2-C4: 200 V/div, Time scale: 10 μs/div.
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Fig. 15. Comparison of the voltage stress across the two secondary MOSFETs
during the discharge process using the proposed topology; CH1: 200 V/div,
CH2: 200 V/div, CH4: 100 V/div,F3=C2-C4: 200 V/div, Time scale: 10 μs/div.

VI. CONCLUSION

In this paper, a bidirectional flyback converter with multiple
series connected outputs is proposed, for high voltage drive of
capacitive DEAP actuators. Simulation results (output voltages
and voltage stresses across the secondary MOSFETs/diodes)
during both charge and discharge processes are provided, to
show a comparison between the proposed and conventional
implementations. A theoretical comparison shows that the
proposed converter has the potential to improve efficiency and
lower the cost. The detailed implementation of secondary gate
driver, using a gate drive transformer is provided. Experimental
results from the conventional (for full operating voltage range
0-2.5 kV) and the proposed (0-200 V) bidirectional converters
are provided. The experimental waveforms of the drain-to-
source voltages of the two secondary MOSFETs confirms the
voltage sharing across the two MOSFETs.

VII. FUTURE WORK

Due to lack of time the converter operation for full operat-
ing voltage range, and with p = 5 series connected secondary
stages is not verified. However, the future work regarding the
proposed converter involves:

• implementing the valley switching control during both
charge and discharge processes.

• design and implementation of the gate drive trans-
former for p = 5 stages.

• design of the efficient flyback trasformer with very
low self-capacitance.

• investigating the coupling factor of different winding
strategies interms of voltage sharing.
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Abstract—Transformer parameters such as leakage inductance 
and self-capacitance are rarely calculated in advance during the 
design phase, because of the complexity and huge analytical 
error margins caused by practical winding implementation 
issues. Thus, choosing one transformer architecture over 
another for a given design is usually based on experience or a 
trial and error approach. This work presents equations 
regarding calculation of leakage inductance, self-capacitance 
and AC resistance in transformer winding architectures, 
ranging from the common non-interleaved primary/secondary 
winding architecture, to an interleaved, sectionalized and bank 
winded architecture. The analytical results are evaluated 
experimentally and through FEM simulations. Different 
transformer winding architectures are investigated in terms of 
the losses caused by the transformer parasitics for a bi-
directional high-voltage (~1500 V) flyback converter used to 
drive a dielectric electro active polymer based incremental 
actuator. The total losses due to the transformer parasitics for 
the best transformer architectures is reduced by more than a 
factor of ten compared to the worst case transformer 
architectures. 

I. INTRODUCTION  
Dielectric electro active polymer (DEAP) is an emerging 

smart material that has experienced significant development 
and has gained increasing attention over the last decade [1], 
[2]. DEAP, when used as actuators, has the potential to be an 
effective replacement for many conventional actuators due to 
its unique properties such as high strain, light weight, low 
noise operation, low power consumption. However, a 
compact high voltage driver is required to charge and 
discharge the DEAP from 0 V to 2500 V DC supplied from a 
24 V battery. The DEAP actuator applications require a bi-
directional energy transfer capability, to increase the life time 
of the battery. The flyback converter topology is suitable for 
low power (< 150 W), and high voltage capacitor charging 
applications, as it can be made very compact with a low 
number of components.  

The flyback transformer is the most critical component in 
terms of driver performance. The high voltage requirement 

demands a high turns ratio which calls for a large number of 
secondary turns. This may lead to a high winding self-
capacitance resulting in severe capacitive switching loss and 
undesirable, resonating current spikes in the leading edge of 
the current waveform, which could lead to false triggering of 
the current limit during the turn-on process.  

The leakage inductance of the transformer may cause 
undesirable voltage spikes on the drains of the primary and 
secondary MOSFETs during the charge and the discharge 
processes, respectively, which lead to use of active or passive 
snubber circuits in the converter. With active snubbers high 
energy efficiency can be achieved, at the expense of a higher 
cost and added control complexity whereas the passive 
snubbers result in switching loss due to the leakage 
inductance. The AC resistance is also an important parameter 
to consider, since the AC conduction loss is caused by high 
frequency skin and proximity effects in a flyback converter 
operating in boundary conduction mode (BCM) or in 
discontinuous conduction mode (DCM).  

Thus, accurate estimation of the transformer parameters 
and their associated losses are required, to evaluate different 
transformer winding architectures (TWAs) from which the 
best TWA is selected to achieve high energy efficiency. 
Extensive research has been done on calculating the leakage 
inductance in conventional transformers [3]-[6], [17], and in 
[7]-[17], the capacitance calculation methods have been 
proposed for inductors, power, planar, and high voltage 
transformers. The influence of transformer parasitics for the 
low power flyback converter has been discussed in [24]. This 
paper investigates a number of TWAs providing a deep 
insight into transformer design and its impact on the total loss 
contribution of a bi-directional high-voltage flyback 
converter.  

The paper is organized as follows: the TWAs are 
described and then calculations of self-capacitance, leakage 
inductance and AC resistance for different TWAs are 
provided. The calculated transformer parameters are 
evaluated via FEA simulation using ANSOFT Maxwell and 
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the transformer paracitics for all TWAs are presented, 
followed by the conclusion.  

II. TRANSFORMER WINDING ARCHITECTURES  
 This paper investigates the four known winding schemes 

(A, B, C and D) as shown in Fig. 1 [14], [16], [26], [27]. 
Winding scheme A is the most simple to implement since the 
next layer starts where the previous layer ended. In winding 
scheme B, the next layer starts just above the starting point of 
the previous layer. Winding scheme C split the winding into a 
number of sections that is individually wounded like winding 
scheme A. In winding scheme D, the turns progress in a 
vertical back angled way where turns are built on top of 
previous turns. It seems like winding scheme D achieves as 
many angled sections as there are turns in a layer without the 
penalty of reducing the fill factor due to the thickness of the 
section walls. Another advantage is that winding scheme D 
can be easily interleaved which is not the case for winding 
scheme C since it is hard to add section walls in-between 
windings.  The difference in self-capacitance due to the 
winding schemes is severe because the voltage potentials 
between the turns in the winding are changed.  

Several winding buildups (S/P, S/P/S, S/P/S/P/S/P/S; 
where S and P are is the secondary and primary windings, 
respectively) are investigated - see Fig. 2. Based on these 
configurations, seven high voltage transformer winding 
architectures (W1-W7) are derived and the winding 
information is summarized in Table 1. In order to simplify the 
implementation of the windings a low turns ratio of 10 is 
selected. The TWAs W1-W6 are wound with 10 primary turns 

and 100 secondary turns. W7 deviates since it is only 
implemented with 9 primary turns due to the nature of the 
winding architecture.  

Winding scheme A is employed for the primary winding 
of all architectures. Moreover, all winding space of the 
bobbin is utilized to improve the fill factor and to reduce the 
winding resistance. Equal space allocation for primary and 
secondary winding is adopted for this investigation, thus the 
primary winding is wounded with a number of parallel wires.  

III. SELF-CAPACITANCE 
High voltage transformers tend to have a large number of 

turns in the high voltage side, which introduces a non-
negligible parasitic self-capacitance. It is important to predict 
the self-capacitance in the design phase in order to avoid 
severe switching loss. In fact, the winding self-capacitance is 
a parameter representing the electric field energy stored in the 
winding and is considered as a shunt lumped element in most 
cases [14]. Due to a large number of turns per layer, the effect 
of the turn-to-turn capacitance can be neglected and the main 
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Figure 2. An overview of different winding buildups. 

Figure 1. An overview of different winding schemes. 

TABLE I.  HIGH VOLTAGE TRANSFORMER ARCHITECTURES 

Design Winding 
buildup 

Secondary winding Primary 
winding 

Scheme Parameters Parameters 
W1 S/P A Ns = 100 

dis = 0.3 mm 
dos = 0.32 mm 
pTT = 0.355 mm 
pLL = 0.34 mm 
nls = 4  
npars = 1 
 
Core / Material 
used:  
RM8 / N41 

Np = 10 
*dip = 0.7 mm        
*dop =0.8 mm        
nlp = 2                    
nparp = 2 

W2 S/P B 
W3 S/P C 
W4 S/P D 
W5 S/P/S B 
W6 S/P/S D 

W7 S/P/S/P/S/P/S B 

Np = 9  
*dip  = 0.48 mm 
*dop  = 0.5 mm 
nlp = 3 
nparp = 5  

Parameters interpretation 
Ns /  Np - number of secondary / primary turns; 
nls / nlp - number of secondary / primary winding layers; 
npars / nparp - number of secondary / primary parallel windings; 
dis /  dos - inner / outer diameter of secondary winding; 
dip /  dop   -  inner / outer diameter of primary winding; 
pTT /   pLL    -  turn-to-turn /  layer-to-layer pitch of secondary winding; 
*In the practical transformer implementation triple insulated (TEX) windings 
are not used for the primary due to the unavailability of the wires; 
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contribution to the self-capacitance comes from the layer-to-
layer capacitance, which can be calculated based on the 
simple parallel-plate or cylindrical capacitor model [14]-[16].  

The self-capacitance in the transformer windings can be 
calculated using the electro static energy stored in the volume 
between the conductors [14], [16] and is given by 

2 21 1 
2 2Electric S W

Vol

E E dv C U= ε =∫∫∫                        (1) 

where ε is the equivalent dielectric constant of the winding, E 
is the electric field strength, CS is the self-capacitance, and 
UW is the total voltage across the winding. 

