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IMPLEMENTATION AND OPTIMIZATION OF REAL-TIME H.264 

BASELINE ENCODER ON TMS320DM642 DSP 

SUMMARY 

Recently, digital video coding is mandatory in many applications such as digital 
surveillance systems, video conferencing, mobile applications as well as video 
broadcasts. The H.264/MPEG-4 Part 10, an international video compression 
standard, is developed for improving the coding efficiency compared to previous 
standards. However, the coding improvement comes with an increase in coding 
complexity. In this thesis, an H.264 baseline profile encoder is implemented on 
Texas Instruments TMS320DM642 digital signal processor.   

The real-time implementation of the H.264/AVC encoder on DM642 DSP core 
offers most of the standard H.264/AVC baseline profile coding tools except error 
resiliency tools and quarter-pel motion estimation. Instead of quarter-pel motion 
compensation, integer and half pixel position motion estimation and compensation 
for all luminance and chrominance components are implemented. 

The target platform, DM64 DSP core, is designed as a high-performance digital 
media processor with two-level memory/cache hierarchy and very long instruction 
word (VLIW) architecture. The subject of the thesis is H.264 baseline encoder 
system realization and optimization on the target platform. Moreover, the study of 
optimization phases covering algorithmic, architectural and memory strategies are 
clarified in details. 

The H.264/AVC encoder system is verified both to execute on the development 
workstation and DM642 EVM (Evaluation Module) hardware platform. Briefly, the 
uncompressed input of a YUV video sequence with CIF resolution to the encoder 
system is compressed to H.264 Annex-B file format and displayed on screen. 
Additionally, the encoder output is verified with H.264 reference software and the 
compliancy is proven. 
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GERÇEK ZAMANLI H.264 TEMEL KODLAYICININ TMS320DM642 DSP 

ÜZERİNDE UYGULAMASI VE ENİYİLEMESİ 

ÖZET 

Günümüzde sayısal video kodlama sayısal gözetim sistemleri, video konferans, 
mobil uygulamalar ve video yayını gibi bir çok uygulamada zorunlu hale gelmiştir. 
Uluslararası bir video sıkıştırma standardı olan H.264/MPEG-4 bölüm 10, daha 
önceki standartlara göre kodlama verimini iyileştirmek amacıyla geliştirilmiştir. 
Fakat, bu kodlama geliştirmesi beraberinde kodlama karmaşıklığının da artmasına 
yol açmaktadır. Bu tez çalışmasında Texas Instruments TMS320DM642 sayısal 
sinyal işleyici üzerinde H.264 temel profil kodlayıcı gerçeklenmiştir.  

DM642 DSP çekirdeği üzerindeki gerçek zamanlı H.264/AVC kodlayıcı uygulaması 
hata esnekliği araçları ve çeyrek  piksel hareket dengeleme dışında standart tüm 
H.264/AVC temel profil kodlama araçlarını sunmaktadır. Çeyrek piksel hareket 
dengelem yerine, tüm parlaklılık ve renklik bileşenleri için tam sayı ve yarım piksel 
pozisyonlarında hareket kestirim ve dengeleme gerçeklenmiştir. 

Kullanılan DM642 DSP çekirdeği platformu, 2-seviyeli bellek/önbellek aşama 
düzenine sahip ve çok uzun komut kelimesi (VLIW) içeren yüksek performanslı 
sayısal işlemci olarak tasarlanmıştır. Sunulan H.264 temel kodlayıcı sistemin 
gerçeklenmesi ve eniyilemesi bu tezin konusudur. Üstelik, algoritma bazlı, mimari ve 
bellek stratejilerini içeren eniyileme çalışma fazları detaylarıyla açıklanmaktadır.    

H.264/AVC video kodlayıcının hem geliştirme ortamında hem de DM642 EVM 
donanım ortamında çalışması doğrulanmıştır. Kısaca, kodlayıcı sisteme giriş olan 
CIF çözünürlükte sıkıştırılmamış YUV video dizisi H.264 Annex-B dosya biçiminde 
ve de ekrana video çıktı verilerek sıkıştırılmaktadır. Ek olarak, kodlayıcı çıktısı 
H.264 referans yazılımla doğruluğu kontrol edilmiş ve uyumluluğu kanıtlanmıştır.  
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1. INTRODUCTION 

An uncompressed digital video or image is unreasonable for transmission and storage 

due to the need of mass space. Because of the bandwidth and storage space 

limitations, the usage of compression is very important and necessary in video based 

applications. Nowadays, digital video compression plays an important role in many 

applications such as digital surveillance systems, video conferencing, mobile 

applications as well as digital TV. The video compression becomes inevitable in such 

applications, so the coding standards are developed and deployed.  

Video compression systems are one of the most attractive fields of consumer 

electronics. H.264/MPEG-4 Part 10 standard is formed for the purpose of improving 

the efficiency and performance of existing standards and providing the applicability 

of video compression in new implementations. H.264, the next generation video 

coding standard, employs variable block size motion compensation with multiple 

reference frames at quarter-pixel motion vector accuracy [1] that enables 50% 

reduction in bit rate while still achieving similar visual quality compared to previous 

video coding standards [2].       

1.1 Implementing the H.264/AVC Standard 

As of now, real-time computing of video applications remains a challenge. The high 

coding efficiency of the H.264 standard comes at the expense of increased 

algorithmic complexity, which affects the performance of the H.264 encoders in 

many real-time applications. Although hardware’s evolution is accelerated, high 

complexity of H.264 hardware and software implementation is still a concern for 

application industry. Therefore, it is high time to optimize the existing H.264 coding 

approach to practical techniques so that it can satisfy the requirements of those 

emergent storage and streaming applications.   
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Software solutions based on general purpose processor or DSP (Digital Signal 

Processor) can provide flexibility and adaptability, but hardware solutions need 

dedicated ICs [3].  Developing dedicated hardware is a time consuming and thus an 

expensive task. Moreover, once the hardware platform is implemented, it is difficult 

to make changes. But industrial experience in this market shows that hardware 

adaptation to consumers needs is required in almost every design. Also, the H.264 

video codec can be implemented on different DSPs, using the signal processor’s high 

computational efficiency according to real-time constraints.  TI TMS320DM64x 

series DSP with its enhancements is appropriate for a real-time H.264 software 

encoder that provides high performance and flexibility.   

The proposed H.264 encoder implementation in this thesis, which is verified with the 

JM reference software [4], achieves real-time encoding for CIF resolution format on 

a DM642 DSP core. Therefore, this implementation can be used in a real world 

implementation, especially in video conferencing and mobile applications. Also, the 

realization and optimization of the encoder on TI’s TMS320DM642 DSP core is 

represented based on the target platform features. Moreover, the flexibility and 

programmability of DSP implementation enables easy adaptation for higher 

performance solutions as a future work. 

1.2 Literature Survey 

In literature, there are several examples of real-time implementation of video coding 

and H.264 standard. In [5], realization and optimization of H.264 baseline encoder 

on TI TMS320C6416 DSP is presented. The study represented in that paper focuses 

on the optimization issues using JM81a reference software. The study of 

optimization of encoder includes key module optimization using SIMD (Single 

instruction multiple data) and linear assembly, especially data scheduling and storage 

allocation strategy. It is demonstrated that the access of the significant amount of 

data stored in off-chip memory is a bottleneck for real-time implementation. The 

realization and optimization results of encoder in the case study shows that 23~26 

frames per second coding rate for QCIF (176x144) resolution can be reached to meet 

the real-time application requirements. However, the QCIF resolution can not be 
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sufficient for many implementations and the encoder should be optimized up to CIF 

(352x288) format as well. 

Another study in [6] is a H.264 encoder implementation on Analog Device’s BF561 

programmable DSP. The implementation is designed for videophone application at 

CIF resolution, 30 fps and bit rate of 384 and 512 kbps. In the proposed study, the 

algorithmic, architectural and memory optimizations are covered. Due to the high 

complexity of H.264, the algorithmic optimizations are focused on motion estimation 

(fast motion search, quarter pixel ME) and intra prediction. The architectural 

optimization covers the full utilization of the core for higher performance with 

reducing overhead and using SIMD operation. As in the previous study, the memory 

optimization is essential because of the significant memory requirements of encoder. 

That is to say, the memory optimizations have to be issued in the proposed encoder 

for real-time implementation. 

In [2], the analysis and optimization of UB Video’s H.264 baseline encoder on TI 

TMS320DM642 DSP is presented. The study proposes DM642-speicific methods to 

increase the encoding speed of the UB Video’s encoder, enabling interactive real-

time video applications for CIF resolution on a single DSP core. The analysis and 

optimization study especially on data transfer reduces the data transfer complexity by 

50 % and overall encoder speed is increased by about 15%.      

Finally, application report in [7] summarizes the video encoding optimization 

techniques on TMS320DM64x/C64x processors. These techniques include 

algorithmic/system optimization, memory structures, EDMA (Enhanced Direct 

Memory Access) usage for background (hidden) data transfer and cache utilization. 

The video encoder system/algorithm optimization covers macro-block level 

loop/module separation for decreasing cache miss penalties, and also using fast 

motion estimation algorithms in an encoder. Memory buffering scheme of a video 

encoder and data transfer with EDMA controller phases are emphasized for reducing 

memory result latencies and cache utilization. Lastly, the cache optimization and 

cache tuning is represented for improving cache performance. 

The articles and studies show that a video coding application includes parallelism, so 

the parallel processing should be increased in the target platform as well. Realization 
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and optimization of a real-time encoder becomes possible with the optimization 

techniques such as algorithmic, architectural and memory optimizations. Most of the 

encoder studies on an embedded platform agree that the high number of memory 

access is a video encoder bottleneck and memory access scheme should be well 

organized (i.e. EDMA usage). In this thesis, the memory organizations and 

optimizations are implemented and represented. The algorithmic and architectural 

optimizations are software oriented tasks in a real-time encoder to utilize the core for 

higher performance. Therefore, these tasks are represented with the proposed 

encoder optimization steps in thesis. 
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2. OVERVIEW OF H.264/AVC  

In early 1998, the Video Coding Experts Group (VCEG) ITU-T SG16 Q.6 issued a 

call for proposals on a project called H.26L, with the target to double the coding 

efficiency (which means halving the bit rate necessary for a given level of fidelity) in 

comparison to any other existing video coding standards for a broad variety of 

applications. The first draft design for that new standard was adopted in October of 

1999. In December of 2001, VCEG and the Moving Picture Experts Group (MPEG) 

ISO/IEC JTC 1/SC 29/WG 11 formed a Joint Video Team (JVT), with the charter to 

finalize the draft new video coding standard for formal approval submission as 

H.264/AVC [8] in March 2003 [1]. 

 

Figure 2.1: Scope of video coding standardization 

The scope of the standardization is illustrated in Figure 2.1, which shows the typical 

video encoding/ decoding chain (excluding the transport or storage of the video 

signal) [1]. In all ITU-T and ISO/IEC video standards, by restricting bitstream and 

syntax, and defining the decoding process of the syntax elements, only the video 

decoder is standardized. Every decoder, according to the restrictions and definitions 

in the standard, has to produce similar output for the given encoded bitstream that 

conforms to the standard. 

The H.264 standard is designed in two layers: a video coding layer (VCL), that is 

designed to represent the video content, and a network adaptation layer (NAL), 

Source 

Destination 
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which provides header information and VCL representation of the video for transfer 

and storage, as shown in Figure 2.2.  

 

Figure 2.2: Structure of H.264/AVC video encoder [1] 

As in H.263 and MPEG-2, H.264 VLC uses translational block-based motion 

compensation and transform based residual coding. However, there are significant 

differences in details, such as scalar quantization with adjustable quantization step, 

content adaptive run-length VLC of the quantized transform coefficients [9]. 

2.1 Profiles and Levels of H.264/AVC  

Until now, 4 basic profiles of H.264/AVC standard have been issued as baseline, 

main, extended and high profiles. These H.264 profiles can be used in many different 

application areas such in video conferencing to digital cinema according to target 

usage as stated in Table 2.1. 

Table 2.1: H.264/MPEG-4 Part 10 profiles and their major application areas [10,11] 

Profile Typical Applications 

Baseline Video Conferencing & Telephony and 
Mobile Applications 

Main Video Storage & Playback, Broadcast Video 

Extended Streaming Media 

High Profile           
(Fidelity Range Extension) 

Studio Editing, Post Processing, Digital 
Cinema 
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Table 2.2: H.264/AVC profiles with the coding feature 

 Baseline Main Extended High 
Proposed 
Baseline 
Encoder 

I Slices X X X X X 

P Slices X X X X X 

Deblocking Filter X X X X X 

Variable Block Size X X X X 
X    

(16x16 to 
8x8) 

CAVLC X X X X X 

¼ Pel Motion 
Compensation X X X X 

X  
( Half-pel 
MC only) 

Error Resilience Tools 
(FMO, ASO, 
Redundant Slices)  

X  X   

B Slices  X X X  

SI/SP Slices   X X  

CABAC  X  X  

Weighted Prediction   X X   

Data Partitioning   X   

Interlaced Coding  X X X  

In Table 2.2, the included coding tools of the H.264 profiles are summarized 

respectively, and also the proposed baseline encoder is given. In the proposed 

baseline encoder “Error Resilience Tools” is not covered and only the half pixel 

motion compensation is applied for the purpose of the real-time constraints on a 

digital signal processor.  

