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Abstract

Interventional magnetic resonance imaging (iMRI) is being increasingly used for performing image-

guided neurosurgical procedures. Intermittent imaging through iMRI can help a neurosurgeon visualise

the target and eloquent brain areas during neurosurgery and lead to better patient outcome. MRI plays

an important role in planning and performing neurosurgical procedures because it can provide high-

resolution anatomical images that can be used to discriminate between healthy and diseased tissue, as

well as identify location and extent of functional areas. This is of significant clinical utility as it helps

the surgeons maximise target resection and avoid damage to functionally important brain areas.

There is clinical interest in propagating the pre-operative surgical information to the intra-operative

image space as this allows the surgeons to utilise the pre-operatively generated surgical plans during

surgery. The current state of the art neuronavigation systems achieve this by performing rigid registra-

tion of pre-operative and intra-operative images. As the brain undergoes non-linear deformations after

craniotomy (brain shift), the rigidly registered pre-operative images do not accurately align anymore

with the intra-operative images acquired during surgery. This limits the accuracy of these neuronaviga-

tion systems and hampers the surgeon’s ability to perform more aggressive interventions. In addition,

intra-operative images are typically of lower quality with susceptibility artefacts inducing severe geomet-

ric and intensity distortions around areas of resection in echo planar MRI images, significantly reducing

their utility in the intraoperative setting.

This thesis focuses on development of novel methods for an image processing workflow that aims

to maximise the utility of iMRI in neurosurgery. I present a fast, non-rigid registration algorithm that

can leverage information from both structural and diffusion weighted MRI images to localise target

lesions and a critical white matter tract, the optic radiation, during surgical management of temporal

lobe epilepsy. A novel method for correcting susceptibility artefacts in echo planar MRI images is also

developed, which combines fieldmap and image registration based correction techniques. The work

developed in this thesis has been validated and successfully integrated into the surgical workflow at the

National Hospital for Neurology and Neurosurgery in London and is being clinically used to inform

surgical decisions.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is an ubiquitous component of epilepsy surgery planning. The

primary role of preoperative MRI is to reveal cerebral lesions that might cause epilepsy. Identification

of a resectable underlying structural lesion is important, as removal of the focal abnormality improves

the chances of the patient being seizure free post surgery. Around 70% of the patients who have the

lesions removed through surgery enter remission (Spencer and Huh, 2008). A large body of evidence

suggests that the use of multimodal images improves the localisation of epileptic lesions (Salamon et al.,

2008; Vulliemoz et al., 2009; Waites et al., 2006; Wehner et al., 2007). Furthermore, MRI can also help

in minimising the chance of causing new morbidity due to surgical intervention. In the case of surgical

management of focal temporal lobe epilepsy, functional MRI can localise brain areas associated with

language, memory and vision and can be used to predict the effects of temporal lobe resection on these

brain functions. Diffusion MRI and tractography can be used to localise the main cerebral white matter

tracts, like the optic radiation, thereby predicting and reducing visual field deficits due to temporal lobe

resection.

In the realm of image-guided neurosurgery, interventional MRI (iMRI) is fast emerging as the pre-

ferred imaging choice. The relatively high spatial resolution, excellent soft tissue contrast and the lack

of ionising radiation makes iMRI an attractive imaging option for image-guided interventions. Further-

more, along with conventional structural imaging, current commercial iMRI scanners can also perform

diffusion and functional imaging which allows for imaging of functionally eloquent brain areas and crit-

ical white matter tracts along with the surgical target areas. Maximising the utility of iMRI systems

requires the ability to reliably relate the preoperative multimodal imaging data and surgical planning

information to the images acquired during the surgical intervention. Evidence has started to emerge that

multimodal imaging during surgery can improve patient outcome. In particular, there is an interest in

using diffusion weighted imaging (DWI) acquired during intervention to localise particular white matter

tracts of interest (Andrea et al., 2012; Chen et al., 2009; Sun et al., 2011).

1.1 Clinical Background
Epilepsy is a common and debilitating neurological disorder. Among the various types of epilepsy,

temporal lobe epilepsy is the most common focal epilepsy. Around 40% of patients with temporal
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lobe epilepsy (TLE) are refractory to medication (Semah and Ryvlin, 2005), and anterior temporal

lobe resection (ATLR) is an established and effective treatment for these patients (Wiebe et al., 2001).

