

İSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Ender MERİÇ, B.Sc.

Department : Computer Engineering

Programme: Computer Engineering

JUNE 2007

IMPLEMENTATION AND OPTIMIZATON OF
REAL-TIME H.264 BASELINE ENCODER

ON TMS320DM642 DSP

CORE Metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/62729189?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

İSTANBUL TECHNICAL UNIVERSITY ���� INSTITUTE OF SCIENCE AND TECHNOLOGY

M.Sc. Thesis by

Ender MERİÇ, B.Sc.

 (504041511)

Date of submission : 7 May 2007

Date of defence examination: 13 June 2007

Supervisor (Chairman): Prof. Dr. A. Coşkun SÖNMEZ

Members of the Examining Committee Asst. Prof. Dr. Berk ÜSTÜNDAĞ

 Asst. Prof. Dr. Hasan F. ATEŞ (IÜ.)

JUNE 2007

IMPLEMENTATION AND OPTIMIZATON OF
REAL-TIME H.264 BASELINE ENCODER

ON TMS320DM642 DSP

İSTANBUL TEKNİK ÜNİVERSİTESİ ���� FEN BİLİMLERİ ENSTİTÜSÜ

GERÇEK ZAMANLI H.264 TEMEL KODLAYICININ
TMS320DM642 DSP ÜZERİNDE UYGULAMASI VE

ENİYİLEMESİ

YÜKSEK LİSANS TEZİ

Müh. Ender MERİÇ

(504041511)

HAZİRAN 2007

Tezin Enstitüye Verildiği Tarih : 7 Mayıs 2007
Tezin Savunulduğu Tarih : 13 Haziran 2007

Tez Danışmanı : Prof. Dr. A. Coşkun SÖNMEZ

Diğer Jüri Üyeleri Yrd. Doç. Dr. Berk ÜSTÜNDAĞ

 Yrd. Doç. Dr. Hasan F. ATEŞ (IÜ.)

iii

FOREWORD

A Real-time H.264 baseline encoder realization and optimization on TMS320DM642
digital signal processor is aimed in this master thesis. I would like to thank my
supervisor Prof. Dr. Coşkun SÖNMEZ who gave me a chance for the objective.

Next, I would like to thank to my family, İskender ERBAY, Mehmet GÜNEY,
especially Vestek R&D Corp. for the moral and material supports, and also thanks to
Asst. Prof. Dr. Hasan F. Ateş for his guidance and support in my M.Sc. thesis.

June 2007 Ender Meriç

iv

CONTENTS

ABBREVIATOINS vi
TABLE LIST vii
FIGURE LIST viii
SUMMARY ix
ÖZET x

1. INTRODUCTION 1
1.1. Implementing the H.264/AVC Standard 1
1.2. Literature Survey 2

2. OVERVIEW OF H.264/AVC 5
2.1. Profiles and Levels of H.264/AVC 6
2.2. Coding Features of the H.264 8
2.3. Comparison of the Emerging H.264 Video Coding With Other Standards 12

2.3.1. H.264 Encoder Complexity 13
2.4. H.264/MPEG-4 Part 10 Architecture 14

2.4.1. Network Abstraction Layer (NAL) 14
2.4.2. Video Coding Layer (VCL) 14

2.4.2.1. Intra Prediction Process 15
2.4.2.2. Inter Prediction process 18
2.4.2.3. Coefficient Transform and Reconstruction 19

3. TEXAS INSTRUMENTS TMS320DM642 DSP 21
3.1. Technical Overview of DM642 Core 21

3.1.1. DM642 CPU 23
3.1.1.1. Register Files 23
3.1.1.2. Functional Units 24
3.1.1.3. Register File Paths 24
3.1.1.4. Memory, Load and Store Paths 25
3.1.1.5. Additional Functional Unit Hardware 26

3.1.2. DM642 Cache Architecture 27
3.1.3. DM642 Enhanced DMA (EDMA) Controller 28
3.1.4. DM642 Video Port 29

4. H.264 BASELINE ENCODER SOFTWARE AND DSP ADAPTATION 30
4.1. H.264 Baseline Encoder Software 30

4.1.1. Main Software Flow 31
4.1.2. Coding a Picture 32
4.1.3. Encoding a Macroblock 33
4.1.4. Motion Estimation 35

4.2. The Proposed Encoder Configuration 36
4.3. DSP Implementation 37

4.3.1. DSP Environment Set-up 38

v

4.3.1.1. TMS320DM642 Evaluation Module (EVM) 38
4.3.1.2. Experimental Set-up 40

4.3.2. Code Composer Studio IDE 41
4.3.2.1. DSP/BIOS Real Time Kernel 42

4.3.3. Testing and Verification 44

5. THE PROPOSED H.264 BASELINE ENCODER OPTIMIZATION 45
5.1. Software Optimization 46

5.1.1. Algorithmic Optimizations 48
5.1.1.1. Early Skip Detection 49
5.1.1.2. Motion Search Algorithm 50

5.1.2. C Level Optimization 52
5.1.2.1. Structure and Variable Level Optimization 53
5.1.2.2. Inline Functions 54
5.1.2.3. C level Compiler Intrinsics 54
5.1.2.4. Fast Library Functions 55

5.1.3. Compiler Options for Optimization 57
5.1.4. Linear Assembly 59

5.1.4.1. Linear Assembly of Critical Functions 60
5.1.4.2. Half-Pel Motion Compensation Optimization 63

5.2. Memory/Cache Optimization 65
5.2.1. Internal L2 SRAM Configuration 65
5.2.2. EDMA Controller Usage 67

5.3. The H.264 Encoder Optimization Results 70
5.3.1. The H.264 Encoder Optimization Summary 70
5.3.2. Simulation Results with PSNR and Compression Ratio 72

6. CONCLUSION AND FUTURE WORK 73

REFERENCES 74

AUTOBIOGRAPHY 77

vi

ABBREVIATOINS

AVC : Advanced Video Coding
MPEG : Motion Picture Experts Group
ISO/IEC : International Organization of Standardization, International
 Electrotechnical Commission
ITU-T : International Telecommunication Union, Telecommunications
JVT : Joint Video Team
VCEG : Video Coding Experts Group
VCL : Video Coding Layer
NAL : Network Adaptation Layer
NALU : Network Adaptation Layer Unit
VLC : Variable Length Coding
CAVLC : Context-Adaptive Variable Length Coding
FMO : Flexible Macroblock Ordering
ASO : Arbitrary Slice Ordering
DSP : Digital Signal Processor
RBSP : Raw Byte Sequence Payload
SPS : Sequence Parameter Set
PPS : Picture Parameter Set
IDR : Instantaneous Decoding Refresh
CPU : Central Processing Unit
DSP : Digital Signal Processor
VLIW : Very Long Instruction Word
EDMA : Enhanced Direct Memory Access
RAM : Random Access Memory
LSB : Least Significant Bit
MSB : Most Significant Bit
TI : Texas Instruments
CCS : Code Composer Studio
IDE : Integrated Development Environment
SAD : Sum of Absolute Differences
SAE : Sum of Absolute Energy
MB : Macro Block
CIF : Common Intermediate Format
QCIF : Quarter Common Intermediate Format
HD : High Definition

vii

TABLE LIST

Page No

Table 2.1 H.264/MPEG-4 Part 10 profiles and their major application areas 5
Table 2.2 H.264/AVC profiles with the coding feature …………………….. 6
Table 2.3 Performances of H.264/AVC levels ……………………………… 7
Table 2.4 Intra 4x4 luma prediction modes’ descriptions …………………... 15
Table 2.5 Intra 16x16 luma prediction modes’ descriptions ………………... 16
Table 3.1 C64x Special Purpose Instruction for Video and Imaging ……….. 24
Table 5.1 TSS and Hexagon Search results on DM642 DSP …….…………. 47
Table 5.2 C64x Compiler Options for Performance ………………………... 52

Table 5.3 SAD 8x8 linear assembly results …………………………………. 56
Table 5.4 Half-pel motion compensation optimization results ……………... 58
Table 5.5 Data elements in DM642 L2 SRAM section …………………….. 66
Table 5.6 Optimization results for CIF [352x288] ‘Foreman’ sequence …… 64
Table 5.7 Compression efficiency of the implemented H.264 encoder …… 65

viii

FIGURE LIST

 Page No

Figure 2.1
Figure 2.2
Figure 2.3

Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7
Figure 5.8
Figure 5.9
Figure 5.10
Figure 5.11
Figure 5.12

: Scope of video coding standardization ...
: Structure of H.264/AVC video encoder ...
: (a) Macroblock partitions: 16x16, 8x16, 16x8, 8x8, (b) Sub-
macroblock partitions: 8x8, 4x8, 8x4, 4x4 ..

: Specific coding parts of the H.264 profiles
: Block Diagram of encoding process in the VCL of H.264/AVC
: Intra 4x4 luma prediction modes...
: Intra 16x16 luma prediction modes...
: Basic coefficient/residual coding in H.264
: Zigzag scan for 4x4 luma block (frame mode)
: TMS320C64x DSP Block Diagram ...
: C64x Data Cross Paths ...
: C64x Memory Load and Store Paths ..
: DM642 L1/L2 Cache Organization ..
: C64x Cache Memory Architecture ...
: Main encoder flow diagram ..
: Flow diagram of coding a picture ...
: Flow diagram of encoding a macroblock ...
: Development flow using CCStudio ..
: Block diagram of DM642 EVM ...
: The (a) experimental and (b) real-world hardware set-up
: Building DSP/BIOS based DSP application
: Synchronized Communication between tasks
: The H.264 encoder code segment for profiling
: Disassembly of example (setNALU) function
: Three Step Search ...
: Hexagon-based search with large (1) and small (2) patterns
: Memory/Pointer structure for reference and reconstruction ….........
: C program code and corresponding intrinsics
: Linear assembly fragment of SAD function
: Disassembly of SAD linear assembly’s core loop
: Half-pel motion compensation and ping-pong buffers
: Allocation of frequently accessed buffers within internal memory .
: QDMA management for Motion Estimation
: The proposed encoder QDMA scheme for luminance

 4
 5

 8
 9
13
15
16
18
18
20
22
23
25
25
28
29
30
34
35
36
39
39
41
43
45
46
48
50
55
56
57
60
61
63

ix

IMPLEMENTATION AND OPTIMIZATION OF REAL-TIME H.264

BASELINE ENCODER ON TMS320DM642 DSP

SUMMARY

Recently, digital video coding is mandatory in many applications such as digital
surveillance systems, video conferencing, mobile applications as well as video
broadcasts. The H.264/MPEG-4 Part 10, an international video compression
standard, is developed for improving the coding efficiency compared to previous
standards. However, the coding improvement comes with an increase in coding
complexity. In this thesis, an H.264 baseline profile encoder is implemented on
Texas Instruments TMS320DM642 digital signal processor.

The real-time implementation of the H.264/AVC encoder on DM642 DSP core
offers most of the standard H.264/AVC baseline profile coding tools except error
resiliency tools and quarter-pel motion estimation. Instead of quarter-pel motion
compensation, integer and half pixel position motion estimation and compensation
for all luminance and chrominance components are implemented.

The target platform, DM64 DSP core, is designed as a high-performance digital
media processor with two-level memory/cache hierarchy and very long instruction
word (VLIW) architecture. The subject of the thesis is H.264 baseline encoder
system realization and optimization on the target platform. Moreover, the study of
optimization phases covering algorithmic, architectural and memory strategies are
clarified in details.

The H.264/AVC encoder system is verified both to execute on the development
workstation and DM642 EVM (Evaluation Module) hardware platform. Briefly, the
uncompressed input of a YUV video sequence with CIF resolution to the encoder
system is compressed to H.264 Annex-B file format and displayed on screen.
Additionally, the encoder output is verified with H.264 reference software and the
compliancy is proven.

x

GERÇEK ZAMANLI H.264 TEMEL KODLAYICININ TMS320DM642 DSP

ÜZERİNDE UYGULAMASI VE ENİYİLEMESİ

ÖZET

Günümüzde sayısal video kodlama sayısal gözetim sistemleri, video konferans,
mobil uygulamalar ve video yayını gibi bir çok uygulamada zorunlu hale gelmiştir.
Uluslararası bir video sıkıştırma standardı olan H.264/MPEG-4 bölüm 10, daha
önceki standartlara göre kodlama verimini iyileştirmek amacıyla geliştirilmiştir.
Fakat, bu kodlama geliştirmesi beraberinde kodlama karmaşıklığının da artmasına
yol açmaktadır. Bu tez çalışmasında Texas Instruments TMS320DM642 sayısal
sinyal işleyici üzerinde H.264 temel profil kodlayıcı gerçeklenmiştir.

DM642 DSP çekirdeği üzerindeki gerçek zamanlı H.264/AVC kodlayıcı uygulaması
hata esnekliği araçları ve çeyrek piksel hareket dengeleme dışında standart tüm
H.264/AVC temel profil kodlama araçlarını sunmaktadır. Çeyrek piksel hareket
dengelem yerine, tüm parlaklılık ve renklik bileşenleri için tam sayı ve yarım piksel
pozisyonlarında hareket kestirim ve dengeleme gerçeklenmiştir.

Kullanılan DM642 DSP çekirdeği platformu, 2-seviyeli bellek/önbellek aşama
düzenine sahip ve çok uzun komut kelimesi (VLIW) içeren yüksek performanslı
sayısal işlemci olarak tasarlanmıştır. Sunulan H.264 temel kodlayıcı sistemin
gerçeklenmesi ve eniyilemesi bu tezin konusudur. Üstelik, algoritma bazlı, mimari ve
bellek stratejilerini içeren eniyileme çalışma fazları detaylarıyla açıklanmaktadır.

H.264/AVC video kodlayıcının hem geliştirme ortamında hem de DM642 EVM
donanım ortamında çalışması doğrulanmıştır. Kısaca, kodlayıcı sisteme giriş olan
CIF çözünürlükte sıkıştırılmamış YUV video dizisi H.264 Annex-B dosya biçiminde
ve de ekrana video çıktı verilerek sıkıştırılmaktadır. Ek olarak, kodlayıcı çıktısı
H.264 referans yazılımla doğruluğu kontrol edilmiş ve uyumluluğu kanıtlanmıştır.

1

1. INTRODUCTION

An uncompressed digital video or image is unreasonable for transmission and storage

due to the need of mass space. Because of the bandwidth and storage space

limitations, the usage of compression is very important and necessary in video based

applications. Nowadays, digital video compression plays an important role in many

applications such as digital surveillance systems, video conferencing, mobile

applications as well as digital TV. The video compression becomes inevitable in such

applications, so the coding standards are developed and deployed.

Video compression systems are one of the most attractive fields of consumer

electronics. H.264/MPEG-4 Part 10 standard is formed for the purpose of improving

the efficiency and performance of existing standards and providing the applicability

of video compression in new implementations. H.264, the next generation video

coding standard, employs variable block size motion compensation with multiple

reference frames at quarter-pixel motion vector accuracy [1] that enables 50%

reduction in bit rate while still achieving similar visual quality compared to previous

video coding standards [2].