The profile independent levels defined in the H.264/AVC standard are about the 

picture resolution and frame rate of the video codec that should be supported. In 

Table 2.3, the levels and performance of the H.264 standard are listed related to 

resolution and frame rate. 
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Table 2.3: Performances of H.264/AVC levels 

Level Performance 

1.0 QCIF @ 15 fps 

1.1 QCIF @ 30 fps 

1.2 CIF@ 15 fps 

2.0 CIF@ 30 fps 

2.1 HHR @ 15 or 30 fps  

2.2 SDTV @ 15 fps 

3.0 
SDTV: 720x480x20i., 720x576x25i 

10Mbps (max) 

3.1 
1280x720x30p.,  

SVGA (800x600) 50+p. 

3.2 1208x720x60p. 

4.0 

HDTV: 1920x10870x30i., 

1280x720x60p., 2k1kx30p.  

20Mbps (max) 

4.1 

HDTV: 1920x10870x30i., 

1280x720x60p., 2k1kx30p.  

50Mbps (max) 

5.0 
SHDTV / D-Cinema: 

1920x108x60p., 2,5kx2k. 

5.1 SHDTV / D-Cinema: 4kx2k. 

2.2 Coding Features of the H.264   

The common coding features of the H.264 profiles, Table 2.2, are described in this 

section according to their application in the proposed encoder scheme.  

I Slices (Intra-coded Slices): Intra-coded slices can only contain intra-coded 

macroblock, which can only be predicted with in the same slice (spatial correlation). 

An intra-coded MB does not contain references from the previous or successive 

slices (temporal correlation); therefore, I Slices have no temporal information.  

P Slices (Predictive-coded Slices): Predictive-coded slices can contain both intra-

coded and inter-coded, which is predicted from previously coded pictures for P 

slices, macroblocks. An inter macroblock is derived with at most one motion vector 

and reference index for its prediction.   
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In-the-loop Deblocking Filter: Block-based video coding produces artifacts known 

as blocking artifacts that can originate from both the prediction and residual 

difference coding stages of the decoding process. Application of an adaptive 

deblocking filter is a well-known method of improving the resulting video quality, 

and when designed well, this can improve both objective and subjective video 

quality. Building further on a concept from an optional feature of H.263+, the 

deblocking filter in the H.264/AVC design is brought within the motion-

compensated prediction loop, so that this improvement in quality can be used in 

inter-picture prediction to improve the ability to predict other pictures as well [1].  

Variable Block Size: The supports more flexibility in the selection of motion 

compensation block sizes and shapes than any previous standard, with a minimum 

luminance motion compensation block size as small as 4x4 [1].  The H.264/AVC 

standard defines seven possible Macroblock sizes.  The Figure 2.3.a are the large 

Macroblock partition size and Figure 2.3.b are the sub-macroblock partitions of the 

8x8 block size. Large partition types can be used for homogeneous areas of the 

picture, while small partition size may be beneficial for detailed areas. 

  

(a) 

 

(b) 

Figure 2.3: (a) Macroblock partitions: 16x16, 8x16, 16x8, 8x8, (b) Sub-macroblock 

partitions: 8x8, 4x8, 8x4, 4x4 
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CAVLC (Context-Adaptive Variable Length Coding) Entropy Coding: This 

feature includes VLC (Variable Length Coding) tables (Huffman Table in MPEG 

standards) for various syntax elements that are used for the entropy coding of the 

transformed and quantized residual data. Additionally, Exp-Golomb code words [12] 

with a regular construction are used for variable length coding as well.   

¼ Pixel (Sub-pel) Motion Compensation: In addition to the integer pixel accurate 

motion compensation, H.264 standard allows using half-pixel and quarter-pixel 

accurate motion compensation to improve the coding standard, while adding 

computational complexity to the interpolation process. Interpolation process details, 

especially the half-pel interpolation process, will be described in realization and 

optimization steps of thesis. 

Error Resilience Tools:  

FMO (Flexible Macroblock Order), in which macroblocks may be coded out of raster 

sequence order. FMO makes it possible to map the sequence of MBs to multiple slice 

groups in a flexible way. 

ASO (Arbitrary Slice Order), in which slices may be coded out of raster sequence 

order. ASO is defined to be in use if the first macroblock in any slice in a decoded 

frame has a smaller macroblock address than the first macroblock in a previously 

decoded slice in the same picture [13]. 

RS (Redundant Slice) belongs to the redundant coded data obtained by same or 

different coding rate, in comparison with previous coded data of same slice. 

 

Figure 2.4: Specific coding parts of the H.264 profiles [14] 
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The overall described coding parts are the baseline profile elements as shown in 

Figure 2.4.  According to the proposed encoder, only the error resilience tools are 

excluded for implementation.  

The Baseline profile has the lowest complexity compared to the other profiles in 

H.264, so it is the simplest profile to implement and use in different applications. The 

main profile allows additional reduction in bandwidth over the Baseline profile 

through mainly Bi-directional (B Slices), Context Adaptive Binary Arithmetic 

Coding (CABAC) and Weighted Prediction. 

B Slices obtains a compression advantage as compared to P Slices by allowing past 

and future reference pictures (similar to B-picture prediction in earlier MPEG video 

standards) with a variety of prediction modes for each macroblock partition. Each 

macroblock in an inter-coded macroblock in a B slice may be predicted from one or 

two reference pictures, before or after the current picture in temporal order. 

A weighted average of the pixel values in the reference pictures is then used as the 

predictor for each sample in B slices’ macroblock. B Slices also have a special mode 

“Direct mode”, in which the motion vectors for a macroblock are not explicitly sent. 

The encoder can specify in the slice header either for the decoder to derive the 

motion vectors by scaling the motion vector of the co-located macroblock in another 

reference picture or to derive it by inferring motion from spatially-neighboring 

regions [15]. By allowing variety of prediction modes, the prediction accuracy is 

improved, often reducing the bit-rate by 5-10%. 

Context Adaptive Binary Coding (CABAC) provides selection of probability for 

each syntax element according to the element’s context in both encoder and decoder 

side. The compression performance is increased through adapting probability 

estimations using local statistics and using arithmetic coding rather than variable 

length coding for the syntax elements. 

Context-based adaptive binary arithmetic coding is used as the standard as a way of 

gaining additional performance relative to CAVLC coding, at the cost of additional 

complexity. The CABAC mode has been shown to increase compression efficiency 

by roughly 10% relative to the CAVLC mode, although CABAC is significantly 

more computationally complex [15].  
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Weighted prediction allows modifying (scaling) the samples of the motion 

compensated prediction data in an inter macroblock using global multiplier and a 

global offset. Explicit or implicit derived multiplier and offset specified by the 

encoder are used to weighting and offsetting the prediction. The weighted prediction 

can improve coding efficiency for sequences with fades, lighting change, and can be 

used flexibly for other purposes as well.  

SP and SI slices are specially-coded slices that enable (among other things) efficient 

switching between video streams and efficient random access for video decoders. A 

common requirement in a streaming application is for a video decoder to switch 

between one of several encoded streams. For example, the same video material is 

coded at multiple bit rates for transmission across the Internet and a decoder attempts 

to decode the highest bit rate stream it can receive but may require switching 

automatically to a lower bit rate stream if the data throughput drops [13]. 

Interlaced Coding enables coding of the picture frames at field level; fields can be 

treated as frames. Rather than progressive video coding, interlaced frames are used in 

TV signals (CRT TV technology) especially in digital television systems. 

Data Partitioning enables an encoder to reorganize the coded data within a video 

packet to reduce the impact of transmission errors. As in Mpeg-4, but with further 

differences in data partitions, the packets are split into partitions for a reasonable 

reconstruction for damages and transmission errors. 

2.3 Comparison of the Emerging H.264 Video Coding With Other Standards 

As described in [1], the H.264 VCL uses translational block-based motion 

compensation and transform based residual coding as in other coding standards. 

However, H.264 features accommodate significant differences in details such as 

integer transform (4x4 block size), multiple reference and ⅛ accuracy motion 

vectors.  

As drawn in Figure 2.1, the separation of the architecture into two layers with a video 

coding layer (VCL) for efficient compression and a network abstraction layer (NAL) 

for packing that coded data for transmission and network is the concept of the 
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standard. The layered structure of the H.264 enables superior error resilience due to 

enhancement layer and error resiliency tools [11].  

The video coding layer of H.264/AVC is similar in spirit to other standards such as 

MPEG-2 Video. It consists of a hybrid of temporal and spatial prediction, in 

conjunction with transform coding [16]. Although, the standard consists of 

transform, quantization, motion compensation and entropy coding blocks, there are 

major differences in that block according to previous standards. Variable block size 

16x16 to 4x4 (Figure 2.3.a and 2.3.b), increased precision motion vector with quarter 

pixel resolution, Context-Adaptive Variable Length Coding (CAVLC) and Context-

Adaptive Binary Arithmetic Coding (CABAC) for entropy coding can be indicated 

for superiority of H.264/AVC standard. Moreover, in-loop deblocking filter is added 

to the standard for reducing the blocking artifacts. 

According to test results in [9], the H.264 standard achieves 50% average coding 

gain over MPEG-2, 47% average coding gain over H.263 baseline, and 24% average 

coding gain over H.263 high profile encoders. These results show us that H.264 

provides efficient coding not only in bit rate compression but also in quality as well. 

2.3.1 H.264 Encoder Complexity 

The coding tools of H.264/AVC when used in an optimized mode allow for bit 

savings of about 50% compared to previous video coding standards like MPEG-4 

and MPEG-2 for a wide range of bit rates and resolutions. However, these savings 

come at the price of an increased complexity. The decoder is about 2 times as 

complex as an MPEG-4 Visual decoder for the Simple profile, and the encoder is 

about 10 times as complex as a corresponding MPEG-4 Visual encoder for the 

Simple profile. The H.264/AVC main profile decoder suitable for entertainment 

applications is about four times more complex than MPEG-2. The encoder 

complexity depends largely on the algorithms for motion estimation as well as for the 

rate-constrained encoder control [17]. 

The implementation of the H.264 video coding is a challenging process in 

development because of the high complexity, while it provides high video quality at 

low bit rates compared with previous compression standards. Additionally, in order 
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to provide higher bit-rates and resolution with the complex tools such as HD (High 

Definition) video, multi-DSP systems are needed as the encoding gets much more 

complex.  

2.4 H.264/MPEG-4 Part 10 Architecture 

H.264/MPEG-4 Part 10 is organized into two different conceptual layers. In Figure 

2.2, the Network Abstraction Layer (NAL) and Video Coding Layer (VCL) are 

drawn as the main concept of the H.264 architecture. In [15], an abstract about the 

architecture can be found. 

2.4.1 Network Abstraction Layer (NAL)   

A NAL unit is a syntax structure containing an indication of the type of data to 

follow and bytes containing that data in the form of a raw byte sequence payload 

(RBSP) interspersed as necessary with emulation prevention bytes [8]. The RBSPs, a 

set of data corresponding to VCL data or header information, are encapsulated into 

Network Abstraction Layer Unit (NALU) for storage or transmission. 

H.264/AVC allows multiple sequences in one stream and a sequence containing 

multiple pictures with non-VCL NAL units. As described in [10], a sequence 

parameter set (SPS) contains important header information that applies to all NAL 

units in the coded video sequence and a picture parameter set (PPS) contains header 

information that applies to the coding of one or more picture within the coded video 

sequence. Therefore, non-VCL NAL units, SPS and PPS, are numerated to identify 

each sequence and picture. Besides, the VCL NAL units containing the data that 

represents the values of the samples in the video pictures are packaged after the 

related non-VCL parts. 

The proposed encoder implementation outputs bitstream in Annex B byte stream file 

format using NALU syntax which is described in ITU-T H.264 Recommendation [8]. 

2.4.2 Video Coding Layer (VCL) 

The typical block diagram for coding a macroblock is shown in Figure 2.5. The 

encoding process also includes decoding process (except for entropy decoding) 
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because in encoding, the motion estimation has to use the same reconstructed 

reference picture with the decoder.  

 

Figure 2.5: Block Diagram of encoding process in the VCL of H.264/AVC [1] 

The VCL processes the frame prediction and/or motion estimation according to slice 

type and also decides intra/inter macroblock coding in inter slices based on coding 

cost using distortion and bit rate (Lagrange model).  After decision, the prediction 

errors are coded using compression tools (transform, quantization etc.) to represent 

the value of video samples.   

2.4.2.1 Intra Prediction Process 

Intra prediction is derived from decoded samples of the same decoded slice in 

encoder and this process extracts the spatial redundancy between adjacent 

macroblocks in a slice. The intra predicted pictures usually give better quality and 

lower distortion than inter predicted picture, but intra prediction requires much more 

bits to represent the samples. Because of the higher bit rate requirement of an intra 

predicted slices, the number of the intra predicted slices is quite less than the inter 

slices for reduction of bits in stream.   
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At the beginning of a coded video sequence is an instantaneous decoding refresh 

(IDR) Access unit. An IDR access unit contains an intra picture and the presence of 

an IDR Access unit indicates that no subsequent picture in the stream will require 

reference to pictures prior to the intra picture it contains in order to be decoded [1]. 

The intra slices called IDR access unit are used after subsequent inter frames to 

decrease the propagated error in coded video. The intra frame period as IDR rate 

(default 50) is determined with a parameter in proposed implementation. 

