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Abstract

We address the problem of user adapta-
tion in Spoken Dialogue Systems. The
goal is to quickly adapt online to a new
user given a large amount of dialogues col-
lected with other users. Previous works
using Transfer for Reinforcement Learning
tackled this problem when the number of
source users remains limited. In this paper,
we overcome this constraint by clustering
the source users: each user cluster, repre-
sented by its centroid, is used as a poten-
tial source in the state-of-the-art Transfer
Reinforcement Learning algorithm. Our
benchmark compares several clustering ap-
proaches, including one based on a novel
metric. All experiments are led on a negoti-
ation dialogue task, and their results show
significant improvements over baselines.

1 Introduction

Most industrial dialogue systems use a generic
management strategy without accounting for di-
versity in user behaviours. Yet, inter-user variabil-
ity is one of the most important issues preventing
adoption of voice-based interfaces by a large pub-
lic. We address the problem of Transfer Learn-
ing (Taylor and Stone, 2009; Lazaric, 2012) in Spo-
ken Dialogue Systems (SDS) (Gašić et al., 2013;
Casanueva et al., 2015; Genevay and Laroche,
2016), and especially the problem of fast optimi-
sation of user-adapted dialogue strategies (Levin
and Pieraccini, 1997) by means of Reinforcement
Learning (RL) (Sutton and Barto, 1998). The main
goal of this paper is to improve cold start (also
called jumpstart in the literature) learning of RL-
based dialogue management strategies when fac-
ing new users, by transferring data collected from
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similar users (Lazaric et al., 2008). To do so, we
consider the setting in which a large amount of
dialogues has been collected for a several users,
and a new user connects to the service (Genevay
and Laroche, 2016). Our solution combines tech-
niques from the multi-armed bandit (Auer et al.,
2002), batch RL (Li et al., 2009; Chandramohan
et al., 2010; Pietquin et al., 2011) and policy/MDP
clustering (Chandramohan et al., 2012; Mahmud
et al., 2013) literatures.

Instead of clustering user behaviours as in (Chan-
dramohan et al., 2012), we propose to cluster
the policies that are trained on the user dialogue
datasets. To do so, we define a novel policy-based
distance, called PD-DISTANCE. Then, we inves-
tigate several clustering methods: k-medoids and
k-means, which enable the identification of source
representatives for the transfer learning. Once clus-
ters representatives have been selected, they are
plugged into a multi-armed bandit algorithm, as
proposed in Genevay and Laroche (2016).

Following previous work where user adaptation
(Janarthanam and Lemon, 2010; Ultes et al., 2015)
was used to address negotiation tasks (Sadri et al.,
2001; Georgila and Traum, 2011; Barlier et al.,
2015; Genevay and Laroche, 2016), we test our
methods on different types of users involved in a
negotiation game (Laroche and Genevay, 2017).
Methods are compared to two baselines: learning
without transfer and transfer from a generic pol-
icy learnt from all the sources. These methods are
tested by interacting with handcrafted users and
human-model users learnt from actual human in-
teractions (unlike Genevay and Laroche (2016)).
Results show that our clustering methods provide a
better dialogue experience than the generic meth-
ods in both setups.

After recalling mathematical background in Sec-
tion 2, we present the full user adaptation process
in Section 3. The clustering methods are described



in Section 4. Section 5 describes the negotiation
game and experiments are summarised.

2 Reinforcement learning

A Markov Decision process (MDP) is used for
modelling sequential decision making problems.
It is defined as a tuple {S,A, R, P, γ}; S is the
state set, A the actions set, R : S × A × S → R
the reward function, P : S × A × S → [0, 1]
the Markovian transition function and γ the dis-
count factor. π : S → A is called a policy,
which can be either deterministic or stochastic.
Solving an MDP consists in finding a policy π∗

that maximises the γ-discounted expected return
Eπ∗

∑
t γ

tR(st, at, st+1). The policy π∗ satisfies
Bellman’s optimality equation (Bellman, 1956):

π∗(s) = argmax
a∈A

Q∗(s, a), (1)

Q∗ (s, a) =
∑
s′∈S

[
R
(
s, a, s′

)
+γP

(
s, a, s′

)
Q∗
(
s′, π∗(s′)

)]
, (2)

which is equivalent to Q∗ = T ∗Q∗ where Q∗ is
the optimal Q function and T ∗ the Bellman opti-
mality operator. If γ < 1, this operator is a con-
traction. Thanks to the Banach theorem, it admits
a unique solution. Then, one can find Q∗ by iterat-
ing on equation 2 : the algorithm is called Value-
Iteration (VI). When S is continuous, the previous
algorithm cannot apply.