However, a careful balance has to be established between obtaining seizure control and minimising the

chance of causing new morbidity. An important source of morbidity during anterior temporal lobe resec-

tion (ATLR) arises due to damage to a critical white matter tract, the Optic Radiation, during the surgical

intervention. This can lead to severe visual field deficits (VFD) that can result in a significant loss of

vision, even if the patient is seizure free post surgery. These deficits are typically caused by damage

to Meyers loop (illustrated in figure (1.1), the most anterior part of the Optic Radiation, which shows

considerable variability between patients in its location. Since the Optic Radiation cannot be identified

visually during surgery, its accurate localisation and real-time display during the intervention could be

crucial in improving the surgical outcome for patients undergoing anterior temporal lobe resection.

a b

Figure 1.1: Human Visual System: (a) shows a schematic of the visual wiring in the brain (courtesy
www.thebrain.mcgill.ca). As shown, the Meyers loop passes through the temporal lobe and hence is at
risk of injury during the surgical intervention. (b) shows a dissected brain (courtesy Virtual Hospital)
and the Meyers loop can be clearly identified. The blue oval highlights the area typically affected by
temporal lobe resection, which can result in damage to the Meyers loop.

One of the key challenges facing accurate localisation of the optic radiation during surgery is the

estimation of the soft tissue deformation (collectively termed brain shift) that occurs after craniotomy

and cerebrospinal fluid drainage during a typical neurosurgical procedure. Brain shift can occur due to

a variety of reasons including gravity, brain swelling, cerebrospinal fluid drainage, tumour mass effects

or surgical intervention and leads to nonlinear deformation of the structures of interest, like the optic

radiation. Various studies have reported significant brain shift (up to 25 mm) after craniotomy (Hall and

Truwit, 2005; Nabavi et al., 2001; Nimsky et al., 2001). Brain shift was examined by Hall and Truwit

(2005) and those structures found to shift significantly during surgery were located either directly over or
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within a 1-cm radius of the lesion being removed. Intra-operative MRI (iMRI) provides a way to localise

the structures of interest during the surgical procedure by enabling imaging of the patient intermittently

during surgery.

1.2 MRI in Neurosurgery

The iMRI setup at the National Hospital for Neurology and Neurosurgery (NHNN) in London consists

of a 1.5 tesla Siemens (Erlangen, Germany) Espree MRI scanner. There is a dedicated operating room

8 channel MR head coil which incorporates a surgical headrest. The operating table is fitted with an

MR compatible head-holder and is placed outside the 5 Gauss line during surgery which enables the

surgeons to perform the procedure using standard non MR-compatible surgical instruments. The ta-

ble can interface with the MR scanner to allow the patient to be moved in and out of the scanner for

intra-operative imaging. The facility is equipped with a BrainLAB VectorVision R� Sky neuronavigation

system which provides real-time tracking of surgical markers and tools, global image registration and

visualisation facilities. The operating room is also equipped with an Opmi Pentero confocal surgical

microscope (Carl Zeiss), supporting the injection of colour overlays from the navigation system. The

location of the microscope’s focal point is tracked using the navigation system and an array of four infra-

red reflectors mounted on the microscope’s optical head. A snapshot of the iMRI surgical room is shown

in figure (1.2).

1.5T MRI 
scanner

Tracking 
Camera

Heads-up 
Display

5-Gauss 
LineSurgical 

Table

Figure 1.2: The interventional MRI surgical suite at the National Hospital for Neurology and Neuro-
surgery with a 1.5 tesla MR scanner and neuronavigation equipment. The surgical table interfaces with
the scanner to enable the patient to be moved in and out of the scanner efficiently during surgery.
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1.3 Challenges in iMRI neuronavigation
The aim of neurosurgical image guidance is to maximize the resection of target lesions while conserving

healthy and important brain tissues like critical white matter tracts and functionally eloquent brain areas.

There are several challenges, unique to neurosurgery, that need to be overcome for effective neuronavi-

gation.

1.3.1 Brain Shift

As mentioned before, the main challenge to achieving effective neuronavigation is to accurately es-

timate the non-linear deformations in the brain arising due to brain shift. The current state of the

art commercial neuronavigation systems assume a rigid body relationship between the preoperative

and intra-operative images, which limits their ability to accurately estimate brain shift during neuro-

surgery (Shamir et al., 2009). The deformation caused by the brain shift cannot be accurately deter-

mined using a rigid or affine transformation, making it difficult to rely on pre-operative images for ac-

curate identification of surgical targets and eloquent brain areas. Figure (1.3) presents an interventional

MR case and highlights the differences between an MRI acquired before surgery and another acquired

during the surgical procedure. The local deformations cannot be recovered using a global image regis-

tration and the difference image shown in figure (1.3 c) highlights the large registration errors around

the area of surgical resection. A potential solution to this problem is to non-rigid image registration to

estimate the deformation arising due to brain shift. However, non-rigid image registration algorithms are

typically computationally expensive and are also harder to validate which hinders their use in clinical

neuronavigation systems (Crum et al., 2004).

a b c

Figure 1.3: Illustration of brain shift. The difference between the pre-operative (a) and post-operative (b)
MR images is shown by image (c). The input images have been registered with an affine transformation.
The difference image highlights the local deformation happening to the brain due to brain shift, which
cannot be captured by global image registration schemes.

