467 research outputs found

    Synthesizing hardware from dataflow programs: An MPEG-4 simple profile decoder case study

    Get PDF
    International audienceThe MPEG Reconfigurable Video Coding working group is developing a new library-based process for building the reference codecs of future MPEG standards, which is based on dataflow and uses an actor language called CAL. The paper presents a code generator producing RTL targeting FPGAs for CAL, outlines its structure, and demonstrates its performance on an MPEG-4 Simple Profile decoder. The resulting implementation is smaller and faster than a comparable RTL reference design, and the second half of the paper discusses some of the reasons for this counter-intuitive result

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    A DSP based SVC IP STB using open SVC decoder

    Get PDF
    International audienceIn this paper, a implementation of a DSP-based IP set-top box (IP-STB) to decode CIF sequences compliant with the new Scalable Video Coding standard (14496-10 Amd 3) using Open SVC Decoder (OSD) is presented. The OSD software, designed for the PC environment, has been integrated into a previously developed IP-STB prototype. About 15 CIF frames per second can be decoded with the IP-STB

    Polymorphic computing abstraction for heterogeneous architectures

    Get PDF
    Integration of multiple computing paradigms onto system on chip (SoC) has pushed the boundaries of design space exploration for hardware architectures and computing system software stack. The heterogeneity of computing styles in SoC has created a new class of architectures referred to as Heterogeneous Architectures. Novel applications developed to exploit the different computing styles are user centric for embedded SoC. Software and hardware designers are faced with several challenges to harness the full potential of heterogeneous architectures. Applications have to execute on more than one compute style to increase overall SoC resource utilization. The implication of such an abstraction is that application threads need to be polymorphic. Operating system layer is thus faced with the problem of scheduling polymorphic threads. Resource allocation is also an important problem to be dealt by the OS. Morphism evolution of application threads is constrained by the availability of heterogeneous computing resources. Traditional design optimization goals such as computational power and lower energy per computation are inadequate to satisfy user centric application resource needs. Resource allocation decisions at application layer need to permeate to the architectural layer to avoid conflicting demands which may affect energy-delay characteristics of application threads. We propose Polymorphic computing abstraction as a unified computing model for heterogeneous architectures to address the above issues. Simulation environment for polymorphic applications is developed and evaluated under various scheduling strategies to determine the effectiveness of polymorphism abstraction on resource allocation. User satisfaction model is also developed to complement polymorphism and used for optimization of resource utilization at application and network layer of embedded systems

    Perceptual Zero-Tree Coding with Efficient Optimization for Embedded Platforms

    Get PDF
    This study proposes a block-edge-based perceptual zero-tree coding (PZTC) method, which is implemented with efficientoptimization on the embedded platform. PZTC combines two novel compression concepts for coding efficiency and quality:block-edge detection (BED) and the low-complexity and low-memory entropy coder (LLEC). The proposed PZTC wasimplemented as a fixed-point version and optimized on the DSP-based platform based on both the presented platformindependentand platform-dependent optimization technologies. For platform-dependent optimization, this study examinesthe fixed-point PZTC and analyzes the complexity to optimize PZTC toward achieving an optimal coding efficiency.Furthermore, hardware-based platform-dependent optimizations are presented to reduce the memory size. Theperformance, such as compression quality and efficiency, is validated by experimental results

    Implementation And Optimizaton Of Real-time H.264 Baseline Encoder On Tms320dm642 Dsp

