90 research outputs found

    Medical Image Analysis: Progress over two decades and the challenges ahead

    Get PDF
    International audienceThe analysis of medical images has been woven into the fabric of the pattern analysis and machine intelligence (PAMI) community since the earliest days of these Transactions. Initially, the efforts in this area were seen as applying pattern analysis and computer vision techniques to another interesting dataset. However, over the last two to three decades, the unique nature of the problems presented within this area of study have led to the development of a new discipline in its own right. Examples of these include: the types of image information that are acquired, the fully three-dimensional image data, the nonrigid nature of object motion and deformation, and the statistical variation of both the underlying normal and abnormal ground truth. In this paper, we look at progress in the field over the last 20 years and suggest some of the challenges that remain for the years to come

    Nonrigid Registration of 3-Dimensional Images of the Carotid Arteries

    Get PDF
    Atherosclerosis at the carotid bifurcation can result in cerebral emboli, which in turn can block the blood supply to the brain causing ischemic strokes. Non-invasive imaging tools that characterize arterial wall, and atherosclerotic plaque structure and composition may help to determine the factors, which lead to the development of unstable lesions, and identify patients at risk of plaque disruption. Registration of 3D ultrasound (US) images of carotid plaque obtained at different time points, and with Magnetic Resonance (MR) images are required for monitoring of plaque changes in volume and surface morphology, and combining the complementary information of the two modalities for better understanding of factors that define plaque vulnerability. These registration techniques should be nonrigid, to remove deformations caused by bending and torsion in the neck during image acquisition sessions. The high degrees of freedom and large number of parameters associated with nonrigid image registration methods causes several problems including unnatural plaque morphology alteration, high computational complexity, and low reliability. Thus, we used a “twisting and bending” model with only six parameters to model the natural movement of the neck for nonrigid registration. We calculated the Mean Registration Error (MRE) between the segmented vessel surfaces in the target and the registered images using the distance between “matched points” to evaluate registration results. We registered 3D US carotid images acquired at different head positions to simulate images acquired at different times, and obtained an average MRE of 0.8±0.3mm for nonrigid registration. We registered 3D US and MR carotid images at field strengths, 1.5T and 3.0T, of the same subject acquired on the same day, and obtained an average MRE of 1.4±0.3mm for 1.5T and 1.5±0.4mm for 3.0T, using nonrigid registration. Furthermore, we showed that the error metric used here was not significantly different from the widely accepted Target Registration Error (TRE)

    Medical image registration and soft tissue deformation for image guided surgery system

    Get PDF
    In parallel with the developments in imaging modalities, image-guided surgery (IGS) can now provide the surgeon with high quality three-dimensional images depicting human anatomy. Although IGS is now in widely use in neurosurgery, there remain some limitations that must be overcome before it can be employed in more general minimally invasive procedures. In this thesis, we have developed several contributions to the field of medical image registration and brain tissue deformation modeling. From the methodology point of view, medical image registration algorithms can be classified into feature-based and intensity-based methods. One of the challenges faced by feature-based registration would be to determine which specific type of feature is desired for a given task and imaging type. For this reason, a point set registration using points and curves feature is proposed, which has the accuracy of registration based on points and the robustness of registration based on lines or curves. We have also tackled the problem on rigid registration of multimodal images using intensity-based similarity measures. Mutual information (MI) has emerged in recent years as a popular similarity metric and widely being recognized in the field of medical image registration. Unfortunately, it ignores the spatial information contained in the images such as edges and corners that might be useful in the image registration. We introduce a new similarity metric, called Adaptive Mutual Information (AMI) measure which incorporates the gradient spatial information. Salient pixels in the regions with high gradient value will contribute more in the estimation of mutual information of image pairs being registered. Experimental results showed that our proposed method improves registration accuracy and it is more robust to noise images which have large deviation from the reference image. Along with this direction, we further improve the technique to simultaneously use all information obtained from multiple features. Using multiple spatial features, the proposed algorithm is less sensitive to the effect of noise and some inherent variations, giving more accurate registration. Brain shift is a complex phenomenon and there are many different reasons causing brain deformation. We have investigated the pattern of brain deformation with respect to location and magnitude and to consider the implications of this pattern for correcting brain deformation in IGS systems. A computational finite element analysis was carried out to analyze the deformation and stress tensor experienced by the brain tissue during surgical operations. Finally, we have developed a prototype visualization display and navigation platform for interpretation of IGS. The system is based upon Qt (cross-platform GUI toolkit) and it integrates VTK (an object-oriented visualization library) as the rendering kernel. Based on the construction of a visualization software platform, we have laid a foundation on the future research to be extended to implement brain tissue deformation into the system