1.1 Implementing the H.264/AVC Standard

As of now, real-time computing of video applications remains a challenge. The high

coding efficiency of the H.264 standard comes at the expense of increased

algorithmic complexity, which affects the performance of the H.264 encoders in

many real-time applications. Although hardware’s evolution is accelerated, high

complexity of H.264 hardware and software implementation is still a concern for

application industry. Therefore, it is high time to optimize the existing H.264 coding

approach to practical techniques so that it can satisfy the requirements of those

emergent storage and streaming applications.

2

Software solutions based on general purpose processor or DSP (Digital Signal

Processor) can provide flexibility and adaptability, but hardware solutions need

dedicated ICs [3]. Developing dedicated hardware is a time consuming and thus an

expensive task. Moreover, once the hardware platform is implemented, it is difficult

to make changes. But industrial experience in this market shows that hardware

adaptation to consumers needs is required in almost every design. Also, the H.264

video codec can be implemented on different DSPs, using the signal processor’s high

computational efficiency according to real-time constraints. TI TMS320DM64x

series DSP with its enhancements is appropriate for a real-time H.264 software

encoder that provides high performance and flexibility.

The proposed H.264 encoder implementation in this thesis, which is verified with the

JM reference software [4], achieves real-time encoding for CIF resolution format on

a DM642 DSP core. Therefore, this implementation can be used in a real world

implementation, especially in video conferencing and mobile applications. Also, the

realization and optimization of the encoder on TI’s TMS320DM642 DSP core is

represented based on the target platform features. Moreover, the flexibility and

programmability of DSP implementation enables easy adaptation for higher

performance solutions as a future work.

1.2 Literature Survey

In literature, there are several examples of real-time implementation of video coding

and H.264 standard. In [5], realization and optimization of H.264 baseline encoder

on TI TMS320C6416 DSP is presented. The study represented in that paper focuses

on the optimization issues using JM81a reference software. The study of

optimization of encoder includes key module optimization using SIMD (Single

instruction multiple data) and linear assembly, especially data scheduling and storage

allocation strategy. It is demonstrated that the access of the significant amount of

data stored in off-chip memory is a bottleneck for real-time implementation. The

realization and optimization results of encoder in the case study shows that 23~26

frames per second coding rate for QCIF (176x144) resolution can be reached to meet

the real-time application requirements. However, the QCIF resolution can not be

3

sufficient for many implementations and the encoder should be optimized up to CIF

(352x288) format as well.

Another study in [6] is a H.264 encoder implementation on Analog Device’s BF561

programmable DSP. The implementation is designed for videophone application at

CIF resolution, 30 fps and bit rate of 384 and 512 kbps. In the proposed study, the

algorithmic, architectural and memory optimizations are covered. Due to the high

complexity of H.264, the algorithmic optimizations are focused on motion estimation

(fast motion search, quarter pixel ME) and intra prediction. The architectural

optimization covers the full utilization of the core for higher performance with

reducing overhead and using SIMD operation. As in the previous study, the memory

optimization is essential because of the significant memory requirements of encoder.

That is to say, the memory optimizations have to be issued in the proposed encoder

for real-time implementation.

In [2], the analysis and optimization of UB Video’s H.264 baseline encoder on TI

TMS320DM642 DSP is presented. The study proposes DM642-speicific methods to

increase the encoding speed of the UB Video’s encoder, enabling interactive real-

time video applications for CIF resolution on a single DSP core. The analysis and

optimization study especially on data transfer reduces the data transfer complexity by

50 % and overall encoder speed is increased by about 15%.

Finally, application report in [7] summarizes the video encoding optimization

techniques on TMS320DM64x/C64x processors. These techniques include

algorithmic/system optimization, memory structures, EDMA (Enhanced Direct

Memory Access) usage for background (hidden) data transfer and cache utilization.

The video encoder system/algorithm optimization covers macro-block level

loop/module separation for decreasing cache miss penalties, and also using fast

motion estimation algorithms in an encoder. Memory buffering scheme of a video

encoder and data transfer with EDMA controller phases are emphasized for reducing

memory result latencies and cache utilization. Lastly, the cache optimization and

cache tuning is represented for improving cache performance.

The articles and studies show that a video coding application includes parallelism, so

the parallel processing should be increased in the target platform as well. Realization

4

and optimization of a real-time encoder becomes possible with the optimization

techniques such as algorithmic, architectural and memory optimizations. Most of the

encoder studies on an embedded platform agree that the high number of memory

access is a video encoder bottleneck and memory access scheme should be well

organized (i.e. EDMA usage). In this thesis, the memory organizations and

optimizations are implemented and represented. The algorithmic and architectural

optimizations are software oriented tasks in a real-time encoder to utilize the core for

higher performance. Therefore, these tasks are represented with the proposed

encoder optimization steps in thesis.

5

2. OVERVIEW OF H.264/AVC

In early 1998, the Video Coding Experts Group (VCEG) ITU-T SG16 Q.6 issued a

call for proposals on a project called H.26L, with the target to double the coding

efficiency (which means halving the bit rate necessary for a given level of fidelity) in

comparison to any other existing video coding standards for a broad variety of

applications. The first draft design for that new standard was adopted in October of

1999. In December of 2001, VCEG and the Moving Picture Experts Group (MPEG)

ISO/IEC JTC 1/SC 29/WG 11 formed a Joint Video Team (JVT), with the charter to

finalize the draft new video coding standard for formal approval submission as

H.264/AVC [8] in March 2003 [1].

Figure 2.1: Scope of video coding standardization

The scope of the standardization is illustrated in Figure 2.1, which shows the typical

video encoding/ decoding chain (excluding the transport or storage of the video

signal) [1]. In all ITU-T and ISO/IEC video standards, by restricting bitstream and

syntax, and defining the decoding process of the syntax elements, only the video

decoder is standardized. Every decoder, according to the restrictions and definitions

in the standard, has to produce similar output for the given encoded bitstream that

conforms to the standard.

The H.264 standard is designed in two layers: a video coding layer (VCL), that is

designed to represent the video content, and a network adaptation layer (NAL),

Source

Destination

Pre-Processing Encoding

Decoding Post-Processing
& Error Recovery

Scope of Standard

Scope of Thesis

6

which provides header information and VCL representation of the video for transfer

and storage, as shown in Figure 2.2.

Figure 2.2: Structure of H.264/AVC video encoder [1]

As in H.263 and MPEG-2, H.264 VLC uses translational block-based motion

compensation and transform based residual coding. However, there are significant

differences in details, such as scalar quantization with adjustable quantization step,

content adaptive run-length VLC of the quantized transform coefficients [9].

2.1 Profiles and Levels of H.264/AVC

Until now, 4 basic profiles of H.264/AVC standard have been issued as baseline,

main, extended and high profiles. These H.264 profiles can be used in many different

application areas such in video conferencing to digital cinema according to target

usage as stated in Table 2.1.

Table 2.1: H.264/MPEG-4 Part 10 profiles and their major application areas [10,11]

Profile Typical Applications

Baseline Video Conferencing & Telephony and
Mobile Applications

Main Video Storage & Playback, Broadcast Video

Extended Streaming Media

High Profile
(Fidelity Range Extension)

Studio Editing, Post Processing, Digital
Cinema

7

Table 2.2: H.264/AVC profiles with the coding feature

 Baseline Main Extended High
Proposed
Baseline
Encoder

I Slices X X X X X

P Slices X X X X X

Deblocking Filter X X X X X

Variable Block Size X X X X
X

(16x16 to
8x8)

CAVLC X X X X X

¼ Pel Motion
Compensation X X X X

X
(Half-pel
MC only)

Error Resilience Tools
(FMO, ASO,
Redundant Slices)

X X

B Slices X X X

SI/SP Slices X X

CABAC X X

Weighted Prediction X X

Data Partitioning X

Interlaced Coding X X X

In Table 2.2, the included coding tools of the H.264 profiles are summarized

respectively, and also the proposed baseline encoder is given. In the proposed

baseline encoder “Error Resilience Tools” is not covered and only the half pixel

motion compensation is applied for the purpose of the real-time constraints on a

digital signal processor.

The profile independent levels defined in the H.264/AVC standard are about the

picture resolution and frame rate of the video codec that should be supported. In

Table 2.3, the levels and performance of the H.264 standard are listed related to

resolution and frame rate.

8

Table 2.3: Performances of H.264/AVC levels

Level Performance

1.0 QCIF @ 15 fps

1.1 QCIF @ 30 fps

1.2 CIF@ 15 fps

2.0 CIF@ 30 fps

2.1 HHR @ 15 or 30 fps

2.2 SDTV @ 15 fps

3.0
SDTV: 720x480x20i., 720x576x25i

10Mbps (max)

3.1
1280x720x30p.,

SVGA (800x600) 50+p.

3.2 1208x720x60p.

4.0

HDTV: 1920x10870x30i.,

1280x720x60p., 2k1kx30p.

20Mbps (max)

4.1

HDTV: 1920x10870x30i.,

1280x720x60p., 2k1kx30p.

50Mbps (max)

5.0
SHDTV / D-Cinema:

1920x108x60p., 2,5kx2k.

5.1 SHDTV / D-Cinema: 4kx2k.

2.2 Coding Features of the H.264

The common coding features of the H.264 profiles, Table 2.2, are described in this

section according to their application in the proposed encoder scheme.

I Slices (Intra-coded Slices): Intra-coded slices can only contain intra-coded

macroblock, which can only be predicted with in the same slice (spatial correlation).

An intra-coded MB does not contain references from the previous or successive

slices (temporal correlation); therefore, I Slices have no temporal information.

P Slices (Predictive-coded Slices): Predictive-coded slices can contain both intra-

coded and inter-coded, which is predicted from previously coded pictures for P

slices, macroblocks. An inter macroblock is derived with at most one motion vector

and reference index for its prediction.

9

In-the-loop Deblocking Filter: Block-based video coding produces artifacts known

as blocking artifacts that can originate from both the prediction and residual

difference coding stages of the decoding process. Application of an adaptive

deblocking filter is a well-known method of improving the resulting video quality,

and when designed well, this can improve both objective and subjective video

quality. Building further on a concept from an optional feature of H.263+, the

deblocking filter in the H.264/AVC design is brought within the motion-

compensated prediction loop, so that this improvement in quality can be used in

inter-picture prediction to improve the ability to predict other pictures as well [1].

Variable Block Size: The supports more flexibility in the selection of motion

compensation block sizes and shapes than any previous standard, with a minimum

luminance motion compensation block size as small as 4x4 [1]. The H.264/AVC

standard defines seven possible Macroblock sizes. The Figure 2.3.a are the large

Macroblock partition size and Figure 2.3.b are the sub-macroblock partitions of the

8x8 block size. Large partition types can be used for homogeneous areas of the

picture, while small partition size may be beneficial for detailed areas.

(a)

(b)

Figure 2.3: (a) Macroblock partitions: 16x16, 8x16, 16x8, 8x8, (b) Sub-macroblock

partitions: 8x8, 4x8, 8x4, 4x4

10

CAVLC (Context-Adaptive Variable Length Coding) Entropy Coding: This

feature includes VLC (Variable Length Coding) tables (Huffman Table in MPEG

standards) for various syntax elements that are used for the entropy coding of the

transformed and quantized residual data. Additionally, Exp-Golomb code words [12]

with a regular construction are used for variable length coding as well.

¼ Pixel (Sub-pel) Motion Compensation: In addition to the integer pixel accurate

motion compensation, H.264 standard allows using half-pixel and quarter-pixel

accurate motion compensation to improve the coding standard, while adding

computational complexity to the interpolation process. Interpolation process details,

especially the half-pel interpolation process, will be described in realization and

optimization steps of thesis.

Error Resilience Tools:

FMO (Flexible Macroblock Order), in which macroblocks may be coded out of raster

sequence order. FMO makes it possible to map the sequence of MBs to multiple slice

groups in a flexible way.

ASO (Arbitrary Slice Order), in which slices may be coded out of raster sequence

order. ASO is defined to be in use if the first macroblock in any slice in a decoded

frame has a smaller macroblock address than the first macroblock in a previously

decoded slice in the same picture [13].

RS (Redundant Slice) belongs to the redundant coded data obtained by same or

different coding rate, in comparison with previous coded data of same slice.

Figure 2.4: Specific coding parts of the H.264 profiles [14]

11

The overall described coding parts are the baseline profile elements as shown in

Figure 2.4. According to the proposed encoder, only the error resilience tools are

excluded for implementation.

The Baseline profile has the lowest complexity compared to the other profiles in

H.264, so it is the simplest profile to implement and use in different applications. The

main profile allows additional reduction in bandwidth over the Baseline profile

through mainly Bi-directional (B Slices), Context Adaptive Binary Arithmetic

Coding (CABAC) and Weighted Prediction.

B Slices obtains a compression advantage as compared to P Slices by allowing past

and future reference pictures (similar to B-picture prediction in earlier MPEG video

standards) with a variety of prediction modes for each macroblock partition. Each

macroblock in an inter-coded macroblock in a B slice may be predicted from one or

two reference pictures, before or after the current picture in temporal order.

A weighted average of the pixel values in the reference pictures is then used as the

predictor for each sample in B slices’ macroblock. B Slices also have a special mode

“Direct mode”, in which the motion vectors for a macroblock are not explicitly sent.

The encoder can specify in the slice header either for the decoder to derive the

motion vectors by scaling the motion vector of the co-located macroblock in another

reference picture or to derive it by inferring motion from spatially-neighboring

regions [15]. By allowing variety of prediction modes, the prediction accuracy is

improved, often reducing the bit-rate by 5-10%.

Context Adaptive Binary Coding (CABAC) provides selection of probability for

each syntax element according to the element’s context in both encoder and decoder

side. The compression performance is increased through adapting probability

estimations using local statistics and using arithmetic coding rather than variable

length coding for the syntax elements.

Context-based adaptive binary arithmetic coding is used as the standard as a way of

gaining additional performance relative to CAVLC coding, at the cost of additional

complexity. The CABAC mode has been shown to increase compression efficiency

by roughly 10% relative to the CAVLC mode, although CABAC is significantly

more computationally complex [15].

12

Weighted prediction allows modifying (scaling) the samples of the motion

compensated prediction data in an inter macroblock using global multiplier and a

global offset. Explicit or implicit derived multiplier and offset specified by the

encoder are used to weighting and offsetting the prediction. The weighted prediction

can improve coding efficiency for sequences with fades, lighting change, and can be

used flexibly for other purposes as well.

SP and SI slices are specially-coded slices that enable (among other things) efficient

switching between video streams and efficient random access for video decoders. A

common requirement in a streaming application is for a video decoder to switch

between one of several encoded streams. For example, the same video material is

coded at multiple bit rates for transmission across the Internet and a decoder attempts

to decode the highest bit rate stream it can receive but may require switching

automatically to a lower bit rate stream if the data throughput drops [13].

Interlaced Coding enables coding of the picture frames at field level; fields can be

treated as frames. Rather than progressive video coding, interlaced frames are used in

TV signals (CRT TV technology) especially in digital television systems.

Data Partitioning enables an encoder to reorganize the coded data within a video

packet to reduce the impact of transmission errors. As in Mpeg-4, but with further

differences in data partitions, the packets are split into partitions for a reasonable

reconstruction for damages and transmission errors.

