4,862 research outputs found

    Optimizing server power consumption in cross-domain content distribution infrastructures

    Get PDF
    Optimizing server’s power consumption in content distribution infrastructure has attracted increasing research efforts. The technical challenge is the tradeoff between server power consumption and the content service capability on both the server and the network side. This paper proposes and evaluates a novel approach that optimizes content servers’ power consumptions in large-scale content distribution platforms across multiple ISP domains. Specifically, our approach strategically puts servers to sleep mode without violating load capacities of virtual content delivery links and active servers in the infrastructure. Such a problem can be formulated into a nonlinear programming model. The efficiency of our approach is evaluated in a content distribution topology covering two real interconnected domains. The simulation has shown that our approach is capable of reducing servers’ power consumptions by up to 62.2%, while maintaining the actual service performance in an acceptable scope

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Software architecture knowledge for intelligent light maintenance

    Get PDF
    The maintenance management plays an important role in the monitoring of business activities. It ensures a certain level of services in industrial systems by improving the ability to function in accordance with prescribed procedures. This has a decisive impact on the performance of these systems in terms of operational efficiency, reliability and associated intervention costs. To support the maintenance processes of a wide range of industrial services, a knowledge-based component is useful to perform the intelligent monitoring. In this context we propose a generic model for supporting and generating industrial lights maintenance processes. The modeled intelligent approach involves information structuring and knowledge sharing in the industrial setting and the implementation of specialized maintenance management software in the target information system. As a first step we defined computerized procedures from the conceptual structure of industrial data to ensure their interoperability and effective use of information and communication technologies in the software dedicated to the management of maintenance (E-candela). The second step is the implementation of this software architecture with specification of business rules, especially by organizing taxonomical information of the lighting systems, and applying intelligencebased operations and analysis to capitalize knowledge from maintenance experiences. Finally, the third step is the deployment of the software with contextual adaptation of the user interface to allow the management of operations, editions of the balance sheets and real-time location obtained through geolocation data. In practice, these computational intelligence-based modes of reasoning involve an engineering framework that facilitates the continuous improvement of a comprehensive maintenance regime

    Mobile Edge Computing

    Get PDF
    This is an open access book. It offers comprehensive, self-contained knowledge on Mobile Edge Computing (MEC), which is a very promising technology for achieving intelligence in the next-generation wireless communications and computing networks. The book starts with the basic concepts, key techniques and network architectures of MEC. Then, we present the wide applications of MEC, including edge caching, 6G networks, Internet of Vehicles, and UAVs. In the last part, we present new opportunities when MEC meets blockchain, Artificial Intelligence, and distributed machine learning (e.g., federated learning). We also identify the emerging applications of MEC in pandemic, industrial Internet of Things and disaster management. The book allows an easy cross-reference owing to the broad coverage on both the principle and applications of MEC. The book is written for people interested in communications and computer networks at all levels. The primary audience includes senior undergraduates, postgraduates, educators, scientists, researchers, developers, engineers, innovators and research strategists

    A survey on cyber security for smart grid communications

    Get PDF
    A smart grid is a new form of electricity network with high fidelity power-flow control, self-healing, and energy reliability and energy security using digital communications and control technology. To upgrade an existing power grid into a smart grid, it requires significant dependence on intelligent and secure communication infrastructures. It requires security frameworks for distributed communications, pervasive computing and sensing technologies in smart grid. However, as many of the communication technologies currently recommended to use by a smart grid is vulnerable in cyber security, it could lead to unreliable system operations, causing unnecessary expenditure, even consequential disaster to both utilities and consumers. In this paper, we summarize the cyber security requirements and the possible vulnerabilities in smart grid communications and survey the current solutions on cyber security for smart grid communications. © 2012 IEEE

    A survey of communication protocols for internet of things and related challenges of fog and cloud computing integration

    Get PDF
    The fast increment in the number of IoT (Internet of Things) devices is accelerating the research on new solutions to make cloud services scalable. In this context, the novel concept of fog computing as well as the combined fog-to-cloud computing paradigm is becoming essential to decentralize the cloud, while bringing the services closer to the end-system. This article surveys e application layer communication protocols to fulfill the IoT communication requirements, and their potential for implementation in fog- and cloud-based IoT systems. To this end, the article first briefly presents potential protocol candidates, including request-reply and publish-subscribe protocols. After that, the article surveys these protocols based on their main characteristics, as well as the main performance issues, including latency, energy consumption, and network throughput. These findings are thereafter used to place the protocols in each segment of the system (IoT, fog, cloud), and thus opens up the discussion on their choice, interoperability, and wider system integration. The survey is expected to be useful to system architects and protocol designers when choosing the communication protocols in an integrated IoT-to-fog-to-cloud system architecture.Peer ReviewedPostprint (author's final draft
    • …
    corecore