Fitted Value-iteration (FVI) is used instead. It
learns the Q-function at each iteration using a su-
pervised learning algorithm which map some (s, a)
couples to their respective value in equation 2 in-
volvingR and P . However, in reinforcement learn-
ing, R and P are unknown so one must estimate
the value.

Fitted-Q resolves the aforementioned problem.
Given a batch of samples (sj , aj , r

′
j , s
′
j)j∈[0,N ],

it learns the Q-function at each iteration of VI
given the learning batch {(sj , aj), r′j + γ ∗
maxa′ Q(s′j , a

′)}j∈[0,N ] using a supervised learn-
ing algorithm, trees for example (Ernst et al.,
2005).

Linear least-squares-based Fitted-Q is a spe-
cial case of Fitted-Q Iteration where Q is repre-
sented by a linear parametrisation :

Qθi(s, a) =
∑
i

θiφi(s, a) = θTφ(s, a), (3)

with φ(sj , aj) = φj (φ is called the feature func-
tion). Least-square optimisation results in comput-

ing θ. Let M =
(∑N

j=1 φjφ
T
j

)−1
, then :

θi = M

N∑
j=1

φj

(
r′j + γmax

a∈A

(
θTi−1φ

(
s′j , a

)))
,

(4)
The algorithm terminates when either one of the
two following conditions is satisfied: i ≥ maxit or
||θi−θi−1||2 ≤ δ. A regularisation parameter λ can
be added to the co-variance matrix to avoid diver-
gences of θi’s values (Tikhonov, 1963; Massoud
et al., 2009). Least-squares-based Fitted-Q Itera-
tion is denoted as Fitted-Q in this paper. In the next
section, the full adaptation process from (Genevay
and Laroche, 2016) is recalled and adapted.

3 Adaptation process

Figure 1 shows the full process of user adaptation.
We remind the reader that our goal is to improve
cold start by transferring data from existing users
and learn a policy adapted to a new user by RL. As
an input, we assume the existence of a database
of dialogues with different users, which allows the
training of user specialised policies. At first, the
process consists in searching or constructing policy
representatives for this database so as to reduce
the number of possible transfer sources. This is
where the contribution of this paper mainly stands,
the rest being mostly inherited from (Genevay and
Laroche, 2016):

Figure 1: Adaptation process



Source selection The source selection problem
is cast into a multi-armed bandit algorithm
(MAB), implemented here as UCB1 (Auer et al.,
2002), each arm standing for a representative.
When the MAB selects an arm, its corresponding
policy π interacts with the user for one full dia-
logue. The MAB performs nmab policy selections.
Nmab samples from dialogues, with target user u′,
are collected during this procedure. In the end of
this initial MAB step, the representative policy that
yielded the highest empirical reward designates the
source from which to transfer. The algorithm trans-
fers Nû samples from its source û dialogues, to
construct a batch of dialogues. Transitions from
the trajectories of the chosen source are added to
those already collected from the target as suggested
by (Lazaric et al., 2008).

Instance selection Source transitions are subject
to an instance selection to alleviate bias when suf-
ficient target data has collected. After instance
selection, the N b

û remaining samples are added to
the target samples for training a first policy with
Fitted-Q. The idea is to only transfer transitions
that are not present in the target transition dataset.
Given a parameter η and given a transition from
the source (s, a, r′, s′), all the transitions from the
target MDP which contain action a are considered.
If there is a source transition (si, a, r

′
i, s
′
i) such that

||s−si||2 ≤ η then the transition is not added to the
batch. The choice of η is problem-dependent and
should be tuned carefully. A large value for this
parameter leads to adding too few transitions to the
batch, while a small value will have the opposite
effect.