The H.264/AVC standard defines the intra 4x4 block (Intra_4x4) and intra 16x16 

(Intra_16x16) modes for the luminance samples, intra 8x8 modes for the 

chrominance samples of a macroblock, and also the I_PCM mode. The Intra_4x4 

mode is based on predicting each 4x4 luminance block separately and is well suited 

for coding parts of a picture with significant detail. The Intra_16x16 mode performs 

prediction of the whole 16x16 luminance macroblock and is more suited for coding 

very smooth areas of a picture. The I_PCM coding type allows bypassing the 

prediction and transform process and directly sending values of the encoded samples. 

As shown in Figure 2.6 and Figure 2.7, there are nine possible optional prediction 

modes for Intra_4x4 luma block and four prediction modes for Intra_16x16 luma 

block. The Chroma prediction uses the all four Intra_16x16 prediction modes for 8x8 

blocks, only numbering of modes differ as well. 

 

Figure 2.6: Intra 4x4 luma prediction modes [13] 

In Figure 2.6, the Intra_4x4 luma block prediction modes (9 possible modes) are 

drawn with the prediction directions and also the descriptions of the predictions can 

be found in Table 2.4. 
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Table 2.4: Intra 4x4 luma prediction modes’ descriptions [13] 

Mode 0 (Vertical) The upper samples A,B, C, D are extrapolated vertically 

Mode 1 (Horizontal) The left samples I, K, K, L are extrapolated horizontally 

Mode 2 (DC) All samples are predicted by the mean of Samples A...D and I...L 

Mode 3 (Diagonal 
Down-Left) 

The samples are interpolated at a 45
o 

angle between lower-left 
and upper-right 

Mode 4 (Diagonal 
Down-Right) 

The samples are extrapolated at a 45
o 

angle down and to the 
right 

Mode 5 (Vertical-Right) 
Extrapolation at an angle of approximately 26.6

o 
to left of vertical 

(width/height = 1/2) 

Mode 6 (Horizontal-
Down) 

Extrapolation at an angle of approximately 26.6
o 
below horizontal 

Mode 7 (Vertical-Left) 
Extrapolation (or interpolation) at an angle of approximately 26.6

o 

to left of vertical  

Mode 8 (Horizontal-Up) Interpolation at an angle of approximately 26.6
o 
above horizontal 

 

Figure 2.7: Intra 16x16 luma prediction modes [13] 

In Figure 2.7, the Intra_16x16 luma block prediction modes are drawn and the 

descriptions of the predictions can be found in Table 2.5. 

Table 2.5: Intra 16x16 luma prediction modes’ descriptions [13] 

Mode 0 (Vertical) The upper samples H are extrapolated vertically 

Mode 1 (Horizontal) The left samples V are extrapolated horizontally 

Mode 2 (DC) All samples are predicted by the mean of Samples H and V 

Mode 3 (Plane) 
A linear ‘plane’ functions is fitted to the upper and left-hand samples 
H and V. this work well in areas of smoothly-varying luminance 
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For representing the intra prediction mode in bitstream with reduced number of bits, 

a predictive coding mechanism, called as “most probable mode”, is applied. The 

most probable mode for the block is predicted from the neighbors and the coding of 

the actual mode is based on that prediction. A flag is used to determine if the actual 

block mode is the predicted most probable mode. If it is not, the intra prediction 

mode is coded and sent in addition to the most probable mode flag, as defined in the 

H.264/MPEG-4 Part 10 standard.    

2.4.2.2 Inter Prediction process 

In video coding, it is well known that temporal correlations of macroblocks are 

stronger than spatial correlations of macroblocks. Inter prediction is carried out on 

the decoded samples of reference pictures other than the current decoded picture [8], 

and this process eliminates the temporal redundancy between successive pictures for 

the compression.  

Inter prediction in H.264/AVC supports variable block size from 16x16 to 4x4 as in 

Figure 2.3.b and fine ¼ sample motion vectors for luminance as well as ⅛ sample 

motion vectors for chrominance component. Although using multiple reference 

picture for motion estimation in inter prediction process enhances the compression 

efficiency, the proposed encoder implementation uses only one reference frame for 

real-time purpose. Multi-reference support can be adapted easily to the proposed 

software as a future work. 

Variable block size for macroblock partitions and sub-macroblock partitions increase 

the number of possible combinations within each macroblock. As large partition 

sizes are ideal for homogenous areas and small partition sizes are ideal for detailed 

areas, an ideal encoder should select the optimal result according to distortion and bit 

rate. While the partition sizes of a macroblock become smaller, the number of bits to 

represent the coded data with each partition’s motion vectors and reference indexes 

increase. However, distortion of macroblock partitions is reduced as the block size 

becomes smaller. Therefore, bit-rate and distortion should be considered together.   

In video coding standards, the macroblock motion is found out in motion estimation 

block using reference picture(s). The motion estimation block can be summarized as 
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finding the minimal difference for original block and reference picture. As the 

process has computational overhead, there are several methods and algorithms for 

approximated, restricted and fast motion estimation such as using search windows, 

stepped searches etc. 

A H.264/AVC encoder should find out the best result for all possible block sizes. 

The motion estimation block outputs a motion vector for the macroblock mode. In 

decode process, these motion vectors are used for luma motion compensation 

operation and chroma motion compensation is derived by halving the corresponding 

luminance partition block sizes and motion vectors, since the resolution is half of the 

luma component.     

2.4.2.3 Coefficient Transform and Reconstruction 

The basic coefficient coding process in H.264/AVC is shown in Figure 2.8 that is 

similar to previous block-based video coding standards. The coefficient coding 

process includes the 4x4 2-D forward transform, hadamard transform of DC 

components if necessary, quantization, zigzag scanning and entropy coding for the 

NAL unit. Also a video encoder need references for prediction, it includes the 

decoding process as necessary inverse hadamard transform of DC components, 

dequantization and inverse transform of the coded coefficients. The block is 

reconstructed by the addition of motion compensated prediction and the decoded 

transform coefficients. 

 

Figure 2.8: Basic coefficient/residual coding in H.264 
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In H.264/AVC standard, the 4x4 DCT transform is performed with integer 

arithmetic. The frequency domain post-scaling operation is embedded into 

quantization process as described in [13]. The 4x4 transform matrix [13] with integer 

approximations specified in the H.264/AVC standard have been designed for fast, 

efficient software and hardware implementations. In the encoder, each 4×4 block of 

quantized transform coefficients is mapped to a 16-element array in a zigzag order 

(Figure 2.9). 

 

Figure 2.9: Zigzag scan for 4x4 luma block (frame mode) [13] 
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3. TEXAS INSTRUMENTS TMS320DM642 DSP 

A digital signal processor (DSP) is a specialized microprocessor designed 

specifically for digital signal processing, generally in real-time computing. As stated 

in [18], Programmable DSPs are increasingly important in a wide range of video and 

imaging applications, such as medical imaging, security monitoring, digital cameras 

and printers, and a large number of consumer applications driven by digital video 

processing including DVDs, digital TV, video telephony, and many others.  

As image and video processing is getting more popular, DSPs overcome the 

requirements due to the complexity and need of parallelism in nature. There are 

several special purpose multimedia processors, such as the Blackfin by Analog 

Devices, Philips’ Trimedia and Texas Instruments digital media processors (e.g. 

C6000 family), and these multimedia processors are being used in low cost and/or 

low power embedded applications: mobile applications, digital TV, DVDs and set-

top boxes. 

Multimedia applications are characterized by requirements for processing flexibility, 

sophisticated algorithms, and high data rates [18]. For digital signal processing 

applications, DPSs are suited to exploit opportunities for efficient parallelism with 

very long instruction word (VLIW) architecture. With VLIW architecture, a flexible, 

high-level language programming environment has been developed in support of this 

processor paradigm. Also, the TMS320DM642 device that is based on VLIW 

architecture is an appropriate environment to implement a real-time 

flexible/programmable H.264 encoder. 

3.1 Technical Overview of DM642 Core 

The DM642 integrates a number of peripherals to address the development of video 

and imaging applications, including three configurable video ports capable of video 

input, video output, or transport stream input. The C6000 DSP family with the 
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VelociTI architecture addresses the needs of video and imaging applications. The 

C6000 family uses advanced very long instruction word (VLIW) architecture that 

contains multiple execution units running in parallel, which allow them to execute 

multiple instructions in a single clock cycle. Parallelism is the key to extremely high 

performance and C64x introduced VelociTI.2 extensions to the VelociTI 

architecture. These extensions allow more work to be done in each cycle by 

including new instructions to accelerate performance in key application areas 

including video and imaging [18,19]. 

The high performance very long instruction word (VLIW) architecture with 

VelociTI.2, 2-level memory/cache hierarchy and Enhanced Direct Memory Access 

(EDMA) engine makes it an excellent choice for computational intensive 

video/image applications such as video coding and analysis [11]. In Figure 3.1, the 

block diagram of the TMS320C64x DSP with CPU core, EDMA, 2-Level memory 

hierarchy with L1 and L2, and the peripherals is shown.  

 

Figure 3.1: TMS320C64x DSP Block Diagram [18] 
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3.1.1 DM642 CPU  

The DM642 is based on the C64x CPU, which is part of the C6000 DSP family that 

has VelociTI.2 extensions to the VelociTI architecture. The C6000 CPU components 

consist of: 

• Two general-purpose register files (A and B) 

• Eight functional units (.L1, .L2, .S1, .S2, .M1, .M2, .D1, and .D2) 

• Two load-from-memory data paths (LD1 and LD2)  

• Two store-to-memory data paths (ST1 and ST2) 

• Two data address paths (DA1 and DA2) 

• Two register file data cross paths (1X and 2X) 

The DM642 has a 16 Kbytes direct mapped L1P program cache with 32-byte cache 

line size (8-cycle L1P cache miss penalty). The L1D cache is 16 Kbytes 2-way set-

associative and has a 64 bytes cache line size (6-cycle L1D cache miss penalty). 

Additionally, 256 Kbytes of L2 internal memory can be configured as RAM and/or 

cache (flexible RAM/cache allocation, 8-cycle L2 cache miss penalty) and L2 4-way 

set associative cache has 128 bytes cache line size.  

3.1.1.1 Register Files 

There are two general-purpose register files (A and B) in the C6000 data paths. For 

the C64x, each of these files contains 32 32-bit registers (A0–A31 for file A and B0–

B31 for file B). The general-purpose registers can be used for data; data address 

pointers, or condition registers. On the C64x, registers A0, A1, A2, B0, B1, and B2 

can be used as condition registers. In all C6000 devices, registers A4–A7 and B4–B7 

can be used for circular addressing [18]. 

The C64x register file supports data ranging in size from packed 8-bit data, packed 

16-bit data, through 40-bit fixed-point, 64-bit fixed point, and 64-bit floating-point 

data. Values larger than 32 bits, such as 40-bit long and 64-bit float quantities are 

stored in register pairs, with the 32 LSBs of data placed in an even-numbered register 
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and the remaining 8 or 32 MSBs in the next upper register (which is always an odd-

numbered register). Packed data types store either four 8-bit values or two 16-bit 

values in a single 32-bit register or four 16-bit values in a 64-bit register pair [18]. 

3.1.1.2 Functional Units 

The eight functional units in the C6000 data paths can be divided into two groups of 

four; each functional unit in one data path is almost identical to the corresponding 

unit in the other data path. The C64x contains many 8-bit and 16-bit instructions to 

support video and imaging applications [18]. 

3.1.1.3 Register File Paths 

Each functional unit reads directly from and writes directly to the register file within 

its own data path. That is, the .L1, .S1, .D1, and .M1 units write to register file A, 

and the .L2, .S2, .D2, and .M2 units write to register file B [19]. 

Most data lines in the CPU support 32-bit operands, and some support long (40-bit) 

and double word (64-bit) operands. Each functional unit has its own 32-bit write port 

into a general-purpose register file. Each functional unit has two 32-bit read ports for 

source operands src1 and src2. Four units (.L1, .L2, .S1, and .S2) have an extra 8-bit-

wide port for 40-bit long writes, as well as an 8-bit input for 40-bit long reads. 

Because each unit has its own 32-bit write port, all eight units can be used in parallel 

with every cycle when performing 32 bit operations. Since each C64x multiplier can 

return up to a 64-bit result, an extra write port has been added from the multipliers to 

the register file, as compared to the C62x. 

The register files are also connected to the opposite-side register file’s functional 

units via the 1X and 2X cross paths (Figure 3.2). These cross paths allow functional 

units from one data path to access a 32-bit operand from the opposite side’s register 

file. The 1X cross path allows functional units from data path A to read its source 

from register file B. Similarly, the 2X cross path allows functional units from data 

path B to read its source from register file A. 
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Figure 3.2: C64x Data Cross Paths [18] 

On the C64x, all eight of the functional units have access to the register file on the 

opposite side via a cross path. Only two cross paths, 1X and 2X, exist in the C6000 

architecture. Therefore, the limit is one source read from each data path’s opposite 

register file per cycle, or a total of two cross-path source reads per cycle. The C64x 

pipelines data cross path accesses allow multiple units per side to read the same 

cross-path source simultaneously. The cross path operand for one side may be used 

by up to two functional units on that side in an execute packet. 

3.1.1.4 Memory, Load and Store Paths 

The data address paths named DA1 and DA2 are each connected to the .D units in 

both data paths. Load/store instructions can use an address register from one register 

file while loading to or storing from the other register file. The Figure 3.3 illustrates 

the C64x memory load and store paths. 