The energy stored in two adjacent conductive layers with 
a linear potential distribution, shown in Fig. 3a, can be 
calculated by (2), which is derived in [16]. The total stored 
energy is  

( )2 2

6
l

Stored S S T T
CE U U U U= + +                  (2) 

where US and UT are the potential difference between the two 
surfaces at the bottom and top respectively, and Cl is the 
capacitance between the two surfaces and is considered as a 
parallel plate capacitance and can be calculated using (3) 

0l r
eff

hwC
d

= ε ε                                    (3) 

where ε0 is the vacuum permittivity and is 8.854×10-12 F/m, εr 
is the relative permittivity of the dielectric material. The 
parameters h, w represents the dimensions of the plate and deff 
is the effective distance between two layers (which needs to 
be calculated for each TWA) and is given by 

1.15 0.26eff LL is TTd p d p= − +                         (4) 

where pLL, dis and pTT are the layer to layer pitch, inner 
diameter, and turn to turn pitch, of the secondary winding, 
respectively. According to the methods given in [16], the 
expressions for calculating the self-capacitance for all above 
mentioned TWAs have been derived and are summarized in 
Table 2. Normally, the cylindrical shape, shown in Fig. 3b, is 
desired for most winding layers due to the simple winding 

technique as well as the short mean turn length [14]. If the 
distance between two layers is much less than the mean 
diameter for the two layers, the cylindrical capacitor can be 
considered to be a parallel plate capacitor and (3) can be 
employed to calculate the capacitance by replacing w with π 
D (see Fig. 3b).  

IV. LEAKAGE INDUCTANCE 
The leakage inductance in a transformer is calculated 

using the energy stored in the magnetic field [16]. The total 
leakage energy stored in the magnetic field is given by 

               2 2
0

1 1
2 2Magnetic lk p

Vol

E  H  dv L I= μ =∫∫∫                  (5) 

where H is the magnetic field strength which is proportional 
to the number of ampere turns linked by the flux path, Llk is 
the leakage inductance, and Ip is the peak current in the 
winding. The fundamental principles used to calculate the 
leakage inductance are thoroughly investigated in [3], [4], 

   
Figure 3. a) Two parallel plates with a linear potential distribution,  

b) Cylindrical capacitor model 

TABLE II.  SELF-CAPACITANCE EXPRESSIONS FOR DIFFERENT TWAS 

TWA Self-capacitance expression 

W1 
( ) ( )( )1

0 12
1

1
4 ;  C ;  1

3
ls l w w

l r w i ls is ls is
ls eff

n C b l l D n d n h
n d

−
= ε ε = π + + −  

W2 
( ) ( )1

02
1

1
4 ;    C ;     1

4
ls l w w

l r w ls TT os
ls eff

n C b l b T p d
n d

−
= ε ε = − +  

W3 ( )
2

1
1

02
1 1

4 1
;   

3

w
w

ls l
l r

ls eff

b l
n C qC
q n d

−
= ε ε  

W4 ( )1
0

2

 ; 1TT w
r ls LL os

eff w

p l L L n p d
d b

ε ε = − +  [7] 

W5 ( )
0 2 3 4
2

3 3 3 1
r w w w w

ls eff eff eff lp p lp ip

b l l l
n d d d n d n h

⎡ ⎤ε ε
⎢ ⎥+ +

+ + −⎢ ⎥⎣ ⎦
 

W6 

( )
( )

( )

2 3 2 41 2
0

4 4

1 2

2 2

; 
1

1 ;  1 ;
2

TT w w TT w
r

eff w weff lp p lp ip

ls
LL os TT lp p lp ip os

TT os

p l l p lL L
d b bd n d n h

nL p d p n h n h d

L p d

⎡ ⎤+
⎢ ⎥ε ε +

+ + −⎢ ⎥⎣ ⎦
⎛ ⎞= − + = + − +⎜ ⎟
⎝ ⎠

= +

 

W7 0 5 6 7
2

5

r w w w w

ls eff

b l l l
n d

⎡ ⎤ε ε + +
⎢ ⎥
⎢ ⎥⎣ ⎦

 

Parameters interpretation 
ε0 /  εr  - relative permittivity of  vacuum / dielectric material;  εr = 4; 
bw -  the width of the layer; Tls is turns per layer of secondary winding; 
Di - inner diameter of the bobbin; 
deff1,2,3,4,5 - effective thickness of dielectric between two layers [14] [16] for 
different TWAs; 
lw1 - mean length turn for the TWAs  W1, W2 , W3 and W4; 
lw2 / lw3 / lw4 - mean length turn between most inner two secondary (S1, S2) 
/  most outer  two secondary (S3, S4)  / most outer secondary and the  most 
inner secondary (S2, S3), layers for W5 and  W6; 
lw5 / lw6 / lw7 / lw8 / lw9 / lw10 - mean length turn between most inner two 
secondary (S1, S2) /  middle two secondary (S2, S3)  /  most outer two 
secondary (S3, S4) layers for W7  
q1 - number of sections for structure W3 and q1 = 4; 
For remaining abbreviations refer Tables 1 and 3; 
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and [16]. Based on those methods, the equations for 
calculating the leakage inductances for TWAs W1-W7 have 
been derived and are summarized in Table 3 [17]. The MMFs 
in each primary and secondary layer are TlpIp and TlsIs, 
respectively. For the winding buildup shown in Fig. 4a, the 
energy stored in the magnetic field is derived in (AI) in 
Appendix.  

V. AC RESISTANCE 
The AC resistance is calculated using equations 

commonly found in the literature [18]-[19], [26]. The DC 
resistance of the primary/secondary winding can be 
calculated by 

                 
2

,  
 4

w i
DC

par

l N dR A
A n

= =ρ π                                   (6) 

where ρ is the resistivity of copper at room temperature 
(ρ=17.24 nΩ/m at 20 °C), N  is the total number of 
primary/secondary turns, lw is the mean length turn of the 
winding, npar is the number of parallel wires, A is the cross 
sectional area of the winding and di is the inner diameter of 
the winding excluding the insulation.  

The AC resistance per layer of a given winding is given by 

TABLE III.  PRIMARY LEAKAGE INDUCTANCE EQUATIONS FOR 
DIFFERENT TWAS 

TWA Leakage inductance expression 

W1, 
W2,  
W3, 
W4 

( ) ( )

( )( )
2

0

2

2 1 11
3 6

2 1 11
3 6

lp lplp p ip
i

w lp
w p

ls lsls s is

w ls

n nn h h
h

b n
l N

n nn h h
b n

⎡ ⎤⎛ ⎞− − ⎛ ⎞
⎢ ⎥⎜ ⎟+ + +⎜ ⎟⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠μ ⎢ ⎥
⎢ ⎥⎛ ⎞− − ⎛ ⎞

+⎢ ⎜ ⎟ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

 [17] 
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Parameters interpretation 
µ0 - permeability of free air;  
lw - mean length turn (MLT); 
bw - width of the layer; bw2 - width of the layer excluding the combined 
with of the sections walls for TWA W3,  bw2 < bw; For W1, W2 and W4, bw 
= bw2 ; hp= dop and hs = dos;  
hip / his / hi - insulation thickness between primary-to-primary layer, 
secondary-to secondary layer and primary-to-secondary layer;  
For W5 and W6, nls1 and nls2 are the number of secondary layers are at the 
top and bottom of a primary winding respectively, having nlp primary 
layers. In Fig. 4c, nls1=2 and nls2=2; 
For remaining abbreviations refer Tables 1 and 2; 
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Figure 4. Analytical MMF distribution for, a) non-interleaved structure 
(S/P – W1, W2, W4), b) non-interleaved structure (S/P – W3), c) 
interleaved structure (S/S/P/P/S/S –W5, W6), d) fully interleaved 

structure (S/P/S/P/S/P/S –W7) 
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Assume the variables Δl, Δ2, Δ3, and Δ4 are assigned as in (8) 
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The variable Δ1 in terms of Δ3 and Δ4, and Δ2 and Δ4 is given 
by [19] 

( ) ( )1 3 4 1 2 4
1 , 2
2

 Δ = Δ + Δ Δ = Δ + Δ                      (9) 

Using (8), (9) in (7), the simplified AC resistance per layer is  

( ){ }2
,layer , 1 42AC DC layerR R Q m m= Δ + − Δ                (10) 

( ){ }2
,layer , 3 42 1

2AC DC layer
QR R m= Δ + − Δ                (11) 

The total AC resistance of M layers for the non-interleaved 
TWAs W1-W4 is given by 
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( ) ( )

( )

2
,total , 1 4

1

2
, 1 4

2
,total 1 4

2

2 1
3

2 1
3

M

AC DC layer
m

DC layer

DC

R R Q m m

           = R M Q M

           =  R Q M

=
= Δ + − Δ

⎧ ⎫Δ + − Δ⎨ ⎬
⎩ ⎭

⎧ ⎫Δ + − Δ⎨ ⎬
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∑

              (12) 

where RDC,layer and RDC,total are the DC resistance per layer and 
total DC resistance, respectively. The variable m represents 
the effective number of layers and is given by 

          ( )
( ) (0)

F hm
F h F

=
−

                                        (13) 

where F(0) and F(h) are the magneto motive forces (MMFs) 
at the start and end of each layer, respectively. The variable Q 
is the effective layer thickness normalized with the skin depth 
and is given by 

3.5

0

4
o l

i
w

d Td
blayer  thicknessQ =

penetration depth
f

π

=
ρ

πμ

                (14) 

where di is the bare wire diameter, do is the overall wire 
diameter including insulation, Tl is the turns per layer of the 
given winding and f is the switching frequency.  

To calculate the AC resistance per layer for the 
interleaved TWAs W5-W7, (10) or (11) needs to be used with 
the corresponding value of m for each layer. The total AC 
resistance is the sum of all AC resistances in each layer. 

The total AC resistance referred to the primary is given by 

   ,total, S
, total, P 2

AC  
AC AC  

R
R R                    

n
= +                      (15) 

where n is the transformer turns ratio RAC,total,P and RAC,total,S  
are the total AC resistance of primary and secondary 
windings, respectively. 