The hybrid source-target dataset is used for train-
ing the current policy that controls the behaviour
during the next epoch, with an ε-greedy exploration:
at each transition, with probability ε, a random ac-
tion is chosen instead. N b

u′ samples are collected
this way, and used to refine its training. The al-
gorithm repeats the operation from the transition
selection step for every batch b ∈ [0, B]. Eventu-
ally, the final learnt policy πBu′ on u′ is added to the
database. Note that this policy does not explore
anymore.

4 Source representatives

This section presents the main contributions of the
paper. The adaptation process requires a setup of
several source representatives in order to do the
first dialogues, with a target user, handled by the

MAB process. Indeed, setting one arm for every
source policy is not sustainable for real-world sys-
tems since the stochastic MAB regret is linear in
number of arms. The initial phase of MAB dia-
logue collection lasts d ∼ 100 dialogues. This is
why this paper proposes to create a set of limited
size k of source representatives from a large user
database. Two methods are proposed: one based on
the cost function of k-medoids and the other one
based on k-means. All rely on PD-DISTANCE,
a novel policy-driven distance introduced by this
paper:

dpd
(
u, u′

)
=

√∑
s∈Ω

1− 1 (πu(s), πu′(s)) (5)

where u and u′ are source users and πu and πu′
the policies trained with them. The state set Ω is
obtained by a sampling over the states reached.

In the KMEDOIDS method, we propose to
choose directly k representatives into the systems
database. The cost function optimized by the k-
medoids algorithm, denoted as J here, is used. Let
Pk(U) denote the ensemble of k combinations of
elements among U , the set of all source users. If
U ∈ Pk(U), and d is a distance, then the cost
function is defined as:

J(U) =
∑
u∈U

min
u′∈U

d(u, u′). (6)

Thus, the goal is to find the set Pmin minimising
KMEDOIDS. This paper uses PD-DISTANCE as the
distance d. For convenience, instead of optimising
over all U ∈ Pk(U), we sample uniformly on
Pk(U) and keep the smallest cost value J(U), but
one could use better optimization methods to find
the best fit according to KMEDOIDS (like a greedy
approach).

In the KMEANS method, we cluster systems
with the k-means algorithm using PD-DISTANCE

as a distance. When implementing, a change must
be operated so the k-means can keep using eu-
clidean distance: one must design each vector v
to cluster this way : v(s, a) = 1 if a has been
chosen in s, 0 otherwise. Note that KMEDOIDS

directly picks elements from the main set while k-
means regroups elements around means of vectors
potentially corresponding to non-existent systems.
The KMEANS method must construct the k system
representatives from the clusters. A representative
is a new system learnt using Fitted-Q. The train-
ing batch is constructed by gathering Nts transfer



samples (s, a, r′, s′) of each system of the corre-
sponding cluster.

5 Experiments

In order to test the previous methods, experi-
ences are ran on the negotiation dialogue game
(NDG) (Laroche and Genevay, 2017). In this game,
two players must agree on a time-slot for an ap-
pointment. For each player p, each time-slot τ is
associated to a cost cp,τ ∈ [0, 1]. At each turn of the
game, a player can refuse the other player’s time-
slot and propose another time-slot: REFPROP(τ ),
ask the other player to repeat: ASKREPEAT, ter-
minate the game: ENDDIAL or accept the other
player’s slot: ACCEPT. The noise inherent to spo-
ken dialogues (because of ASR errors) is simu-
lated: when a player proposes a time-slot, there is
ser probability that the time-slot proposed is cor-
rupted where ser denotes the sentence error rate
of this player. The speech recognition score srs of
an utterance is then computed with the following
formula:

srs =
1

1 + e−X
(7)