    Get PDF
    Tez (Yüksek Lisans) -- İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, 2007Thesis (M.Sc.) -- İstanbul Technical University, Institute of Science and Technology, 2007Günümüzde sayısal video kodlama sayısal gözetim sistemleri, video konferans, mobil uygulamalar ve video yayını gibi bir çok uygulamada zorunlu hale gelmiştir. Uluslararası bir video sıkıştırma standardı olan H.264/MPEG-4 bölüm 10, daha önceki standartlara göre kodlama verimini iyileştirmek amacıyla geliştirilmiştir. Fakat, bu kodlama geliştirmesi beraberinde kodlama karmaşıklığının da artmasına yol açmaktadır. Bu tez çalışmasında Texas Instruments TMS320DM642 sayısal sinyal işleyici üzerinde H.264 temel profil kodlayıcı gerçeklenmiştir. DM642 DSP çekirdeği üzerindeki gerçek zamanlı H.264/AVC kodlayıcı uygulaması hata esnekliği araçları ve çeyrek piksel hareket dengeleme dışında standart tüm H.264/AVC temel profil kodlama araçlarını sunmaktadır. Çeyrek piksel hareket dengelem yerine, tüm parlaklılık ve renklik bileşenleri için tam sayı ve yarım piksel pozisyonlarında hareket kestirim ve dengeleme gerçeklenmiştir. Kullanılan DM642 DSP çekirdeği platformu, 2-seviyeli bellek/önbellek aşama düzenine sahip ve VLIW içeren yüksek performanslı sayısal işlemci olarak tasarlanmıştır. Sunulan H.264 temel kodlayıcı sistemin gerçeklenmesi ve eniyilemesi bu tezin konusudur. Üstelik, algoritma bazlı, mimari ve bellek stratejilerini içeren eniyileme çalışma fazları detaylarıyla açıklanmaktadır. H.264/AVC video kodlayıcının hem geliştirme ortamında hem de DM642 EVM donanım ortamında çalışması doğrulanmıştır. Kısaca, kodlayıcı sisteme giriş olan CIF çözünürlükte sıkıştırılmamış YUV video dizisi H.264 Annex-B dosya biçiminde ve de ekrana video çıktı verilerek sıkıştırılmaktadır. Ek olarak, kodlayıcı çıktısı H.264 referans yazılımla doğruluğu kontrol edilmiş ve uyumluluğu kanıtlanmıştır.Recently, digital video coding is mandatory in many applications such as digital surveillance systems, video conferencing, mobile applications as well as video broadcasts. The H.264/MPEG-4 Part 10, an international video compression standard, is developed for improving the coding efficiency compared to previous standards. However, the coding improvement comes with an increase in coding complexity. In this thesis, an H.264 baseline profile encoder is implemented on Texas Instruments TMS320DM642 digital signal processor. The real-time implementation of the H.264/AVC encoder on DM642 DSP core offers most of the standard H.264/AVC baseline profile coding tools except error resiliency tools and quarter-pel motion estimation. Instead of quarter-pel motion compensation, integer and half pixel position motion estimation and compensation for all luminance and chrominance components are implemented. The target platform, DM64 DSP core, is designed as a high-performance digital media processor with two-level memory/cache hierarchy and VLIW architecture. The subject of the thesis is H.264 baseline encoder system realization and optimization on the target platform. Moreover, the study of optimization phases covering algorithmic, architectural and memory strategies are clarified in details. The H.264/AVC encoder system is verified both to execute on the development workstation and DM642 EVM (Evaluation Module) hardware platform. Briefly, the uncompressed input of a YUV video sequence with CIF resolution to the encoder system is compressed to H.264 Annex-B file format and displayed on screen. Additionally, the encoder output is verified with H.264 reference software and the compliancy is proven.Yüksek LisansM.Sc

    Improving data prefetching efficacy in multimedia applications

    Full text link
    The workload of multimedia applications has a strong impact on cache memory performance, since the locality of memory references embedded in multimedia programs differs from that of traditional programs. In many cases, standard cache memory organization achieves poorer performance when used for multimedia. A widely-explored approach to improve cache performance is hardware prefetching, which allows the pre-loading of data in the cache before they are referenced. However, existing hardware prefetching approaches are unable to exploit the potential improvement in performance, since they are not tailored to multimedia locality. In this paper we propose novel effective approaches to hardware prefetching to be used in image processing programs for multimedia. Experimental results are reported for a suite of multimedia image processing programs including MPEG-2 decoding and encoding, convolution, thresholding, and edge chain coding
    corecore