TABLE IV.  ENERGY LOSS EXPRESSIONS OF  TRANSFORMER PARACITICS 

Name of 
energy loss 

Loss expressions 
Charge process (J) Discharge process (J) 

Switching loss 
due to self-
capacitance 

2
1 0 5C P dsPE . C V=  2

2 0 5C S dsSE . C V=  

Snubber loss 
due to leakage 

inductance 

2

1

0 5 lkP pkP snLV
L

out
snLV

. L i V
E VV

n

=
−

 
2

2

0 5 lkS pkS snHV
L

snHV in

. L i V
E

V V n
=

−
 

Winding loss 
due to AC and 
DC resistances 

2

2

1 2

2
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onC
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offC
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I R
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I R
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I R
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⎛ ⎞⎡ ⎤+
⎜ ⎟+⎢ ⎥
⎜ ⎟⎢ ⎥⎣ ⎦= ⎜ ⎟
⎡ ⎤+⎜ ⎟
⎢ ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎣ ⎦⎝ ⎠

 

2

2

2 2

2

DCP DCP
offD

RMSP ACP
R

DCS DCS
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t
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Parameters interpretation 
CP / CS – self capacitance referred to primary / secondary; 
VdsP / VdsS – drain to source voltage of primary / secondary MOSFET; 
LlkP / LlkS – leakage inductance referred to primary / secondary; 
ipkP / ipkS  – primary / secondary peak current; 
VsnLV / VsnHV – RCD snubber capacitor voltage of primary / secondary; 
Vout / Vin – output / input voltage of the converter; 
IDCP / IDCS – DC current of primary / secondary; 
RDCP / RDCS – DC resistance of primary / secondary; 
IRMSP / IRMSS – RMS current of primary / secondary; 
RACP / RACS – AC resistance of primary / secondary; 
tonC / toffC – on / off time of the primary MOSFET during the charge process; 
tonD/ toffD – on / off time of the HV MOSFET during the discharge process; 

VI. FINITE ELEMENT ANALYSES 
The different winding architectures are simulated in 

Ansoft Maxwell to extract the value of the leakage 
inductance, self-capacitance and AC resistance. In Fig. 5 the 
electrostatic energy between the windings is shown for 
winding schemes B and D. It is noted that the energy density 
is high between layer to layer and low between turn to turn as 
expected in winding scheme B. In winding scheme D there is 
less electrostatic energy and thus it has lower self-
capacitance.  

Fig. 6 shows a close-up of the magneto static energy of 
the three investigated winding buildups. The leakage flux 
runs approximately vertically through the windings and the 
magneto static energy is highest in the space between the 
primary and secondary windings. The heavy interleaved 
buildup (S/P/S/P/S/P/S) has very low magneto static energy 
and thus it will have a very low leakage inductance. 

The AC resistance at 100 kHz is also simulated for the 
three winding buildups. A standard mesh which is very fine 
compared to the skin depth is used to simulate the eddy 
effects in the winding. A close up plot of the mesh is shown 
in Fig. 7.a. The diameter of the secondary winding is 0.3 mm 
and the skin depth at 100 kHz is approximately 0.2 mm. It is 
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noted that the dimensions of the mesh is much lower than the 
diameter of the winding and the skin depth at 100 kHz. In 
Fig. 7. b-d, a close up of the current density for the three 
winding buildups is shown. It is noted that the current density 
in the non-interleaved buildup is much higher compared to 
the others and thus the AC resistance will also be higher.  

VII. EXPERIMENTAL RESULTS 
The simulated, calculated and measured values of the self-

capacitance, leakage inductance (measured at 10 kHz 
frequency using the impedance analyzer PSM1735) and AC 
resistance for the 7 TWA’s are shown in the Tables 5, 6 and 
7, respectively, from which it is clear that the measured, 
calculated and simulated transformer parameters for most of 
the TWAs closely matches. However, the differences in 
winding parameters such as an average layer to layer distance 
and mean length turn may cause errors around ±20 %. The 
measurement setup with 5 of the transformer prototypes is 
shown in Fig. 8. The energy loss expressions due to the 
transformer parasitics are summarized in Table 4. A plot of 
the loss distribution of the energy losses caused by the 
transformer parasitics), in a bi-directional flyback converter, 
used for charging and discharging an incremental DEAP 
actuator is shown in Fig. 9. The winding loss calculation for 
the flyback transformer is different from that of normal 

transformer since the primary and secondary currents are out 
of phase, in [20] the winding loss is calculated for a flyback 
transformer with a non-interleaved structure. The same 
method can be used for the interleaved structures as well. 
However, due to limited space that is not included in this 
paper. 

The calculated transformer parasitic values are used for 
calculating all losses, in order to provide a fair and useful 
comparison of the losses. The following specifications are 
used to calculate the losses in the bi-directional flyback 
converter [17], [20]-[23]: input voltage: 24V, output voltage: 
1500 V, load capacitance: 200 nF, switching frequency 
during the charging and discharging process: 20-200 kHz, 
and 26 kHz, and primary peak current during charge and 
discharge processes: 2.12 A. The primary magnetizing 
inductance: 35 µH. From Fig. 9, it is clear that W6 has the 
lowest loss among all TWAs followed by W4, W7 and W3. 

 
a) 

 
b) 

 
c) 
 

Figure 5. Plots from simulation of self-capacitance.  
a) Energy distribution for winding scheme B. b) Energy distribution for 

winding scheme D. c) Density color bar 

 
a)  

 
b) 

 
c) 

 
d) 

Figure 6. Plots from simulation of leakage inductance.  
a) P/S. b) S/P/S. c) S/P/S/P/S/P/S. d) Density color bar. 
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Thus the structure W6 is highly recommended for high 
voltage capacitor charging application.  

VIII. CONCLUSIONS 
The analytical equations for calculating the transformer 

AC resistance, lekage inductance and self-capacitance for 
seven different winding architectures have been presented 
and evaluated experimentally and with FEA simulation. The 
main contribution to the errors is due to practical winding 
issues which are not accounted for in the equations. The 
transformer loss distribution is based on the calculated values, 
and it clearly shows that transformer winding architectures 

where the self-capacitance is lowest are particularly suitable 
for high voltage charging applications. Future work involves 
the experimental validation of the proposed TWAs in the high 
voltage bi-directional dc-dc converter. 

TABLE V.  SELF-CAPACITANCE OF SECONDARY WINDING AT 
RESONANCE FREQUENCY 

TWA Buildup Winding scheme Sim. 
(pF) 

Calc. 
(pF) 

Meas. 
(pF) 

W1 S/P A 33 32 28 
W2 S/P B 25 24 26 
W3 S/P C 2.4 2 4.2 
W4 S/P D 1.9 1 1.3 
W5 S/P/S B 10 20 22 
W6 S/P/S D 3.3 2.1 6
W7 S/P/S/P/S/P/S B 5 3.6 15

TABLE VI.  LEAKAGE INDUCTANCE REFERRED TO PRIMARY  

TWA Buildup Winding scheme Sim. 
(nH) 

Calc. 
(nH) 

Meas. 
(nH) 

W1 S/P A 

526 590 

550 
W2 S/P B 520 
W3 S/P C 725 
W4 S/P D 580 
W5 S/P/S B 150 152 181 
W6 S/P/S D 208
W7 S/P/S/P/S/P/S B 30 22 74

W1 W2 W3 W4 W5 W6 W7
10
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 Transformer total winding loss
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Secondary RCD snubber loss
Primary swithcing loss due to winding capacitance
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Total loss due to transformer parasitics

 
Figure 9.  Energy loss distribution of the losses caused by transformer 

parasitics in the high voltage capacitor charging application. 

 
a) 

b) 

c) 

 
d) 

HIGHLOW
 

e) 
 

Figure 7. Plots from the simulations of AC resistance.  
a) Default mesh, b) Current density of W1-W4, c) Current density of W5-

W6, d) Current density of W7, e) Density color bar 

 
Figure 8. Measurement setup and five transformer prototypes with RM8 

core 
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TABLE VII.  AC RESISTANCE REFERRED TO PRIMARY AT 100 KHZ 

TWA Buildup Winding 
scheme 

Sim. 
(mΩ) 

Calc. 
(mΩ) 

Meas. 
(mΩ) 

W1 S/P A 
 

102 
 

110 

130 
W2 S/P B 127 
W3 S/P C 135 
W4 S/P D 84
W5 S/P/S B 35 37 39 
W6 S/P/S D 42
W7 S/P/S/P/S/P/S B 23 18 22
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Abstract—This paper presents an optimization technique for a 
flyback converter with a bidirectional energy transfer. The main 
goal is to optimize the converter for driving an incremental 
dielectric electro active polymer actuator, which must be 
charged and discharged from 0 V to 2500 V DC, supplied from a 
24 V battery. The proposed optimization routine sweeps through 
a database of low voltage switching devices, and transformer 
core types and sizes. For each core, important winding 
parameters such as, the vertical winding space allocation for 
primary and secondary windings, and the spacing between the 
secondary windings layers are also swept. This enables the 
optimization routine to calculate and optimize the losses caused 
by transformer parasitics such as leakage inductance, self-
capacitance and AC resistance which is crucial in achieving a 
high energy efficiency and high power density required for this 
application. The efficiency and loss distribution results provided 
by the optimization routine provide a deep insight into the 
transformer design and its impact on total converter efficiency. 
Finally, experimental work on a prototype of the bi-directional 
flyback converter is presented. The maximum charging and 
discharging energy efficiencies of the optimized design, are 
96.1% and 85%, respectively. 