1.3.2 Artefacts in iMRI Images

Single shot echo planar images (EPI) (Mansfield, 1977) are widely used in diffusion weighted imaging

sequences. The low bandwidth in the phase encode direction makes them prone to geometric and inten-

sity distortions arising due to susceptibility artefacts (Jezzard and Balaban, 1995). The problem becomes

more severe in the neurosurgery setting due to surgical resection, which creates a tissue-air interface. As
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a result, the susceptibility artefacts at the resection boundary become especially severe due to large dif-

ference in magnetic susceptibility between tissue and air, which creates large B0 field inhomogeneities.

If intraoperative EPI images are to be used for neurosurgical guidance, it is important to account for

these artefacts as it is precisely around the areas of resection that the navigation system needs to be ac-

curate for good patient outcome. Figure (1.4) shows an example of the effect of susceptibility artefacts

on interventionally acquired EPI images. Large distortions around the area of resection can be seen due

to the B0 field inhomogeneity introduced by the tissue-air interface.

a b

Figure 1.4: Images showing the effect of susceptibility artefacts on interventionally acquired EPI image.
(a) shows the susceptibility artefact free T1 weighted MRI image with the edges highlighted by red
boundary. (b) shows the corresponding EPI image. Large deformation around the area of resection is
evident.

1.3.3 Integration Into Surgical Workflow

The neurosurgery environment is complex and has stringent quality assurance and time constraints. Any

change to the current surgical workflow must be shown to have clinically relevant benefit to patient

outcome. Any proposed changes must be approved by an ethics committee and the components of the

workflow must be thoroughly validated. In addition, there are strict time constraints associated with a

neurosurgical procedure. Any proposed image acquisition and processing should aim to have minimal

interruption to the surgical workflow. The current patient transfer time from the intra-operative scanner,

after an imaging session, to the surgical bed at NHNN is between 7 � 12 minutes. This time should be

used for the processing of the images to localise the structures of interest and make the results available

for neuronavigation within this time window ensuring that no additional time due to data processing is

added to the surgery. Hence, the image processing algorithms designed to work in the neurosurgical

environment need to be accurate, robust and computationally efficient.

1.4 Methodological Contributions
The primary goal of my work has been to address these challenges using medical image analysis and

develop an image-guided neurosurgical platform that can be used with the iMRI and the neuronavigation

setup at NHNN. To this end, I will highlight the primary methodologial contributions of my doctorate
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work.

1. A susceptibility artefact correction that uses a novel phase unwrapping algorithm that can effi-

ciently compute the B0 field inhomogeneity map as well as the confidence associated with the

estimated field map.

2. A non-rigid registration algorithm that can be used with the confidence map and the estimated

field map from the phase unwrapping step and selectively refine the results in areas where the

confidence in the estimated field map is low.

3. A novel, near real-time bivariate non-rigid image registration that integrates structural and diffu-

sion MRI images in a unified similarity measure is presented. The proposed algorithm can be used

within the time constraints of a neurosurgical procedure by leveraging the parallel processing ca-

pabilities of graphical processing units (GPU). I show that it can estimate brain shift and localise

the optic radiation more accurately than using structural or diffusion MRI images alone.

4. A framework to integrate the methodological developments presented in this thesis into the clin-

ical workflow at NHNN, which is being used during neurosurgical procedures to inform surgical

decisions. Initial validation and evaluation of this framework in regard to the clinical outcome is

also presented in this thesis.

1.5 Thesis Organization

The following chapter describes the computational techniques that are used in this thesis. In

particular, I will describe the theory behind graph cuts based optimisation and medical image

registration.

Chapter 2 is a literature review describing previous work in the areas of brain shift estimation and

correction of susceptibility artefacts.

Chapter 3 describes the computational techniques behind graph cuts and medical image registra-

tion, which are used in this thesis.

Chapter 4 describes a novel susceptibility artefact correction algorithm that can be used in the

neurosurgical setting. The proposed algorithm combines field map and image registration based

correction techniques in a unified framework.

Chapter 5 describes a novel brain shift estimation technique that utilises information from struc-

tural and diffusion MRI images which is fast enough to be used in the neurosurgical setting.

Chapter 6 describes the clinical integration of the methods developed in chapters 4 and 5 at the

National Hospital for Neurology and Neurosurgery in London.

Chapter 7 presents the initial clinical findings from using the system for temporal lobe resections.

Chapter 8 highlights some of the open source software contributions generated through my work.