 

 

Figure 3.3: C64x Memory Load and Store Paths [18] 
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The C64x device can also access words and double words at any byte boundary 

using non-aligned loads and stores. As a result, word and double-word data does not 

always need alignment to 32-bit or 64-bit boundaries. This feature is particularly 

useful in motion estimation and video filtering operations, where one may need 

access to data from any arbitrary byte boundary in memory [18].  

3.1.1.5 Additional Functional Unit Hardware 

Additional hardware has been built into the eight functional units of the C64x. Each 

.M unit can perform two 16x16 bit multiplies or four 8x8 bit multiplies every clock 

cycle. Also, the .D units can access words and double words on any byte boundary 

by using non-aligned load and store instructions. In addition, the .L units can perform 

byte shifts and the .M units can perform bi-directional variable shifts in addition to 

the .S unit’s ability to do shifts. The .L units can perform quad 8-bit subtracts with 

absolute value. This absolute difference instruction greatly aids motion estimation 

algorithms. Table 3.1 lists some of the special purpose instructions included in C64x 

for video and imaging applications. 

It is important to note that the C64x provides a comprehensive set of data packing 

and unpacking operations to allow sustained high performance for the quad 8-bit and 

dual 16-bit hardware extensions. Unpack instructions prepare 8-bit data for parallel 

16-bit operations. Pack instructions return parallel results to output precision 

including saturation support. 

Table 3.1: C64x Special Purpose Instruction for Video and Imaging [18] 

Instruction Description Example Application 

LDNW Load non-aligned double word Motion estimation, image filtering 

DOTPx Dot product Image filtering, image resizing, 
image transforms (e.g. DCT, wavelet) 

MINUx/MAXUx Minimum/Maximum computation Nonlinear image filtering (e.g. 
median filter) 

PACKx Data packing and unpacking Multiplexing/De-multiplexing 
interleaved data (e.g. Y/C data)   

AVGx Quad 8-bit, dual 16-bit average Motion compensation 

SUBABS4 Quad 8-bit absolute of differences Motion estimation 
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These specialized instructions for video and image are used in video coding for 

optimization and parallelism purposes. The instruction set of the DM642 DSP is 

examined and the powerful ones are used for the H.264 encoder for real-time 

implementation. 

3.1.2 DM642 Cache Architecture 

On DM642 devices, the CPU interfaces directly to dedicated level-one program 

(L1P) and data (L1D) caches of 16 Kbytes each. These caches operate at the full 

speed of CPU access. A second level unified L2 program/data memory provides 

flexible storage. Figure 5 depicts an example L2 of size 256 Kbytes; the size and 

segmentation of the L2 cache in the DM64x family may change over time. One 

configuration for L2 is entirely mapped SRAM. The other configurations have both 

SRAM and a 4-way set associative cache of various sizes. Mapped SRAM can be 

used for streaming video data and critical sections of code such as interrupt service 

routines. Cache is useful for most of the program and data structures. 

In DM642 core, which consists of two-level cache-based memory model that are L1 

and L2 and an external memory [20] are shown in Figure 3.4 and Figure 3.5, also the 

256 Kbytes L2 internal memory space can be set as both cache and RAM.  The 

external memory interface is the EDMA for data transfer operation from/to internal 

memory space. 

 

Figure 3.4: DM642 L1/L2 Cache Organization [18] 
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Figure 3.5: C64x Cache Memory Architecture [20] 

3.1.3 DM642 Enhanced DMA (EDMA) Controller 

The DM642 EDMA can provide over 2Gbytes/sec of external bandwidth on initial 

implementations. The EDMA supports up to 64 channels triggered by independent 

events. A total of 85 parameter sets are available for linking or chaining. Linking 

allows a sequence of transfers to be issued when a single event occurs. Chaining 

allows one EDMA channel to trigger another channel upon data transfer completion. 

Linking and chaining allow continuous auto-initialization of DMA operation with 

only initial configuration by the CPU. These features also allow circular buffers, 

ping-pong buffers, and transfers of complex data structures. Using 1-D and 2-D the 

user can transfer sub frames of an image as well as automatically interleave or de-

interleave time-division multiplexed (TDM) digital streams. Byte, half-word, word, 

and double-word data sizes are supported. 

The EDMA supports unsurpassed concurrency. Four independent transfer queues 

allow highly efficient operation. Channels on different queues can interleave 

transfers on a cycle-by-cycle basis. The key system benefit is that interactions 

between channels do not affect performance as much as much as in traditional DMA 

implementations.  
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The EDMA Controller gives an approach to perform memory transfer operation in 

background/parallel so that CPU is not stalled in that type of operation. There are 

two methods to initiate and perform an EDMA operation: synchronous method that 

is CPU initiated by using EDMA APIs and asynchronous CPU request to DMA 

channels and no communication signaling between operations. These two methods 

are appropriate for background memory transfer (i.e. memory copy operation) for the 

H.264 video coding. 

3.1.4 DM642 Video Port 

The video port peripheral can operate as a video capture port, video display port, or 

TSI capture port [18]. The video capture port is used for the input for the video 

coding and the video display port is the output of the coding process as well. For the 

proposed implementation 

• Video capture mode: 

The captured input sequences are encoded in the proposed H.264 encoder 

optimization. Therefore, the real time consideration can be evaluated experimentally.  

• Video display mode: 

The encoded video reconstruction of the proposed H.264 encoder is outputted from 

the DSP to composite video; as a result, the compression quality can be evaluated 

visually as well. 
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4. H.264 BASELINE ENCODER SOFTWARE AND DSP ADAPTATION 

The design and software development of multimedia applications such as complex 

video/image processing requires an algorithmic infrastructure. The algorithmic 

infrastructure of a video processing concerns on performance: bit-rate, visual 

appearance, peak signal-to-noise ratio (PSNR), etc. As the H.264 JM reference 

software [4], the algorithmic specification of a typical video coding scheme with 

software and descriptions are released for developers for implementation and 

verification. Therefore, a video coding software implementer for an embedded 

platform can take assistance from JM reference software to understand the sub-parts 

of the big software picture. However, the reference software does not offer an 

optimal software solution for each routine, so the adaptation and optimization of the 

codec is developers’ challenge.  

Starting with the study and analysis of the JM reference software [4], an applied 

encoder software in [11] was reorganized and developed using a workstation (e.g. 

x86 based desktop computer) for the target platform. While the software 

development on a workstation includes platform independent realizations, the DSP 

adaptation of the pure C programming language code on workstation needs 

architectural modifications reasonable for the platform. Also, the proposed H.264 

baseline encoder implementation outputs are verified with the reference decoder for 

conformance purpose. The encoder reconstruction and the decoder output 

comparison have to be exactly the same; that means the outputs should be same.  

4.1 H.264 Baseline Encoder Software 

The encoder software was developed using C programming language on a 

workstation with MS development environments such as Microsoft Visual Studio. 

For the target platform, the software was migrated to the embedded DSP 

development environment with additional coding for video capture/decoder and 

display/encoder devices.  Texas Instruments Code Composer Studio (CCStudio) 
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integrated development environment (IDE) is the environment for DSP-based 

embedded application development and adaptation. 

As the DM642 DSP (720 MHz) clock speed is less than our x86-based workstation, 

the computational power and the parallelism of the DSP architecture have to be used 

for a real-time performance. Therefore, to provide a real-time H.264 encoder on 

DM642, both the H.264 encoder algorithm and the target system architecture have to 

be analyzed deeply and understood extensively.  

4.1.1 Main Software Flow 

The main encoder flow diagram (Figure 4.1) shows the basics of a sequence of 

pictures encoding process. The encoding process consists of generating parameter 

sets, starting the sequence of encoding and coding the pictures in VCL for NAL units 

according to coding sequence. The sequence of the pictures to be encoded is passed 

onto encoder in parameter set section. 

 

Figure 4.1: Main encoder flow diagram 
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In Figure 4.1, Generating parameter set includes the coding parameters of a picture 

sequence, such as input variables (i.e. width, height, etc.), profile type and encoding 

parameters as well. The parameters are applied for a determined picture sequence set, 

so the H.264 VCL parameters are passed to the encoding section. The bitstream 

initialization is required to create the output for writing the encoding results to 

NALU stream. 

The output stream as Annex-B file requires sequence and picture parameter set NAL 

units at the beginning of the encoded picture NALs that are used in the rest of video 

sequence set. The start sequence block creates the Annex-B file and sequence and 

picture parameter set NAL units are constituted. Afterwards, the pictures in the raw 

video sequence are encoded in order with I and P slice type determination. 

4.1.2 Coding a Picture 

The main flow line of coding a picture is shown in Figure 4.2, that a picture is 

encoded macroblock by macroblock order. Code a picture routine is the core 

encoding process of the software. The subroutine gets a picture from the sequence, 

encodes, reconstructs and filters (if enabled). 

 

Figure 4.2: Flow diagram of coding a picture 
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In Figure 4.2, coding a picture’s macroblock encoding consist of before, encode, 

write and after process. Before and after encode process includes the buffer transfer 

operations (i.e. Quick DMA data transfer process) such as original MB, search 

window, reconstructed MB, etc. The encoded macroblock’s header, motion, CBP, 

luma and chroma coefficients information is written to the NAL unit.    

4.1.3 Encoding a Macroblock 

The macroblock encoding operation is different for inter and intra modes. An I slice 

only consists of intra predicted macroblocks, however a P slice can both contain inter 

and intra macroblocks.  

 

 Figure 4.3:   Flow diagram of encoding a macroblock 
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In Figure 4.3, the encoding process of a macroblock is determined whether it is in I 

or P slice. If the slice type is I, the macroblock are coded as intra (Intra_16x16 or 

Intra_4x4). For an inter macroblock, the motion estimation and mode decision blocks 

are processed, the luma and chroma residual operations are executed that the 

prediction for the chosen mode is generated and the difference is calculated. As P 

slice can contain intra macroblock, the inter prediction distortion and bits are 

considered as the cost; as a result, for an undesired (big) cost intra macroblock 

prediction and mode decision are included.     

In the proposed encoder, the intra mode decision is based on Hadamard cost 

calculation. Hadamard transform computation covers both rate and distortion 

components, so the smallest cost is chosen as the intra mode. Only for Intra_4x4, the 

mode information for each 4x4 block have to be sent, so the mode information cost 

should be added to SATD for that mode.     

The inter prediction and mode decision is based on the motion estimation entirely. 

The motion estimation for all possible inter macroblock mode is executed with SAD 

(Sum of Absolute Differences) calculation. For the inter macroblock cost, rate is 

added with all blocks motion vector costs that is: 

cost{x, y} = costmv_x + costmv_y                 (4.1) 

costmv_x = mv_bits{ mv_xcurrent – mv_xpred} * λmotion           (4.1.a) 

costmv_y = mv_bits{ mv_ycurrent – mv_ypred } * λmotion          (4.1.b) 

The Lagrange formula is used for comparison of the modes to find out the optimal 

distortion and bitrate for the macroblock with a λ multiplier, such that the cost of a 

macroblock mode is: 

L = D + R.λ (L= Lagrange cost, D = Distortion, R = Rate)             (4.2) 

The mode is decided according to total cost, which is adding SAD and motion vector 

cost. The minimum of the mode costs is chosen as the best mode for the inter 

macroblock (Rate-Distortion model). If an inter macroblock cost is bigger than 

threshold, the intra modes are tried and the minimum of inter and intra cost is chosen 
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as the macroblock mode. For inter and intra macroblock comparison, the intra 

macroblock SAD-based cost is calculated.  

4.1.4 Motion Estimation 

A motion estimation process is motion searching of an original block over a search 

area that is defined as reference. A block-based encoder employs a block-based 

motion search to find out an optimal matching block in its reference. For any 

macroblock mode in H.264 standard, the matching block is determined according to 

minimal SAD in the proposed encoder. In this respect, the motion estimation s 

searching the minimum SAD in the reference search area.  

There are several methods for motion estimation that are called motion search 

algorithms. The first and the best resulting approach is full search, which is 

comparing all possible block in the search area. However, computational overhead is 

enormous for a real-time encoder because of the computation and comparison 

amount.  A good video encoder algorithm implementation needs to keep a good 

balance between computational intensity and coding efficiency. That is to say, the 

motion estimation kernel needs a computationally reduced search technique as well 

as optimal matching block for coding efficiency  

Another motion estimation method is N-Step fast search [13], which has fixed step 

with N, is a popular and used search algorithm in motion estimation. However, the 

fixed step size with different depth for each step can get caught to local minima in 

spatial domain. And the other search method is hexagon search [27], which is fixed 

depth (i.e. 2 pixels), is a fast search algorithm with inner (early) termination.  

Although there are several fast search algorithms for motion estimation, the 

distortion result can not be better than the full search’s exact match approach.   

In the proposed H.264 encoder, the 4-step fast search and then the hexagon motion 

search algorithms take a part for the motion estimation for various block size as in 

standard. The detailed description and results of the motion search algorithms are 

described in section 5.1.1.2   
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4.2 The Proposed Encoder Configuration 

The proposed H.264 baseline encoder’s main concentration is on real-time 

implementation on a programmable DSP. The H.264 standard defines the NAL and 

VCL layers structure and the profile tools as in Table 2.2. The tools are defined for 

the coding efficiency of the VCL layer with variable block size 16x16 to 4x4, half 

and quarter-pel luma motion vector accuracy, etc. However, they may need much 

more computational operation and memory space. For maximum coding efficiency 

on a real-time implementation, the proposed encoder is restricted in some tools as 

listed in Table 2.2.  