2.3 Comparison of the Emerging H.264 Video Coding With Other Standards

As described in [1], the H.264 VCL uses translational block-based motion

compensation and transform based residual coding as in other coding standards.

However, H.264 features accommodate significant differences in details such as

integer transform (4x4 block size), multiple reference and ⅛ accuracy motion

vectors.

As drawn in Figure 2.1, the separation of the architecture into two layers with a video

coding layer (VCL) for efficient compression and a network abstraction layer (NAL)

for packing that coded data for transmission and network is the concept of the

13

standard. The layered structure of the H.264 enables superior error resilience due to

enhancement layer and error resiliency tools [11].

The video coding layer of H.264/AVC is similar in spirit to other standards such as

MPEG-2 Video. It consists of a hybrid of temporal and spatial prediction, in

conjunction with transform coding [16]. Although, the standard consists of

transform, quantization, motion compensation and entropy coding blocks, there are

major differences in that block according to previous standards. Variable block size

16x16 to 4x4 (Figure 2.3.a and 2.3.b), increased precision motion vector with quarter

pixel resolution, Context-Adaptive Variable Length Coding (CAVLC) and Context-

Adaptive Binary Arithmetic Coding (CABAC) for entropy coding can be indicated

for superiority of H.264/AVC standard. Moreover, in-loop deblocking filter is added

to the standard for reducing the blocking artifacts.

According to test results in [9], the H.264 standard achieves 50% average coding

gain over MPEG-2, 47% average coding gain over H.263 baseline, and 24% average

coding gain over H.263 high profile encoders. These results show us that H.264

provides efficient coding not only in bit rate compression but also in quality as well.

2.3.1 H.264 Encoder Complexity

The coding tools of H.264/AVC when used in an optimized mode allow for bit

savings of about 50% compared to previous video coding standards like MPEG-4

and MPEG-2 for a wide range of bit rates and resolutions. However, these savings

come at the price of an increased complexity. The decoder is about 2 times as

complex as an MPEG-4 Visual decoder for the Simple profile, and the encoder is

about 10 times as complex as a corresponding MPEG-4 Visual encoder for the

Simple profile. The H.264/AVC main profile decoder suitable for entertainment

applications is about four times more complex than MPEG-2. The encoder

complexity depends largely on the algorithms for motion estimation as well as for the

rate-constrained encoder control [17].

The implementation of the H.264 video coding is a challenging process in

development because of the high complexity, while it provides high video quality at

low bit rates compared with previous compression standards. Additionally, in order

14

to provide higher bit-rates and resolution with the complex tools such as HD (High

Definition) video, multi-DSP systems are needed as the encoding gets much more

complex.

2.4 H.264/MPEG-4 Part 10 Architecture

H.264/MPEG-4 Part 10 is organized into two different conceptual layers. In Figure

2.2, the Network Abstraction Layer (NAL) and Video Coding Layer (VCL) are

drawn as the main concept of the H.264 architecture. In [15], an abstract about the

architecture can be found.

2.4.1 Network Abstraction Layer (NAL)

A NAL unit is a syntax structure containing an indication of the type of data to

follow and bytes containing that data in the form of a raw byte sequence payload

(RBSP) interspersed as necessary with emulation prevention bytes [8]. The RBSPs, a

set of data corresponding to VCL data or header information, are encapsulated into

Network Abstraction Layer Unit (NALU) for storage or transmission.

H.264/AVC allows multiple sequences in one stream and a sequence containing

multiple pictures with non-VCL NAL units. As described in [10], a sequence

parameter set (SPS) contains important header information that applies to all NAL

units in the coded video sequence and a picture parameter set (PPS) contains header

information that applies to the coding of one or more picture within the coded video

sequence. Therefore, non-VCL NAL units, SPS and PPS, are numerated to identify

each sequence and picture. Besides, the VCL NAL units containing the data that

represents the values of the samples in the video pictures are packaged after the

related non-VCL parts.

The proposed encoder implementation outputs bitstream in Annex B byte stream file

format using NALU syntax which is described in ITU-T H.264 Recommendation [8].

2.4.2 Video Coding Layer (VCL)

The typical block diagram for coding a macroblock is shown in Figure 2.5. The

encoding process also includes decoding process (except for entropy decoding)

15

because in encoding, the motion estimation has to use the same reconstructed

reference picture with the decoder.

Figure 2.5: Block Diagram of encoding process in the VCL of H.264/AVC [1]

The VCL processes the frame prediction and/or motion estimation according to slice

type and also decides intra/inter macroblock coding in inter slices based on coding

cost using distortion and bit rate (Lagrange model). After decision, the prediction

errors are coded using compression tools (transform, quantization etc.) to represent

the value of video samples.

2.4.2.1 Intra Prediction Process

Intra prediction is derived from decoded samples of the same decoded slice in

encoder and this process extracts the spatial redundancy between adjacent

macroblocks in a slice. The intra predicted pictures usually give better quality and

lower distortion than inter predicted picture, but intra prediction requires much more

bits to represent the samples. Because of the higher bit rate requirement of an intra

predicted slices, the number of the intra predicted slices is quite less than the inter

slices for reduction of bits in stream.

16

At the beginning of a coded video sequence is an instantaneous decoding refresh

(IDR) Access unit. An IDR access unit contains an intra picture and the presence of

an IDR Access unit indicates that no subsequent picture in the stream will require

reference to pictures prior to the intra picture it contains in order to be decoded [1].

The intra slices called IDR access unit are used after subsequent inter frames to

decrease the propagated error in coded video. The intra frame period as IDR rate

(default 50) is determined with a parameter in proposed implementation.

The H.264/AVC standard defines the intra 4x4 block (Intra_4x4) and intra 16x16

(Intra_16x16) modes for the luminance samples, intra 8x8 modes for the

chrominance samples of a macroblock, and also the I_PCM mode. The Intra_4x4

mode is based on predicting each 4x4 luminance block separately and is well suited

for coding parts of a picture with significant detail. The Intra_16x16 mode performs

prediction of the whole 16x16 luminance macroblock and is more suited for coding

very smooth areas of a picture. The I_PCM coding type allows bypassing the

prediction and transform process and directly sending values of the encoded samples.

As shown in Figure 2.6 and Figure 2.7, there are nine possible optional prediction

modes for Intra_4x4 luma block and four prediction modes for Intra_16x16 luma

block. The Chroma prediction uses the all four Intra_16x16 prediction modes for 8x8

blocks, only numbering of modes differ as well.

Figure 2.6: Intra 4x4 luma prediction modes [13]

In Figure 2.6, the Intra_4x4 luma block prediction modes (9 possible modes) are

drawn with the prediction directions and also the descriptions of the predictions can

be found in Table 2.4.

17

Table 2.4: Intra 4x4 luma prediction modes’ descriptions [13]

Mode 0 (Vertical) The upper samples A,B, C, D are extrapolated vertically

Mode 1 (Horizontal) The left samples I, K, K, L are extrapolated horizontally

Mode 2 (DC) All samples are predicted by the mean of Samples A...D and I...L

Mode 3 (Diagonal
Down-Left)

The samples are interpolated at a 45
o

angle between lower-left
and upper-right

Mode 4 (Diagonal
Down-Right)

The samples are extrapolated at a 45
o

angle down and to the
right

Mode 5 (Vertical-Right)
Extrapolation at an angle of approximately 26.6

o
to left of vertical

(width/height = 1/2)

Mode 6 (Horizontal-
Down)

Extrapolation at an angle of approximately 26.6
o
below horizontal

Mode 7 (Vertical-Left)
Extrapolation (or interpolation) at an angle of approximately 26.6

o

to left of vertical

Mode 8 (Horizontal-Up) Interpolation at an angle of approximately 26.6
o
above horizontal

Figure 2.7: Intra 16x16 luma prediction modes [13]

In Figure 2.7, the Intra_16x16 luma block prediction modes are drawn and the

descriptions of the predictions can be found in Table 2.5.

Table 2.5: Intra 16x16 luma prediction modes’ descriptions [13]

Mode 0 (Vertical) The upper samples H are extrapolated vertically

Mode 1 (Horizontal) The left samples V are extrapolated horizontally

Mode 2 (DC) All samples are predicted by the mean of Samples H and V

Mode 3 (Plane)
A linear ‘plane’ functions is fitted to the upper and left-hand samples
H and V. this work well in areas of smoothly-varying luminance

18

For representing the intra prediction mode in bitstream with reduced number of bits,

a predictive coding mechanism, called as “most probable mode”, is applied. The

most probable mode for the block is predicted from the neighbors and the coding of

the actual mode is based on that prediction. A flag is used to determine if the actual

block mode is the predicted most probable mode. If it is not, the intra prediction

mode is coded and sent in addition to the most probable mode flag, as defined in the

H.264/MPEG-4 Part 10 standard.

2.4.2.2 Inter Prediction process

In video coding, it is well known that temporal correlations of macroblocks are

stronger than spatial correlations of macroblocks. Inter prediction is carried out on

the decoded samples of reference pictures other than the current decoded picture [8],

and this process eliminates the temporal redundancy between successive pictures for

the compression.

Inter prediction in H.264/AVC supports variable block size from 16x16 to 4x4 as in

Figure 2.3.b and fine ¼ sample motion vectors for luminance as well as ⅛ sample

motion vectors for chrominance component. Although using multiple reference

picture for motion estimation in inter prediction process enhances the compression

efficiency, the proposed encoder implementation uses only one reference frame for

real-time purpose. Multi-reference support can be adapted easily to the proposed

software as a future work.

Variable block size for macroblock partitions and sub-macroblock partitions increase

the number of possible combinations within each macroblock. As large partition

sizes are ideal for homogenous areas and small partition sizes are ideal for detailed

areas, an ideal encoder should select the optimal result according to distortion and bit

rate. While the partition sizes of a macroblock become smaller, the number of bits to

represent the coded data with each partition’s motion vectors and reference indexes

increase. However, distortion of macroblock partitions is reduced as the block size

becomes smaller. Therefore, bit-rate and distortion should be considered together.

In video coding standards, the macroblock motion is found out in motion estimation

block using reference picture(s). The motion estimation block can be summarized as

19

finding the minimal difference for original block and reference picture. As the

process has computational overhead, there are several methods and algorithms for

approximated, restricted and fast motion estimation such as using search windows,

stepped searches etc.

A H.264/AVC encoder should find out the best result for all possible block sizes.

The motion estimation block outputs a motion vector for the macroblock mode. In

decode process, these motion vectors are used for luma motion compensation

operation and chroma motion compensation is derived by halving the corresponding

luminance partition block sizes and motion vectors, since the resolution is half of the

luma component.

2.4.2.3 Coefficient Transform and Reconstruction

The basic coefficient coding process in H.264/AVC is shown in Figure 2.8 that is

similar to previous block-based video coding standards. The coefficient coding

process includes the 4x4 2-D forward transform, hadamard transform of DC

components if necessary, quantization, zigzag scanning and entropy coding for the

NAL unit. Also a video encoder need references for prediction, it includes the

decoding process as necessary inverse hadamard transform of DC components,

dequantization and inverse transform of the coded coefficients. The block is

reconstructed by the addition of motion compensated prediction and the decoded

transform coefficients.

Figure 2.8: Basic coefficient/residual coding in H.264

(T)

Transform

(Q)

Quantization

Zig-Zag

Scanning

(Q-1) Inverse

Quantization

(T-1) Inverse

Transform

Prediction Error

(Spatial/Temporal)

P
re

di
ct

io
n

(R
ef

er
en

ce
)

Quantized

Prediction Error

R
ec

on
st

ru
ct

io
n

Hadamard

Transform

Write to NALU

VLC/Arithmetic

Entropy Coding

20

In H.264/AVC standard, the 4x4 DCT transform is performed with integer

arithmetic. The frequency domain post-scaling operation is embedded into

quantization process as described in [13]. The 4x4 transform matrix [13] with integer

approximations specified in the H.264/AVC standard have been designed for fast,

efficient software and hardware implementations. In the encoder, each 4×4 block of

quantized transform coefficients is mapped to a 16-element array in a zigzag order

(Figure 2.9).

Figure 2.9: Zigzag scan for 4x4 luma block (frame mode) [13]

21

3. TEXAS INSTRUMENTS TMS320DM642 DSP

A digital signal processor (DSP) is a specialized microprocessor designed

specifically for digital signal processing, generally in real-time computing. As stated

in [18], Programmable DSPs are increasingly important in a wide range of video and

imaging applications, such as medical imaging, security monitoring, digital cameras

and printers, and a large number of consumer applications driven by digital video

processing including DVDs, digital TV, video telephony, and many others.

As image and video processing is getting more popular, DSPs overcome the

requirements due to the complexity and need of parallelism in nature. There are

several special purpose multimedia processors, such as the Blackfin by Analog

Devices, Philips’ Trimedia and Texas Instruments digital media processors (e.g.

C6000 family), and these multimedia processors are being used in low cost and/or

low power embedded applications: mobile applications, digital TV, DVDs and set-

top boxes.

Multimedia applications are characterized by requirements for processing flexibility,

sophisticated algorithms, and high data rates [18]. For digital signal processing

applications, DPSs are suited to exploit opportunities for efficient parallelism with

very long instruction word (VLIW) architecture. With VLIW architecture, a flexible,

high-level language programming environment has been developed in support of this

processor paradigm. Also, the TMS320DM642 device that is based on VLIW

architecture is an appropriate environment to implement a real-time

flexible/programmable H.264 encoder.

3.1 Technical Overview of DM642 Core

The DM642 integrates a number of peripherals to address the development of video

and imaging applications, including three configurable video ports capable of video

input, video output, or transport stream input. The C6000 DSP family with the

22

VelociTI architecture addresses the needs of video and imaging applications. The

C6000 family uses advanced very long instruction word (VLIW) architecture that

contains multiple execution units running in parallel, which allow them to execute

multiple instructions in a single clock cycle. Parallelism is the key to extremely high

performance and C64x introduced VelociTI.2 extensions to the VelociTI

architecture. These extensions allow more work to be done in each cycle by

including new instructions to accelerate performance in key application areas

including video and imaging [18,19].

The high performance very long instruction word (VLIW) architecture with

VelociTI.2, 2-level memory/cache hierarchy and Enhanced Direct Memory Access

(EDMA) engine makes it an excellent choice for computational intensive

video/image applications such as video coding and analysis [11]. In Figure 3.1, the

block diagram of the TMS320C64x DSP with CPU core, EDMA, 2-Level memory

hierarchy with L1 and L2, and the peripherals is shown.

Figure 3.1: TMS320C64x DSP Block Diagram [18]

23

3.1.1 DM642 CPU

The DM642 is based on the C64x CPU, which is part of the C6000 DSP family that

has VelociTI.2 extensions to the VelociTI architecture. The C6000 CPU components

consist of:

• Two general-purpose register files (A and B)

• Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2)

• Two load-from-memory data paths (LD1 and LD2)

• Two store-to-memory data paths (ST1 and ST2)

• Two data address paths (DA1 and DA2)

• Two register file data cross paths (1X and 2X)

The DM642 has a 16 Kbytes direct mapped L1P program cache with 32-byte cache

line size (8-cycle L1P cache miss penalty). The L1D cache is 16 Kbytes 2-way set-

associative and has a 64 bytes cache line size (6-cycle L1D cache miss penalty).