Chapter 9 concludes the thesis by highlighting further developments that can be undertaken to

carry this work forward.
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Literature Review

2.1 Brain Shift Estimation
One of the key challenges facing accurate image-guided surgical systems is the estimation of the soft

tissue deformation (collectively termed brain shift) that occurs after craniotomy and tissue resection

during a typical neurosurgical procedure. Brain shift can occur due to a variety of reasons including

gravity, brain swelling, cerebrospinal fluid drainage, tumour mass effects or surgical intervention. An

initial attempt to compensate for brain shift was developed by Kelly et al. (1986) where metal beads

were implanted in the brain cortex during image guided laser resection of tumours. Brain shift caused

displacement of the metal beads and their position on subsequent radiographs acquired during the in-

tervention was then used to update the location of the tumours. Brain shift was studied quantitatively

by Hill et al. (1998) who measured the deformation between the time of preoperative imaging and the

start of surgical resection (i.e. after craniotomy but before any soft tissue intervention) for 21 patients.

They reported mean displacements of 1.2mm, 4.4mm and 5.6 mm for the dura, first and second brain

surfaces respectively. Other studies performed with the aid of intraoperative imaging, including iMRI,

suggest that brain shift could be quite variable and report displacements from 1 cm upto 2.5 cm dur-

ing the intervention (Hastreiter et al., 2004; Nimsky et al., 2000; Roberts et al., 1998; Winkler et al.,

2005). Extensive work has been reported in the computer assisted intervention literature to compensate

for brain shift using various intraoperative technologies like MRI, CT and ultrasound (Hall and Truwit,

2005; Jolesz, 2005; Kaibara et al., 2002; Lindner et al., 2006; Nabavi et al., 2001; Nagelhus et al., 2006;

Nakao et al., 2003; Siewerdsen et al., 2005). There are relative merits and disadvantages associated

with each of these modalities. Mobile gantry versions of CT scanners with specialised modifications to

accommodate head fixation devices have been developed which make them feasible to be used in the

intraoperative setting (Okudera et al., 1991). Despite these advancements, the widespread use of intra-

operative CT has been hampered by concerns over radiation exposure to the subject. Ultrasound has

the advantage of being portable and very cost efficient compared to CT and MRI. It also has the added

advantage of not exposing the subject to any harmful ionising radiation. However, its use is limited by

the low signal to noise ratio and operator dependency.

MRI has steadily been gaining ground as the imaging modality of choice for guiding interventions.

iMRI offers superior soft tissue contrast without exposing the subject to harmful ionising inherent in CT.
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The image quality of an iMRI scanner is contingent upon various factors including the field strength,

bore size, scanner design and the requirements for patient accessibility and integration in the operating

theatre. Higher quality images are obtained using a closed bore scanner whereas open bore scanners

give maximal access to the patient. A low field strength (0.12T) iMRI system (Medtronic Navigation,

Minneapolis, MN) allows for partial imaging of the head with the entire surgical procedure being con-

ducted within the magnetic field using standard surgical instruments (Hall and Truwit, 2005). The 0.5T

“double donut” is a mid-field strength iMRI scanner and was the first iMRI scanner developed and used

specifically for interventional use (Black et al., 1997). Due to its design constraints, the magnetic field

generated by these scanners is inhomogeneous, reduced signal-to-noise ratio and limited physiological

and functional imaging capabilities (Martin et al., 2000).

High-field iMRI scanners (1.5T or greater) have the advantage over low- and mid-field scanners of

higher image quality and availability of diverse MRI modalities like diffusion, perfusion and functional

imaging. However, due to the high field strength the surgery has to be performed beyond the effective

magnetic field and the patient needs to be transferred to and from the scanner when they need to be

imaged during surgery. Recently, high-field (3 tesla) ceiling-mounted MRI systems have been made

available. The ceiling-mounted MRI scanner can be moved in and out of the operating room as needed.

With this innovation, the patient does not need to be transferred into the operating/angiography table for

imaging. The Advanced Multimodality Image Guided Operating (AMIGO) suite at the Brigham and

Women’s Hospital in Boston, USA employs such a ceiling-mounted 3 tesla MR system. The high-field

systems are closed bore systems and thus access to the patient during imaging is limited. The main

disadvantage of iMRI is that large installation and setup costs are involved especially when adding in the

cost of adapting or building the operating room to support it.

Advances in MRI have permitted the acquisition of rich information preoperatively such as struc-

tural, functional and high resolution diffusion weighted imaging. Other modalities like PET and SPECT

imaging are also widely used preoperatively. These are used for surgical planning particularly to localise

surgical targets (like the epilepsy focus region) and eloquent functional brain regions and critical white

matter tracts that should be avoided during surgery. Surgical constraints along with iMRI limitations

do not allow for acquisition of this data intraoperatively, while the preoperative images cannot be used

directly for surgical guidance due to brain shift. A lot of work has been done in using the intraoperative

images as means to express this rich preoperative information in the intraoperative geometry as opposed

to using the lower quality and limited intraoperative images directly for guidance. This essentially means

estimating the soft tissue deformations that underlie brain shift and updating the preoperative images and

surgical plans to reflect the positional shift in brain structures of surgical interest.