The H.264 standard define 16x16 to 4x4 block sizes, however, 8x8 block mode and 

sub-partitions are for detailed video concepts. Therefore, the proposed encoder is 

restricted to 8x8 block size as the smallest size. The quarter pixel motion 

compensation for each possible direction needs 12 quarter-pel buffer arrays. That 

approach is unreasonable for the embedded platform. As a result, rather than pre-

processing the whole picture, the computation of the quarter pixel position should be 

done on the fly during quarter-pel motion estimation. In the proposed encoder, the 

quarter-pel accuracy is not covered as it adds computational complexity that hinders 

the encoder to work in real-time. In addition, half pixel motion compensation in 

diagonal direction needs 2 times more calculation amount compared to vertical and 

horizontal directions. In the proposed encoder, half-pel motion compensation is 

implemented, but the diagonal half-pel motion compensation and the search of the 

diagonal direction are not implemented because of the real-time limitation on 

DM642 DSP target. 

The embedded encoder support the resolution of 352x288 (CIF) format, and the 

approximation for the motion estimation is limited to motion with 16 pixels, so the 

search range is limited to -/+16, with a search window of 48x48. If the target 

encoding resolution is selected over CIF, the search range also should be enlarged for 

motion estimation accuracy and coding efficiency. Beside, the H.264 standard can 

take reference from more than one reference pictures. However, the motion 

estimation reference picture number is limited to 1 for fast motion estimation, but 

worse coding efficiency as well.  
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The propose encoder configuration and the features can be summarized as: 

• H.264 baseline profile 

- I and P slices 

- Variable block size (16x16 to 8x8) 

- CAVLC Entropy coding 

- Full-Pel & Half-Pel motion compensation 

- Reference picture number = 1 

- Deblocking filter support 

• Supported resolutions 

- CIF (352x288), QCIF (176x144) or below CIF  

• Motion Estimation 

- 4-Step & Hexagon search  

- -/+ 16 search range 

• CQP (Constant Quantization Parameter)  

4.3 DSP Implementation 

A typical embedded platform project development flow under Code Composer 

Studio (CCStudio) IDE is shown in Figure 4.4. Beginning with the application 

design, code creation, debugging and analyzing phases are fed-back to the desired 

optimization level for the design. So, The CCStudio development environment 

provides many tools for code generation, debugging and tuning as well. 
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Figure 4.4: Development flow using CCStudio [21] 

4.3.1 DSP Environment Set-up 

The target device for the proposed H.264 software implementation is TI’s DM642 

DSP platform for an embedded application. A real-time development flow for an 

embedded platform needs the experimental setup with the target board as well as the 

development tools. The proposed H.264 real-time encoder is ported to the 

TMS320DM642 evaluation module using TI’s Code Composer Studio IDE tools, 

and testing and verification is done under the workstation comparing the outputs of 

the encoder on DM642 and workstation PC.  

4.3.1.1 TMS320DM642 Evaluation Module (EVM) 

The DM642 EVM, an evaluation board designed by Spectrum Digital, is a low-cost 

standalone development platform that enables users to evaluate and develop 

applications for the TI C64xx DSP family. The developed software under TI’s Code 

Composer studio development environment is ported to the EVM using JTAG or PCI 

interface for real-time implementation. 
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Figure 4.5: Block diagram of DM642 EVM [22] 

In Figure 4.5 the block diagram of the DM642 evaluation module with the 

peripherals are shown. The EVM comes with a full complement of on board devices 

that suit a wide variety of application environments [22]. Key features include: 

• A Texas Instruments TMS320DM642 DSP operating at 720 MHz. 

• Standalone or standard PCI computer slot operation 

• 3 video ports with 2 on board decoders and 1 on board encoder 

• 32 Mbytes of synchronous DRAM 

• On Screen display (OSD) via FPGA 

• 4 Mbytes of non-volatile Flash memory 

• Ethernet interface 

• Software board configuration through registers implemented in FPGA 

• Configurable boot load options 

• JTAG emulation through on-board external emulator interface 

• Expansion connectors for daughter card use 
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4.3.1.2 Experimental Set-up 

A real world embedded application, such as a video encoder needs input for 

compression and output of the compressed data as bit stream or reconstruction. An 

experimental set-up should obtain the necessary interfaces for the real-time problem 

analyses and optimization.  The experimental hardware setup, shown in Figure 4.6.a, 

is designed to realize the system. 

 

(a) 

 

(b) 

Figure 4.6:   The (a) experimental and (b) real-world hardware set-up 
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As shown in Figure 4.6.a, the hardware consists of the DM642 Evaluation Board, a 

desktop computer for Code Composer Studio IDE tools, XDS 560 JTAG emulator 

and a display device for video output. The Philips SAA1705 video encoder on 

evaluation board is used for analog video output. 

Input sequences for encoding are read form host using JTAG port in the experimental 

set-up, which is only for using standard compression sequences in literature. In real 

world, the proposed implementation can not read uncompressed data from a storage 

device, so a video camera is inserted to the hardware for in final implementation as 

shown in Figure 4.6.b. The input sequences are captured from the video camera 

respectively by the video decoder on evaluation board, and then compressed in 

DM642 DSP core. The write operation is still driven over JTAG port, because the 

evaluation board is not directly attached to a storage device. 

4.3.2 Code Composer Studio IDE 

Development tools continue to grow in importance when choosing a processor 

platform. The TI’s Code Composer Studio IDE provides useful development tools in 

code creation, debugging and analyzing steps according to programmers need for 

application development. Therefore, the proposed H.264 encoder adaptation using 

the Code Composer Studio v3 was practiced for the DM642 DSP evaluation board.  

The Code Composer Studio (CCStudio) Integrated Development Environment (IDE) 

is a key element of the eXpressDSP Software and Development Tools strategy. 

CCStudio delivers all of the host tools and runtime software support for TMS320 

DSP and OMAP based real–time embedded applications. 

CCStudio integrated development environment includes host tools and target 

software that slashes development time and optimizes the performance for all real-

time embedded DSP applications [21]. 

Code Composer Studio’s host side tools include:  

• Fully integrated CodeWright Editor,  

• Source Code Debugger common interface for both simulator and emulator 

targets featuring with breakpoints and probe points  
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• Application Code Tuning Dashboard  

- Profiling and Analysis tools to understand and monitor code 

performance  

- CodeSizeTune, CacheTune and Compiler Consultant optimization 

tools 

• TMS320 DSPs and OMAP Code Generation tools: C/C++ compiler, 

assembler and linker  

• Drag and Drop CCStudio setup utility supporting:  

- XDS560 ™ high speed emulation drivers  

- XDS510 ™ emulation drivers  

- Simulators for full devices, CPU only and CPU plus memory for 

optimal performance  

• DSP/BIOS Host Tooling Support (Configure, Real-time analysis and Debug)  

• RTDX data transfer for real time data exchange between host and target  

4.3.2.1 DSP/BIOS Real Time Kernel 

The DSP/BIOS is a scalable real-time kernel which is designed to be used by 

applications that require real-time scheduling and synchronization, host-to-target 

communication, or real-time instrumentation. The DSP/BIOS provides preemptive 

multi-threading, hardware abstraction, real-time analysis, and configuration tools. 

The DSP/BIOS kernel also provides run-time services for developers use to build 

DSP applications and manage application resources. The DSP/BIOS kernel 

effectively extends the DSP instruction set with real-time, run-time kernel services 

that form the underlying architecture, or infrastructure, of real-time DSP-based 

applications [23]. 
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Figure 4.7: Building DSP/BIOS based DSP application [23] 

A DSP/BIOS configuration (Figure 4.7) allows optimizing an application by creating 

static objects and setting their properties, rather than at run-time. This both improves 

run-time performance and reduces the application footprint. Using the DSP/BIOS 

configuration necessary device drivers are determined and configured.  

In the proposed H.264 encoder for video display and video capture, the video 

encoder chip and the video decoder chip device drivers for the hardware are included 

in the DSP/BIOS configuration. Additionally, the multithread support of the 

DSP/BIOS kernel is used for the tasks for display and capture operation with the 

H.264 encode task. Also, the required synchronization between the tasks are 

provided and implemented by the Synchronization Module (SCOM) of DSP/BIOS 

kernel as shown in Figure 4.8. The DSP/BIOS kernel details can be found at [23] 

 

Figure 4.8: Synchronized Communication between tasks  
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4.3.3 Testing and Verification 

As the H.264/AVC coding standard defines the syntax elements and the 

representation of them, the output of the proposed encoder conformance with the 

standard have to be done. Code Composer Studio environment supplies debugging 

and tracing features, that allows rapidly testing the output such as graphical view 

window. Also, the RTDX real-time data exchange properties with the DSP provides 

non-interrupted debug and trace feature. 

The output streams can be visualized using software that provides file level and 

especially macroblock level information such us macroblock type, motion vector, 

coded block pattern, etc. Also, the conformance of the proposed encoder is achieved 

by comparing the JM Reference Software [4] decoder outputs and the proposed 

encoder’s reconstructed frames. If there is no difference between reference decoder 

output and reconstruction, it can be said that the proposed H.264 encoder output is 

compliant to the H.264/AVC Mpeg-4 Part 10 standard.  
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5. THE PROPOSED H.264 BASELINE ENCODER OPTIMIZATION 

The DM642 emulator and cycle accurate device simulator can be used for profiling 

the H.264 encoder under Code Composer Studio v3. For a real-time implementation, 

rather than a simulator, DM642 EVM board can be profiled using JTAG port 

emulator. As the emulator runs the code on the DM642 board in real-time, the 

profiling and cycle counting information are gathered from the JTAG port to the 

workstation.  

While working with CCStudio v3, the statistical objects of the DSP/BIOS kernel [24] 

(the objects have to be created in kernel) are used to obtain cycle or time 

measurement and information for desired code area. In Figure 5.1, the usage of the 

statistical object is shown. The given code segment is attached to the proposed 

encoder and time and ratio measurements of optimization steps are calculated. 

 

Figure 5.1: The H.264 encoder code segment for profiling 

Using these STS (statistical) objects, the optimization steps’ impacts are measured 

and a ratio between before and after process is calculated. The measurements are 

gathered in time units as milliseconds (ms), microseconds (µs) rather than instruction 

or cycle counts.   

extern struct STS_Obj &STS_obj; 

. . . 

. . . 

STS_get(STS_obj, GET_TICK_COUNT()); 

/* Code area to be measured */ 

STS_delta(STS_obj, GET_TICK_COUNT()); 
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5.1 Software Optimization 

Software optimization is the process of manipulating software code to achieve faster 

execution time and smaller code size [11]. For a software optimization process, the 

optimization phases should be determined and implemented. Code development 

steps [25] for the target system can be summarized as: 

1. Compile and profile native C code 

- Validates original C code 

- Determines which loops are most important in terms of MIPS 

requirements 

2. Add restrict qualifier, loop iteration count, memory bank, and data alignment 

information 

- Reduces potential pointer aliasing problems  

- Allows loop with indeterminate iteration counts to execute epilogs 

- Uses pragmas to pass count information to the compiler 

- Uses memory bank pragmas and _nassert intrinsics to pass memory 

bank and alignment information to the complier 

3. Optimize C code using other C6000 intrinsics and other methods 

- Facilitates use of certain C64x instructions not easily represented in C.   

- Optimizes data flow bandwidth (double word access for a word data 

in C64x)  

4a. Write Linear Assembly  

- Allows control in determining exact C6000 instructions to be used  

- Provides flexibility of hand-coded assembly without worry of 

pipelining, parallelism, or register allocation  
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- Can pass memory bank information to the tools 

- Uses .trip directive to convey loop count information  

4b. Add partitioning information to the linear assembly 

- Can improve partitioning of loops when necessary 

- Can avoid bottlenecks of certain hardware resources 

These development steps are proposed for the native and finalized software codes. 

The assumption for these phases is that the software code is optimized enough in the 

words of algorithms and program level structures. Therefore, there are several 

optimization phases such as algorithmic and the C level for the proposed encoder. In 

sections 5.1.1 and 5.1.2, the optimization steps of algorithmic and structural 

approaches are considered. 

The CCStudio IDE’s mixed source/assembly view feature is used to determine the 

pipeline fullness and parallelism for the time consuming code sections. The ‘[ ]’ 

symbol before the instructions is the condition of the related instruction, which 

means it is a conditional instruction. The instructions that are tied with the pipe 

symbol ‘||’ are executed in the same packet in the pipeline; as a result, maximum 

eight instructions can be executed in a packet because of the DM642 pipeline 

architecture. As shown in Figure 5.2, the code section is not parallelized enough and 

contains NOP (no operation) instructions. 

The critical and time consuming code sections that are not using the hardware 

sources efficiently, especially VLIW architecture and pipeline of the DSP, are 

observed and profiled. The finalized C or assembly code has to fully utilize the 

opportunities of the DM642 DSP architecture.  
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Figure 5.2: Disassembly of example (setNALU) function 

5.1.1 Algorithmic Optimizations 

During software optimization, the used software algorithms can be redesigned or 

modified according to the complexity and performance consideration. The 

algorithmic optimization is the way of adjusting the software to a reasonable payload 

while maintaining the desired objective. 
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After profiling the H.264 encoder, the computational load of sub operations and 

processes should be optimized according to implementation area and intention. 