Additionally, 256 Kbytes of L2 internal memory can be configured as RAM and/or

cache (flexible RAM/cache allocation, 8-cycle L2 cache miss penalty) and L2 4-way

set associative cache has 128 bytes cache line size.

3.1.1.1 Register Files

There are two general-purpose register files (A and B) in the C6000 data paths. For

the C64x, each of these files contains 32 32-bit registers (A0–A31 for file A and B0–

B31 for file B). The general-purpose registers can be used for data; data address

pointers, or condition registers. On the C64x, registers A0, A1, A2, B0, B1, and B2

can be used as condition registers. In all C6000 devices, registers A4–A7 and B4–B7

can be used for circular addressing [18].

The C64x register file supports data ranging in size from packed 8-bit data, packed

16-bit data, through 40-bit fixed-point, 64-bit fixed point, and 64-bit floating-point

data. Values larger than 32 bits, such as 40-bit long and 64-bit float quantities are

stored in register pairs, with the 32 LSBs of data placed in an even-numbered register

24

and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-

numbered register). Packed data types store either four 8-bit values or two 16-bit

values in a single 32-bit register or four 16-bit values in a 64-bit register pair [18].

3.1.1.2 Functional Units

The eight functional units in the C6000 data paths can be divided into two groups of

four; each functional unit in one data path is almost identical to the corresponding

unit in the other data path. The C64x contains many 8-bit and 16-bit instructions to

support video and imaging applications [18].

3.1.1.3 Register File Paths

Each functional unit reads directly from and writes directly to the register file within

its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register file A,

and the .L2, .S2, .D2, and .M2 units write to register file B [19].

Most data lines in the CPU support 32-bit operands, and some support long (40-bit)

and double word (64-bit) operands. Each functional unit has its own 32-bit write port

into a general-purpose register file. Each functional unit has two 32-bit read ports for

source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-

wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads.

Because each unit has its own 32-bit write port, all eight units can be used in parallel

with every cycle when performing 32 bit operations. Since each C64x multiplier can

return up to a 64-bit result, an extra write port has been added from the multipliers to

the register file, as compared to the C62x.

The register files are also connected to the opposite-side register file’s functional

units via the 1X and 2X cross paths (Figure 3.2). These cross paths allow functional

units from one data path to access a 32-bit operand from the opposite side’s register

file. The 1X cross path allows functional units from data path A to read its source

from register file B. Similarly, the 2X cross path allows functional units from data

path B to read its source from register file A.

25

Figure 3.2: C64x Data Cross Paths [18]

On the C64x, all eight of the functional units have access to the register file on the

opposite side via a cross path. Only two cross paths, 1X and 2X, exist in the C6000

architecture. Therefore, the limit is one source read from each data path’s opposite

register file per cycle, or a total of two cross-path source reads per cycle. The C64x

pipelines data cross path accesses allow multiple units per side to read the same

cross-path source simultaneously. The cross path operand for one side may be used

by up to two functional units on that side in an execute packet.

3.1.1.4 Memory, Load and Store Paths

The data address paths named DA1 and DA2 are each connected to the .D units in

both data paths. Load/store instructions can use an address register from one register

file while loading to or storing from the other register file. The Figure 3.3 illustrates

the C64x memory load and store paths.

Figure 3.3: C64x Memory Load and Store Paths [18]

26

The C64x device can also access words and double words at any byte boundary

using non-aligned loads and stores. As a result, word and double-word data does not

always need alignment to 32-bit or 64-bit boundaries. This feature is particularly

useful in motion estimation and video filtering operations, where one may need

access to data from any arbitrary byte boundary in memory [18].

3.1.1.5 Additional Functional Unit Hardware

Additional hardware has been built into the eight functional units of the C64x. Each

.M unit can perform two 16x16 bit multiplies or four 8x8 bit multiplies every clock

cycle. Also, the .D units can access words and double words on any byte boundary

by using non-aligned load and store instructions. In addition, the .L units can perform

byte shifts and the .M units can perform bi-directional variable shifts in addition to

the .S unit’s ability to do shifts. The .L units can perform quad 8-bit subtracts with

absolute value. This absolute difference instruction greatly aids motion estimation

algorithms. Table 3.1 lists some of the special purpose instructions included in C64x

for video and imaging applications.

It is important to note that the C64x provides a comprehensive set of data packing

and unpacking operations to allow sustained high performance for the quad 8-bit and

dual 16-bit hardware extensions. Unpack instructions prepare 8-bit data for parallel

16-bit operations. Pack instructions return parallel results to output precision

including saturation support.

Table 3.1: C64x Special Purpose Instruction for Video and Imaging [18]

Instruction Description Example Application

LDNW Load non-aligned double word Motion estimation, image filtering

DOTPx Dot product Image filtering, image resizing,
image transforms (e.g. DCT, wavelet)

MINUx/MAXUx Minimum/Maximum computation Nonlinear image filtering (e.g.
median filter)

PACKx Data packing and unpacking Multiplexing/De-multiplexing
interleaved data (e.g. Y/C data)

AVGx Quad 8-bit, dual 16-bit average Motion compensation

SUBABS4 Quad 8-bit absolute of differences Motion estimation

27

These specialized instructions for video and image are used in video coding for

optimization and parallelism purposes. The instruction set of the DM642 DSP is

examined and the powerful ones are used for the H.264 encoder for real-time

implementation.

3.1.2 DM642 Cache Architecture

On DM642 devices, the CPU interfaces directly to dedicated level-one program

(L1P) and data (L1D) caches of 16 Kbytes each. These caches operate at the full

speed of CPU access. A second level unified L2 program/data memory provides

flexible storage. Figure 5 depicts an example L2 of size 256 Kbytes; the size and

segmentation of the L2 cache in the DM64x family may change over time. One

configuration for L2 is entirely mapped SRAM. The other configurations have both

SRAM and a 4-way set associative cache of various sizes. Mapped SRAM can be

used for streaming video data and critical sections of code such as interrupt service

routines. Cache is useful for most of the program and data structures.

In DM642 core, which consists of two-level cache-based memory model that are L1

and L2 and an external memory [20] are shown in Figure 3.4 and Figure 3.5, also the

256 Kbytes L2 internal memory space can be set as both cache and RAM. The

external memory interface is the EDMA for data transfer operation from/to internal

memory space.

Figure 3.4: DM642 L1/L2 Cache Organization [18]

28

Figure 3.5: C64x Cache Memory Architecture [20]

3.1.3 DM642 Enhanced DMA (EDMA) Controller

The DM642 EDMA can provide over 2Gbytes/sec of external bandwidth on initial

implementations. The EDMA supports up to 64 channels triggered by independent

events. A total of 85 parameter sets are available for linking or chaining. Linking

allows a sequence of transfers to be issued when a single event occurs. Chaining

allows one EDMA channel to trigger another channel upon data transfer completion.

Linking and chaining allow continuous auto-initialization of DMA operation with

only initial configuration by the CPU. These features also allow circular buffers,

ping-pong buffers, and transfers of complex data structures. Using 1-D and 2-D the

user can transfer sub frames of an image as well as automatically interleave or de-

interleave time-division multiplexed (TDM) digital streams. Byte, half-word, word,

and double-word data sizes are supported.

The EDMA supports unsurpassed concurrency. Four independent transfer queues

allow highly efficient operation. Channels on different queues can interleave

transfers on a cycle-by-cycle basis. The key system benefit is that interactions

between channels do not affect performance as much as much as in traditional DMA

implementations.

29

The EDMA Controller gives an approach to perform memory transfer operation in

background/parallel so that CPU is not stalled in that type of operation. There are

two methods to initiate and perform an EDMA operation: synchronous method that

is CPU initiated by using EDMA APIs and asynchronous CPU request to DMA

channels and no communication signaling between operations. These two methods

are appropriate for background memory transfer (i.e. memory copy operation) for the

H.264 video coding.

3.1.4 DM642 Video Port

The video port peripheral can operate as a video capture port, video display port, or

TSI capture port [18]. The video capture port is used for the input for the video

coding and the video display port is the output of the coding process as well. For the

proposed implementation

• Video capture mode:

The captured input sequences are encoded in the proposed H.264 encoder

optimization. Therefore, the real time consideration can be evaluated experimentally.

• Video display mode:

The encoded video reconstruction of the proposed H.264 encoder is outputted from

the DSP to composite video; as a result, the compression quality can be evaluated

visually as well.

30

4. H.264 BASELINE ENCODER SOFTWARE AND DSP ADAPTATION

The design and software development of multimedia applications such as complex

video/image processing requires an algorithmic infrastructure. The algorithmic

infrastructure of a video processing concerns on performance: bit-rate, visual

appearance, peak signal-to-noise ratio (PSNR), etc. As the H.264 JM reference

software [4], the algorithmic specification of a typical video coding scheme with

software and descriptions are released for developers for implementation and

verification. Therefore, a video coding software implementer for an embedded

platform can take assistance from JM reference software to understand the sub-parts

of the big software picture. However, the reference software does not offer an

optimal software solution for each routine, so the adaptation and optimization of the

codec is developers’ challenge.

Starting with the study and analysis of the JM reference software [4], an applied

encoder software in [11] was reorganized and developed using a workstation (e.g.

x86 based desktop computer) for the target platform. While the software

development on a workstation includes platform independent realizations, the DSP

adaptation of the pure C programming language code on workstation needs

architectural modifications reasonable for the platform. Also, the proposed H.264

baseline encoder implementation outputs are verified with the reference decoder for

conformance purpose. The encoder reconstruction and the decoder output

comparison have to be exactly the same; that means the outputs should be same.

4.1 H.264 Baseline Encoder Software

The encoder software was developed using C programming language on a

workstation with MS development environments such as Microsoft Visual Studio.

For the target platform, the software was migrated to the embedded DSP

development environment with additional coding for video capture/decoder and

display/encoder devices. Texas Instruments Code Composer Studio (CCStudio)

31

integrated development environment (IDE) is the environment for DSP-based

embedded application development and adaptation.

As the DM642 DSP (720 MHz) clock speed is less than our x86-based workstation,

the computational power and the parallelism of the DSP architecture have to be used

for a real-time performance. Therefore, to provide a real-time H.264 encoder on

DM642, both the H.264 encoder algorithm and the target system architecture have to

be analyzed deeply and understood extensively.

4.1.1 Main Software Flow

The main encoder flow diagram (Figure 4.1) shows the basics of a sequence of

pictures encoding process. The encoding process consists of generating parameter

sets, starting the sequence of encoding and coding the pictures in VCL for NAL units

according to coding sequence. The sequence of the pictures to be encoded is passed

onto encoder in parameter set section.

Figure 4.1: Main encoder flow diagram

Main

End of

Pictures?

Determine I/P Slice

Code a Picture

Terminate

Sequence

No Yes

Generate Parameter Sets

Initialize Bitstream

Start Sequence

Open Annex-B File

Generate Sequence
Parameter Set NALU

Write NALU to Annex-B

End

Generate Picture
Parameter Set NALU

Write NALU to Annex-B

32

In Figure 4.1, Generating parameter set includes the coding parameters of a picture

sequence, such as input variables (i.e. width, height, etc.), profile type and encoding

parameters as well. The parameters are applied for a determined picture sequence set,

so the H.264 VCL parameters are passed to the encoding section. The bitstream

initialization is required to create the output for writing the encoding results to

NALU stream.

The output stream as Annex-B file requires sequence and picture parameter set NAL

units at the beginning of the encoded picture NALs that are used in the rest of video

sequence set. The start sequence block creates the Annex-B file and sequence and

picture parameter set NAL units are constituted. Afterwards, the pictures in the raw

video sequence are encoded in order with I and P slice type determination.

4.1.2 Coding a Picture

The main flow line of coding a picture is shown in Figure 4.2, that a picture is

encoded macroblock by macroblock order. Code a picture routine is the core

encoding process of the software. The subroutine gets a picture from the sequence,

encodes, reconstructs and filters (if enabled).

Figure 4.2: Flow diagram of coding a picture

Code a Picture

End of
MBs ?

Before Encode

Encode one MB

After Encode

Write one MB

No

In-loop

Deblocking Filter

Write NALU

Yes

Return

Filter
?

No Yes

33

In Figure 4.2, coding a picture’s macroblock encoding consist of before, encode,

write and after process. Before and after encode process includes the buffer transfer

operations (i.e. Quick DMA data transfer process) such as original MB, search

window, reconstructed MB, etc. The encoded macroblock’s header, motion, CBP,

luma and chroma coefficients information is written to the NAL unit.

4.1.3 Encoding a Macroblock

The macroblock encoding operation is different for inter and intra modes. An I slice

only consists of intra predicted macroblocks, however a P slice can both contain inter

and intra macroblocks.

 Figure 4.3: Flow diagram of encoding a macroblock

Encode one MB

I Slice
?

P Slice I Slice

Return

Intra Prediction &
Mode Decision

Intra
Mode

I16x16 I4x4

Intra 16x16 Luma
Residual

Intra 4x4 Luma
Residual

Motion Estimation

Inter Prediction &
Mode Decision

 MB
Type?

Inter Luma
& Chroma
Residual

Luma Residual
Coding

Inter Intra

Intra Chroma
Residual

Set MB information

Chroma Residual Coding

34

In Figure 4.3, the encoding process of a macroblock is determined whether it is in I

or P slice. If the slice type is I, the macroblock are coded as intra (Intra_16x16 or

Intra_4x4). For an inter macroblock, the motion estimation and mode decision blocks

are processed, the luma and chroma residual operations are executed that the

prediction for the chosen mode is generated and the difference is calculated. As P

slice can contain intra macroblock, the inter prediction distortion and bits are

considered as the cost; as a result, for an undesired (big) cost intra macroblock

prediction and mode decision are included.

In the proposed encoder, the intra mode decision is based on Hadamard cost

calculation. Hadamard transform computation covers both rate and distortion

components, so the smallest cost is chosen as the intra mode. Only for Intra_4x4, the

mode information for each 4x4 block have to be sent, so the mode information cost

should be added to SATD for that mode.

The inter prediction and mode decision is based on the motion estimation entirely.

The motion estimation for all possible inter macroblock mode is executed with SAD

(Sum of Absolute Differences) calculation. For the inter macroblock cost, rate is

added with all blocks motion vector costs that is:

cost{x, y} = costmv_x + costmv_y (4.1)

costmv_x = mv_bits{ mv_xcurrent – mv_xpred} * λmotion (4.1.a)

costmv_y = mv_bits{ mv_ycurrent – mv_ypred } * λmotion (4.1.b)

The Lagrange formula is used for comparison of the modes to find out the optimal

distortion and bitrate for the macroblock with a λ multiplier, such that the cost of a

macroblock mode is:

L = D + R.λ (L= Lagrange cost, D = Distortion, R = Rate) (4.2)

The mode is decided according to total cost, which is adding SAD and motion vector

cost. The minimum of the mode costs is chosen as the best mode for the inter

macroblock (Rate-Distortion model). If an inter macroblock cost is bigger than

threshold, the intra modes are tried and the minimum of inter and intra cost is chosen

35

as the macroblock mode. For inter and intra macroblock comparison, the intra

macroblock SAD-based cost is calculated.