2.1.1 Image Registration Based Brain Shift Estimation

Medical image registration is ubiquitous in medical image analysis and is the most widely used method

for estimation of brain shift. Broadly speaking, image registration is the process of bringing a set of

images into spatial alignment. In the current context, image registration consists of bringing the preop-

erative images (termed source or floating images) into alignment with the intraoperative images (termed



2.1. Brain Shift Estimation 33

target or reference images). Various image registration algorithms have been proposed and they all

follow the same general principle where the image registration task consists of finding the geometric

transformation which makes the target and source images similar to each other based on some measure

of similarity. Hence, the image registration task can be seen as an optimisation problem where we seek

to find the optimum geometric transformation which will maximise the measure of similarity between

the two images. Schematically, a typical registration algorithm can be visualised as figure (2.1). Broadly

speaking, an image registration algorithm consists of 3 distinct modules: the transformation model, the

similarity measure and the optimisation algorithm. It is an iterative process where during each iteration

the source image is warped using the current estimated transformation. The warped and the target im-

ages are used by the similarity measure function which is maximised by the optimiser to estimate the

most likely transformation between the target and source images. Non-rigid registration is typically an

ill-posed problem and for such registrations the similarity measure is usually a combination of data and

regularisation terms. The data term comes from the image similarity measure which is typically derived

from the image intensities, image features (such as landmarks for example) or a combination of both.

The regularisation terms can be viewed as a prior belief on the form of the underlying transformations

and typically impose a penalty on transformation complexity. The registration is typically performed in a

coarse-to-fine multiresolution pyramidal scheme where the initial alignment is performed with smoothed

and downsampled input images and each successive resolution level is initialised with the transformation

estimated at the previous level. This helps avoid the optimiser to find a local minima whilst decreasing

computation time. This multiresolution approach is highlighted schematically in figure (2.2).

Source 
Image

Target 
image

Optimisation

Similarity
Measure

Warped 
Image

Transformation

Figure 2.1: A typical image registration algorithm where a similarity measure is optimised to estimate
the geometric transformation that brings the target and source images into alignment.

In the context of brain shift estimation, it is useful to divide the registration algorithms based on the

employed transformation model. With this criteria in mind, the image registration algorithms broadly fall
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T1
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Figure 2.2: A typical 3 layer multiresolution scheme used in many image registration algorithms. The
images are downsampled with increasing resolution at each multiresolution level. The registration is
performed at each level and the next level is initialised with the transformation estimated in the previous
level. Typically, the last level performs the registration with the input images at full resolution. This
helps avoid the optimiser getting trapped in local minimas due to noise and decreases computation time.

into two categories: global and local image registration methods. Global image registration use linear

transformations to relate the target image to the source image. This can be the rigid body model (used by

most commercial neuronavigation systems) consisting of global translation and rotation transformations

or the affine model which also includes global scaling and shearing in the transformation model. These

are depicted in figures (2.3) and (2.4). The rigid model consists of 6 parameters in 3D and an object does

not change shape under a rigid transformation. The affine model consists of 12 parameters and the shape

changes due to scaling and shearing are global i.e. they affect the whole object equally.

In contrast, the local or non-rigid image registration algorithms typically consist of non-linear trans-

formation models which use localised transformation models to align the target and source images. These

localised non-linear transformation can capture much more complex shape deformations as highlighted

in figure (2.5). However, they need to employ transformation models with many more degrees of freedom

than global algorithms and are computationally much more expensive. Due to this added computational

complexity, which is difficult to resolve within the time constraints inherent in a neurosurgical procedure,

the current commercial neuronavigation systems use rigid body transformations to align the preoperative

and intraoperative images. This, however, results in decreased ability to accurately map preoperative in-

formation onto the intraoperative scene as the non-linear deformations caused by brain shift cannot be

accurately captured using a global transformation model. This is shown in figure (2.6) where the affine



2.1. Brain Shift Estimation 35

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

x

y

z

10º degree rotation

along the x-axis

10º degree rotation
along the y-axis

10º degree rotation
along the z-axis

translation
along the y-axis

translation
along the x-axis

translation

along the z-axis

Initial position

Figure 2.3: Various rigid transformations applied to a cube.
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Figure 2.4: Affine transformations applied to a cube along the x-axes. Affine transformations include
the rigid transformation but can also include shearing and scaling.

registration fails to capture the brain shift and the preoperative and intraoperative images are not aligned.

A more accurate alignment is achieved when a non-rigid registration algorithm is used to capture the

brain shift.