where X ∼ N (x, 0.2), x = x> if understood,
x = x⊥ otherwise. These parameters are relative
to each player. The further apart the normal
distribution centers are, the easier it will be for the
system to know if it understood the right time-slot,
given the score. At the end of the game, if there is
an agreement (i.e. there is no misunderstanding
in the slot τ agreed), the system v, receives a
dialogue return rv = ωv − cv,τ + αv(ωu − cu,τ ),
where u denotes the other player: the user (either
real human or a user simulator). For each player
p, ωp ∈ R is the utility of reaching an agreement,
αp ∈ R his cooperation tendency and γu ∈ [0, 1]
his patience. If players, v and u, agreed on
different time-slots, the following formula applies
to compute v’s score rv = −cv,τv + αv(−cu,τu).
In this context, players should better agreed on
the same time-slot at the risk of getting a very bad
score. The dialogue score is then scorev = γ

tf
u rv

where tf is the size of the current dialogue. Thanks
to the γu parameter, players are inclined to accept
a time-slot in a limited time1. In the following,
the number of available slots (gamesize) is set
to 4 and the maximum number of utterances in a

1Please note that γu is not the same as the γ in the MDP
formulation.

Merwan Nico Will Alex
ACCEPT 7% 35% 24% 13%
ENDDIAL 0% 0% 0% 0%
ASKREPEAT 1% 14% 10% 6%
REFPROP(0) 88% 45% 60% 64%
REFPROP(1) 3% 5% 6% 15%
REFPROP(2) 0% 0% 1% 2%
REFPROP(3) 1% 0% 0% 0%
learn error 5.2% 5.2% 4.9% 6.8%

Table 1: Rounded actions distributions of humans
and learn error of their kNN model.

dialogue (maxdialoguesize) is set to 50 (once
this maximum is reached, a zero score is given). α
and ω are set to 1.

Both KMEANS and KMEDOIDS methods for
searching representatives will be tested. The ob-
jective is to show that these methods improve the
dialogue quality compared to non adaptive meth-
ods. All the tests are done in the following context:
a user (human-model user or handcrafted user) and
a system play a negotiation dialogue game. A dia-
logue is defined as one episode of the game. Slot
preferences for users and systems are determined
randomly at the beginning of each dialogue. The
collected target dialogues are used to train a policy
for the new user and the baselines and the cluster-
ing methods are compared in their ability to enable
fast user adaptation.

Before jumping to the results, next section
presents the user ensemble design.

5.1 Users design

Experiments are split in two parts with different
sets of (source and target) users: the first set is arti-
ficially handcrafted (handcrafted users), while the
second one is trained on human-human trajectories
(human-model users).

Handcrafted users: to expose the need of user
adaptation, different types of handcrafted users are
defined:

• The deterministic user (DU) proposes its slots
in decreasing order (in term of its own costs).
If a slot proposed by the other user fits in
its x% better slots, it accepts, otherwise it
refuses and proposes its next best slot. If the
other user proposes twice the same slot (in
other words, he insists), DU terminates the



dialogue. Once that DU proposed all its slots,
it restarts with its best slots all over again.

• The random user (RU) accepts any slot with
a probability of x, otherwise it refuses and
proposes a random slot.

• The always-refprop-best user (ARPBU) al-
ways refuses other user’s slot and proposes its
best slot.

• The always-accept user (AAU) always accept
the other user slot. If AAU begins the dia-
logue, it proposes its best slot.

• The stop-after-one-turn user (SAOTU) pro-
poses a random slot then ends the dialogue
regardless of the other user response.

Human-model users: in order to gather dia-
logues from human users, a multi-human version
of the negotiation game has been created. Making
the humans play together avoids too fast adaptation
from the humans ((unlike human versus computer
setup) and thus keep the experiments in a stationary
environment.

The number of slots available has been set to
4 and all human users share the same parameters
from the negotiation game which are γu = 0.9,
ω = 1, ser = 0.3, c> = 1, c⊥ = −1 and α = 1.
The game is then fully cooperative. Four humans :
Alex, Nico, Merwan and Will played an average of
100 dialogues each. Using human trajectories, we
design human-model users. State/action couples
are extracted from these trajectories.