4.1.4 Motion Estimation

A motion estimation process is motion searching of an original block over a search

area that is defined as reference. A block-based encoder employs a block-based

motion search to find out an optimal matching block in its reference. For any

macroblock mode in H.264 standard, the matching block is determined according to

minimal SAD in the proposed encoder. In this respect, the motion estimation s

searching the minimum SAD in the reference search area.

There are several methods for motion estimation that are called motion search

algorithms. The first and the best resulting approach is full search, which is

comparing all possible block in the search area. However, computational overhead is

enormous for a real-time encoder because of the computation and comparison

amount. A good video encoder algorithm implementation needs to keep a good

balance between computational intensity and coding efficiency. That is to say, the

motion estimation kernel needs a computationally reduced search technique as well

as optimal matching block for coding efficiency

Another motion estimation method is N-Step fast search [13], which has fixed step

with N, is a popular and used search algorithm in motion estimation. However, the

fixed step size with different depth for each step can get caught to local minima in

spatial domain. And the other search method is hexagon search [27], which is fixed

depth (i.e. 2 pixels), is a fast search algorithm with inner (early) termination.

Although there are several fast search algorithms for motion estimation, the

distortion result can not be better than the full search’s exact match approach.

In the proposed H.264 encoder, the 4-step fast search and then the hexagon motion

search algorithms take a part for the motion estimation for various block size as in

standard. The detailed description and results of the motion search algorithms are

described in section 5.1.1.2

36

4.2 The Proposed Encoder Configuration

The proposed H.264 baseline encoder’s main concentration is on real-time

implementation on a programmable DSP. The H.264 standard defines the NAL and

VCL layers structure and the profile tools as in Table 2.2. The tools are defined for

the coding efficiency of the VCL layer with variable block size 16x16 to 4x4, half

and quarter-pel luma motion vector accuracy, etc. However, they may need much

more computational operation and memory space. For maximum coding efficiency

on a real-time implementation, the proposed encoder is restricted in some tools as

listed in Table 2.2.

The H.264 standard define 16x16 to 4x4 block sizes, however, 8x8 block mode and

sub-partitions are for detailed video concepts. Therefore, the proposed encoder is

restricted to 8x8 block size as the smallest size. The quarter pixel motion

compensation for each possible direction needs 12 quarter-pel buffer arrays. That

approach is unreasonable for the embedded platform. As a result, rather than pre-

processing the whole picture, the computation of the quarter pixel position should be

done on the fly during quarter-pel motion estimation. In the proposed encoder, the

quarter-pel accuracy is not covered as it adds computational complexity that hinders

the encoder to work in real-time. In addition, half pixel motion compensation in

diagonal direction needs 2 times more calculation amount compared to vertical and

horizontal directions. In the proposed encoder, half-pel motion compensation is

implemented, but the diagonal half-pel motion compensation and the search of the

diagonal direction are not implemented because of the real-time limitation on

DM642 DSP target.

The embedded encoder support the resolution of 352x288 (CIF) format, and the

approximation for the motion estimation is limited to motion with 16 pixels, so the

search range is limited to -/+16, with a search window of 48x48. If the target

encoding resolution is selected over CIF, the search range also should be enlarged for

motion estimation accuracy and coding efficiency. Beside, the H.264 standard can

take reference from more than one reference pictures. However, the motion

estimation reference picture number is limited to 1 for fast motion estimation, but

worse coding efficiency as well.

37

The propose encoder configuration and the features can be summarized as:

• H.264 baseline profile

- I and P slices

- Variable block size (16x16 to 8x8)

- CAVLC Entropy coding

- Full-Pel & Half-Pel motion compensation

- Reference picture number = 1

- Deblocking filter support

• Supported resolutions

- CIF (352x288), QCIF (176x144) or below CIF

• Motion Estimation

- 4-Step & Hexagon search

- -/+ 16 search range

• CQP (Constant Quantization Parameter)

4.3 DSP Implementation

A typical embedded platform project development flow under Code Composer

Studio (CCStudio) IDE is shown in Figure 4.4. Beginning with the application

design, code creation, debugging and analyzing phases are fed-back to the desired

optimization level for the design. So, The CCStudio development environment

provides many tools for code generation, debugging and tuning as well.

38

Figure 4.4: Development flow using CCStudio [21]

4.3.1 DSP Environment Set-up

The target device for the proposed H.264 software implementation is TI’s DM642

DSP platform for an embedded application. A real-time development flow for an

embedded platform needs the experimental setup with the target board as well as the

development tools. The proposed H.264 real-time encoder is ported to the

TMS320DM642 evaluation module using TI’s Code Composer Studio IDE tools,

and testing and verification is done under the workstation comparing the outputs of

the encoder on DM642 and workstation PC.

4.3.1.1 TMS320DM642 Evaluation Module (EVM)

The DM642 EVM, an evaluation board designed by Spectrum Digital, is a low-cost

standalone development platform that enables users to evaluate and develop

applications for the TI C64xx DSP family. The developed software under TI’s Code

Composer studio development environment is ported to the EVM using JTAG or PCI

interface for real-time implementation.

39

Figure 4.5: Block diagram of DM642 EVM [22]

In Figure 4.5 the block diagram of the DM642 evaluation module with the

peripherals are shown. The EVM comes with a full complement of on board devices

that suit a wide variety of application environments [22]. Key features include:

• A Texas Instruments TMS320DM642 DSP operating at 720 MHz.

• Standalone or standard PCI computer slot operation

• 3 video ports with 2 on board decoders and 1 on board encoder

• 32 Mbytes of synchronous DRAM

• On Screen display (OSD) via FPGA

• 4 Mbytes of non-volatile Flash memory

• Ethernet interface

• Software board configuration through registers implemented in FPGA

• Configurable boot load options

• JTAG emulation through on-board external emulator interface

• Expansion connectors for daughter card use

40

4.3.1.2 Experimental Set-up

A real world embedded application, such as a video encoder needs input for

compression and output of the compressed data as bit stream or reconstruction. An

experimental set-up should obtain the necessary interfaces for the real-time problem

analyses and optimization. The experimental hardware setup, shown in Figure 4.6.a,

is designed to realize the system.

(a)

(b)

Figure 4.6: The (a) experimental and (b) real-world hardware set-up

41

As shown in Figure 4.6.a, the hardware consists of the DM642 Evaluation Board, a

desktop computer for Code Composer Studio IDE tools, XDS 560 JTAG emulator

and a display device for video output. The Philips SAA1705 video encoder on

evaluation board is used for analog video output.

Input sequences for encoding are read form host using JTAG port in the experimental

set-up, which is only for using standard compression sequences in literature. In real

world, the proposed implementation can not read uncompressed data from a storage

device, so a video camera is inserted to the hardware for in final implementation as

shown in Figure 4.6.b. The input sequences are captured from the video camera

respectively by the video decoder on evaluation board, and then compressed in

DM642 DSP core. The write operation is still driven over JTAG port, because the

evaluation board is not directly attached to a storage device.

4.3.2 Code Composer Studio IDE

Development tools continue to grow in importance when choosing a processor

platform. The TI’s Code Composer Studio IDE provides useful development tools in

code creation, debugging and analyzing steps according to programmers need for

application development. Therefore, the proposed H.264 encoder adaptation using

the Code Composer Studio v3 was practiced for the DM642 DSP evaluation board.

The Code Composer Studio (CCStudio) Integrated Development Environment (IDE)

is a key element of the eXpressDSP Software and Development Tools strategy.

CCStudio delivers all of the host tools and runtime software support for TMS320

DSP and OMAP based real–time embedded applications.

CCStudio integrated development environment includes host tools and target

software that slashes development time and optimizes the performance for all real-

time embedded DSP applications [21].

Code Composer Studio’s host side tools include:

• Fully integrated CodeWright Editor,

• Source Code Debugger common interface for both simulator and emulator

targets featuring with breakpoints and probe points

42

• Application Code Tuning Dashboard

- Profiling and Analysis tools to understand and monitor code

performance

- CodeSizeTune, CacheTune and Compiler Consultant optimization

tools

• TMS320 DSPs and OMAP Code Generation tools: C/C++ compiler,

assembler and linker

• Drag and Drop CCStudio setup utility supporting:

- XDS560 ™ high speed emulation drivers

- XDS510 ™ emulation drivers

- Simulators for full devices, CPU only and CPU plus memory for

optimal performance

• DSP/BIOS Host Tooling Support (Configure, Real-time analysis and Debug)

• RTDX data transfer for real time data exchange between host and target

4.3.2.1 DSP/BIOS Real Time Kernel

The DSP/BIOS is a scalable real-time kernel which is designed to be used by

applications that require real-time scheduling and synchronization, host-to-target

communication, or real-time instrumentation. The DSP/BIOS provides preemptive

multi-threading, hardware abstraction, real-time analysis, and configuration tools.

The DSP/BIOS kernel also provides run-time services for developers use to build

DSP applications and manage application resources. The DSP/BIOS kernel

effectively extends the DSP instruction set with real-time, run-time kernel services

that form the underlying architecture, or infrastructure, of real-time DSP-based

applications [23].

43

Figure 4.7: Building DSP/BIOS based DSP application [23]

A DSP/BIOS configuration (Figure 4.7) allows optimizing an application by creating

static objects and setting their properties, rather than at run-time. This both improves

run-time performance and reduces the application footprint. Using the DSP/BIOS

configuration necessary device drivers are determined and configured.

In the proposed H.264 encoder for video display and video capture, the video

encoder chip and the video decoder chip device drivers for the hardware are included

in the DSP/BIOS configuration. Additionally, the multithread support of the

DSP/BIOS kernel is used for the tasks for display and capture operation with the

H.264 encode task. Also, the required synchronization between the tasks are

provided and implemented by the Synchronization Module (SCOM) of DSP/BIOS

kernel as shown in Figure 4.8. The DSP/BIOS kernel details can be found at [23]

Figure 4.8: Synchronized Communication between tasks

TaskDisplay

TaskEncode

TaskCapture

SCom: From Capture
to Encoder

SCom: From Encoder
to Capture

SCom: From Encoder
to Display

SCom: From Display
to Encoder

44

4.3.3 Testing and Verification

As the H.264/AVC coding standard defines the syntax elements and the

representation of them, the output of the proposed encoder conformance with the

standard have to be done. Code Composer Studio environment supplies debugging

and tracing features, that allows rapidly testing the output such as graphical view

window. Also, the RTDX real-time data exchange properties with the DSP provides

non-interrupted debug and trace feature.

The output streams can be visualized using software that provides file level and

especially macroblock level information such us macroblock type, motion vector,

coded block pattern, etc. Also, the conformance of the proposed encoder is achieved

by comparing the JM Reference Software [4] decoder outputs and the proposed

encoder’s reconstructed frames. If there is no difference between reference decoder

output and reconstruction, it can be said that the proposed H.264 encoder output is

compliant to the H.264/AVC Mpeg-4 Part 10 standard.

45

5. THE PROPOSED H.264 BASELINE ENCODER OPTIMIZATION

The DM642 emulator and cycle accurate device simulator can be used for profiling

the H.264 encoder under Code Composer Studio v3. For a real-time implementation,

rather than a simulator, DM642 EVM board can be profiled using JTAG port

emulator. As the emulator runs the code on the DM642 board in real-time, the

profiling and cycle counting information are gathered from the JTAG port to the

workstation.

While working with CCStudio v3, the statistical objects of the DSP/BIOS kernel [24]

(the objects have to be created in kernel) are used to obtain cycle or time

measurement and information for desired code area. In Figure 5.1, the usage of the

statistical object is shown. The given code segment is attached to the proposed

encoder and time and ratio measurements of optimization steps are calculated.

Figure 5.1: The H.264 encoder code segment for profiling

Using these STS (statistical) objects, the optimization steps’ impacts are measured

and a ratio between before and after process is calculated. The measurements are

gathered in time units as milliseconds (ms), microseconds (µs) rather than instruction

or cycle counts.

extern struct STS_Obj &STS_obj;

. . .

. . .

STS_get(STS_obj, GET_TICK_COUNT());

/* Code area to be measured */

STS_delta(STS_obj, GET_TICK_COUNT());

46

5.1 Software Optimization

Software optimization is the process of manipulating software code to achieve faster

execution time and smaller code size [11]. For a software optimization process, the

optimization phases should be determined and implemented. Code development

steps [25] for the target system can be summarized as:

1. Compile and profile native C code

- Validates original C code

- Determines which loops are most important in terms of MIPS

requirements

2. Add restrict qualifier, loop iteration count, memory bank, and data alignment

information

- Reduces potential pointer aliasing problems

- Allows loop with indeterminate iteration counts to execute epilogs

- Uses pragmas to pass count information to the compiler

- Uses memory bank pragmas and _nassert intrinsics to pass memory

bank and alignment information to the complier

3. Optimize C code using other C6000 intrinsics and other methods

- Facilitates use of certain C64x instructions not easily represented in C.

- Optimizes data flow bandwidth (double word access for a word data

in C64x)

4a. Write Linear Assembly

- Allows control in determining exact C6000 instructions to be used

- Provides flexibility of hand-coded assembly without worry of

pipelining, parallelism, or register allocation

47

- Can pass memory bank information to the tools

- Uses .trip directive to convey loop count information

4b. Add partitioning information to the linear assembly

- Can improve partitioning of loops when necessary

- Can avoid bottlenecks of certain hardware resources

These development steps are proposed for the native and finalized software codes.

The assumption for these phases is that the software code is optimized enough in the

words of algorithms and program level structures. Therefore, there are several

optimization phases such as algorithmic and the C level for the proposed encoder. In

sections 5.1.1 and 5.1.2, the optimization steps of algorithmic and structural

approaches are considered.

The CCStudio IDE’s mixed source/assembly view feature is used to determine the

pipeline fullness and parallelism for the time consuming code sections. The ‘[]’

symbol before the instructions is the condition of the related instruction, which

means it is a conditional instruction. The instructions that are tied with the pipe

symbol ‘||’ are executed in the same packet in the pipeline; as a result, maximum

eight instructions can be executed in a packet because of the DM642 pipeline

architecture. As shown in Figure 5.2, the code section is not parallelized enough and

contains NOP (no operation) instructions.

The critical and time consuming code sections that are not using the hardware

sources efficiently, especially VLIW architecture and pipeline of the DSP, are

observed and profiled. The finalized C or assembly code has to fully utilize the

opportunities of the DM642 DSP architecture.

48

Figure 5.2: Disassembly of example (setNALU) function

5.1.1 Algorithmic Optimizations

During software optimization, the used software algorithms can be redesigned or

modified according to the complexity and performance consideration. The

algorithmic optimization is the way of adjusting the software to a reasonable payload

while maintaining the desired objective.

49

After profiling the H.264 encoder, the computational load of sub operations and

processes should be optimized according to implementation area and intention.

According to profile results, the motion estimation kernel that includes motion search

has the heaviest computational cost in the encoder because of the video encoding

nature. Besides, the variable block size support in H.264 increases the search amount

for each block type as well.