I. INTRODUCTION  
Dielectric electro active polymer (DEAP) is an emerging 

smart material that has experienced substantial development 
and has gained increasing attention over the last decade [1]-
[4]. The DEAP technology can be used in actuator, sensor and 
energy harvesting applications. Bidirectional power 
electronics are of particular interest in DEAP actuator 
applications since the potential of the material needs to be 
high (charged) to expand and low (discharged) to retract. In 
Fig. 1, an illustration of an incremental actuator using two 
DEAPs as grippers and one DEAP as an extender is shown. 
DEAP, when used as incremental actuators, has the potential 
to be an effective replacement for many conventional 
incremental actuators due to its unique properties, such as 
large strain, light weight, low power consumption, and high 
flexibility. The DEAP technology has the potential to be used 
in various industries, e.g. automotive, aeronautics, space and 
medicine. In order to take full advantage of the DEAP 
potential, the drivers for the DEAP’s need to have a low 
volume to be utilized in small spaces and the weight and 

energy efficiency influence the achieved traveling distance 
when powered from a battery. 

The flyback topology is selected for the high voltage 
driver since it is suitable for low power (< 150 W) and has a 
low component count. High voltage switch-mode power 
supplies for charging the capacitive loads have been 
implemented in [5]-[12]. The design methodologies for 
transformers used in conventional switch mode power 
supplies are well documented in the literature. However, the 
procedures are conservative and are based on some 
assumptions in order to provide a simple, low risk and fast 
design phase. Often, the size of a suitable core is calculated 
based on assumptions such as constant switching frequency, a 
guess of the total converter efficiency, transformer conduction 
loss and core loss based on sinusoidal excitation and 
estimation of the winding current density. Thus, more 
complex and customized design procedures tailored for 
specific applications are needed to achieve efficient 
transformer designs. In this paper, an unconventional 
optimization routine is developed and tailored for bi-
directional flyback converters, for high voltage capacitor 
charging and discharging applications, since literature 
regarding for this application is very limited [21]. The 
transformer optimization procedures for the switch-mode DC-
DC converters have been discussed in [13]-[20]. The 
efficiency optimization method of the digitally controlled 
flyback converter for wide operating conditions is given in 
[15]. Analytical optimization of solid round wire conductors is 

 
Figure 1. Incremental DEAP actuator [24]. 
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proposed in [16]. In [17], a weighted efficiency oriented 
design methodology is proposed for a flyback inverter. The 
optimization routine is different from most methods since it 
does not depend on any guess work, estimations or rule of 
thumb approaches in order to achieve the transformer design. 
Instead, advanced algorithms for calculating the transformer 
parasitics are used in combination with a comprehensive loss 
model in order to evaluate the converter efficiency and other 
key parameters for a wide range of implementation 
possibilities. The loss model takes into account that the 
waveforms in the flyback converter are not sinusoidal in both 
the conduction and switching loss calculations. The 
optimization routine provides the designer with the necessary 
practical details of the chosen design such as core size, core 
material, wire sizes, number of winding layers, etc. In order to 
provide a high level of driver design flexibility for different 
DEAP applications, the driver efficiency and its size/weight 
can be weighted. The main idea behind the optimization 
routine can easily be adapted to fit other topologies and 
applications. 

II. OPTIMIZATION ROUTINE 
The optimization routine is described as follows: first, a 

drain to source voltage of the primary MOSFET is selected 
from a range of voltage levels. Then the turns ratio, 
magnetizing inductance, peak primary current, and primary 
and secondary turns are calculated using the converter 
specifications (input and maximum output voltages, charging 
time). Next, a primary MOSFET rated for the selected drain to 
source voltage is selected from a range of MOSFETs with 
varying parameters such as MOSFET package type, on-
resistance and gate charge, etc. Next a transformer core is 
selected, followed by the choice of winding space allocation 

and layer to layer spacing. A dynamic winding function is 
used to design the transformer enabling the calculation of 
transformer parameters. Finally, losses in all components of 
the bi-directional flyback converter [6], in both charging and 
discharging modes are calculated [12] and added to represent 
the total estimated loss for that specific design. The 
optimization routine iterates through all design possibilities 
and in this case presents two solutions: one for the smallest 
transformer (limited by a temperature limit), and another for 
the most efficient solution (limited by an increase in converter 
efficiency vs. increase in transformer size). In the following 
sections, the challenges faced in the optimization routine are 
described, and solutions are presented.  

A.  Dynamic transformer design  
Well into the optimization routine when the design 

parameters such as the number of turns and the allocated 
winding space is locked a winding implementation need to be 
found. In order to simplify that task the huge design space is 
limited - see Table 1.  The core types are limited to 5 types. It 
is hard to predict which core type is most suitable for any 
application. In a flyback converter, a long transformer window 
width is often preferred to minimize the leakage inductance 
and AC resistance by providing a close coupling between 
windings and decrease the amount of winding layers. For high 
voltage converters, this could be different, since the winding 
self-capacitance on the high voltage side has a significant 
impact on the performance of the converter. Only the N87 
core material and a simple non-interleaved winding structure 
(S-P) are used to limit complexity of the proposed 
optimization method. However, the optimization method can 
be easily adopted for an interleaved winding structure. Single 
insulated solid wire is used for the secondary winding since a 

TABLE I.  HIGH VOLTAGE TRANSFORMER STRUCTURES AND 
WINDING INFORMATION 

Description Design 
decision Advantages 

Core type 

ETD, 
EFD, E, 
RM and 

PQ 

Round and square center leg ease the 
analytical complexity. 

Core 
material N87 Suitable for high frequency of 

operation. 
Winding 
structure P / S Simple implementation and decreases 

analytical complexity. 
Primary 
winding 

type 

Solid 
wire 

Flexible in terms of design and different 
winding structures. 

Primary 
winding 

insulation 

Triple 
insulation 

Avoid edge tape to achieve a higher fill 
factor. More flexible in terms of 

implementation. 

Secondary 
winding 

type 

Solid 
wire 

Suitable winding type, for a large 
number of turns. Flexible in terms of 

design, prototyping and different 
winding structures. 

Secondary 
winding 

insulation 

Single 
insulation 

Minimum insulation thickness for a 
large number of turns. 

Air gap All legs Simplifies the prototyping. 
Maximum 
transformer 
temperature 

140 °C 
With an estimated ambient temperature 

of 40 °C, this enables a transformer 
temperature rise of 100 °C. 

 
Figure 2. Cases from the dynamic transformer design.  

a) Allocated winding area. b) Initial starting point (Square width = area 
height). c) Unused space above and beside the squares (fill factor < 1).  

d) Squares not used (fill factor << 1). e) Close to ideal winding 
implementation (All squares used for the windings, horizontal space used 

as spacing between layers, high fill factor). 
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lot of turns are needed. The proper insulation between primary 
and secondary windings are achieved using a triple insulated 
solid wire for the secondary winding, which has proven to 
increase the winding fill factor and thus the efficiency and/or 
size of the transformer. The air gap is provided in all legs of 
the core, and the maximum air gap length is limited to 20% of 
the center leg length/window width, to avoid the loss due to 
the fringing field. A maximum transformer temperature limit 
of 140 °C is chosen. These limitation values can be altered 
based on the experience of the designer or the initial design 
specifications. 

In this section, different cases about the dynamic 
transformer design are explained. The concept is best 
understood with the help of visualization. In Fig. 2.a, the space 
allocation for a given winding is shown. The width of the 
available area is the width of the bobbin window WW and the 
height of the area is the allocated height for the winding WH,n. 
The first step is to split the area into squares with a square 
width (Wsq) equal to the allocated height for the winding. It is 
αWH,n  for secondary and (1- α)WH,n  for the primary winding, 
with  being the space allocation factor for secondary. In this 
case, it results in 4 squares and a non-square area that is 
considered as an unusable area as shown in Fig 2.b. In each 
square, a solid round wire could be placed with a diameter 
equal to the width of the square or a bundle of round wires 
with an outside bundle diameter equal to the width of the 
square. In this work, only the first option has been considered 
since the high number of needed secondary turns result in very 
thin wire diameter compared to the skin depth. If the number 
of turns required is 4 or less, this case will be considered as a 
valid solution and saved for later comparison with other found 
solutions. If a single turn is needed, then four squares could be 
utilized by 4 round wires in parallel and only the non-square 
area would not be used. The wire diameter may not be optimal 
compared to the skin depth which is why more solutions need 
to be considered and validated. This is achieved by splitting 
the winding area into smaller and smaller squares. The width 
of the squares for the secondary winding is limited by the 
smallest practical feasible diameter of a solid round wire (0.08 
mm). In Fig. 2.c, the square size limits the use of the shaded 
area above the squares. However, that area can be set free for 
another winding thus improving the overall fill factor. The 
case shown in Fig. 2.d, illustrates, how the fill factor of a 
winding is reduced if not all squares are utilized as a turn. Fig. 
2.e, illustrates how an optimum winding solution could look 
like if 18 turns were needed and the width of the square was 
optimum in terms of skin depth. Note that non-square 
horizontal area is utilized as spacing between the layers. The 
spacing distance is swept in order to balance the transformer 
parameters and the converter performance.  

In Fig. 3, a flowchart of the dynamic transformer winding 
design is shown. The gray arrows point to a set of variables 
that are calculated during each iteration viz, squares per 
column (SqColumn), squares per row (SqRow), total squares 
(SqTotal), squares in parallel (SqParallel), number of layers 
(NLayers),  total squares used (SqUsed), last or final layer fill 
factor (FFLastLayer) and spacing between the layers (SpaceLayers). 
These variables are calculated from the equations (1)-(9). As 
explained earlier, the design phase starts by defining a square 

sized based on the allocated height for a given winding. Then 
important information about how many squares that can fit 
into the available area is calculated. The actual number of 
squares used to construct the winding is then determined 
based on the number of turns needed. The calculated variables 
are saved if the fill factor of the final layer is above 85 
percent. This limit is implemented since the calculations of the 
transformer parameters are based on fully occupied layers. 

,Sq H nW W i= ⋅ ⋅α                                          (1) 

where the variable i varies from 1 to 0 in small steps. 

,H n
Column

Sq

W
Sq floor

W

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠

α
                                (2)                    

 
Figure 3. Flowchart of dynamic winding design. 

