933 research outputs found

    Budgeted Reinforcement Learning in Continuous State Space

    Get PDF
    A Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of a cost signal constrained to lie below an - adjustable - threshold. So far, BMDPs could only be solved in the case of finite state spaces with known dynamics. This work extends the state-of-the-art to continuous spaces environments and unknown dynamics. We show that the solution to a BMDP is a fixed point of a novel Budgeted Bellman Optimality operator. This observation allows us to introduce natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs. We validate our approach on two simulated applications: spoken dialogue and autonomous driving.Comment: N. Carrara and E. Leurent have equally contribute

    Sample Efficient On-line Learning of Optimal Dialogue Policies with Kalman Temporal Differences

    No full text
    International audienceDesigning dialog policies for voice-enabled interfaces is a tailoring job that is most often left to natural language processing experts. This job is generally redone for every new dialog task because cross-domain transfer is not possible. For this reason, machine learning methods for dialog policy optimization have been investigated during the last 15 years. Especially, reinforcement learning (RL) is now part of the state of the art in this domain. Standard RL methods require to test more or less random changes in the policy on users to assess them as improvements or degradations. This is called on policy learning. Nevertheless, it can result in system behaviors that are not acceptable by users. Learning algorithms should ideally infer an optimal strategy by observing interactions generated by a non-optimal but acceptable strategy, that is learning off-policy. In this contribution, a sample-efficient, online and off-policy reinforcement learning algorithm is proposed to learn an optimal policy from few hundreds of dialogues generated with a very simple handcrafted policy

    Goal-oriented Dialogue Policy Learning from Failures

    Full text link
    Reinforcement learning methods have been used for learning dialogue policies. However, learning an effective dialogue policy frequently requires prohibitively many conversations. This is partly because of the sparse rewards in dialogues, and the very few successful dialogues in early learning phase. Hindsight experience replay (HER) enables learning from failures, but the vanilla HER is inapplicable to dialogue learning due to the implicit goals. In this work, we develop two complex HER methods providing different trade-offs between complexity and performance, and, for the first time, enabled HER-based dialogue policy learning. Experiments using a realistic user simulator show that our HER methods perform better than existing experience replay methods (as applied to deep Q-networks) in learning rate

    Budgeted Reinforcement Learning in Continuous State Space

    Get PDF
    International audienceA Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of a cost signal constrained to lie below an-adjustable-threshold. So far, BMDPs could only be solved in the case of finite state spaces with known dynamics. This work extends the state-of-the-art to continuous spaces environments and unknown dynamics. We show that the solution to a BMDP is a fixed point of a novel Budgeted Bellman Optimality operator. This observation allows us to introduce natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs. We validate our approach on two simulated applications: spoken dialogue and autonomous driving

    Machine Learning for Interactive Systems: Challenges and Future Trends

    Get PDF
    National audienceMachine learning has been introduced more than 40 years ago in interactive systems through speech recognition or computer vision. Since that, machine learning gained in interest in the scientific community involved in human- machine interaction and raised in the abstraction scale. It moved from fundamental signal processing to language understanding and generation, emotion and mood recogni- tion and even dialogue management or robotics control. So far, existing machine learning techniques have often been considered as a solution to some problems raised by inter- active systems. Yet, interaction is also the source of new challenges for machine learning and offers new interesting practical but also theoretical problems to solve. In this paper, we address these challenges and describe why research in machine learning and interactive systems should converge in the future

    Online learning and transfer for user adaptation in dialogue systems

    Get PDF
    International audienceWe address the problem of user adaptation in Spoken Dialogue Systems. The goal is to quickly adapt online to a new user given a large amount of dialogues collected with other users. Previous works using Transfer for Reinforcement Learning tackled this problem when the number of source users remains limited. In this paper, we overcome this constraint by clustering the source users: each user cluster, represented by its centroid, is used as a potential source in the state-of-the-art Transfer Reinforcement Learning algorithm. Our benchmark compares several clustering approaches , including one based on a novel metric. All experiments are led on a negotiation dialogue task, and their results show significant improvements over baselines

    Budgeted Reinforcement Learning in Continuous State Space

    Get PDF
    International audienceA Budgeted Markov Decision Process (BMDP) is an extension of a Markov Decision Process to critical applications requiring safety constraints. It relies on a notion of risk implemented in the shape of a cost signal constrained to lie below an-adjustable-threshold. So far, BMDPs could only be solved in the case of finite state spaces with known dynamics. This work extends the state-of-the-art to continuous spaces environments and unknown dynamics. We show that the solution to a BMDP is a fixed point of a novel Budgeted Bellman Optimality operator. This observation allows us to introduce natural extensions of Deep Reinforcement Learning algorithms to address large-scale BMDPs. We validate our approach on two simulated applications: spoken dialogue and autonomous driving
    • …
    corecore