According to profile results, the motion estimation kernel that includes motion search 

has the heaviest computational cost in the encoder because of the video encoding 

nature. Besides, the variable block size support in H.264 increases the search amount 

for each block type as well.  

The motion estimation kernel computational intensity has to be decreased with an 

appropriate fast search algorithm and early termination determination that eliminates 

the unnecessary or extra search operations. From that point of view, the algorithmic 

optimization of the motion estimation kernel is proposed in the H.264 encoder 

considering the real-time limitation on DM642. 

5.1.1.1 Early Skip Detection 

According to the nature of the video sequence, the picture or a picture fragment can 

contain global motion. In H.264, an improved skip macroblock mechanism is 

provided to represent the global motion of macroblocks when they do not contain 

residues after vector prediction and coding. Since the skip motion vector [8] is 

predicted and the skip macroblock is motion compensated at the decoder side, a skip 

macroblock does not consume any bitrate. 

To increase the fast motion estimation performance, early skip macroblock is 

determined using zero-block detection criteria in motion search. The detection is 

performed by the SAD comparison using equation in [26]. Before the motion search 

with the possible modes, the skip predicted macroblock according to skip motion 

vector prediction is compared with the current macroblock. If the difference is 

smaller than a threshold, which depends on QP (Quantization Parameter) value, the 

macroblock is marked as skip macroblock and no more motion search is performed. 

This approach may cause a small PSNR drop, but improves the motion estimation 

performance significantly.  The QP based threshold equation is: 

threshold = M.N.25.QP/192 (M = block size x, N= block size y)                       (5.1) 

SAD(MBSkip) < 100.QP / 3 (for skip MB) 
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5.1.1.2 Motion Search Algorithm 

As described in [7], it is well-known that video coding derives most of its coding 

efficiency advantage from motion estimation because it removes the huge video 

redundancy in temporal domain significantly. On the other hand, the motion 

estimation contributes the heaviest computational load for the whole video encoding. 

A good video encoder algorithm implementation needs to keep a good balance 

between computational intensity and coding efficiency. 

Even with the use of early termination, Full Search motion estimation is too 

computationally intensive for many practical applications. In computation or power 

limited applications, so-called ‘fast search’ algorithms are preferable. These 

algorithms operate by calculating the energy measure (e.g. SAE, SAD) at a subset of 

locations within the search window. 

In section 4.1.4, the motion estimation process is described with the implemented 

algorithms. The motion estimation kernel is responsible for finding out the minimal 

distortion for various blocks sizes of H.264. In the H.264 encoder, to decrease the 

computational over-head and consumed time against the Full Search, the Three Step 

Search (TSS, sometimes described as N-step search) algorithm (Figure 5.3) is 

implemented with N = 4 for -/+ 16 search area. In Figure 5.3, the step locations are 

numerated with the step number as well. In TSS’s each step, search center is set as 

the position with minimum energy value and in each step the search distance is 

halved till it is no longer divisible by 2 (the search termination condition).  

 

  Figure 5.3: Three Step Search [13] 
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The TSS is considerably simpler than Full Search (8N + 1 searches compared with 

(2N+1 −1)2
 searches for Full Search) but the TSS (and other fast search algorithms) do 

not usually perform as well as Full Search. A block containing complex detail and/or 

different moving components may have several local minima. While the Full Search 

will always identify the global minimum, a fast search algorithm may become 

‘trapped’ in a local minimum, giving a suboptimal result [13]. 

In the proposed encoder, for better performance and results rather than the TSS, the 

hexagon-based search [27] pattern, illustrated in Figure 5.4, is used in motion 

estimation. At the beginning, search center is set as either the (0, 0) vector or the 

median prediction vector within the defined search window, depending on whichever 

gives lower distortion. Afterwards, estimation is performed with hexagon pattern 

with a fixed distance (i.e. 2 pixels), and by choosing the lowest energy position as the 

new search center. The hexagon search is terminated if the minimum energy is at the 

center of the hexagon pattern, so that this approach contains self early termination 

condition.   

 

  Figure 5.4: Hexagon-based search with large (1) and small (2) patterns [27] 

The 4-step search and then hexagon-based search algorithms are implemented in 

motion estimation kernel, and they are also ported to the embedded software for fast 

estimation with minimal computational power. The result on ‘foreman’ sequence 

shows that the hexagon-search pattern with self-termination gives better performance 

result that the fixed step size step search algorithm. In Table 5.1, the search algorithm 
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real-time result for ‘foreman’ sequence is given with time and bitrate results on the 

target platform. 

Table 5.1: TSS and Hexagon Search results on DM642 DSP 

Search 

Algorithm 

Total Elapsed 

Time 

Average 

MB search 

Total Encode 

Time 

Compression 

ratio 

TSS (N = 4) 538.15 ms 468.6 µs 885.86 ms 60 

Hexagon-based 459.75 ms 400.3 µs 763.42 ms 70 

Foreman CIF video sequence with 30 frames (1 I-Slice and 29 frame ME) 

As shown in Table 5.1, with migration from the N-step to hexagon search, the 

proposed encoder is optimized nearly 18% in motion estimation search process, 

13.8% in MB encoding process respectively. Consequently, 10% of the overall 

performance enhancement and better bitrate compression on the target embedded 

platform is very satisfactory for a real-time implementation. 

5.1.2 C Level Optimization 

The development steps are considered as the software is going to run on an 

embedded DSP platform. In program level, there are platform independent C level 

arrangements and optimizations, such as memory allocation and pointer exchange 

mechanism in reference frames for avoiding unnecessary copy operations. Besides, 

the structures and variables are arranged according to embedded architecture.     

The platform independent software level optimization includes variable types, 

constants and structures as well as the locality of frequently used sections and also 

function in-lining. The platform dependent intrinsics, library functions are the other 

C level optimization performed on the proposed encoder software. Moreover, the 

compiler options of the DSP code compiler is the common phase of program level 

optimizations.   
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5.1.2.1 Structure and Variable Level Optimization 

In an embedded platform, dynamic memory allocation can vary according to 

memory management unit. Frequent memory allocations can be prevented with a 

single allocation and pointer exchanging rather than copying the data. As shown in 

Figure 5.5, reference frame and reconstructed frames are allocated at the beginning 

of the program and pointers are used to exchanging the data because reconstructed 

frame is reference frame for the next sequence respectively.   

 

  Figure 5.5: Memory/Pointer structure for reference and reconstruction 

In C6000 DSP architecture, integer is 4 bytes, short integer is 2 bytes and character 

type is 1 byte long respectively. If a load and store operation differs in variable type, 

as you read from an integer and write to character type, these operations are by 

default performed element by element (one data element within an instruction), even 

though it can be performed for multiple data elements. Therefore, the variable types 

and structures are arranged to the minimum required sizes for processing more than 

one data element within a single instruction using the DSP architecture (e.g. special 

SIMD instructions of the architecture).    

In the proposed encoder structure, 16x16 reconstruction, 16x16 prediction and 16x16 

original macroblock arrays are arranged and cast to unsigned character type as they 

need one byte elements. As a result, multiple load, store or SIMD instruction can be 

performed in an instruction. These block arrays are copied from/to the big picture 

using EDMA controlled as described in section 5.2.2. 

Memory-1 

Width X Height 

Memory-2 

Width X Height 

Reference pointer Reconstructed pointer 

Start state 

Next sequence 
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5.1.2.2 Inline Functions 

When an inline function is called, the C/C++ source code for the function is inserted 

at the point of the call. This is known as inline function expansion. Inline function 

expansion is advantageous in short functions for the following reasons: 

- It saves the overhead of a function call. 

- Once inlined, the optimizer is free to optimize the function in context with 

the surrounding code. 

There are several types of inline function expansion [28]: 

- Inlining with intrinsic operators (intrinsics are always inlined) 

- Automatic inlining 

- Definition-controlled inlining with the unguarded inline keyword 

- Definition-controlled inlining with the guarded inline keyword 

Expanding functions inline increases code size, especially inlining a function that is 

called in a number of places. Function inlining is optimal for functions that are called 

only from a small number of places and for small functions. 

In the proposed H.264 encoder, some functions are inlined with ‘static __inline’ 

keyword to speed up with the inlining advantages. In the proposed encoder, the 

MVcost function, which calculates motion vector costfor Lagrange formula, sign 

function, and clipping operation for saturation functions are inlined for performance 

optimization.  

5.1.2.3 C level Compiler Intrinsics  

The first optimization step that can be performed on C source code for the 

TMS320C64x is to use intrinsic operators. Intrinsics are used like functions and 

produce assembly language statements that would otherwise be inexpressible in C. 

The problem is that once you have performed the first optimization step, your C 

source code is no longer ANSI C compatible. 
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The code proposed within application report [29], allows writing C code using 

intrinsic operators keeping the possibility to validate the code on a workstation. The 

C6000 compiler recognizes a number of intrinsic operators that allow expressing the 

meaning of certain assembly statements that would otherwise be cumbersome or 

inexpressible in C/C++. The intrinsics are specified with a leading underscore ‘_’, 

and are accessed by calling them as a function. They correspond to the indicated 

C6000 assembly language instruction(s) [28,30]. By using the C intrinsic, access to 

assembly statements from C level is provided; as a result, optimized code 

instructions are executed. In [28], a table list for C intrinsics can be found.  

  

Figure 5.6: C program code and corresponding intrinsics 

In the proposed H.264 encoder software as shown in Figure 5.6, _abs intrinsic is used 

for absolute of an integer value, _abs2 and _dotp2 intrinsics are used for parallel 

addition of two absolute values for hadamard transform. The _min2 and _max2 

intrinsics are used for minimum and maximum value comparison, and lastly, the 

_mem4 intrinsic is used for various unaligned memory load/store operations. These 

intrinsics slightly increases the encoder performance as they are in-lined with the 

corresponding instruction to the software. 

5.1.2.4 Fast Library Functions 

The Texas Instruments C64x Image Library [31] and DSP Library [32] are optimized 

Image/Video Processing and DSP Functions Library for C programmers using 

TMS320C64x devices. It includes many C-callable, assembly-optimized, general-

purpose image/video processing and DSP routines. These routines are typically used 

in computationally intensive real-time applications where optimal execution speed is 

/* C code*/ 

int abs(a) 

{ 

if(a < 0) 

 return -a; 

else 

 return a; 

} 

 

/* C Intrinsic */ 

int x = _abs(a); 

/* C code */  

int min(a, b) 

{ 

if(a < b) 

 return a; 

else 

 return b; 

} 

 

/* C Intrinsic */ 

int x = _min2(a, b); 
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critical. By using these routines, achieving execution speeds considerably faster than 

equivalent code written in standard ANSI C language becomes possible. In addition, 

by providing ready-to-use Image and DSP functions can significantly shorten the 

image/video processing application development time. 

In a video encoder, motion estimation or motion search has great computational 

overhead, because the original macroblock is searched over the reference picture in 

pixel by pixel approach. For the resulting motion, SAD (Sum of Absolute 

Differences) calculation is used in the proposed encoder. TI’s image library provides 

8x8 and 16x16 block size SAD calculation functions so that SAD calculation on a 

single 8x8 block with IMG_sad_8x8 speeds up the encoder.  

Function  IMG_sad_8x8(unsigned char *src, unsigned char *ref, int pitch) 

Arguments src[64] 8x8 source block. Must be double-word aligned. 

ref[] Reference image. 

pitch Width of reference image. 

Another C-callable DSP function is DSP_dat_mul [32] (DSP matrix multiplication), 

which can be used in hadamard transform, hadamard based SATD, integer transform 

and inverse transform in the H.264 encoder. 

Function  DSP_mat_mul(short *x, int r1, int c1, short *y, int c2, short *r, int qs) 

Arguments  x [r1*c1] Pointer to input matrix of size r1*c1. 

r1 Number of rows in matrix x. 

c1 Number of columns in matrix x. Also number of rows in y. 

y [c1*c2] Pointer to input matrix of size c1*c2. 

c2 Number of columns in matrix y. 

r [r1*c2] Pointer to output matrix of size r1*c2. 

qs Final right–shift to apply to the result. 
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The source block must be double word aligned [31] for the correct calculation of 

SAD function. The pragma directive ‘DATA_ALIGN’ should be used for the source 

block for the double word alignment.  

However, the IMG_sad_8x8 function is restricted to source blocks that have to be 

copied from the original picture with 8x8 sizes. In the proposed H.264, macroblocks 

are copied (e.g. data transferred with EDMA) in 16x16 size. In section 5.1.5.1, linear 

assembly of SAD function is written using C64x instruction set (as fast as image 

library function) for flexibility.  

5.1.3 Compiler Options for Optimization 

In C64x, which have VLIW architecture, having a powerful compiler eases the 

implementation process for the H.264 encoder. Compiler of C64x DSPs has different 

options which can be set through CCStudio and creates the executables from the 

source code according to options. The strategy for optimizing the code using these 

options determines the H.264 encoder performance.  In Table 5.2, some of the 

critical and efficient compiler options and their descriptions are listed.  

Table 5.2: C64x Compiler Options for Performance 

Option Description 

Speed Most Critical 

(no -ms) 

The first strategy to determine the optimization type (code-

size vs. speed) 

-o3 File-level optimization option for the highest level of 

optimization available. Software pipelining, loop unrolling, 

SIMD are applied (-oN determines the optimization level) 

-pm Program-level optimization, combines source files for full 

pipeline utilization and performance 

-mt Allows the source code and assembly optimizer to assume 

there is no memory aliases in code, i.e., no memory 

references ever depend on each other 

No Debug Exclude the debug info from the output file, so provides 

much more parallelized code   
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In the C64x compiler, the compiling and optimizing are worked out combining the 

options together. For the proposed H.264 encoder, the optimization for speed is much 

more critical than the code size formed by the C64x compiler. First of all, the 

compiler optimization strategy is set to Speed Most Critical (no -ms) for compiler 

performance. The following combination of the optimization levels offers the best 

performance for the proposed encoder. 