 
Figure 4. Results of the dynamic winding design for optimized core. 
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w
Row

Sq

WSq floor
W

⎛ ⎞
= ⎜ ⎟⎜ ⎟

⎝ ⎠
                                     (3) 

Total Column RowSq Sq Sq⋅=                                   (4) 

Total
Parallel

SqSq floor
N

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                              (5) 

where N is the number of turns of that particular winding for 
which the dynamic winding design is applied. 

Used ParallelSq N Sq= ⋅                                      (6) 

Used
Layers

Row

SqN ceil
Sq

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
                                   (7) 

 Last Layer
Row Row

N NFF floor
Sq Sq

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

                      (8) 

( )
,

1
H n layers sq

Layers
layers

W N W
Space

N

−
=

−
                        (9) 

In the above equations ceil(x+Δx)=x+1 and floor(x+Δx)=x 
with 0< Δx<1. 

B. Estimation of transformer parasitics and comprehensive 
loss model 
The outputs of the dynamic transformer design are used to 

calculate the transformer parasitics [12] such as DC and AC 
resistances, leakage inductance and self-capacitance. The loss 
model has been verified in [12]. In this paper, the winding loss 
calculations are calculated accurately, since the primary and 
secondary currents are 180° out of phase.  

1) Flyback transformer winding loss during charge 
process: 

The high voltage bi-directional flyback converter proposed 
in [6], [12], operates in boundary conduction mode (BCM) 
with variable switching frequency during the charge process 
and in discontinuous conduction mode (DCM) during the 
discharge process. The winding loss in a flyback transformer 
is calculated using the MMF analysis presented in [22]. For 
the winding loss modeling, a non-interleaved transformer with 
2 layers on the primary side and 5 layers on the secondary side 
is considered as an example. The MMF distribution in a 
flyback transformer is different from that of a normal 
transformer [22]. Fig. 5 shows different MMF distributions 
during both turn-on (0<t<ton) and turn-off (ton<t<toff) periods in 
a non-interleaved flyback transformer. The magnetizing 
current and the time variation of the MMF at the boundary of 
each layer during the charging process are shown in Figs. 6 
and 7, respectively. As the output voltage increases, the 
magnitude of the minimum negative current -Imin, in Fig. 6 
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Figure 7.  MMF distribution of the non-interleaved (P-P-S-S-S-S-S) 

structure with respect to time during the charge process. 
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Figure 5. MMF distribution of the non-interleaved (P-P-S-S-S-S-S) structure 
with respect to space (secondary winding is wounded on the bobbin first). 
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Figure 6.  Magnetizing current during the charge process. 
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increases with the switching frequency during the charge 
process [6], [12].  

In Fig. 7, since the negative MMF is presented at the end 
of each switching cycle for very short time compared to the 
switching period, it can be neglected in the loss calculation. In 
Fig. 5, Np1 and Np, are the number turns in the primary layer 1 
and the total primary turns. The terms N1, N2, N3, N4, N5 are 
defined as follows: N1=Ns1, N2=Ns1+Ns2, N3=Ns1+Ns2+Ns3, 
N4=Ns1+Ns2+Ns3+Ns4, and N5=Ns1+Ns2+Ns3+Ns4+Ns5=Ns where 
Ns1, Ns2, Ns3, Ns4, Ns5 and Ns are the number of turns in the 
secondary layers 1, 2, 3, 4, 5, and total secondary turns, 
respectively.  

The magnetizing current and the time variation of the 
MMFs at the boundary of each layer during the discharging 
process are shown in Figs. 8 and 9, respectively. Even though 
the magnetizing current is negative during the discharging 
process compared to that in the charging process, for the 
convenience the MMF waveforms are drawn as positive (since 
the power loss is a function of square of the MMFs, see (10)).  

The MMF distribution in each transformer winding layer 
in the time domain is decomposed into sinusoidal harmonics 
by Fourier series analysis. The power loss is then computed 
for each harmonic, and the power loss densities over all 
harmonics are summed to find the power dissipated in each 
layer. The corresponding loss model in each layer (Player) is 
given by [22], [23] 
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Fi(h) and Fi(0) are the MMF amplitudes of the ith harmonic at 
x=0 and x=h respectively, assuming h as the thickness of each 
layer, with the suffix i being the harmonic number. For 
example for layer 1, Fi(h)=F1 and Fi(0)=F0; for layer 2, Fi(h)= 
F2 and Fi(0)=F1, and so on. Rlayer is the resistance of each 
layer, Tl is the number of turns in each layer, δi is the skin 
depth of the conductor material, εi is the ratio of conductor 
diameter to the effective skin depth, G1 and G2, which are 
functions of εi, are given by (13) and (14) [22]. 

The amplitude and phase of ith harmonic of the MMF during 
the charge process are given by 

2 2
i i iF a b= +                                         (15) 
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( ) ( )0i i hΔ = −θ θ θ                                         (17) 

The coefficients of the Fourier series of each MMF, during the 
charging process are given by 
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Figure 8.  Magnetizing current during the discharge process. 
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Figure 9.  MMF distribution of the non-interleaved (P-P-S-S-S-S-S) 
structure with respect to time during the discharge process. 
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where wiC the frequency of the ith harmonic, TsC is the 
switching period, and α1C, α2C are the on-time and off-time 
slopes of the corresponding MMFs, during the charging 
process, respectively. Fi1, Ff1, Fi2 and Ff2, are the initial and 
final MMFs of the MMF waveform during the turn-on and 
turn-off processes, respectively. 

The expression for the total winding loss in a flyback 
transformer during the charge process is  

( )
, ,

2 2
, , , layer

1

ls lp

DC P DC S

n n

winding flyback DC P DC S
k

P I R I R P k
+

=

= + + ∑      (21) 

where nls, nlp, IDC,P, IDC,S, and RDC,P , RDC,S are the number of 
primary, secondary layers, primary, secondary DC current, 
primary, secondary DC resistances, during the charge process, 
respectively. 

2) Flyback transformer winding loss during discharge 
process: 

The winding loss during the discharge process is 
calculated similar to that of the charge process, hence 
equations are avoided.  

C. Evaluating simulated results 
Table 2 provides a comparison of the smallest core (D1) 

and optimized core (D2) designs. Dynamic winding design 
discussed in Section 2 has been employed for both designs D1 
and D2. All losses in the bi-directional flyback converter have 
been calculated in Matlab. For the winding loss calculation, 30 
harmonics are considered. 

The minimum turns ratio is calculated using the following 
equation 

( )
( )min

1 2

out HVdiodedropp

s BVpri in

V VN
n

N V  V

+
= >

⎡ ⎤β β −⎣ ⎦
                (22) 

where Vin, VHVdiodedrop, Np, Ns, β1, and β2 are the input voltage, 
high voltage diode drop, number of primary and secondary 
turns, leakage factor for primary, and margin factor for 
primary MOSFET drain to source voltage, respectively. The 
constants, β1 and β2 are chosen as 1.75 and 0.8, respectively, 
which results nmin as 25. In the optimized core, for primary 
winding TEX-E triple insulated winding has been used. For 
the smallest core, normal wire with single insulation is used, 
as the triple isolated wire has an insulation thickness of 0.2 
mm, due to which lower diameter wire needs to be used for a 

TABLE III.  ENERGY LOSS DISTRIBUTION FOR D1 AND D2 

Different energy losses 
in the bi-directional 

flyback converter (mJ) 

Charging  
Elossc (mJ) 

Discharging 
Elossd (mJ) 

Total 
(mJ) 

During charging: 
Output energy 
Eout = 1250 mJ; 

ηcharge=Eout/(Eout+Elossc) 
During discharging: 

Input energy 
Ein= 1250 mJ; 

ηdischarge=(Ein-Elossd) /Ein 

D1 D2 D1 D2 D1 D2 

Energy loss due to 
transformer paracitics 371.6 105.8 426 96 798 201.8 

Winding loss due to 
resistance 31 12.3 3.75 2.37 34.8 14.67 

Loss due to leakage 
inductance 126 25.7 284 56.4 410 82.1 

Capacitive switching 
loss due to self-

capacitance 
207.6 57.1 132 37.3 340 94.4 

Core loss (Power loss / 
switching frequency) 7 10.7 5.96 13.9 13 24.6 

Converter energy 
losses 65.4 58.7 168 154 

233 212 

Primary MOSFET 
conduction loss 6.1 6.1 -- -- 

Secondary MOSFET 
conduction loss -- -- 6.97 7.4 

Primary MOSFET 
switching loss 44 38.5 -- -- 

Secondary MOSFET 
switching loss -- -- 129 115 

HV diode conduction 
loss 2.3 2.5 -- -- 

Primary body diode loss -- -- 14.3 16 

Gate drive loss 1 0.9 0.4 0.3 

IC power consumption 9.5 8.2 16.8 15 

Loss due to primary 
current sense resistor 2.5 2.5 -- -- 

Total energy loss 437 164.5 594 250 1031 413.8 

 Energy efficiency (%) 74 88.43 52.3 80 39 70.8 

TABLE II.  DESIGN SPECIFICATIONS FOR D1 AND D2 

Design specifications: 
Vin=24V; Vout=2500V; 
Cout=400nF;Bsat=0.3T;  

 Tch=50ms 

D1 D2 

Primary MOSFET 
 

IPB600N25N3 G 
250V, 25A, 60 mΩ 

 
IPB600N25N3 G 

250V, 25A, 60 mΩ 
Core type E16 PQ 20/20 

Core volume 750 mm3 2850 mm3 
Total turns primary / 

secondary 29 / 720 12 / 300 

Layers primary / 
secondary 2 / 8 1 / 4 

Turns per layer of  
primary / secondary 15 / 90 12 / 75 

Wire diameter 
Primary/ secondary 

0.4 mm / 
0.1 mm 

(0.5+0.2) mm / 
0.143 mm 

Primary magnetizing 
inductance 40 µH 44 µH 

Peak primary current 
charge / discharge 4.24 A / 5.3 A 4.24 A / 5.3 A 

Space allocation 
secondary (α) 0.6 0.8 

Spacing between the 
secondary layers  (mm) 60 µm 0.9 mm 

Transformer weight 35 grams  120 grams  
Transformer maximum 
temperature rise (°C) 71 30 
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given window width. But that results in higher DC resistance 
for the primary winding and may exceed the transformer 
temperature limit. Figure 10 shows the charging and 
discharging energy efficiency variation at 2.5 kV output 
voltage with respect to different core volumes. The core 
which has reasonably good energy efficiency with low 
volume is selected as the optimized core. From Fig. 10, the 
core which has a volume of 2.85 cm3 is selected as an 
optimized core which is PQ 20/20. The smallest core is E 16, 
and is selected as the core which has low volume and whose 
temperature doesn’t exceed the maximum temperature limit. 