    Finite Element Modeling Driven by Health Care and Aerospace Applications

    Get PDF
    This thesis concerns the development, analysis, and computer implementation of mesh generation algorithms encountered in finite element modeling in health care and aerospace. The finite element method can reduce a continuous system to a discrete idealization that can be solved in the same manner as a discrete system, provided the continuum is discretized into a finite number of simple geometric shapes (e.g., triangles in two dimensions or tetrahedrons in three dimensions). In health care, namely anatomic modeling, a discretization of the biological object is essential to compute tissue deformation for physics-based simulations. This thesis proposes an efficient procedure to convert 3-dimensional imaging data into adaptive lattice-based discretizations of well-shaped tetrahedra or mixed elements (i.e., tetrahedra, pentahedra and hexahedra). This method operates directly on segmented images, thus skipping a surface reconstruction that is required by traditional Computer-Aided Design (CAD)-based meshing techniques and is convoluted, especially in complex anatomic geometries. Our approach utilizes proper mesh gradation and tissue-specific multi-resolution, without sacrificing the fidelity and while maintaining a smooth surface to reflect a certain degree of visual reality. Image-to-mesh conversion can facilitate accurate computational modeling for biomechanical registration of Magnetic Resonance Imaging (MRI) in image-guided neurosurgery. Neuronavigation with deformable registration of preoperative MRI to intraoperative MRI allows the surgeon to view the location of surgical tools relative to the preoperative anatomical (MRI) or functional data (DT-MRI, fMRI), thereby avoiding damage to eloquent areas during tumor resection. This thesis presents a deformable registration framework that utilizes multi-tissue mesh adaptation to map preoperative MRI to intraoperative MRI of patients who have undergone a brain tumor resection. Our enhancements with mesh adaptation improve the accuracy of the registration by more than 5 times compared to rigid and traditional physics-based non-rigid registration, and by more than 4 times compared to publicly available B-Spline interpolation methods. The adaptive framework is parallelized for shared memory multiprocessor architectures. Performance analysis shows that this method could be applied, on average, in less than two minutes, achieving desirable speed for use in a clinical setting. The last part of this thesis focuses on finite element modeling of CAD data. This is an integral part of the design and optimization of components and assemblies in industry. We propose a new parallel mesh generator for efficient tetrahedralization of piecewise linear complex domains in aerospace. CAD-based meshing algorithms typically improve the shape of the elements in a post-processing step due to high complexity and cost of the operations involved. On the contrary, our method optimizes the shape of the elements throughout the generation process to obtain a maximum quality and utilizes high performance computing to reduce the overheads and improve end-user productivity. The proposed mesh generation technique is a combination of Advancing Front type point placement, direct point insertion, and parallel multi-threaded connectivity optimization schemes. The mesh optimization is based on a speculative (optimistic) approach that has been proven to perform well on hardware-shared memory. The experimental evaluation indicates that the high quality and performance attributes of this method see substantial improvement over existing state-of-the-art unstructured grid technology currently incorporated in several commercial systems. The proposed mesh generator will be part of an Extreme-Scale Anisotropic Mesh Generation Environment to meet industries expectations and NASA\u27s CFD visio

    Towards efficient neurosurgery: Image analysis for interventional MRI

    Get PDF
    Interventional magnetic resonance imaging (iMRI) is being increasingly used for performing imageguided neurosurgical procedures. Intermittent imaging through iMRI can help a neurosurgeon visualise the target and eloquent brain areas during neurosurgery and lead to better patient outcome. MRI plays an important role in planning and performing neurosurgical procedures because it can provide highresolution anatomical images that can be used to discriminate between healthy and diseased tissue, as well as identify location and extent of functional areas. This is of significant clinical utility as it helps the surgeons maximise target resection and avoid damage to functionally important brain areas. There is clinical interest in propagating the pre-operative surgical information to the intra-operative image space as this allows the surgeons to utilise the pre-operatively generated surgical plans during surgery. The current state of the art neuronavigation systems achieve this by performing rigid registration of pre-operative and intra-operative images. As the brain undergoes non-linear deformations after craniotomy (brain shift), the rigidly registered pre-operative images do not accurately align anymore with the intra-operative images acquired during surgery. This limits the accuracy of these neuronavigation systems and hampers the surgeon’s ability to perform more aggressive interventions. In addition, intra-operative images are typically of lower quality with susceptibility artefacts inducing severe geometric and intensity distortions around areas of resection in echo planar MRI images, significantly reducing their utility in the intraoperative setting. This thesis focuses on development of novel methods for an image processing workflow that aims to maximise the utility of iMRI in neurosurgery. I present a fast, non-rigid registration algorithm that can leverage information from both structural and diffusion weighted MRI images to localise target lesions and a critical white matter tract, the optic radiation, during surgical management of temporal lobe epilepsy. A novel method for correcting susceptibility artefacts in echo planar MRI images is also developed, which combines fieldmap and image registration based correction techniques. The work developed in this thesis has been validated and successfully integrated into the surgical workflow at the National Hospital for Neurology and Neurosurgery in London and is being clinically used to inform surgical decisions