The -o3 instructs the compiler to perform file-level optimization. Even though the 

optimization level can be used alone for general file-level optimization, there are 

several options to perform specific optimizations. Also, Software pipelining is turned 

on in this compiler option, which parallelizes instructions, fills delay slots and 

maximizes functional unit [11]. More detailed information about file level 

optimization can be found in [28]. 

In Code Composer Studio, program-level optimization is specified by using the -pm 

option with the -o3 option. With program-level optimization, all of source files are 

compiled into one intermediate file called a module. The module moves to the 

optimization and code generation passes of the compiler. Because the compiler can 

see the entire program, it performs several optimizations that are rarely applied 

during file-level optimization: 

- If a particular argument in a function always has the same value, the 

compiler replaces the argument with the value and passes the value 

instead of the argument. 

- If a return value of a function is never used, the compiler deletes the 

return code in the function. 

- If a function is not called directly or indirectly by main, the compiler 

removes the function. 

The -mt option informs the compiler that it can make certain assumptions about how 

aliases are used for memory addresses and pointers in your code. These assumptions 

allow the compiler to improve optimization. The -mt option also specifies that loop-

invariant counter increments and decrements are non-zero. Loop invariant means the 

value of an expression does not change within the loop. 
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 The -mt option indicates that a pointer to an object type does not alias (point to) an 

object of another type. Indirect references on two pointers do not alias, so each 

subscript expression in an array reference is in the range and there are no loop-

invariant counter increments and decrements of loop counters [28]. If source code 

contains any of these aliasing techniques the -mt option should not be used and 

unexpected results may occur. The proposed H.264 encoder is rearranged not to 

contain any of these aliasing, so -mt option is use to improve the optimization.  

After specifying the compiler options for the highest performance for the code, the 

code size and speed is improved with passing the debug information with ‘No 

Debug’ option. The debug information kept in the compiled output file is excluded, 

as a result, the code size decreases. Additionally, the compiler can perform better 

software pipelining and instruction-level parallelism, while there is no user 

information partitions in compiled output file. 

5.1.4 Linear Assembly 

When the compiler does not fully exploit the potential of the ’C6000 architecture, 

better performance may be obtained by writing the loop/function in linear assembly, 

and then linear assembly code is the input for the assembly optimizer [25]. To 

enhance the performance of a video/image process on such a DSP architecture, the 

linear assembly is the key coding feature for using the pipeline parallelism with 

powerful SIMD instructions (i.e. Table 3.1) as the inexpressible C program level 

operations and calculation can be specified in linear assembly easily.  

Linear assembly is similar to regular ’C6000 assembly code that it uses ’C6000 

instructions to write your code. With linear assembly, however, it is not needed to 

specify all of the information that you need to specify in regular ’C6000 assembly 

code. Software expert decides whether to specify the information or let the assembly 

optimizer specify. 

Here is the information that is not needed to specify in linear assembly code: 

- Parallel instructions 

- Pipeline latency 
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- Register usage 

- Which functional unit is being used 

If they are not specified, the assembly optimizer determines the information that is 

not included, based on the information that it has about the code. As with other code 

generation tools, linear assembly code might be needed to be modified up to a 

satisfactory performance. During linear assembly coding, much more detail to 

assembly can be added, such as specifying which functional unit should be used. The 

important regulars of linear assembly code writing are: 

• A linear assembly file must be specified with a ‘.sa’ extension. 

• Linear assembly code should include the ‘.cproc’ and ‘.endproc’ directives. 

The .cproc and .endproc directives delimit a section of code that is optimized 

by assembly optimizer. Use .cproc at the beginning of the section and 

.endproc at the end of the section.  

• Linear assembly code may include a ‘.reg’ directive. The .reg directive allows 

using descriptive names for values that will be stored in registers. When .reg 

directive is used, the assembly optimizer chooses a register whose use agrees 

with the functional units chosen for the instructions that operate on the value. 

• Linear assembly code may include a ‘.trip’ directive. The .trip directive 

specifies the values indicating how many times a loop will iterate. 

In the proposed encoder, the performance optimization of the critical and unutilized 

code segments and functions are written in linear assembly. Furthermore, the SIMD 

instructions of the C6000 DSP are used with balanced side effect (DSP’s A/B side 

operational units and registers) for pipelining.  

5.1.4.1 Linear Assembly of Critical Functions 

By writing the linear assembly, the pipeline utilization and parallel video/image 

processing with SIMD instructions can be provided. In H.264 encoder, the time 

consuming operations are profiled and the appropriate linear assembly codes are 
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written for C64x DSP. Also, the SIMD instructions are covered in that part for the 

best performance. 

The motion estimation has the highest computational complexity for a video encoder 

that the original macroblock is searched over a reference picture area. DM64x 

provides a rich set of extensive video/image instructions that can implement 

effectively SAD based motion estimation scheme. In the proposed encoder, the 8x8 

SAD function is written in linear assembly, and this function can be expressed as in 

Figure 5.7. 

  

Figure 5.7: Linear assembly fragment of SAD function  

In Figure 5.7, load non-aligned double word (LDNDW) may read a 64-bit value with 

any byte boundary. This instruction is important to accelerate the data fetching from 

the MB especially in searching window in reference frame. It can easily fetch eight 

aligned pixels from non-aligned pixels from searching window, which allows 

expanding memory bandwidth usage.  

On the other hand, subtract with absolute value (SUBABS4) instruction calculates 

four absolute values of the difference between the packed 8-bit data contained in the 

source registers. DOTPU4, an important video/image instruction returns the dot-

product between four pairs of packed 8-bit values. Since two DOPTPU4 can run in 

parallel in a single cycle, this instruction accelerates the sum of absolute difference 

(SAD) process significantly that is the core for motion estimation.  

 

 ZERO SAD   

 

 . . . 

 

LDDW *org_ptr++[ORG_WIN], org8:org4  ; org[7-4]:org[3-0] 

LDNDW *win_ptr++[SRCH_WIN], win8:win4  ; win[7-4]:win[3-0] 

 

 SUBABS4  org4, win4, absdif4 

 SUBABS4  org8, win8, absdif8 

 

 DOTPU4  absdif4, dot_sad, SAD_tmp4 

 DOTPU4  absdif8, dot_sad, SAD_tmp8 

 

 ADD  SAD_tmp4, SAD, SAD    

 ADD  SAD_tmp8, SAD, SAD 
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The idea of SAD kernel can be summarized in the following steps: 

1. LDDW and LDNDW fetches 8 pixels from current and reference frame 

2. Two SUBABS4 calculate 8 absolute difference 

3. Two DOTPU4 accumulate 8 result addition 

The given code for a SAD line is expanded for 8x8 block with looping, and the ‘.trip’ 

directive is used to specify the loop will iterate at defined amount. In Figure 5.8, the 

core SAD iteration code is disassembled that fully utilizes the architecture: SIMD 

instructions and pipeline fullness.  

 

Figure 5.8: Disassembly of SAD linear assembly’s core loop 

In Table 5.3, the SAD 8x8 function’s performance results are given. The overall 

motion search kernel is optimized with 4x speed up factor that is the core 

computationally intensive part of the encoder. The intermediate and after results 

differ because SAD function is rewritten by changing LDNDW to LDDW instruction 

for original macroblock read operation, which is double word aligned in internal 

memory with pragma directives.    
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Table 5.3: SAD 8x8 linear assembly results 

Function Before Intermediate After Speed Ratio 

SAD_8x8 195.7 µs 65.1 µs 48.2 µs 4x 

In the proposed encoder the other time consuming operations, transform and inverse 

transform, are also written in linear assembly. The transform process is parallelized 

with butter-flying the transform matrix for using ADD2, SUB2, SHR2, PACK2, 

PACKH2 instructions that can calculate two pairs of data with only an instruction. 

Beside the SATD process is unlocked for parallelization and appropriate SIMD 

instructions such as DOTP2, ABS, ADD2, etc. The linear assembly code of 4x4 

integer transform in residual coding and SATD in intra mode decision accelerates the 

processes slightly compared to SAD function.  

5.1.4.2 Half-Pel Motion Compensation Optimization 

As the encoder supports half-pel motion search and compensation, the half-pel 

motion compensation [8] is optimized for H.264 encoder by pre-calculation. The 

whole image is interpolated in horizontal and vertical direction before the motion 

estimation process. This approach eliminates the unnecessary recalculation of 

macroblock motion interpolation in post processing.  

The half-pel motion compensation is written in linear assembly for parallel 

calculation of half-pel positions using SIMD instructions. The 6-tap filter in H.264 is 

used to calculate the half-pel position and sub-pel predictions can be parallelized 

with line based filtering using SIMD and reduced cache latency is obtained using L2 

internal SRAM memory. To improve the half-pel motion compensation, the lines to 

be filtered are fetched to internal memory using EDMA. The ping-pong buffer 

mechanism as illustrated in Figure 5.9 is used to parallel (hidden) transfer of 

compensation buffers.   
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Figure 5.9: Half-pel motion compensation and ping-pong buffers 

The half-pel motion compensation takes the fetched memory line and outputs the 

compensated line to internal memory as shown in Figure 5.9. The two separate Ping-

Pong buffers are used for background EDMA transfer. After a line is fetched by 

EDMA, the second line fetch is started. At that time, the compensation of the first 

line is started in parallel. As a result, the fetch of second and the other lines are 

parallelized with the compensation process. For vertical interpolation, the column-

based interpolation is converted to line-based compensation by using the EDMA 

column transfer policy.  

Table 5.4: Half-pel motion compensation optimization results 

Compensation 
Direction 

Before 
(C code) 

After                     
(ASM + EDMA) 

Optimization 
Ratio 

Horizontal 693.1 µs 268.3 µs ~2.6x 

Vertical 5815 µs 393.5 µs ~14.8x 

Diagonal Not implemented in proposed encoder 

In Table 5.4, the result of horizontal and vertical motion compensation optimization 

is given. The optimization ratio is much more aggressive in vertical motion 

compensation because the column-based interpolation is turned to line-based 

interpolation using the EDMA controller’s 2-D data transferring feature. 
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5.2 Memory/Cache Optimization 

As the memory requirement for the encoder is significant, accessing lots of data and 

spending much more time for waiting data that is stored in off-chip external memory 

occurs because of the video encoder nature. As told in [20], using cache is the easiest 

way to solve the problem, but suffers high memory latency in case of memory 

misses. In DSP cores, as in DM642, with smaller cache size, cache misses 

significantly effects the encoder performance. The DM642 on-chip internal L2 

SRAM (256 Kbytes) can be set as both internal RAM and Cache together. For 

avoiding the cache misses caused by the small L1 cache, 128 Kbytes L2 cache space 

is set as specified in section 5.2.1.      

Another way to avoid cache misses of external memory accesses; Direct Memory 

Access (DMA) is used to fetch required data to internal memory before processing. 

As DM642 core includes EDMA and Quick DMA that is designed to transfer 

required data to temporary buffers in internal memory, so that the core should not 

encounter any memory latency. For the temporary buffer usage, the L2 internal 

memory should be configured to contain RAM space as well.  

As described in section 5.2.2, the temporary buffers and the flow of the H.264 

encoder are adjusted to use Quick DMA for data transfer in parallel (hidden) with 

core processing. Additionally, non-transferred frequently used temporary buffers, 

such as 4x4 block difference buffer for integer transform, 16x16 prediction buffer, 

etc. are put in to internal memory for locality and low-delay access time for those 

buffers in encoder flow.  

5.2.1 Internal L2 SRAM Configuration 

The DM642 two-level cache architecture, as in Figure 3.5, is a combination of L1 

(total 32 Kbytes) cache and a programmable 265 Kbytes L2 SRAM memory. As the 

proposed encoder needs room for temporary buffers for DMA transfer operations and 

low latency access, the L2 cache is configured as a combination of cache and internal 

memory. The optimal cache size for the proposed encoder on DM642 is selected as 

128 Kbytes. Therefore, the maximum internal memory space for the encoder is 128 

Kbytes mapped SRAM within the DM642 internal memory as shown in Figure 3.4.   
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In DM642 128 Kbytes L2 internal memory, the original macroblock, -/+ 16 search 

window and luma/chroma reconstruction temporary buffers are used in DMA data 

transfers. Besides, the prediction (intra or inter), difference and ping-pong buffers are 

internal memory elements for low latency. In Table 5.5, the temporary buffers used 

in the proposed encoder are listed with the usage description.  

Table 5.5: Data elements in DM642 L2 SRAM section 

Data Element Data Type&Size Description  

Original         

luma & chroma 

Macroblock 

unsigned char 

[16][16]          

[2][8][8] 

The original MB values are encoded and used in motion 

search, prediction error calculation, SAD etc. The buffers 

are transferred via (Quick) DMA. 

Luma Search 

window 

unsigned char 

[48][48] 

As the MB size is 16x16, -+ 16 search window for 

luminance component in motion estimation kernel. Also, 

The buffer is transferred via (Quick) DMA. 