The motion estimation kernel computational intensity has to be decreased with an

appropriate fast search algorithm and early termination determination that eliminates

the unnecessary or extra search operations. From that point of view, the algorithmic

optimization of the motion estimation kernel is proposed in the H.264 encoder

considering the real-time limitation on DM642.

5.1.1.1 Early Skip Detection

According to the nature of the video sequence, the picture or a picture fragment can

contain global motion. In H.264, an improved skip macroblock mechanism is

provided to represent the global motion of macroblocks when they do not contain

residues after vector prediction and coding. Since the skip motion vector [8] is

predicted and the skip macroblock is motion compensated at the decoder side, a skip

macroblock does not consume any bitrate.

To increase the fast motion estimation performance, early skip macroblock is

determined using zero-block detection criteria in motion search. The detection is

performed by the SAD comparison using equation in [26]. Before the motion search

with the possible modes, the skip predicted macroblock according to skip motion

vector prediction is compared with the current macroblock. If the difference is

smaller than a threshold, which depends on QP (Quantization Parameter) value, the

macroblock is marked as skip macroblock and no more motion search is performed.

This approach may cause a small PSNR drop, but improves the motion estimation

performance significantly. The QP based threshold equation is:

threshold = M.N.25.QP/192 (M = block size x, N= block size y) (5.1)

SAD(MBSkip) < 100.QP / 3 (for skip MB)

50

5.1.1.2 Motion Search Algorithm

As described in [7], it is well-known that video coding derives most of its coding

efficiency advantage from motion estimation because it removes the huge video

redundancy in temporal domain significantly. On the other hand, the motion

estimation contributes the heaviest computational load for the whole video encoding.

A good video encoder algorithm implementation needs to keep a good balance

between computational intensity and coding efficiency.

Even with the use of early termination, Full Search motion estimation is too

computationally intensive for many practical applications. In computation or power

limited applications, so-called ‘fast search’ algorithms are preferable. These

algorithms operate by calculating the energy measure (e.g. SAE, SAD) at a subset of

locations within the search window.

In section 4.1.4, the motion estimation process is described with the implemented

algorithms. The motion estimation kernel is responsible for finding out the minimal

distortion for various blocks sizes of H.264. In the H.264 encoder, to decrease the

computational over-head and consumed time against the Full Search, the Three Step

Search (TSS, sometimes described as N-step search) algorithm (Figure 5.3) is

implemented with N = 4 for -/+ 16 search area. In Figure 5.3, the step locations are

numerated with the step number as well. In TSS’s each step, search center is set as

the position with minimum energy value and in each step the search distance is

halved till it is no longer divisible by 2 (the search termination condition).

 Figure 5.3: Three Step Search [13]

51

The TSS is considerably simpler than Full Search (8N + 1 searches compared with

(2N+1 −1)2
 searches for Full Search) but the TSS (and other fast search algorithms) do

not usually perform as well as Full Search. A block containing complex detail and/or

different moving components may have several local minima. While the Full Search

will always identify the global minimum, a fast search algorithm may become

‘trapped’ in a local minimum, giving a suboptimal result [13].

In the proposed encoder, for better performance and results rather than the TSS, the

hexagon-based search [27] pattern, illustrated in Figure 5.4, is used in motion

estimation. At the beginning, search center is set as either the (0, 0) vector or the

median prediction vector within the defined search window, depending on whichever

gives lower distortion. Afterwards, estimation is performed with hexagon pattern

with a fixed distance (i.e. 2 pixels), and by choosing the lowest energy position as the

new search center. The hexagon search is terminated if the minimum energy is at the

center of the hexagon pattern, so that this approach contains self early termination

condition.

 Figure 5.4: Hexagon-based search with large (1) and small (2) patterns [27]

The 4-step search and then hexagon-based search algorithms are implemented in

motion estimation kernel, and they are also ported to the embedded software for fast

estimation with minimal computational power. The result on ‘foreman’ sequence

shows that the hexagon-search pattern with self-termination gives better performance

result that the fixed step size step search algorithm. In Table 5.1, the search algorithm

52

real-time result for ‘foreman’ sequence is given with time and bitrate results on the

target platform.

Table 5.1: TSS and Hexagon Search results on DM642 DSP

Search

Algorithm

Total Elapsed

Time

Average

MB search

Total Encode

Time

Compression

ratio

TSS (N = 4) 538.15 ms 468.6 µs 885.86 ms 60

Hexagon-based 459.75 ms 400.3 µs 763.42 ms 70

Foreman CIF video sequence with 30 frames (1 I-Slice and 29 frame ME)

As shown in Table 5.1, with migration from the N-step to hexagon search, the

proposed encoder is optimized nearly 18% in motion estimation search process,

13.8% in MB encoding process respectively. Consequently, 10% of the overall

performance enhancement and better bitrate compression on the target embedded

platform is very satisfactory for a real-time implementation.

5.1.2 C Level Optimization

The development steps are considered as the software is going to run on an

embedded DSP platform. In program level, there are platform independent C level

arrangements and optimizations, such as memory allocation and pointer exchange

mechanism in reference frames for avoiding unnecessary copy operations. Besides,

the structures and variables are arranged according to embedded architecture.

The platform independent software level optimization includes variable types,

constants and structures as well as the locality of frequently used sections and also

function in-lining. The platform dependent intrinsics, library functions are the other

C level optimization performed on the proposed encoder software. Moreover, the

compiler options of the DSP code compiler is the common phase of program level

optimizations.

53

5.1.2.1 Structure and Variable Level Optimization

In an embedded platform, dynamic memory allocation can vary according to

memory management unit. Frequent memory allocations can be prevented with a

single allocation and pointer exchanging rather than copying the data. As shown in

Figure 5.5, reference frame and reconstructed frames are allocated at the beginning

of the program and pointers are used to exchanging the data because reconstructed

frame is reference frame for the next sequence respectively.

 Figure 5.5: Memory/Pointer structure for reference and reconstruction

In C6000 DSP architecture, integer is 4 bytes, short integer is 2 bytes and character

type is 1 byte long respectively. If a load and store operation differs in variable type,

as you read from an integer and write to character type, these operations are by

default performed element by element (one data element within an instruction), even

though it can be performed for multiple data elements. Therefore, the variable types

and structures are arranged to the minimum required sizes for processing more than

one data element within a single instruction using the DSP architecture (e.g. special

SIMD instructions of the architecture).

In the proposed encoder structure, 16x16 reconstruction, 16x16 prediction and 16x16

original macroblock arrays are arranged and cast to unsigned character type as they

need one byte elements. As a result, multiple load, store or SIMD instruction can be

performed in an instruction. These block arrays are copied from/to the big picture

using EDMA controlled as described in section 5.2.2.

Memory-1

Width X Height

Memory-2

Width X Height

Reference pointer Reconstructed pointer

Start state

Next sequence

54

5.1.2.2 Inline Functions

When an inline function is called, the C/C++ source code for the function is inserted

at the point of the call. This is known as inline function expansion. Inline function

expansion is advantageous in short functions for the following reasons:

- It saves the overhead of a function call.

- Once inlined, the optimizer is free to optimize the function in context with

the surrounding code.

There are several types of inline function expansion [28]:

- Inlining with intrinsic operators (intrinsics are always inlined)

- Automatic inlining

- Definition-controlled inlining with the unguarded inline keyword

- Definition-controlled inlining with the guarded inline keyword

Expanding functions inline increases code size, especially inlining a function that is

called in a number of places. Function inlining is optimal for functions that are called

only from a small number of places and for small functions.

In the proposed H.264 encoder, some functions are inlined with ‘static __inline’

keyword to speed up with the inlining advantages. In the proposed encoder, the

MVcost function, which calculates motion vector costfor Lagrange formula, sign

function, and clipping operation for saturation functions are inlined for performance

optimization.

5.1.2.3 C level Compiler Intrinsics

The first optimization step that can be performed on C source code for the

TMS320C64x is to use intrinsic operators. Intrinsics are used like functions and

produce assembly language statements that would otherwise be inexpressible in C.

The problem is that once you have performed the first optimization step, your C

source code is no longer ANSI C compatible.

55

The code proposed within application report [29], allows writing C code using

intrinsic operators keeping the possibility to validate the code on a workstation. The

C6000 compiler recognizes a number of intrinsic operators that allow expressing the

meaning of certain assembly statements that would otherwise be cumbersome or

inexpressible in C/C++. The intrinsics are specified with a leading underscore ‘_’,

and are accessed by calling them as a function. They correspond to the indicated

C6000 assembly language instruction(s) [28,30]. By using the C intrinsic, access to

assembly statements from C level is provided; as a result, optimized code

instructions are executed. In [28], a table list for C intrinsics can be found.

Figure 5.6: C program code and corresponding intrinsics

In the proposed H.264 encoder software as shown in Figure 5.6, _abs intrinsic is used

for absolute of an integer value, _abs2 and _dotp2 intrinsics are used for parallel

addition of two absolute values for hadamard transform. The _min2 and _max2

intrinsics are used for minimum and maximum value comparison, and lastly, the

_mem4 intrinsic is used for various unaligned memory load/store operations. These

intrinsics slightly increases the encoder performance as they are in-lined with the

corresponding instruction to the software.

5.1.2.4 Fast Library Functions

The Texas Instruments C64x Image Library [31] and DSP Library [32] are optimized

Image/Video Processing and DSP Functions Library for C programmers using

TMS320C64x devices. It includes many C-callable, assembly-optimized, general-

purpose image/video processing and DSP routines. These routines are typically used

in computationally intensive real-time applications where optimal execution speed is

/* C code*/

int abs(a)

{

if(a < 0)

 return -a;

else

 return a;

}

/* C Intrinsic */

int x = _abs(a);

/* C code */

int min(a, b)

{

if(a < b)

 return a;

else

 return b;

}

/* C Intrinsic */

int x = _min2(a, b);

56

critical. By using these routines, achieving execution speeds considerably faster than

equivalent code written in standard ANSI C language becomes possible. In addition,

by providing ready-to-use Image and DSP functions can significantly shorten the

image/video processing application development time.

In a video encoder, motion estimation or motion search has great computational

overhead, because the original macroblock is searched over the reference picture in

pixel by pixel approach. For the resulting motion, SAD (Sum of Absolute

Differences) calculation is used in the proposed encoder. TI’s image library provides

8x8 and 16x16 block size SAD calculation functions so that SAD calculation on a

single 8x8 block with IMG_sad_8x8 speeds up the encoder.

Function IMG_sad_8x8(unsigned char *src, unsigned char *ref, int pitch)

Arguments src[64] 8x8 source block. Must be double-word aligned.

ref[] Reference image.

pitch Width of reference image.

Another C-callable DSP function is DSP_dat_mul [32] (DSP matrix multiplication),

which can be used in hadamard transform, hadamard based SATD, integer transform

and inverse transform in the H.264 encoder.

Function DSP_mat_mul(short *x, int r1, int c1, short *y, int c2, short *r, int qs)

Arguments x [r1*c1] Pointer to input matrix of size r1*c1.

r1 Number of rows in matrix x.

c1 Number of columns in matrix x. Also number of rows in y.

y [c1*c2] Pointer to input matrix of size c1*c2.

c2 Number of columns in matrix y.

r [r1*c2] Pointer to output matrix of size r1*c2.

qs Final right–shift to apply to the result.

57

The source block must be double word aligned [31] for the correct calculation of

SAD function. The pragma directive ‘DATA_ALIGN’ should be used for the source

block for the double word alignment.

However, the IMG_sad_8x8 function is restricted to source blocks that have to be

copied from the original picture with 8x8 sizes. In the proposed H.264, macroblocks

are copied (e.g. data transferred with EDMA) in 16x16 size. In section 5.1.5.1, linear

assembly of SAD function is written using C64x instruction set (as fast as image

library function) for flexibility.

5.1.3 Compiler Options for Optimization

In C64x, which have VLIW architecture, having a powerful compiler eases the

implementation process for the H.264 encoder. Compiler of C64x DSPs has different

options which can be set through CCStudio and creates the executables from the

source code according to options. The strategy for optimizing the code using these

options determines the H.264 encoder performance. In Table 5.2, some of the

critical and efficient compiler options and their descriptions are listed.

Table 5.2: C64x Compiler Options for Performance

Option Description

Speed Most Critical

(no -ms)

The first strategy to determine the optimization type (code-

size vs. speed)

-o3 File-level optimization option for the highest level of

optimization available. Software pipelining, loop unrolling,

SIMD are applied (-oN determines the optimization level)

-pm Program-level optimization, combines source files for full

pipeline utilization and performance

-mt Allows the source code and assembly optimizer to assume

there is no memory aliases in code, i.e., no memory

references ever depend on each other

No Debug Exclude the debug info from the output file, so provides

much more parallelized code

58

In the C64x compiler, the compiling and optimizing are worked out combining the

options together. For the proposed H.264 encoder, the optimization for speed is much

more critical than the code size formed by the C64x compiler. First of all, the

compiler optimization strategy is set to Speed Most Critical (no -ms) for compiler

performance. The following combination of the optimization levels offers the best

performance for the proposed encoder.

The -o3 instructs the compiler to perform file-level optimization. Even though the

optimization level can be used alone for general file-level optimization, there are

several options to perform specific optimizations. Also, Software pipelining is turned

on in this compiler option, which parallelizes instructions, fills delay slots and

maximizes functional unit [11]. More detailed information about file level

optimization can be found in [28].

In Code Composer Studio, program-level optimization is specified by using the -pm

option with the -o3 option. With program-level optimization, all of source files are

compiled into one intermediate file called a module. The module moves to the

optimization and code generation passes of the compiler. Because the compiler can

see the entire program, it performs several optimizations that are rarely applied

during file-level optimization:

- If a particular argument in a function always has the same value, the

compiler replaces the argument with the value and passes the value

instead of the argument.

- If a return value of a function is never used, the compiler deletes the

return code in the function.

- If a function is not called directly or indirectly by main, the compiler

removes the function.

The -mt option informs the compiler that it can make certain assumptions about how

aliases are used for memory addresses and pointers in your code. These assumptions

allow the compiler to improve optimization. The -mt option also specifies that loop-

invariant counter increments and decrements are non-zero. Loop invariant means the

value of an expression does not change within the loop.

59

 The -mt option indicates that a pointer to an object type does not alias (point to) an

object of another type. Indirect references on two pointers do not alias, so each

subscript expression in an array reference is in the range and there are no loop-

invariant counter increments and decrements of loop counters [28]. If source code

contains any of these aliasing techniques the -mt option should not be used and

unexpected results may occur. The proposed H.264 encoder is rearranged not to

contain any of these aliasing, so -mt option is use to improve the optimization.

After specifying the compiler options for the highest performance for the code, the

code size and speed is improved with passing the debug information with ‘No

Debug’ option. The debug information kept in the compiled output file is excluded,

as a result, the code size decreases. Additionally, the compiler can perform better

software pipelining and instruction-level parallelism, while there is no user

information partitions in compiled output file.