Human-model users can do the following ac-
tions: ACCEPT, ASKREPEAT and ENDDIAL. They
can also REFPROP(i) to refuse the other user slot
and propose their ith best slot. The action REF-
PROP(0) then means that the human-model user
refuses and proposes its best slot. We find the cor-
responding human-model users actions with the
humans actions. Table 1 shows the empirical distri-
bution on the human-model users actions space for
each (real) human. Even if a human has not been
subjected to the same dialogue trajectories, some
behavioural differences clearly appear. Merwan
tends to insist on his best slot while Nico seems
more compliant. Alex is more versatile in the ac-
tions chosen.

Human-model users require an approximate rep-
resentation, or projection, of the human state. Let
nbslots ∈ N+, the number of available slots of

the game, then the dialogue state representation is
defined as a vector of the 2 + 3 ∗nbslots following
attributes: the speech recognition score of the last
received utterance, the costs of all slots sorted, the
frequencies of all REFPROP(i) actions done by this
user during the dialogue, the frequencies of all slot
propositions done by the other user (ordered by
cost for this user) during the dialogue and finally
the cost of the last slot proposed by the other user.

Each human is modelled with a k-nearest-
neighbour algorithm (kNN), with k = 5, fed with
their corresponding data couples state/action. Ta-
ble 1 also shows the training errors.

Finally, handcrafted and human-model users
share the following parameter values: ser = 0.3,
c> = 1, c⊥ = 0, ω = 1, α = 1 and γu = 0.9.

5.2 Systems design
Each system is trained with the least-square Fitted-
Q algorithm. Their actions set is restricted to:
ACCEPT, ASKREPEAT, ENDDIAL, and two REF-
PROP actions: REFPROPNEXTBEST to refuse the
other user’s slot and propose the next best slot
after the last slot the system proposed (once all
slots have been proposed, the system loops) and
INSISTCURRENTBEST to propose his last pro-
posed slot. The dialogue state tracker collects
three attributes, the current iteration number of
the dialogue (nbUpdate), the speech recognition
score (srs) and the difference between the cost
of the next slot the system can propose and the
cost of the slot currently proposed by the user
(cost). Fitted-Q’s feature representation is then
defined with 7 attributes for each action: φ(s, a) =
(1, cost, srs, up, cost ∗ srs, cost ∗ up, srs ∗ up)
where up = 1− 1

nbUpdate . The learning is done in
B batches of Fitted-Q (with γ = 0.9, δ = 0.001
and maxit = 200). For each batch, a set of D
dialogues is generated between the system and a
user and then a new policy is computed with Fitted-
Q fed with all the dialogues done so far. Policies
are ε-greedy, ε annealing from ε = 0.25 at the 1st

batch to ε = 0.01 at the last batch. In between,
ε(b) = 1

ae∗b+be where ae = 19.2, be = −15.2 and
b the current batch index. ε is set to 0 during the
test phase (in order to greedily exploit the current
policy). In the human setup, B = 6 and D = 500.
In the handcrafted setup, B = 6 and D = 200.

5.3 Cross comparisons
To show the importance of user adaptation, source
systems are respectively trained versus users. Then,



u
s

type c> c⊥ x vspu1 vspu2 vspu3 vspu4 vspu5 vspu6 vspu7

pu1 DU 1 -1 0.1 0,62 0,44 0,46 0,40 0,40 0,40 0,59
pu2 DU 5 -5 0.1 0,53 0,82 0,81 0,51 0,70 0,41 0,71
pu3 DU 5 -5 0.2 0,53 0,81 0,81 0,52 0,72 0,42 0,71
pu4 RU 5 -5 0.1 0,42 0,94 0,94 1,00 0,92 0,85 0,94
pu5 ARPBU 1 -1 0,84 0,98 1,00 1,11 1,16 1,13 1,05
pu6 AAU 1 -1 0,95 1,06 1,07 1,29 1,27 1,30 1,06
pu7 SAOTU 1 -1 0,43 0,26 0,27 0,10 0,18 0,03 0,58

Table 2: Handcrafted users characteristics and cross comparison between handcrafted users and systems.
For i ∈ [0, 7], vspui is the system trained versus the user pui.