The current commercial neuronavigation systems assume a rigid or an affine relationship between

the preoperative and postoperative images. As described, these global registration algorithms are not

enough to accurately estimate the non-linear deformations occuring due to brain shift during neuro-

surgery. To address this limitation, efforts have been directed towards developing non-rigid registration

algorithms for image-guided neurosurgery. The earlier algorithms proposed using a block-matching

based transformation model to estimate the non-linear deformations of the brain tissue. Block-matching

based transformation estimation divides the target and source images into sub volumes and searches for

the optimal translation for each sub volume. Hata et al. (1998) used multimodal non-rigid registration

between preoperative and intraoperative MRI using a block-matching based transformation model and

mutual information as a similarity term. The algorithm used a coarse to fine multiresolution scheme and

could register 3D MRI volumes (dimensions of 256 ⇥ 256 ⇥ 124) in approximately 21 minutes. An-

other non-rigid algorithm based on block-matching and designed specifically for brain shift estimation
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Figure 2.5: Local or non-rigid tranformations applied to a cube. More complex shape deformations can
be achieved through local deformations but it comes at the cost of high computational complexity.

a b c d

Figure 2.6: Illustration of the difference between using a simple affine versus a non-rigid registration for
capturing the deformations due to brain shift. (a) shows the preoperative MRI image. (b) is the MRI
image acquired intraoperatively (c) shows the result after doing an affine registration between the preop-
erative and intraoperative MR images. The checkerboard pattern is constructed from taking alternative
square regions from the affinely registered preoperative image and the intraoperative image. It is evident
that the brain structures are not aligned. (d) shows the result after performing a non-rigid registration.
The checkerboard pattern reveals that the brain structures are now much better aligned.

was proposed by Clatz et al. (2005) which used local normalised correlation coefficient as a similarity

measure. They combined it with a patient specific biomechanical model of tissue deformation to en-

sure that the estimated brain shift is physically plausible. This work was validated on retrospective data

and was subsequently extended by Archip et al. (2007) and used in the neurosurgical setting. A recent

block-matching based approach was proposed by Gu and Qin (2009) where an outlier detection scheme

that aimed to reduce the influence of missing features or mismatches introduced by tumour resection

was used to increase robustness. Recently, a full Bayesian approach to non-rigid registration problem

was adopted by Risholm et al. (2013). They characterised the full posterior distribution on the space of

deformations using Markov Chain Monte Carlo sampling methods. Using this method, it was possible

to also estimate the confidence associated with the estimated solution to the registration problem. They

showed that the registration uncertainty increases at the area of resection and that the posterior distri-

bution around the resection site could be multimodal. A limitation of this work is the extremely long

computation times that can last from several hours to a few days, which makes this technique infeasible

for use in the surgical setting. Another point to note is that the iMRI based work so far tend to use

only the structural MRI information from the intraoperative scan sessions to register the preoperative
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images and the recent growth in multimodal imaging capabilities of iMRI scanners has not yet been

exploited in this context. Cortical surface registration has also been used in the intraoperative setting to

infer volumetric brain deformation (Miga et al., 2003; Paul et al., 2009; Sinha et al., 2005; S̆krinjar et al.,

2002). Cortical surface data can be acquired with a wide range of imaging modalities like ultrasound

and stereoscopic and laser range scanners. However, since the measured data is sparse, prior information

needs to be included for accurate inference of sub-surface displacements.

There is considerable interest in adapting a wide variety of imaging modalities to the neurosurgi-

cal setting. To complement this, multimodal image registration has drawn significant interest from the

medical image analysis community. Due to its low cost, real time imaging capabilities and non invasive

nature, ultrasound is a popular modality in the intraoperative setting. Ultrasound imaging has been used

in brain examination over the last two decades (Rubin et al., 1980) and several studies have demonstrated

that ultrasound is useful in detecting tumour margins, brain shift and residual tumour tissues (Dohrmann

and Rubin, 2001; Moiyadi and Shetty, 2011). Several neuronavigation systems with integrated 3D ultra-

sound technology have been developed and used for various procedures (Unsgaard et al., 2006). Signif-

icant work has been done in using intraoperatively acquired ultrasound images to warp the preoperative

images to the intraoperative setting using registration techniques. Landmark based registration repre-

sents the majority of these approaches. Earlier works used manually identified homologous landmarks

in the ultrasound image volume and the preoperative MRI were used to estimate the non-linear warp

between the images (Comeau et al., 2000; Gobbi et al., 2000). The use of blood vessels as homologous

landmarks in preoperative and ultrasound image have been utilised for brain shift correction (Chen et al.,

2012; Lee et al., 2011; Reinertsen et al., 2007). The cerebral vasculature is a good candidate for use in

image registration as they are densely distributed over the cerebral context and move with the surround-

ing tissue, which allow the brain shift deformations to be captured by the vasculature displacement. King

et al. (2000) applied Bayesian theory and finite element modelling to estimate the brain shift. The loca-

tion and shape of the object of interest are modelled as random variables and the algorithm estimates the

most likely configuration of these variables given the input surface mesh generated from the preoperative

image and the observed 3D ultrasound image during surgery. Intensity based registration approaches are

less common primarily due to difficulty of finding a function matching ultrasound image intensities with

MR image intensities. There has been some work on overcoming this problem by preprocessing the

images in order to register more similar images. Arbel et al. (2001) built “pseudo” ultrasound images of

objects of interest from segmented preoperative MRI images which were then used in the registration to

intraoperative MRI using a cross-correlation based similarity measure. Another purely intensity based

approach was proposed by Roche et al. (2001) which used the bivariate correlation ratio as a similarity

measure and attempted to relate ultrasound intensities with both MR intensities and gradient information.