5.1.4 Linear Assembly

When the compiler does not fully exploit the potential of the ’C6000 architecture,

better performance may be obtained by writing the loop/function in linear assembly,

and then linear assembly code is the input for the assembly optimizer [25]. To

enhance the performance of a video/image process on such a DSP architecture, the

linear assembly is the key coding feature for using the pipeline parallelism with

powerful SIMD instructions (i.e. Table 3.1) as the inexpressible C program level

operations and calculation can be specified in linear assembly easily.

Linear assembly is similar to regular ’C6000 assembly code that it uses ’C6000

instructions to write your code. With linear assembly, however, it is not needed to

specify all of the information that you need to specify in regular ’C6000 assembly

code. Software expert decides whether to specify the information or let the assembly

optimizer specify.

Here is the information that is not needed to specify in linear assembly code:

- Parallel instructions

- Pipeline latency

60

- Register usage

- Which functional unit is being used

If they are not specified, the assembly optimizer determines the information that is

not included, based on the information that it has about the code. As with other code

generation tools, linear assembly code might be needed to be modified up to a

satisfactory performance. During linear assembly coding, much more detail to

assembly can be added, such as specifying which functional unit should be used. The

important regulars of linear assembly code writing are:

• A linear assembly file must be specified with a ‘.sa’ extension.

• Linear assembly code should include the ‘.cproc’ and ‘.endproc’ directives.

The .cproc and .endproc directives delimit a section of code that is optimized

by assembly optimizer. Use .cproc at the beginning of the section and

.endproc at the end of the section.

• Linear assembly code may include a ‘.reg’ directive. The .reg directive allows

using descriptive names for values that will be stored in registers. When .reg

directive is used, the assembly optimizer chooses a register whose use agrees

with the functional units chosen for the instructions that operate on the value.

• Linear assembly code may include a ‘.trip’ directive. The .trip directive

specifies the values indicating how many times a loop will iterate.

In the proposed encoder, the performance optimization of the critical and unutilized

code segments and functions are written in linear assembly. Furthermore, the SIMD

instructions of the C6000 DSP are used with balanced side effect (DSP’s A/B side

operational units and registers) for pipelining.

5.1.4.1 Linear Assembly of Critical Functions

By writing the linear assembly, the pipeline utilization and parallel video/image

processing with SIMD instructions can be provided. In H.264 encoder, the time

consuming operations are profiled and the appropriate linear assembly codes are

61

written for C64x DSP. Also, the SIMD instructions are covered in that part for the

best performance.

The motion estimation has the highest computational complexity for a video encoder

that the original macroblock is searched over a reference picture area. DM64x

provides a rich set of extensive video/image instructions that can implement

effectively SAD based motion estimation scheme. In the proposed encoder, the 8x8

SAD function is written in linear assembly, and this function can be expressed as in

Figure 5.7.

Figure 5.7: Linear assembly fragment of SAD function

In Figure 5.7, load non-aligned double word (LDNDW) may read a 64-bit value with

any byte boundary. This instruction is important to accelerate the data fetching from

the MB especially in searching window in reference frame. It can easily fetch eight

aligned pixels from non-aligned pixels from searching window, which allows

expanding memory bandwidth usage.

On the other hand, subtract with absolute value (SUBABS4) instruction calculates

four absolute values of the difference between the packed 8-bit data contained in the

source registers. DOTPU4, an important video/image instruction returns the dot-

product between four pairs of packed 8-bit values. Since two DOPTPU4 can run in

parallel in a single cycle, this instruction accelerates the sum of absolute difference

(SAD) process significantly that is the core for motion estimation.

 ZERO SAD

 . . .

LDDW *org_ptr++[ORG_WIN], org8:org4 ; org[7-4]:org[3-0]

LDNDW *win_ptr++[SRCH_WIN], win8:win4 ; win[7-4]:win[3-0]

 SUBABS4 org4, win4, absdif4

 SUBABS4 org8, win8, absdif8

 DOTPU4 absdif4, dot_sad, SAD_tmp4

 DOTPU4 absdif8, dot_sad, SAD_tmp8

 ADD SAD_tmp4, SAD, SAD

 ADD SAD_tmp8, SAD, SAD

62

The idea of SAD kernel can be summarized in the following steps:

1. LDDW and LDNDW fetches 8 pixels from current and reference frame

2. Two SUBABS4 calculate 8 absolute difference

3. Two DOTPU4 accumulate 8 result addition

The given code for a SAD line is expanded for 8x8 block with looping, and the ‘.trip’

directive is used to specify the loop will iterate at defined amount. In Figure 5.8, the

core SAD iteration code is disassembled that fully utilizes the architecture: SIMD

instructions and pipeline fullness.

Figure 5.8: Disassembly of SAD linear assembly’s core loop

In Table 5.3, the SAD 8x8 function’s performance results are given. The overall

motion search kernel is optimized with 4x speed up factor that is the core

computationally intensive part of the encoder. The intermediate and after results

differ because SAD function is rewritten by changing LDNDW to LDDW instruction

for original macroblock read operation, which is double word aligned in internal

memory with pragma directives.

63

Table 5.3: SAD 8x8 linear assembly results

Function Before Intermediate After Speed Ratio

SAD_8x8 195.7 µs 65.1 µs 48.2 µs 4x

In the proposed encoder the other time consuming operations, transform and inverse

transform, are also written in linear assembly. The transform process is parallelized

with butter-flying the transform matrix for using ADD2, SUB2, SHR2, PACK2,

PACKH2 instructions that can calculate two pairs of data with only an instruction.

Beside the SATD process is unlocked for parallelization and appropriate SIMD

instructions such as DOTP2, ABS, ADD2, etc. The linear assembly code of 4x4

integer transform in residual coding and SATD in intra mode decision accelerates the

processes slightly compared to SAD function.

5.1.4.2 Half-Pel Motion Compensation Optimization

As the encoder supports half-pel motion search and compensation, the half-pel

motion compensation [8] is optimized for H.264 encoder by pre-calculation. The

whole image is interpolated in horizontal and vertical direction before the motion

estimation process. This approach eliminates the unnecessary recalculation of

macroblock motion interpolation in post processing.

The half-pel motion compensation is written in linear assembly for parallel

calculation of half-pel positions using SIMD instructions. The 6-tap filter in H.264 is

used to calculate the half-pel position and sub-pel predictions can be parallelized

with line based filtering using SIMD and reduced cache latency is obtained using L2

internal SRAM memory. To improve the half-pel motion compensation, the lines to

be filtered are fetched to internal memory using EDMA. The ping-pong buffer

mechanism as illustrated in Figure 5.9 is used to parallel (hidden) transfer of

compensation buffers.

64

Figure 5.9: Half-pel motion compensation and ping-pong buffers

The half-pel motion compensation takes the fetched memory line and outputs the

compensated line to internal memory as shown in Figure 5.9. The two separate Ping-

Pong buffers are used for background EDMA transfer. After a line is fetched by

EDMA, the second line fetch is started. At that time, the compensation of the first

line is started in parallel. As a result, the fetch of second and the other lines are

parallelized with the compensation process. For vertical interpolation, the column-

based interpolation is converted to line-based compensation by using the EDMA

column transfer policy.

Table 5.4: Half-pel motion compensation optimization results

Compensation
Direction

Before
(C code)

After
(ASM + EDMA)

Optimization
Ratio

Horizontal 693.1 µs 268.3 µs ~2.6x

Vertical 5815 µs 393.5 µs ~14.8x

Diagonal Not implemented in proposed encoder

In Table 5.4, the result of horizontal and vertical motion compensation optimization

is given. The optimization ratio is much more aggressive in vertical motion

compensation because the column-based interpolation is turned to line-based

interpolation using the EDMA controller’s 2-D data transferring feature.

Ping-Pong

Buffer In-1
Reference Frame

Width X Height
Ping-Pong

Buffer In-2

Ping-Pong

Buffer Out-2 Motion

Interpolated Image

 Width X Height

Ping-Pong

Buffer Out-1

Half-pel Motion

Interpolation

Process

EDMA

EDMA

EDMA

EDMA

DSP CPU

65

5.2 Memory/Cache Optimization

As the memory requirement for the encoder is significant, accessing lots of data and

spending much more time for waiting data that is stored in off-chip external memory

occurs because of the video encoder nature. As told in [20], using cache is the easiest

way to solve the problem, but suffers high memory latency in case of memory

misses. In DSP cores, as in DM642, with smaller cache size, cache misses

significantly effects the encoder performance. The DM642 on-chip internal L2

SRAM (256 Kbytes) can be set as both internal RAM and Cache together. For

avoiding the cache misses caused by the small L1 cache, 128 Kbytes L2 cache space

is set as specified in section 5.2.1.

Another way to avoid cache misses of external memory accesses; Direct Memory

Access (DMA) is used to fetch required data to internal memory before processing.

As DM642 core includes EDMA and Quick DMA that is designed to transfer

required data to temporary buffers in internal memory, so that the core should not

encounter any memory latency. For the temporary buffer usage, the L2 internal

memory should be configured to contain RAM space as well.

As described in section 5.2.2, the temporary buffers and the flow of the H.264

encoder are adjusted to use Quick DMA for data transfer in parallel (hidden) with

core processing. Additionally, non-transferred frequently used temporary buffers,

such as 4x4 block difference buffer for integer transform, 16x16 prediction buffer,

etc. are put in to internal memory for locality and low-delay access time for those

buffers in encoder flow.

5.2.1 Internal L2 SRAM Configuration

The DM642 two-level cache architecture, as in Figure 3.5, is a combination of L1

(total 32 Kbytes) cache and a programmable 265 Kbytes L2 SRAM memory. As the

proposed encoder needs room for temporary buffers for DMA transfer operations and

low latency access, the L2 cache is configured as a combination of cache and internal

memory. The optimal cache size for the proposed encoder on DM642 is selected as

128 Kbytes. Therefore, the maximum internal memory space for the encoder is 128

Kbytes mapped SRAM within the DM642 internal memory as shown in Figure 3.4.

66

In DM642 128 Kbytes L2 internal memory, the original macroblock, -/+ 16 search

window and luma/chroma reconstruction temporary buffers are used in DMA data

transfers. Besides, the prediction (intra or inter), difference and ping-pong buffers are

internal memory elements for low latency. In Table 5.5, the temporary buffers used

in the proposed encoder are listed with the usage description.

Table 5.5: Data elements in DM642 L2 SRAM section

Data Element Data Type&Size Description

Original

luma & chroma

Macroblock

unsigned char

[16][16]

[2][8][8]

The original MB values are encoded and used in motion

search, prediction error calculation, SAD etc. The buffers

are transferred via (Quick) DMA.

Luma Search

window

unsigned char

[48][48]

As the MB size is 16x16, -+ 16 search window for

luminance component in motion estimation kernel. Also,

The buffer is transferred via (Quick) DMA.

Luma prediction

buffer

unsigned char

[4][4][4]

Four 4x4 predictions of a sub-block 8x8.

Chroma

prediction buffer

unsigned char

[2][8][8]

Two 8x8 prediction buffer for U and V components of

chrominance and used in reconstruction.

Luma difference

buffer

short int

[4][4][4]

Four 4x4 prediction error buffers for sub-block 8x8. The

quantization/de-quantization, zigzag scan, integer and

inverse transforms are performed on that buffer.

Luma & Chroma

reconstruction

buffer

unsigned char

[16][16]

[2][8][8]

The reconstruction buffers of decoding process of MB’s

YUV components. Also, the buffers are transferred via

EDMA to reconstructed (next reference) picture.

In the linker command the internal L2 SRAM memory section name is defined as

‘mysect’ related to the DSP/BIOS memory/cache configuration. In Figure 5.10, the

pragma directive ‘DATA_SECTION’ is used to allocate a data array or temporary

buffer (Table 5.5) within the internal memory, and also pragma directive

‘CACHE_LINE_SIZE’ (128 bytes for DM642) is used to align the data address to

cache line size boundary to increase the cache hits for the line pages and decrease the

cache miss penalties as possible as can be.

67

Figure 5.10: Allocation of frequently accessed buffers within internal memory

While the memory sections’ efficient usage is crucial for a video encoder design,

allocating the frequently accessed arrays within the on-chip memory reduces the data

read/write cache miss penalties as well as the CPU stalls because of the memory

request. As a result, the proposed encoder performance is optimized using the

memory architecture of the DSP core with an appropriate configuration.

5.2.2 EDMA Controller Usage

The H.264 encoder must access significant amount of data that is stored in off-chip

external memory. For optimizing the performance for latency, on-chip L2 SRAM is

configured as a cache, the instruction and data elements are transferred from/to the

external memory by the cache controller before they are used. However, as declared

#pragma DATA_SECTION(window,".mysect");

#pragma DATA_ALIGN(window, CACHE_L2_LINESIZE)

unsigned char window[SRCH_WIN][SRCH_WIN];

#pragma DATA_SECTION(orgMB_16x16,".mysect");

#pragma DATA_ALIGN(orgMB_16x16,

CACHE_L2_LINESIZE)

unsigned char orgMB_16x16[16][16];

#pragma DATA_SECTION(diff4x4,".mysect");

#pragma DATA_ALIGN(diff4x4, CACHE_L2_LINESIZE)

short diff4x4[4][4][4];

#pragma DATA_SECTION(pred4x4,".mysect");

unsigned char pred4x4[4][4][4];

#pragma DATA_SECTION(luma_rec,".mysect");

#pragma DATA_ALIGN(luma_rec, CACHE_L2_LINESIZE)

unsigned char luma_rec[16][16];

// Chroma Elements

#pragma DATA_SECTION(orgUV8x8,".mysect");

#pragma DATA_ALIGN(orgUV8x8, CACHE_L2_LINESIZE)

unsigned char orgUV8x8[2][8][8];

#pragma DATA_SECTION(chr_rec,".mysect");

#pragma DATA_ALIGN(chr_rec, CACHE_L2_LINESIZE)

unsigned char chr_rec [2][8][8];

#pragma DATA_SECTION(chr_pred,".mysect");

#pragma DATA_ALIGN(chr_pred, CACHE_L2_LINESIZE)

unsigned char chr_pred[2][8][8];

68

in [5,6] if data exchange depends only on the cache controller, it is hard to schedule

the transfer processes in reason. Besides, there is no data superiority for the cache

controller; the frequently used data may be replaced with the rarely employed data

because of the code flow.

Since the frequently used one is going to be re-rolled in soon, the system’s efficiency

is declined. An alternate method for data scheduling is directly controlling the

EDMA controller [6]. By using the EDMA controller of DM642 [35], the

background (hidden) data transfers between external and internal memory are

maintained. Therefore, high latency memory accesses are limited to internal memory

cache miss penalty respectively.

Figure 5.11: QDMA management for Motion Estimation [7]

In Figure 5.11, a main flow of a video encoder’s motion estimation is figured out

using Quick DMA and internal temporary buffers [7]. The parallelism of the CPU

and EDMA architecture is used for data transfer scheduling for the performance of

the video encoder.

The enhanced direct memory access (EDMA) controller of the DM64x devices is a

highly efficient data transfer engine, capable of handling up to 8 bytes per EDMA

cycle, resulting 2.4GB per second of total data throughput at a CPU rate of 600 MHz.

69

To make a video encoder application fully benefit from the bandwidth in the transfer

engine, it is best to use 32-bit element size whenever possible.