III. EXPERIMENTAL RESULTS 
The comparison of the measured and calculated charging 

energy efficiency for the smallest and optimized cores is given 
in Fig. 11. Figure 12 shows the comparison of the measured 
and calculated discharging energy efficiency for the smallest 

and optimized cores. The experimental prototype of the bi-
directional flyback converter is shown in Figure 13. Table 3 
shows the loss distribution of the optimized and smallest core 
designs, from which it is clear that the total losses due to 
transformer parasitics for design D1 is higher than that of D2, 
and the other losses from the converter remains the same for 
both designs. Comparison of measured and calculated 
transformer parameters, and resonant frequencies for both 
designs are provided in Table 4. The loss distributions of the 

 
 

Figure 11. Comparison of calculated and measured charging energy 
efficiencies for optimized PQ 20/20 and smallest core E16 

TABLE IV.  COMPARISON OF CALCULATED AND MEASURED 
TRANSFORMER PARAMETERS FOR DESIGNS D1 AND D2 

Parameter D1 D2 
Meas. Calc. Meas. Calc. 

Leakage inductance 
referred to primary 
(secondary shorted) 

3.3 µH 3.22  µH 857 nH 804 nH 

Leakage inductance 
referred to secondary 

(primary shorted) 
2.23 mH 2.14 mH 550  µH 502  µH 

Self-capacitance of 
secondary without core 

(primary opened) 
18.61 pF 16.24 pF 3.06 pF 3.3 pF 

Self-capacitance of 
secondary with core 

(primary opened) 
21.62 pF 18.1 pF 6.23 pF 5.5 pF 

DC resistance of 
primary 

(secondary opened) 
182 mΩ 186 mΩ 74 mΩ 58.8  

mΩ 

DC resistance of 
secondary 

(primary opened) 
44 Ω 46.54  Ω   18.2 Ω 15.3  Ω 

AC resistance referred 
to primary at 100 kHz 
(secondary shorted) 

370 mΩ 463  mΩ 125  mΩ 108  
mΩ 

AC resistance referred 
to secondary at 100 

kHz (primary shorted) 
190 Ω 358  Ω 73.6  Ω 68  Ω 

AC resistance of 
primary at 100 kHz 
(secondary opened) 

2.45 Ω -- 190  mΩ -- 

AC resistance of 
secondary at 100 kHz 

(primary opened) 
242  Ω -- 85  Ω -- 

Primary resonance 
frequency with core 217 kHz -- 335 kHz -- 

Secondary resonance 
frequency with core 238 kHz -- 360 kHz -- 

Secondary resonance 
frequency without core 776 kHz -- 1.08 

MHz 

 
-- 

 

 
                                                                    

Figure 10. Calculated optimized efficiency at 2.5 kV vs. core volume. 

 
 

Figure 12. Comparison of calculated and measured discharging energy 
efficiencies for optimized PQ 20/20 and smallest core E16 

 

 
 

Figure 13. Experimental prototype of the bi-directional flyback converter 
with ETD 29 transformer  
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optimized design during charge and discharge processes are 
shown in Figs. 14 and 15, respectively. 

IV. CONCLUSIONS 
In this paper, a new dynamic transformer winding design 

concept is introduced. An optimization algorithm for 
minimizing the total energy loss of a bi-directional flyback 
converter for a high voltage capacitor charging application is 
presented. Winding loss calculation for a flyback transformer, 
with a simple non-interleaved structure is discussed. The 
proposed optimization technique is experimentally validated 
on a bi-directional flyback converter, and high efficiency 
(>90%) is achieved during the charge process. The proposed 
dynamic winding design can be easily extended to other 
transformer structures and for other applications. 
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Figure 14. Energy loss distribution during charge process with  
optimized core. 

 
 

Figure 15. Energy loss distribution during discharge process with 
 optimized core.  
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Abstract-In a bi-directional DC-DC converter for 

capacitive charging application, the losses associated with 

the transformer makes it a critical component. In order to 

calculate the transformer losses, its parameters such as AC 
resistance, leakage inductance and self capacitance of the 

high voltage (HV) winding has to be estimated accurately. 

This paper analyzes the following losses of bi-directional 

flyback converter namely switching loss, conduction loss, 

gate drive loss, transformer core loss, and snubber loss, 

etc. Iterative analysis of transformer parameters viz., AC 
resistance, leakage inductance and stray capacitance of the 

HV winding will lead to a considerable reduction in 

converter losses. In this work, a 24 V to 2.5 kV bi

directional flyback converter has been implemented and 

the same has been used for loss calculation. 

Keywords- high voltage bi-directional converter, capacitive 
load, AC resistance, core loss, stray capacitance, leakage inductance 

I. INTRODUCTION 

High voltage switch mode power converters are used in a 
wide variety of capacitive charging applications. Typical 
applications include pulsed lasers, dielectric electro active 
polymer (DEAP) actuators, pulsed sonar equipment, photo 
flash systems, electric fences, and plasma research. Our 
research focus is to develop high voltage DC-DC power 
supplies as a driving mechanism for DEAP actuator 
applications [1]-[4]. 

The DEAP material requires a high electric field strength of 
60 VI pm and the thickness of polymer film is 40 pm therefore, 
a high voltage is needed for the DEAP actuator (is a pure 
capacitive load with very low leakage current) to achieve a 
reasonable actuation stroke. Thus specific component used in 
this study requires high voltage in the range of kilovolts (� 2.5 
kV) at relatively low current. However, with the advanced 
research and development in high voltage devices like 
MOSFETS and diodes, it is possible to implement efficient and 
compact high voltage drivers, to drive and fulfil the 
requirements of DEAP actuator applications. An incremental 
DEAP actuator (Fig. I) which consists of 3 sub-actuators (2 
grippers and 1 extender), is the load which needs to be driven 
by high voltage DC-DC converters. 

Danish National Advanced Technology Foundation (sponsor). 
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The common goals of high voltage DC-DC power supplies 
are reliability, high efficiency, low cost, size and weight. The 
fly back topology is suitable for low power « 150 W) and high 
voltage applications, as it can be made very compact with a 
low number of components. The magnetic transformer is the 
most critical component in the HV fly back converter, its 
leakage inductance causes undesirable voltage spikes, and 
winding capacitance result in the undesirable current spikes, 
distortions in the waveforms of the converter, and slow rise 
times. These non-idealities in the transformer can lead to 
increased capacitive switching loss, snubber loss, winding loss 
due to skin and proximity effects, and variable core loss at 
high and variable frequency of operation, which might lead to 
reduced converter efficiency and reliability. So, accurate 
estimation of the transformer parameters, and individual losses 
in the converter are required to achieve an optimized design 
for this demanding application. 

Fig. I. Incremental DEAP actuator. 

The converter efficiency can be improved by optImlzmg 
the whole converter design as well as with the proper selection 
of the control strategy. There is only limited research available 
in the literature, for an in depth optimization of a flyback 
transformer for the capacitive load charging and discharging 
application. In the future an efficiency optimization for this 
application will be carried out as an extension to the present 
research work. 

This paper is organized as follows. Section II describes the 
estimation of the HV transformer parameters. Section III 
summarizes the power loss modelling. Section IV discusses the 
details of the HV transformer design and the calculations are 
validated with measured data. Section V shows the 
experimental and simulation results, followed by the 
conclusion in Section VI. 



II. HV TRANSFORMER PARAMETERS ESTIMATION 

A. DC and AC resistances 
An increase in the switching frequency of the converter 

increases the transformer winding losses due to the skin and 
proximity effects. Since the converter operates under 
boundary mode during charging and in discontinuous 
conduction mode (DCM) during discharging, the AC 
conduction loss cannot be ignored and may dominate the total 
winding loss. The AC conduction loss is caused by high 
frequency skin and proximity effects, as well as the fringing 
effect. Due to its complexity fringing effect is not considered 
in this paper. 

The DC resistance of the primary winding can be 
calculated by 

pl]p 
A = trd/ (1) RDep 

=A; ' p 4 

where, p is the resistivity of copper at room temperature, 

N p is the number of primary turns, ITP is the total length of 

the primary winding, and d p is the diameter of the primary 

winding. 

The AC resistance of each harmonic in the current 
waveform can be calculated as [4], [5], 

FH"" = RAe? = F. + F = c I 
I, ,')'kin ?rox G P 'V n R;x'p 

(2) 

where, n is the harmonic number, mp is the number of layers 

of the primary winding and t: l' is the primary winding 

conductor thickness normalized with respect to the conductor 
skin depth at the switching frequency for a round conductor, 
51' is the skin depth at the fundamental frequency, and dj is 

Ida 
the porosity factor of the primary winding. 

B. Leakage Inductance 

In the tlyback converter the leakage inductance causes 
voltage spikes on the drain of low voltage and the high voltage 
MOSFETs, and may cause significant loss if the fly back 
transformer is not properly designed. 