u
s

vsAlex vsNico vsWill vsMerwan

Alex 1.077 1.041 1.071 1.066
Nico 1.246 1.251 1.246 1.231
Will 1.123 1.109 1.126 1.117
Merwan 0.989 0.903 0.985 0.998

Table 3: Cross comparison between human-model
users and systems

each system interacts versus all the users and
we compare the results. The experiences are re-
peated for 10 runs. Dialogue testing size is set to
103 for each run. In the handcrafted setup, as
in (Genevay and Laroche, 2016), handcrafted users
are created. Parameters of these users are listed in
Table 2. Also, cross comparisons between source
users and systems are displayed. Results in bold
show that each system trained versus a specific user
is the best fit to dialogue with this user. One can
see clear similarities between some of the results.
This is where the representatives design method
will operate by grouping all these similar policies.

In the human setup, test systems are trained
against the human-model user. Results are shown
in Table 3. Note that label Will means model of Will
and not Will himself as well as vsWill means the
system trained against Will’s model. Again, trained
systems perform better than others against the user
they learnt on. However, differences are not as clear
as in the handcrafted setup. The reason is shown in
Figure 2a, 2b and 2c where learnt policies are quite
similar. Computed policies are tested on the states
si from the set of (si, ai, r

′
i, s
′
i)i∈N they learnt from.

The (srs, costs) projection explains better policy
differences. One can see that vsAlex and vsWill
are pretty similar as they insist often when the cost
is negative, in contrary of other policies. On the

other hand, vsNico tends to REFPROP instead of
ACCEPT when the speech recognition score is high.
It’s pretty straightforward to remark that is because
Nico has tendencies to ACCEPT more than others
as we saw in Table 1. One can remark that even
if statistics gather from human actions distribution
shows significant differences (in Table 1), policies
computed are not necessarily different (like vsAlex
and vsWill).

5.4 Adaptation results

Now specialised systems have been shown lead-
ing to better results, we test the full adaptation
process with KMEDOIDS and KMEANS methods.
As previously, tests are performed on both hand-
crafted and human-model users. But first, the
database of source systems is constructed. 100
handcrafted source users and 100 human source
user models are created. Those are designed by
changing some parameters of the vanilla users. For
example, a model from Alex is changed switch-
ing its speech error rate from 0.3 to 0.5. Parame-
ters take random value between the following in-
tervals: c> ∈ [0, 5] with c⊥ = −c>, ser ∈ [0, 0.5],
α ∈ [0, 1], x ∈ [0.1, 0.9] and p ∈ [0.3, 0.9] . It
is useful for human setup because we do not have
enough dialogue corpora to design 100 systems
specialized versus 100 unique human-model users.
The same method is applied to generate a large
number of handcrafted users as well. For each user,
a source policy is trained after 6 batches of 200
dialogues (for a total of 1200 dialogues). Each
system is added to its respective database (human-
model or handcrafted). We end up with 100 source
trained policies with 100 handcrafted source users
and 100 source trained policies with 100 human-
model source users.

KMEANS and KMEDOIDS are tested for the com-



(a) vsAlex policy’s 2D projection.

(b) vsWill policy’s 2D projection.

(c) vsNico policy’s 2D projection.

Figure 2: Some projections of policies optimised
versus human-model users.

plete adaptation process versus a base of 500 target
users generated randomly (in the same way as users
have been generated to create source systems). As
discussed in Section 3, the adaptation process im-
plies a bandit phase: 25 dialogues are done versus
the target user then the mean score is saved to be
plotted. Then all the samples (s, a, r′, s′) are re-
trieved from the source system winner of the ban-
dit. The process actually transfers a maximum of
1200 dialogues. Transfer samples are submitted
to a filtering using density-based selection with η
parameter picked in the set {0.1, 0.3, 0.5, 0.7, 0.9}
2. Then, a new policy is learnt with Fitted-Q fed
with samples from the source system and sam-
ples from the bandit dialogues. To avoid diver-
gence, a λ-regularization is applied to Fitted-Q
with λ = 1. Once the policy learnt, 25 additional
dialogues are sampled versus the target user. Af-
ter this sampling, the mean score is saved to be
plotted later. The process is repeated 6 times for a
total of 25+6*25+1200 dialogues maximum for the
learning and 25+6*25+25 dialogues for the evalu-
ation. All systems, sources and targets, share the
following parameters; ω = 1, γu = 0.9, ser = 0.0,
c> = 5, c⊥ = −5, α = 1 but differ in their policy.
All systems are learnt with Fitted-Q using the fol-
lowing parameters: δ = 0.001, maxit = 200 and
γ = 0.9. They all follow an ε-greedy policy with ε
defined as in Section 5.2.