This approach was, however, used only to perform a rigid registration.

Significant efforts have been geared towards speeding up the execution times of non-rigid regis-

tration algorithms. Hastreiter et al. (2004) exploited the 3D texture mapping capabilities of graphics

hardware (GPU) to accelerate all interpolation operations during the registration. Further acceleration
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was achieved with an adaptive refinement of the deformation estimate focusing only on the main defor-

mation areas. Rohlfing and Maurer (2003) used shared-memory multiprocessor environments to speed

up the free form deformation (Rueckert et al., 1999) based registration and demonstrated that it could be

adapted for the brain shift problem. More recently, Modat et al. (2010) presented a refactored version of

the free form deformation algorithm which also took advantage of modern graphics hardware through

the use of CUDA framework (NVIDIA, 2008).

2.1.2 Biomechanical Model Based Brain Shift Estimation

Biomechanical models are becoming increasingly attractive for estimating brain shift intraoperatively

because they provide whole-brain displacement fields which can be used to update the preoperative MRI

images for subsequent guidance. They can be coupled with sparse intraoperative data, which can be

acquired with cheaper non-tomographic imaging modalities intraoperatively, and are thus cost-effective.

These models attempt to simulate the brain tissue response and predict their displacement under the

particular surgical conditions. Based on different laws and assumptions, the models that are widely used

can be grouped into: viscoelastic models, coupled fluid-elastic models, and porous media models (Carter

et al., 2005). Viscoelastic models were one of the earliest models to be adapted for brain shift estimation

and assume that brain tissue is an isotropic linear material obeying Hooke’s law with a storage and loss

modulus (Engin and Wang, 1970; Wang and Wineman, 1972). Coupled fluid-elastic models can model

more complex behaviour and can assign different biomechanical laws to different regions of the brain.

For example, Hooke’s law can be used to represent the behaviour of solid brain tissue, whereas Navier-

Poisson’s law can be used to represent the cerebrospinal fluid in the brain (Hagemann et al., 1999).

Porous media models consider brain as a spongy material where the void spaces are saturated with fluid,

whose model can be represented by multi-phase consolidation theory. The tissue motion is characterised

by an instantaneous deformation at the area of contact followed by additional deformation resulting

from exiting pore fluid driven by a pressure gradient (Paulsen et al., 1999). These biomechanical models

allow for the simulation of brain tissue motion under various surgical conditions. The displacement field

computed from these simulations can be used to warp the preoperative image and update them to reflect

the current state of the brain under the intraoperative setting.

To accurately simulate the deformation under a given surgical scenario, information from the current

surgical setting need to be derived to simulate the deformation. The constraints are usually derived from

intraoperative imaging and the model is therefore data-driven. Usually, a sparse displacement field is

measured from a partial volume or partial surface of the brain at two distinct surgical stages (e.g. before

and after craniotomy). Carter et al. (2005) grouped these intraoperative data measurements into two types

- surface and sub-surface displacements. Various methods for measuring surface displacements have

been used including contact measurements where points are acquired on the brain surface using a tracked

pointer (Comeau et al., 2000; Hill et al., 1998; Roberts et al., 1998), laser range scanning (Audette et al.,

2003; Miga et al., 2003), stereopsis which uses two calibrated cameras to reconstruct a three dimensional

surface (Paul et al., 2009; Sun et al., 2005). The intraoperative data provided by these measurements

strongly depends on the size of the craniotomy, which should be kept as small as possible. Sub-surface
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displacements use 3D imaging intraoperatively to obtain dense displacement fields. Intraoperative CT

was used in animal models (Miga et al., 2000) but it suffers from low soft tissue contrast and exposes

the subject to harmful ionising radiation and has not been considered for human subjects. Intraoperative

ultrasound has been used by a large number of studies and continues to be an area of active research.

However, ultrasound cannot include the full brain volume and the low signal to noise ratio remains a

significant problem. Usually only a few anatomical landmarks are visible in the ultrasound scan and they

usually become less visible as the surgery progresses. Matching homologous points between ultrasound

and other modalities is also a challenging problem. Additionally, ultrasound requires tissue contact,

which may induce additional deformations that needs to be modelled. Recent developments are also

seeing iMRI being increasingly used in the context of biomechanical modelling of brain shift (Archip

et al., 2007; Warfield et al., 2002, 2005; Wittek et al., 2007). Recently, a model based approach was

proposed in where an atlas of solutions that account for brain shift caused by various parameters like

gravity, edema and neurosurgical drugs were computed in Chen et al. (2011) a manner similar to Dumpuri

et al. (2003). This work explicitly models the dural septa and shows that this helps improve the prediction

of sub-surface brain shift.