Luma prediction 

buffer 

unsigned char 

[4][4][4] 

Four 4x4 predictions of a sub-block 8x8.  

Chroma 

prediction buffer 

unsigned char 

[2][8][8] 

Two 8x8 prediction buffer for U and V components of 

chrominance and used in reconstruction. 

Luma difference 

buffer 

short int     

[4][4][4]  

Four 4x4 prediction error buffers for sub-block 8x8. The 

quantization/de-quantization, zigzag scan, integer and 

inverse transforms are performed on that buffer.  

Luma & Chroma 

reconstruction 

buffer 

unsigned char 

[16][16]          

[2][8][8] 

The reconstruction buffers of decoding process of MB’s 

YUV components. Also, the buffers are transferred via 

EDMA to reconstructed (next reference) picture.   

In the linker command the internal L2 SRAM memory section name is defined as 

‘mysect’ related to the DSP/BIOS memory/cache configuration. In Figure 5.10, the 

pragma directive ‘DATA_SECTION’ is used to allocate a data array or temporary 

buffer (Table 5.5) within the internal memory, and also pragma directive 

‘CACHE_LINE_SIZE’ (128 bytes for DM642) is used to align the data address to 

cache line size boundary to increase the cache hits for the line pages and decrease the 

cache miss penalties as possible as can be.     
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Figure 5.10: Allocation of frequently accessed buffers within internal memory   

While the memory sections’ efficient usage is crucial for a video encoder design, 

allocating the frequently accessed arrays within the on-chip memory reduces the data 

read/write cache miss penalties as well as the CPU stalls because of the memory 

request. As a result, the proposed encoder performance is optimized using the 

memory architecture of the DSP core with an appropriate configuration. 

5.2.2 EDMA Controller Usage 

The H.264 encoder must access significant amount of data that is stored in off-chip 

external memory. For optimizing the performance for latency, on-chip L2 SRAM is 

configured as a cache, the instruction and data elements are transferred from/to the 

external memory by the cache controller before they are used. However, as declared 

#pragma DATA_SECTION(window,".mysect"); 

#pragma DATA_ALIGN(window, CACHE_L2_LINESIZE) 

unsigned char window[SRCH_WIN][SRCH_WIN]; 

 

#pragma DATA_SECTION(orgMB_16x16,".mysect"); 

#pragma DATA_ALIGN(orgMB_16x16, 

CACHE_L2_LINESIZE) 

unsigned char orgMB_16x16[16][16]; 

 

#pragma DATA_SECTION(diff4x4,".mysect"); 

#pragma DATA_ALIGN(diff4x4, CACHE_L2_LINESIZE) 

short diff4x4[4][4][4]; 

 

#pragma DATA_SECTION(pred4x4,".mysect"); 

unsigned char pred4x4[4][4][4]; 

 

#pragma DATA_SECTION(luma_rec,".mysect"); 

#pragma DATA_ALIGN(luma_rec, CACHE_L2_LINESIZE) 

unsigned char luma_rec[16][16]; 

 

// Chroma Elements 

#pragma DATA_SECTION(orgUV8x8,".mysect"); 

#pragma DATA_ALIGN(orgUV8x8, CACHE_L2_LINESIZE) 

unsigned char orgUV8x8[2][8][8]; 

 

#pragma DATA_SECTION(chr_rec,".mysect"); 

#pragma DATA_ALIGN(chr_rec, CACHE_L2_LINESIZE) 

unsigned char chr_rec [2][8][8]; 

 

#pragma DATA_SECTION(chr_pred,".mysect"); 

#pragma DATA_ALIGN(chr_pred, CACHE_L2_LINESIZE) 

unsigned char chr_pred[2][8][8]; 
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in [5,6] if data exchange depends only on the cache controller, it is hard to schedule 

the transfer processes in reason. Besides, there is no data superiority for the cache 

controller; the frequently used data may be replaced with the rarely employed data 

because of the code flow. 

Since the frequently used one is going to be re-rolled in soon, the system’s efficiency 

is declined. An alternate method for data scheduling is directly controlling the 

EDMA controller [6]. By using the EDMA controller of DM642 [35], the 

background (hidden) data transfers between external and internal memory are 

maintained. Therefore, high latency memory accesses are limited to internal memory 

cache miss penalty respectively.   

 

Figure 5.11: QDMA management for Motion Estimation [7] 

In Figure 5.11, a main flow of a video encoder’s motion estimation is figured out 

using Quick DMA and internal temporary buffers [7]. The parallelism of the CPU 

and EDMA architecture is used for data transfer scheduling for the performance of 

the video encoder. 

The enhanced direct memory access (EDMA) controller of the DM64x devices is a 

highly efficient data transfer engine, capable of handling up to 8 bytes per EDMA 

cycle, resulting 2.4GB per second of total data throughput at a CPU rate of 600 MHz. 
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To make a video encoder application fully benefit from the bandwidth in the transfer 

engine, it is best to use 32-bit element size whenever possible. 

In EDMA communication, each data transfer is initiated by a transfer request (TR), 

which contains all the information required to perform the transfer: source address, 

destination address, transfer property, element count, etc. When a transfer request is 

shifted into one of the transfer request queues to wait for processing, the transfer 

priority level determines the queue to which it is sorted. There are four queues: 

Q0(urgent), Q1(high), Q2(medium), and Q3 (low) corresponding to four priority 

levels, each with a depth of 16 entries. Only one TR from each priority queue can be 

serviced at a time by the address generation/transfer logic. When a TR arrives at the 

head of queue, it is moved into the EDMA transfer Controller queue registers, which 

perform the actual data movement defined by the TR [7]. 

The EDMA has the capability of performing unsynchronized transfers through the 

use of a QDMA request by the CPU. In other word, QDMA transfer is synchronized 

by the CPU. In video encoder, the EDMA transfer is synchronized by data flow of 

the algorithm instead of external events. The QDMA is better to issue a single, 

independent transfer to quickly move data, rather than to perform periodic or 

repetitive transfers like the other EDMA channels. The requests are queued 

according to priority, with higher priority requests services first processed by the 

EDMA. Because of the EDMA structure, all QDMA transfers are submitted using 

frame synchronization. Therefore, the QDMA always requests a transfer of one 

complete frame of data. A good video encoder should use all three priority queues 

(low, medium and high) in parallel to transfer data between external memory and 

internal on-chip buffers.   

In the proposed encoder the QDMA transfer scheme for current macroblock, search 

window and reconstructed macroblock is drawn in Figure 5.12. As well as the 

luminance component, the halved two chrominance component buffers are allocated 

within internal memory and the QDMA is used to transfer required data to temporary 

buffers in internal memory beforehand, so that the DM642 core should not face any 

memory latency. The code flow of the H.264 encoder is adjusted to make EDMA 

memory fetch in parallel (hidden) with core processing. 
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Figure 5.12: The proposed encoder QDMA scheme for luminance 

5.3 The H.264 Encoder Optimization Results 

The DM642 DSP core is capable of video/image processing using the hardware 

architecture and also instruction level video/image operations. The proposed 

H.264/AVC baseline encoder is targeted to real-time application with CIF (352x288) 

resolution above 25 fps encoding speed as well. For achieving the target rate, a video 

encoder has to fully utilize the core’s resources as much as possible.  

The H.264/AVC encoder is optimized under the DSP environment from software (C 

language) level to hardware level using the DSP APIs, register level programming 

and intrinsics as well as linear assembly language for SIMD instructions and parallel 

processing the image pixels respectively. The software encoder performance is 

improved for achieving the target encoding rate in real-time implementation.  

5.3.1 The H.264 Encoder Optimization Summary 

The proposed H.264/AVC encoder on DM642 DSP performance optimization steps 

cover program level optimizations and DSP hardware usage such as EDMA 

controller and VLIW architecture (e.g. SIMD instructions in linear assembly). In 

section 5.1.2 the C program level optimizations; structures, function/intrinsic inlining 

and fast library functions achieve software optimization with little effort on the 

proposed encoder. However, the DSP hardware usage needs expertise especially in 
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EDMA and data scheduling and occupation on DSP software with linear assembly, 

but serves significant results on the encoder optimization. 

The 2-level cache/memory hierarchy of DM642 core and configurable L2 internal 

memory space have to be considered as the bottleneck for speed optimization for 

video/image processing that requires high memory bandwidths. Therefore, a L2 

configuration as both cache and internal RAM is used to maximize the cache hits 

with larger cache memory and minimize the cache miss penalty with internal 

memory for locality and frequently accesses data elements. As describe in section 

5.2.1, the 256 Kbytes L2 SRAM is configured as 128 Kbytes cache and 128 Kbytes 

internal RAM. 

Table 5.6: Optimization results for CIF [352x288] ‘Foreman’ sequence  

 

Functional Block 

Total Count 

@ 30 frames 

Total 
Elapsed 

Time    
(ms) 

Average 
Time                                             

(ms/frame)   

     
Percentage 

(%) 

Before & after encode 
(EDMA usage) 

All MBs  133.38 ms 4.45 ms 11.16 % 

Encode MB All MBs 763.42 ms 25.45 ms 63.89 % 

Motion 
Estimation 

11484 MBs @ 
29 frames 

459.75 ms 15.85 ms Encode MB: 
60.22 %  

Residual 
Coding 

All MBs 228.50 ms 7.62 ms Encode MB:  
29.93 % 

E
nc

od
e 

M
B

 

Intra Predict  
& Others 

All MBs 75.17 ms 2.51 ms Encode MB:     
9.85 % 

Deblocking Filter 30 frames  132.96 ms 4.43 ms 11.13 % 

VLC (write NALU) All MBs 77.98 ms 2.60 ms 6.53 % 

Motion Compensation @ 29 frames 87.09 ms 3.00 ms 7.29 % 

Total 30 frames 1194.8 ms 39.93 ms  All 

In Table 5.6, the optimized encoder on DM642 DSP results are measured using CIF 

(352x288) format for ‘foreman’ video sequence. The average picture encoding time 

for this sequence is 35.5ms (Deblocking off) and 39.93 ms (Deblocking on) for 30 

frames, so the proposed encoder runs on DM642 at 28.57 fps without deblocking 
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filter and 25.04 fps with deblocking filter. Besides, a real-time application frame rate 

can be 25 to 30 fps, the H.264 encoder is optimized enough for real-time purpose, 

achieving encode rate over 25 fps.    

5.3.2 Simulation Results with PSNR and Compression Ratio 

The average PSNR values for video sequences of 30 frames are measured with the 

proposed encoder speed. For the compression efficiency in bitrate, constant 

quantization parameter with a value 28 is used. Average PSNR shows that the picture 

qualities of the encoder compressed ‘.264’ outputs are high enough for a real-time 

application. The compression rates change with the video sequence properties with 

the motion types. In Table 5.7, the encoder compression efficiency is given with 

encoding speed, PSNR and compression rate with constant QP value at 28 while the 

deblocking filter is on. The results show that the proposed encode speed is above 25 

fps and the compression efficiency is well suited for a real-time implementation such 

as video surveillance.  

Table 5.7: Compression efficiency of the implemented H.264 encoder  

Sequence          

[CIF  352x288] 

Encoder 

Speed (fps) 

Y-PSNR 

(dB) 

U-PSNR 

(dB) 

V-PSNR 

(dB) 

Compression 

Ratio 

Akiyo 40.42 fps 39.50 42.46 44.05 258 

Container 30.17 fps 35.96 42.16 41.89 105 

Foreman   25.04 fps 36.02 40.69 43.27 70 

Mother&Daughter 38.95 fps 38.85 43.63 44.53 281 

News        34.29 fps 37.65 40.00 41.66 128 

Paris 26.08 fps 35.21 38.63 38.71 48 

 The medium motion low detail and low motion medium detail video sequences, 

such as ‘Foreman’ and ‘Paris’ respectively, and also low motion low detail video 

sequences are profiled on DM642 EVM platform as shown in Table 5.7. These types 

of streams are similar to video conferencing and mobile applications environment, so 

the corresponding sequences are chosen for profiling in an embedded platform.  
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6. CONCLUSION AND FUTURE WORK 

In this thesis, a real-time H.264 baseline encoder on TI TMS320DM642 digital 

signal processor at CIF (352x288) resolution is implemented and verified with 

reference decoder. According to the performance measurements over video 

sequences, 25 to 40 fps encoding performance is possible and the PSNR 

measurements are sufficient for embedded applications such as video conferencing 

and mobile applications. 

As the video/image processing system accommodates parallelism, digital signal 

processors can provide much more parallelized implementation with high 

performance and flexibility. However, computational complexity and memory 

accesses are restrictive for the encoder performance especially in embedded targets; 

the DM642 DSP can overcome the computational complexity with the VLIW 

architecture as well as the access limitation with the EDMA controller. 

The realization and optimization of the proposed encoder on DM642 target platform 

with the given optimization phases are carried out. From algorithmic to architectural 

optimizations, the platform independent software optimizations and the platform 

dependent memory and linear assembly optimizations are derived. After all 

optimization steps, the overall performance of the proposed H.264 encoder above 25 

fps is qualified enough for a real world implementation.       

For future work, the proposed encoder efficiency can be improved by adding quarter 

pixel motion compensation support and error resilience tools. Besides, motion 

estimation kernel can be improved by using and adapting more appropriate motion 

search algorithms. As the proposed encoder achieves real-time performance at CIF 

resolution, development of the encoder performance for higher resolution especially 

at D1 (720x576) is a challenging future study.   
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