In order to compare the previous methods, we
introduce two naive ways for user adaptation, AG-
GLO and SCRATCH. The first one learns a unique
system to represent the whole systems database
and the second one adopts a random policy during
the bandit phase then follows an ε-greedy policy
like other methods but without any transfer. Be-
fore running experiment, pre-processing is done for
some the methods: for AGGLO, 1200 dialogues are
gathered among all source systems in the database.
That means 12 dialogues are collected randomly
from the dialogue set of each of the 100 source
systems. A policy is learnt with one batch of Fitted-
Q with δ = 10−6, γ=0.9 and maxit=200. This
policy is used to create one unique system repre-
sentative for all the database. For KMEANS, PD-
DISTANCE vector representations of each system
in the database are created by sampling over 20000
states (picked from source systems). Then these
systems are clustered with k=5 using k-means with

2We kept only η = 0.3 as results are pretty similar with
any η
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Figure 3: Dialogue quality in the handcrafted and human setup.

euclidean distance. For each cluster the previous
AGGLO method is applied in order to create a clus-
ter representative. Finally, for KMEDOIDS, a ran-
dom sampling of five-element sets is ran. The J
value of each set is computed and the one who
minimizes this value is kept. Finally, 10 differ-
ent sets of AGGLO, KMEANS and KMEDOIDS are
created and tested. Results are shown in Figure
3. In the handcrafted setup, the overall dialogue
quality of the proposed methods is significantly
better than AGGLO and SCRATCH baselines. In-
deed, dialogues are shorter 3, final score is higher
and the task is more often completed. On the other
side, scores and task completions are similar in
the human setup. Still, the size of the dialogues
is improved by KMEANS and KMEDOIDS offering
a better dialogue experience and thus users keep
using the dialogue system.

6 Related work

To our knowledge, just one paper treats the subject
of searching system representatives among a sys-
tems database: (Mahmud et al., 2013) has a similar
adaptation process as the one presented in this pa-
per. It isn’t applied to dialogue systems specifically.
In order to choose good representatives from the
policies/MDP/systems database, clustering is done

3SCRATCH’s dialogue size can be shorter because it use
random policy on cold start and then ends the dialogue more
often.

using the following distance

dV (Mi,Mj) = max{V π∗i
i − V

π∗j
i , V

π∗j
j − V

π∗i
j }

given two MDP Mi and Mj , where V π
k is the

score of the policy π when executed on MDP Mk

and π∗k refers to the optimal policy for MDP Mk.
Thus, to compute all the systems distances two
by two, one needs to sample dialogues between
the source users and all the source systems of the
database. In a real life dialogue applications with
humans, it is not possible to do such thing unless
one creates a model of each source user.

7 Conclusion

In this paper, user adaptation has been proved to im-
prove dialogue systems performances when users
adopt different behaviours. The paper shows that
indeed, each human adopts a different way to play
the NDG although the shade is subtle. So, a system
learnt versus a particular user is more efficient than
other systems for this user, in the handcrafted user
setup as in the human-model user setup.

User adaptation requires selecting source sys-
tems to transfer knowledge. This paper proposed 2
methods: KMEANS and KMEDOIDS combined to a
novel distance PD-DISTANCE to select representa-
tive source systems, from a large database, which
are used for transferring dialogue samples. These
methods outperformed generic policies in the hand-
crafted setup and improved dialogue quality when
facing models learnt on human-human data.
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