    AUGMENTED REALITY AND INTRAOPERATIVE C-ARM CONE-BEAM COMPUTED TOMOGRAPHY FOR IMAGE-GUIDED ROBOTIC SURGERY

    Get PDF
    Minimally-invasive robotic-assisted surgery is a rapidly-growing alternative to traditionally open and laparoscopic procedures; nevertheless, challenges remain. Standard of care derives surgical strategies from preoperative volumetric data (i.e., computed tomography (CT) and magnetic resonance (MR) images) that benefit from the ability of multiple modalities to delineate different anatomical boundaries. However, preoperative images may not reflect a possibly highly deformed perioperative setup or intraoperative deformation. Additionally, in current clinical practice, the correspondence of preoperative plans to the surgical scene is conducted as a mental exercise; thus, the accuracy of this practice is highly dependent on the surgeon’s experience and therefore subject to inconsistencies. In order to address these fundamental limitations in minimally-invasive robotic surgery, this dissertation combines a high-end robotic C-arm imaging system and a modern robotic surgical platform as an integrated intraoperative image-guided system. We performed deformable registration of preoperative plans to a perioperative cone-beam computed tomography (CBCT), acquired after the patient is positioned for intervention. From the registered surgical plans, we overlaid critical information onto the primary intraoperative visual source, the robotic endoscope, by using augmented reality. Guidance afforded by this system not only uses augmented reality to fuse virtual medical information, but also provides tool localization and other dynamic intraoperative updated behavior in order to present enhanced depth feedback and information to the surgeon. These techniques in guided robotic surgery required a streamlined approach to creating intuitive and effective human-machine interferences, especially in visualization. Our software design principles create an inherently information-driven modular architecture incorporating robotics and intraoperative imaging through augmented reality. The system's performance is evaluated using phantoms and preclinical in-vivo experiments for multiple applications, including transoral robotic surgery, robot-assisted thoracic interventions, and cocheostomy for cochlear implantation. The resulting functionality, proposed architecture, and implemented methodologies can be further generalized to other C-arm-based image guidance for additional extensions in robotic surgery

    Medical image registration and soft tissue deformation for image guided surgery system

    Get PDF
    In parallel with the developments in imaging modalities, image-guided surgery (IGS) can now provide the surgeon with high quality three-dimensional images depicting human anatomy. Although IGS is now in widely use in neurosurgery, there remain some limitations that must be overcome before it can be employed in more general minimally invasive procedures. In this thesis, we have developed several contributions to the field of medical image registration and brain tissue deformation modeling. From the methodology point of view, medical image registration algorithms can be classified into feature-based and intensity-based methods. One of the challenges faced by feature-based registration would be to determine which specific type of feature is desired for a given task and imaging type. For this reason, a point set registration using points and curves feature is proposed, which has the accuracy of registration based on points and the robustness of registration based on lines or curves. We have also tackled the problem on rigid registration of multimodal images using intensity-based similarity measures. Mutual information (MI) has emerged in recent years as a popular similarity metric and widely being recognized in the field of medical image registration. Unfortunately, it ignores the spatial information contained in the images such as edges and corners that might be useful in the image registration. We introduce a new similarity metric, called Adaptive Mutual Information (AMI) measure which incorporates the gradient spatial information. Salient pixels in the regions with high gradient value will contribute more in the estimation of mutual information of image pairs being registered. Experimental results showed that our proposed method improves registration accuracy and it is more robust to noise images which have large deviation from the reference image. Along with this direction, we further improve the technique to simultaneously use all information obtained from multiple features. Using multiple spatial features, the proposed algorithm is less sensitive to the effect of noise and some inherent variations, giving more accurate registration. Brain shift is a complex phenomenon and there are many different reasons causing brain deformation. We have investigated the pattern of brain deformation with respect to location and magnitude and to consider the implications of this pattern for correcting brain deformation in IGS systems. A computational finite element analysis was carried out to analyze the deformation and stress tensor experienced by the brain tissue during surgical operations. Finally, we have developed a prototype visualization display and navigation platform for interpretation of IGS. The system is based upon Qt (cross-platform GUI toolkit) and it integrates VTK (an object-oriented visualization library) as the rendering kernel. Based on the construction of a visualization software platform, we have laid a foundation on the future research to be extended to implement brain tissue deformation into the system

    A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future

    Get PDF
    none4openZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria FrancescaZaffino, Paolo; Moccia, Sara; De Momi, Elena; Spadea, Maria Francesc
    • 

    corecore