1) Without interleaving: The leakage inductance for the 
winding structure shown in Fig. 2a referred to primary is 
calculated using the energy stored in the magnetic field. 

I f I 2 
E =- B· H ·dv =-L 1 Mag 2 2 1kpk 

Vol 
(3) 

The general expression for the leakage inductance referred to 
the primary winding for a non-interleaving winding structure 
having nip primary layers and nls secondary layers (with equal 

turns per layer) is derived in this work and is given by 
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L - �N 2 Ikp - flo b I' 
If 

nlphp +nlsh, + (2n1P -1)(nIP -1)( h,p J 3 6 l nip 

+ (2nj, -II ( nj, -1) ( �: J + hi 

(4) 

where flo is the permeability of free air, lw is the mean length 

turn (ML T), bw is the width of the bobbin window excluding 

the edge isolation tape width, nip / nls IS the number of 

primary/secondary layers, and hiP / his IS the insulation 

thickness between the primary/secondary layers, and hi is the 

insulation thickness between the primary and secondary 
layers, and Np is the number of primary turns. 

The leakage inductance of transformer for the structure shown 
in Fig. 2 referred to primary is given by [6], [7] 

(5) 

MMF Distribution 
"F /' 
in"s'ulat(5r" 

� rl!latO'r" fN,I, /' 
h"S3- /' 

i insulator 
p"""-- -� NJ: --
i insulato'r" 

� ./ 
InsulatO'r" �N, 

rrsS- /' 
� a) b) 

Fig. 2. Analytical MMF distribution for non-interleaving structure P-S-S-
S-S-S (left) and interleaving S-S-S-P-S-S (right) structure. 

2) With interleaving: Practical experience revealed that 
interleaving the primary and secondary windings reduces the 
leakage inductance, self capacitance, and increases the 
interwinding capacitance. A transformer that is used in the HV 
application will have a lot of secondary windings, the 
interleaving structure with the secondary windings 
sandwiched between the primary winding as shown in Fig. 2b 
is typical for the high voltage DC-DC converter application. 

The general expression for the leakage inductance referred 
to the primary, for an interleaving winding structure where 
n/,) and nls2 secondary layers are at the top and bottom of a 
primary winding respectively, having nip primary layers (with 
equal turns per layer of both, and no insulation between the 
primary layers) is derived in this work and is given by 

flJwN/ L ----'--Ikp - bw 

(6) 



The leakage inductance of the HV transformer for a simple 
interleaving structure shown in Fig. 2b is calculated using (7). 

J..l o lw. 2 [ 7hp+35h, 6 .  13 . ] L =--N +-h +-h (7) /kp 2 b p 75 25 " 25' w 

C. Stray Capacitance 

The stray capacitance is another important parameter in the 
HV transformer because it contributes to capacitive switching 
loss. The stray capacitance is calculated using the energy 
stored in the electric field [8] 

1 f 1 2 E =- D·E·dv =-c.t.V }o.le 
2 2 Vol 

... ____________ --'?w ____________ � 

(8) 

Fig. 3. Voltage distribution in the secondary HV winding with the layers 
wounded in the same direction 

The turn to turn capacitance per unit length of the non
interleaved HV winding with a round conductor is given by 

(9) 

where S=COS-l l1- :
r 

In l� JJ ' £0  is  the aIr permitivity, 

lOr is the dielectric constant of the insulation of the winding, 

do / dj is the outer/inner diameter of the HV winding 

conductor. The layer to layer capacitance is given by 

C =0J0,+1)(20,+I) CI ILl 6T 2 "If w 
/,.\" 

(10) 

where �s is the turns per layer of the HV winding. 

The self capacitance of the HV winding for the 
configuration shown in Fig. 3 is given by 

winding 

c. = CUI ( n -1/2J
2 

51 4 Is l nt., 
For the HV winding structure shown in Fig. 4, the layer to 
layer capacitance is given by [9], [10] 

� 

o -J I==---=------,,=---=� _ J - CU2 

Fig. 4. A random HV winding arrangement 

( I I  ) 
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distance between the two layers, d, is the spacing between 

the centers of adjacent turns. The self capacitance of the HV 
winding for the winding structure shown in Fig. 4, and with 
the winding connections as shown in Fig. 3 is given by 

(13) 

D. Trade-off between AC resistance, leakage inductance and 
stray capacitance for HV application 

301--;==-==r==;:r===:r:::==r==::I===:;-r--�j ·.10 times of Leakage Inductance (�H) • !'! 25 •• HV winding capacitance (pF) using (11)' l 2 •• HV winding capacitance (pF) using (13) I· � 20 '* 1/10 th of AC resistance (ohm) " ro .' � 1 \ .. , . i .l .... �:I:�....::;;t:!. .. -. 
(; 101 '� ... 11= •• -•• _ .......... -,,·_,,· .. •• 
� � . . ......... . 
� 5 ................ ::.: ...... : . .. �.� .. ���������j(o,ij�J 

85 0.55 0.6 
, , 

0.65 0.7 0.75 
Porosity Factor 

0.9 

Fig. 5. Trade-o±Ibetween the primary leakage inductance, secondary stray 
capacitance and the secondary AC resistance with a change in the porosity 
factor (d/do). 

Fig. 5 shows the trade-off between the transformer 
parameters by changing the porosity factor. To show all the 
parameters in a single plot, the leakage inductance is 
multiplied by 10 and the AC resistance is divided by 10. The 
porosity factor (d; /do) is changed from 0.95 to 0.5 and the 
calculated parameters are shown in Fig. 5. It is observed that 
the AC resistance increases, and the self capacitance of the 
HV winding drops as the porosity factor is decreased. 

III. Loss MODELING OF THE CONVERTER 

In order to investigate the bi-directional converter 
efficiency, it is necessary to estimate the losses associated 
with each one of the circuit components in the converter. The 
schematic of the bi-directional fly back converter is shown in 
Fig. 6. The detailed analysis of the same converter is discussed 
in [13]. Different losses contributed from the transformer of 
the bi-directional flyback converter are given below. 

A. Transformer winding loss 

The tlyback converter operates in boundary mode with 
variable switching frequency, while charging the capacitive 
load [13]. The primary winding power loss is given by [5] 

2 I � 2 PWP=RDCpI DCP+ ""2RDCP-;2 FRP,/pn (14) 

By applying the Fourier series expansion for the primary 
current waveform shown in Fig. 7 the following equations are 
obtained: 



I =(lpk-lrnin)D Dcr 
2 

onC 

Irn = �a n2 +bn2 

Fig. 6. Bi-directional flyback converter for capacitive load [13] . 

ON 
Ipk1' OFF 

�r-----�------� t Tsc 

(15) 

(16) 

Fig. 7. Primary current waveform while charging the capacitive load. {�. I,�+�m } 
----l!2!!2... sin (2JrnD _)+ X one 2 2 an = Jrn 2Jr n DonC 
[cos (2Jrn Donc ) -1 + (2JrnDonc ) sin (2Jrn Donc ) ] {I . ( ) I"k +Imin } ---'!"!!..-cos 2JrnD _ + X on! 2 2 2D bn = Jrn Jr none [sin (2JrnDonc ) -(2JrnDonc ) cos (2JrnDonc ) ] 

(17) 

(18) 

where I Dcr' I pkJ" Imin, RDCl" I RMsr and RACT are the primary 

winding DC current, peak current, negative current at the 
beginning of the turn-on process, DC resistance, rms current, 
and AC resistance (given by (2)) respectively. Irn is the 

current amplitude of the nth harmonic. DonC is the on-time 

duty cycle during charging process. The secondary winding 
power loss can also be calculated using the above approach. 

The negative current at the beginning of the turn-on 
process (Fig. 7.) is because of the HV winding capacitance. 
When the secondary winding current becomes zero, the drain 
to source voltage tends to drop. Since the control IC L T375 I 
[14] that is used, operates under boundary mode control, the 
next switching cycle starts before the HV winding capacitance 
completely discharges. So current flows in the negative 
direction to discharge the HV winding capacitance at the start. 

B. Transformer core loss 

The core loss calculation during the charging process needs 
to take care of the variable switching frequency of operation. 
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The most commonly used expression for the time-average core 
loss calculation per unit volume, for the sinusoidal excitation is 
the Steinmetz equation given by 

Pv = kr (�%)fi (19) 

Bdt 

Fig. 8 .  Flux density waveform during the charging mode. 
BD(t) 

ON 
� __ -' __ -+ ____ �� ______ '-____ I'�t 

Cycle2 
Fig. 9 .  Flux density waveform during the discharging mode. 
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The core loss per unit volume due to non-sinusoidal 
excitation is calculated using the improved generalized 
Steinmetz equation (IGSE) [10] which is given by 

Pv = � fki � (Ml-U dt ,k, = 'If 
k IT I d ( )lrI l T 0 dt (2JZ" )"-' f leos Blu 2fl-u dB 

(20) 

where k , a and fJ are the constants provided by the 

manufacturer, M is the peak-to-peak flux density of the 
current excitation. The angle e represents the phase angle of 
the sinusoidal waveform. Figs. 8 and 9 show the flux density 
waveforms during charging and discharging modes. 

The core loss per unit volume during the charge operation 
in each switching cycle is given by 

P.e = ;c [( BrnC + Bne l' . tonel-a, + Bm/' . to{Jcl-a, ] (21) 
I" e 

Similarly the core loss per unit volume during the discharge 
operation in each switching cycle is given by 

k B fiD 
P = ID rnD [t I-aD + t I-aD ] vD T onD orfD sD 

(22) 

with kic, fJc' ac' Tic, Bme, tonc' toiTC / kiD' fJD' aD' T,D' BrnD, tonD' toJjD 
as the core loss constants, switching period in each cycle, peak 
flux density, on-time and off-time in each switching cycle 
during charging/discharging modes respectively. 