In EDMA communication, each data transfer is initiated by a transfer request (TR),

which contains all the information required to perform the transfer: source address,

destination address, transfer property, element count, etc. When a transfer request is

shifted into one of the transfer request queues to wait for processing, the transfer

priority level determines the queue to which it is sorted. There are four queues:

Q0(urgent), Q1(high), Q2(medium), and Q3 (low) corresponding to four priority

levels, each with a depth of 16 entries. Only one TR from each priority queue can be

serviced at a time by the address generation/transfer logic. When a TR arrives at the

head of queue, it is moved into the EDMA transfer Controller queue registers, which

perform the actual data movement defined by the TR [7].

The EDMA has the capability of performing unsynchronized transfers through the

use of a QDMA request by the CPU. In other word, QDMA transfer is synchronized

by the CPU. In video encoder, the EDMA transfer is synchronized by data flow of

the algorithm instead of external events. The QDMA is better to issue a single,

independent transfer to quickly move data, rather than to perform periodic or

repetitive transfers like the other EDMA channels. The requests are queued

according to priority, with higher priority requests services first processed by the

EDMA. Because of the EDMA structure, all QDMA transfers are submitted using

frame synchronization. Therefore, the QDMA always requests a transfer of one

complete frame of data. A good video encoder should use all three priority queues

(low, medium and high) in parallel to transfer data between external memory and

internal on-chip buffers.

In the proposed encoder the QDMA transfer scheme for current macroblock, search

window and reconstructed macroblock is drawn in Figure 5.12. As well as the

luminance component, the halved two chrominance component buffers are allocated

within internal memory and the QDMA is used to transfer required data to temporary

buffers in internal memory beforehand, so that the DM642 core should not face any

memory latency. The code flow of the H.264 encoder is adjusted to make EDMA

memory fetch in parallel (hidden) with core processing.

70

Figure 5.12: The proposed encoder QDMA scheme for luminance

5.3 The H.264 Encoder Optimization Results

The DM642 DSP core is capable of video/image processing using the hardware

architecture and also instruction level video/image operations. The proposed

H.264/AVC baseline encoder is targeted to real-time application with CIF (352x288)

resolution above 25 fps encoding speed as well. For achieving the target rate, a video

encoder has to fully utilize the core’s resources as much as possible.

The H.264/AVC encoder is optimized under the DSP environment from software (C

language) level to hardware level using the DSP APIs, register level programming

and intrinsics as well as linear assembly language for SIMD instructions and parallel

processing the image pixels respectively. The software encoder performance is

improved for achieving the target encoding rate in real-time implementation.

5.3.1 The H.264 Encoder Optimization Summary

The proposed H.264/AVC encoder on DM642 DSP performance optimization steps

cover program level optimizations and DSP hardware usage such as EDMA

controller and VLIW architecture (e.g. SIMD instructions in linear assembly). In

section 5.1.2 the C program level optimizations; structures, function/intrinsic inlining

and fast library functions achieve software optimization with little effort on the

proposed encoder. However, the DSP hardware usage needs expertise especially in

Current

Frame

Width X Height

Reference

Frame

Width X Height

Reconstructed

Frame

Width X Height

Original

MB

16

16
Search

Window

(-+16)

48

48

Recons.

MB

16

16

External Memory

Internal Memory
QDMA QDMA

QDMA

71

EDMA and data scheduling and occupation on DSP software with linear assembly,

but serves significant results on the encoder optimization.

The 2-level cache/memory hierarchy of DM642 core and configurable L2 internal

memory space have to be considered as the bottleneck for speed optimization for

video/image processing that requires high memory bandwidths. Therefore, a L2

configuration as both cache and internal RAM is used to maximize the cache hits

with larger cache memory and minimize the cache miss penalty with internal

memory for locality and frequently accesses data elements. As describe in section

5.2.1, the 256 Kbytes L2 SRAM is configured as 128 Kbytes cache and 128 Kbytes

internal RAM.

Table 5.6: Optimization results for CIF [352x288] ‘Foreman’ sequence

Functional Block

Total Count

@ 30 frames

Total
Elapsed

Time
(ms)

Average
Time

(ms/frame)

Percentage

(%)

Before & after encode
(EDMA usage)

All MBs 133.38 ms 4.45 ms 11.16 %

Encode MB All MBs 763.42 ms 25.45 ms 63.89 %

Motion
Estimation

11484 MBs @
29 frames

459.75 ms 15.85 ms Encode MB:
60.22 %

Residual
Coding

All MBs 228.50 ms 7.62 ms Encode MB:
29.93 %

E
nc

od
e

M
B

Intra Predict
& Others

All MBs 75.17 ms 2.51 ms Encode MB:
9.85 %

Deblocking Filter 30 frames 132.96 ms 4.43 ms 11.13 %

VLC (write NALU) All MBs 77.98 ms 2.60 ms 6.53 %

Motion Compensation @ 29 frames 87.09 ms 3.00 ms 7.29 %

Total 30 frames 1194.8 ms 39.93 ms All

In Table 5.6, the optimized encoder on DM642 DSP results are measured using CIF

(352x288) format for ‘foreman’ video sequence. The average picture encoding time

for this sequence is 35.5ms (Deblocking off) and 39.93 ms (Deblocking on) for 30

frames, so the proposed encoder runs on DM642 at 28.57 fps without deblocking

72

filter and 25.04 fps with deblocking filter. Besides, a real-time application frame rate

can be 25 to 30 fps, the H.264 encoder is optimized enough for real-time purpose,

achieving encode rate over 25 fps.

5.3.2 Simulation Results with PSNR and Compression Ratio

The average PSNR values for video sequences of 30 frames are measured with the

proposed encoder speed. For the compression efficiency in bitrate, constant

quantization parameter with a value 28 is used. Average PSNR shows that the picture

qualities of the encoder compressed ‘.264’ outputs are high enough for a real-time

application. The compression rates change with the video sequence properties with

the motion types. In Table 5.7, the encoder compression efficiency is given with

encoding speed, PSNR and compression rate with constant QP value at 28 while the

deblocking filter is on. The results show that the proposed encode speed is above 25

fps and the compression efficiency is well suited for a real-time implementation such

as video surveillance.

Table 5.7: Compression efficiency of the implemented H.264 encoder

Sequence

[CIF 352x288]

Encoder

Speed (fps)

Y-PSNR

(dB)

U-PSNR

(dB)

V-PSNR

(dB)

Compression

Ratio

Akiyo 40.42 fps 39.50 42.46 44.05 258

Container 30.17 fps 35.96 42.16 41.89 105

Foreman 25.04 fps 36.02 40.69 43.27 70

Mother&Daughter 38.95 fps 38.85 43.63 44.53 281

News 34.29 fps 37.65 40.00 41.66 128

Paris 26.08 fps 35.21 38.63 38.71 48

 The medium motion low detail and low motion medium detail video sequences,

such as ‘Foreman’ and ‘Paris’ respectively, and also low motion low detail video

sequences are profiled on DM642 EVM platform as shown in Table 5.7. These types

of streams are similar to video conferencing and mobile applications environment, so

the corresponding sequences are chosen for profiling in an embedded platform.

73

6. CONCLUSION AND FUTURE WORK

In this thesis, a real-time H.264 baseline encoder on TI TMS320DM642 digital

signal processor at CIF (352x288) resolution is implemented and verified with

reference decoder. According to the performance measurements over video

sequences, 25 to 40 fps encoding performance is possible and the PSNR

measurements are sufficient for embedded applications such as video conferencing

and mobile applications.

As the video/image processing system accommodates parallelism, digital signal

processors can provide much more parallelized implementation with high

performance and flexibility. However, computational complexity and memory

accesses are restrictive for the encoder performance especially in embedded targets;

the DM642 DSP can overcome the computational complexity with the VLIW

architecture as well as the access limitation with the EDMA controller.

The realization and optimization of the proposed encoder on DM642 target platform

with the given optimization phases are carried out. From algorithmic to architectural

optimizations, the platform independent software optimizations and the platform

dependent memory and linear assembly optimizations are derived. After all

optimization steps, the overall performance of the proposed H.264 encoder above 25

fps is qualified enough for a real world implementation.

For future work, the proposed encoder efficiency can be improved by adding quarter

pixel motion compensation support and error resilience tools. Besides, motion

estimation kernel can be improved by using and adapting more appropriate motion

search algorithms. As the proposed encoder achieves real-time performance at CIF

resolution, development of the encoder performance for higher resolution especially

at D1 (720x576) is a challenging future study.

74

REFERENCES

[1] Wiegand, T. and Sullivan, G.J., July 2003. Overview of the H.264/AVC Video

Coding Standard, IEEE Transactions on Circuits and Systems for

Video Technology, Vol. 13, No. 7, 560-576.

[2] Werda I., Kossentini F. and Massmoudi N., 2006. Analysis and Optimization

of UB Video’s H.264 Baseline Encoder Implementation on Texas

Instruments’ TMS320DM642 DSP, International Conference on

Image Processing, Atlanta, Georgia, USA, 8-11 October, 3277-3280.

[3] Liang M. and Chen J., 2004. A DSP-coprocessor Architecture for Image/Video

Processing, 7th International Conference on Solid-State and Integrated

Technology, Beijing, China, 18-21 October, Vol. 3, 1601-1604.

[4] Joint Video Team (JVT) of ITU-T VCEG and ISO IEC MPEG. Joint Model (JM)

Reference Software Version 8.6, http://iphome.hhi.de/suehring/tml

[5] Wei Z. and Cai C., 2006. Realization And Optimization of DSP-based H.264

Encoder, International Symposium on Circuits and Systems, Island of

Kos, Greece, 21-24 May, 1921-1924.

[6] Kant S., Mithun U. and Gupta P.S.S.B.K., 2006. Real-Time H.264/AVC Video

Encoder on A Programmable DSP processor for Video Applications,

8
th

 International Conference on Consumer Electronics, Las Vegas,

USA, 7-11 January, Digest of Technical Papers, 93-94.

[7] Peng C., 2004. Video Encoding Optimization on TMS320DM64x/C64x, DSP

Video Imaging Solution Application Report, SPRAA63, Texas

Instruments.

[8] ITU-T Rec. H.264/ISO/IEC 14496-10 AVC, 2003. Draft ITU-T

recommendation and final draft international standard of joint video

specification, Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T

VCEG.

[9] Kamaci, N. and Altunbasak, Y., 2003. Performance Comparison of the

Emerging H.264 Video Coding Standard With the Existing Standards,

ICME '03 Proceedings 2003 International Conference on Multimedia

and Expo, Baltimore, Maryland, USA, 6-9 July, Vol. 1, 345-348.

75

 [10] Tamhankar, A. Rao, K.R., 2003. An Overview of H.264 / MPEG-4 Part 10,

4
th

 EURASIP Conference Focused on Video/Image Processing and

Multimedia Communications, Zagreb, Croatia, 2-5 July, Vol. 1, 1-51.

[11] Güney, M., 2006. H.264 Baseline Encoder Implementation and Optimization on

TMS320DM642 Digital Signal Processor, Master Thesis, Sabancı

Uni. Graduate School of Engineering and Natural Sciences, İstanbul.

[12] Golomb S.W., 1966. Run-length encoding, IEEE Transcations on Information

Theory, IT-12, 399–401.

[13] Richardson, E.G., 2003. H-264 and MPEG-4 Video Compression, Wiley,

London.

[14] Kwon, S., Tamhankar A. and Rao, K.R., 2005. Overview of H.264/MPEG-4

Part 10, Dongeui University, T-Mobile, University of Texas at

Arlington, USA, March 15.

[15] Sullivan G.J., Topiwala P. and Luthra A., 2004. The H.264/AVC Advanced

Video Coding Standard: Overview and Introduction to the Fidelity

Range Extensions, SPIE Conference on Applications of Digital Image

Processing XXVII Special Session on Advances in the New Emerging

Standard: H.264/AVC, Denver, USA, 2 August, Vol. 5558, 454-474.

[16] Raja G. and Mirza M.J., 2004. Performance Comparsion of Advanced Video

Coding H.264 Standard with Baseline H.263 and H.263+ Standards,

Internation Symposium on Communications and Information

Technologies, Sapporo, Japan, 26-29 October, Vol. 2, 743-746.

[17] Ostermann, J., Bormans J. and Marpe D., 2004. Video Coding with

H.264/AVC: Tools, Performance, and Complexity, IEEE Circuits and

Systems Magazine, Vol. 4, 7-28.

[18] Marcandey V. and Rao D., 2002. TMS320DM642 Technical Overview,

Application Note, SPRU615, Texas Instruments, TX.

[19] TI, 2001. TMS320C64x Technical Overview, Application Note, SPRU395b,

Texas Instruments, TX.

[20] TI, 2003. TMS320C6000 DSP Cache Users’ Guide, User’s Guide, SPRU656A,

Texas Instruments, TX.

76

[21] TI, 2006. Code Composer Studio Development Tools v3.3, Getting Started

Guide, SPRU509H, Texas Instruments, TX.

[22] Digital Spectrum Inc., 2003. TMS320DM642 Evaluation Module, Technical

Reference.

[23] Dart D., 2001. DSP/BIOS Kernel Technical Overview, Application Note,

SPRA780, Texas Instruments, TX.

[24] Stevenson J., 2004. Code Composer Studio IDE v3 White Paper, Application

Report, SPRAA08, Texas Instruments, TX.

[25] TI, 2002. TMS320C6000 Optimizing C Compiler Tutorial, Technical

Document, SPRU425A, Texas Instruments, TX.

[26] Cheng Y., Dai K. and Wang Z., 2004. Motion Search Method Based on Zero-

block detection in H.264/AVC, 8
th

 International Conference on

Computer Supported Cooperative Work in Design, Xiamen, China,

26-28 May, Vol. 2, 739-743.

[27] Zhu, C., Lin X. and Chau L., May 2002. Hexagon-based search algorithm for

fast block motion estimation, IEEE Transactions on Circuits and

Systems for Video Technology, Vol. 12, Issue 5, 349-355.

[28] TI, 2004. TMS320C6000 Optimizing Compiler User’s Guide, Technical

Document, SPRU187L, Texas Instruments, TX.

[29] Biscondi E., 1999. C Implementation of the TMS320C62xx Intrinsic Operators,

Digital Signal Processor Application Report, SPRA616, Texas

Instruments, TX.

[30] TI, 2006. TMS320C6000 CPU and Instruction Guide, Reference Guide,

SPRU189G, Texas Instruments, TX.

[31] TI, 2003. TMS320C64x Image/Video Processing Library, Programmer’s

Reference, SPRU023B, Texas Instruments, TX.

[32] TI, 2002. TMS320C64x DSP Library, Programmer’s Reference, SPRU565A,

Texas Instruments, TX.

[33] TI, 2006. TMS320C6000 Enhanced Direct Memory (EDMA) Controller,

Reference Guide, SPRU234C, Texas Instruments, TX.

77

AUTOBIOGRAPHY

Ender Meriç was born in Uşak at 04.02.1982. He received B.S. degree in computer
engineering from Istanbul Technical University. His graduate education is still
continuing in computer engineering at Istanbul Technical University. His research
interests include real-time implementations and embedded systems.