C. Losses in the bi-directional flyback converter excluding 
the magnetic losses 

Different losses associated with the bi-directional flyback 
converter are provided in Table I. The loss distribution can be 
made after calculating all those losses. The results of the loss 
analysis are shown in Section V. 



TABLE I. DIFFERENT LOSSES IN THE BI-DIRECTIONAL FLYBACK CONVERTER DURING CHARGE AND DISCHARGE OPERATIONS 

Type of power loss 

Low voltage MOSFET 

Switching 
loss 

HV MOSFET 

Low voltage MOSFET 

Sense resistor on the 
primary side 

HVMOSFET 
Conduction 

loss 

HV 
Diode D2 

diode 
Diode Db 

Body diode of low 
voltage MOSFET 

Reverse recovery loss 
ofHV diode 

Gate driver loss 

RC snubber across 
primary MOSFET 

Snubber loss 
RCD snubber across 
secondary winding 

Power consumption in the two control 
Ie's 

Power loss expression 

P . = fmc l ( Cw" + C""" ) + J .",1' 2 �"plp"pc (tif + t,.,. ) 

J n l(CwS +Co"s )��p +] 
P =---""---
,,11 2 I( )  V:t.,,-, pkSD t,r + tlW 

P = ,p 

J ' .  ,�I�c (D'"'�C-" J +�" (JLJ 
ll,\f;,n 

3 T,c 3 T,c 
P . -sensel'C -

P �I!\1sPDr" w""PD - 'wowP 

?'s = I �;"",r", 

= I�k)/) D 3 UIID 

�D� = + rDfl�Hssc 

�IJb = Vii) I TX'sn + rnI�,\lssTJ 

�HTJ.\.11 = fTXPTJ 

P" e = Q, (V"", + n �n ) 1", 
1+1" 

Q". = f -t, dt 
, 

PCate = Vcs (QCM 2 fsjjD + QCMl /;WC ) 

p.\'IIrn" 

p -
mLV -

= 1.. L [' v"omp 
2 lC' pC") V, -nV I",n 'dm." m 

PCa,'",,,,, = 2�JQ 

Abbreviations 
The subscript 'P' / 'S' or 'C' / 'D' in any variable represents 
that variable is being referred to primary / secondary side or 

that variable during charging and discharging modes 

Cw,,/Cws - self capacitance of the transformer 

pri mary/secondary 
- output capacitance of the primary/secondary 

MOSFET 

�};P/Vd,S - primary/secondary MOSFET 

voltage 

V =V +�'i ' d,P In n ' �," = Va., + n v'. 

drain to source 

Jwc / JW/J - switching frequency during charging/discharging 

operation 
n - turns ratio of the transformer from secondary to primary 

t;f / t" - current fall/voltage rise transition times of the 

corresponding MOSFETs 

,/, - on-resistance of the primary/secondary MOSFET 

- primary/secondary rms current during charging 

mode 

J RMSPD / I RMSSD - primary/secondary rms current during 

discharging mode 

1m", - negative current at the beginning of the turn-on process 

VI" - HV diode forward voltage drop 

I DCSC / I RMSSC - average/nns current through the HV diode 

D, during charging 

IDCSD / I RMSS D - average/nns current through the HV diode Db 

during discharging 
rD - HV diode on resistance 

Vi", - forward voltage drop of body diode of M 
IDCPD - average current through primary during discharging 

Done / Donn - on-duty cycle during charging/discharging 

Q" /t,, - reverse recovery charge/ti me in the high voltage 

diode D2 

i, - secondary current, 
V,,,,, /V;, - outputlinput voltage of flyback converter 

v,JS - gate drive voltage of the MOSFET 

QGJL/QGM, - gate charge for high voltage/low voltage 

MOSFETS 

Cm -snubber capacitance in the RC snubber 

- clamping voltage of the RCD snubber 

V" - 1 C supply voltage 

I Q - quiescent current of V,., 

IV. HV TRANSFORMERDESIGN: COMPARISON OF 

MEASUREMENTS AND CALCULATIONS 

Since the proposed DC-DC converter operates in a wide 
output voltage range (0-2.5 kV), to charge and discharge the 
DEAF actuator employed in a specific application, different 
components of the converter have to be designed for different 

operating points. High voltage capacitor charging application 
requires proper design of the transformer, otherwise significant 
amount of energy is lost and efficiency will suffer. 
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The parameters that significantly affect the efficiency of the 
converter for capacitor charging application are the peak 
current, MOSFET type, transformer type and size, magnetizing 



inductance, the turns ratio, air-gap length, AC resistance, 
leakage inductance, and HV winding capacitance. 

V. EXPERIMENTAL AND SIMULATION RESULTS 

The specifications of the bi-directional fly back converter 
and the components used in it are provided in Tables II and III 
respectively. The fly back transformer parameters are shown in 
Tables V. The experimental prototype is shown in Fig. 11. A 
boundary mode controller L T3751 has been used for 
performing both charging and discharging operations. The bi
directional fly back converter charge and discharge cycles are 
controlled using a microcontroller. Table IV presents the 
components used in the bi-directional tlyback converter. Fig. 
10 shows the comparison of the calculated and measured 
charging and discharging energy efficiencies of the converter. 
The energy efficiency definitions can be obtained from [13]. 
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Fig. 10. Comparison of the experimental and the calculated charging and 
discharging energy e±Iiciencies tor a non-interleaved transformer. 

TABLE I! BI-DIRECTIONAL FL YBACK CONVERTER SPECIFICATIONS 

Parameter Value 
Input voltage 24 V 

Output voltage 0-2500 V 

Stored energy in the load at 2. 5 kV 
0.625.1 

output voltage 

Capacitance of the film capacitive load 200 nF 

Primary peak current during 4.24 A / 
charging/discharging 5. 3 A 

TABLE III. COMPONENTS USED IN THE BI-DIRECTIONAL FLYBACK 
CONVERTER 

Component Name 
Low voltage MOSFET STB50NF25 [250 V, 45 A, 55 mOl 

HV MOSFET IXTV03N400S r4 kV, 300 mA, 290 01 
HV diode SP5LFG [5 kV, 400 mA, 50 ns(t,,)] 

Film capacitor load WIMA [200 nF , 3 kV] 
Analog control IC LT 3751 

TABLE IV. COMPARISON OF HV TRANSFORMER PARAMETERS 

Parameter Calculation Measurement 
DC resistance of 

secondary winding of 23 27. 5 
trans±onner (0) 

Leakage inductance of 
primary winding of 1.09 1.11 

transformer (JlH) 
Self capacitance of Eq. (11) I Eq. (13) 16.29 HV winding (PF) 17. 65 I 13. 58 
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TABLE V. FLYBACK TRANSFORMER PARAMETERS WITH NON
INTERLEAVING STRUCTURE 

Parameter 
Flyback transformer core type / Material 

Primary (LmP) / Secondary magnetizing 
inductance (Lms) 

Primary turns (Np) / Secondary turns (Ns) 
Leakage inductance of transformer 

primary (L",r) / secondary (L,kl) 
Secondary winding self (C,) / 

Interwinding capacitance (C,n') 
DC resistance of primary (Rdcp)/ 

secondary winding (Rd •• S) 
Primary (nip) / Secondary layers (n,,) 

Turns per layer of primary (Tip) / 
secondary (h,) 

Each layer primary (hI') / secondary 
winding thickness (h,) 

Insulation thickness between secondary 
layers (h,) 

Insulation thickness between the primary 
layer and the adjacent secondary layer (h) 

Trans±ormer edge isolation tape width 

Dielectric constant of the insulation of the 
HV winding (c,.) 

Fig. I I. Picture of the experimental setup. 

Value 
EF20 / N87 

28 JlH / 15. 3 mH 
16/ 375 

1.11 JlH / 633 JlH 

16.29 pF / 41 pF 

62 mO / 28. 5 0 

I / 5  

16 / 75 

0. 5 mm / 0. 1 mm 

0. 1 mm (Kapton Tape) 

0. 3 mm 
1.6 mm 

So,bw = bw-2x1.6mm 
3. 5 
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.Switc hing loss of 
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Fig. 12. Average loss distribution during charging of capacitive load. 

All loss calculations are done in Matlab. The average loss 
distributions of the bi-directional flyback converter during 
charging and discharging modes are shown in Figs. 12 and 13 
respectively. Fig. 14 provides the comparison of the average 
power losses during charging and discharging modes. The 
peak current of the primary MOSFET has been changed, and 



the charging energy efficiency variation has been provided in 
Fig. 15. In Fig. 16 we show the variation of the energy 
efficiency with the porosity factor. At high porosity factor the 
HV winding capacitance is high, so the discharging energy 
efficiency at 2.5 kV is low compared to that at medium 
porosity factor. However, at low porosity factor, the AC/DC 
resistance increases, so both charging and discharging energy 
efficiencies will drop. 
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Fig. 13. Average loss distribution during discharging of capacitive load. 
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Fig. 14. Comparison of the average loss; On Y-axis, 1 and 2-corresponds to 
power loss during charging and discharging respectively. 
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Fig. 15. 3D plot showing how the peak current affects the charging energy. 
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VI. CONCLUS10N 

The power losses in the bi-directional flyback converter 
for the capacitor charging application has been analyzed in 
detail. Due to the variable switching frequency and non
sinusoidal waveforms, it is very difficult to accurately 
compute the core and winding losses. The core loss was 
accurately calculated during charge and discharge operations, 
using piecewise linear approximation of the IGSE model. 

Estimation of the leakage inductance for a non-interleaved 
structure and an interleaved winding structure has been 
discussed. Stray capacitance calculation for a typical HV 
winding structure is discussed. Trade-off between the different 
transformer parameters has been made with respect to porosity 
factor. Comparison of the measurement efficiency and the 
calculated efficiency shows the accuracy of the proposed loss 
analysis . 

The future work involves the optimization of the whole 
converter with mostly focusing on transformer optimization. 
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