2.2 Susceptibility Artefacts in MRI
Ideally, the magnetic field in an MRI scanner would be perfectly homogeneous throughout the field of

view when no external gradients are applied. However, different tissue types have dissimilar paramag-

netic properties and they interact with the magnetic field in different ways. Biological tissue comprises

of mostly water and air which have very dissimilar magnetic susceptibility values. Water exhibits vol-

ume magnetic susceptibility of about �9 ⇥ 10

�6 in SI units whilst air has magnetic susceptibility of

about 0.4⇥10

�6 (Schenck, 1996). Hence, if the structure to be imaged comprises of materials with very

different magnetic susceptibilities (like water and air for example), the magnetic field becomes distorted

and does not stay homogeneous. These field inhomogeneities can be partially removed by shimming,

which involves generation of corrective offset magnetic fields aiming to make the magnetic field homo-

geneous. However, this only partly alleviates the problem and significant field inhomogeneities usually

remain even after shimming. A consequence of the magnetic field inhomogeneities is dephasing of spins

and frequency shifts between the surrounding tissues which results in non-linear spatial and intensity

distortions of the anatomy (Jezzard and Balaban, 1995).

Single-shot EPI provides high temporal resolution and is routinely used in diffusion weighted imag-

ing (DWI) and functional magnetic resonance imaging (fMRI) sequences. EPI performs rapid acquisition

by sampling the entire frequency space of the selected slice with one excitation pulse and fast gradient

switching as shown in figure (2.7) (McRobbie et al., 2006). However, this results in very low spectral

bandwidth in the phase encode direction and makes EPI extremely susceptible to magnetic field inhomo-

geneities. This problem is particularly severe in the context of image-guided neurosurgery as the tissue

resection introduces a substantial air/tissue interface causing large geometric and intensity distortions

around the area of resection. It is extremely important to correct for these distortions as it is especially

around the area of resection where the need for accurate image-guidance is paramount.
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Figure 2.7: (a) Timing diagram for a blipped EPI pulse sequence (Schenck, 1996). The entire k-space
is acquired with a single RF pulse. The k-space collection starts in one direction sweeping continuously
from one side to the next as a consequence of the oscillating frequency gradient. (b) The brief application
of the phase encode gradient between echoes moves the trajectory in the k-space to a new row. Suscep-
tibility artefacts are influenced by many factors including echo spacing and echo train length. Shorter
echo spacing and echo train lengths give less time for accumulation for phase shifts and typically result
in reduced distortions due to tissue susceptibility differences. Figure reprinted with permission.

2.2.1 Susceptibility Artefact Correction with Field Maps

A popular method for correcting for susceptibility artefacts is to estimate the B0 field inhomogeneity.

This is usually done through the acquisition of dual gradient echo images which provide an estimate of

magnetic field map through data acquisition at two different echo times. The field map value at each

voxel is used to compute the geometric shift in the phase encode direction. The physical model of

susceptibility artefact based distortion in EPI was described by Jezzard and Balaban (1995) and they

presented a method for correcting for these distortions using an associated field inhomogeneity map. A

B0 field inhomogeneity map, commonly called the field map, can be calculated from a map of phase

evolution of each voxel in the MR image as:

�B0(x, y, z) = (��TE)

�1
�⇥(x, y, z) (2.1)

where �B0(x, y, z) is the field inhomogeneity at a given voxel location, ⇥(x, y, z) is the angular

phase evolution measured over time �TE and � is the gyromagnetic ratio. The phase evolution can be

extracted from the difference of two echoes, which eliminates effects that are common to both images.

Hence, in eq. (2.1), ⇥(x, y, z) is the phase difference between two echoes with an echo time difference

of �TE. The one-dimensional displacement along the phase encode direction can be computed by

multiplying the field map by the acquisition time as:

�
PE

(x, y, z) =
�

2⇡
�B0(x, y, z)Tacq

(2.2)

where �
PE

(x, y, z) is the one-dimensional voxel displacements in the phase encode direction and

T
acq

is the readout time for a slice of MR data.

The robustness of the field map method depends on the ability to extract reliable phase information

from measured complex data. A problem is that the phase images are uniquely defined only in the range

of (�⇡,⇡] and hence the phase images need to be unwrapped at each voxel by an unknown integer
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multiple of 2⇡ to obtain the true phase as:

�
t

(i) = �
w

(i) + 2⇡k
i

(2.3)

where �
t

(i) is the true phase at a given voxel i, �
w

(i)is the wrapped phase and k
i

is the unknown integer

multiple of 2⇡ that needs to be estimated.

a b

Figure 2.8: Example phase unwrapping for MR images of the human head. (a) shows the phase image
with multiple 2⇡ wraps. (b) is the unwrapped phase image. The unwrapping was performed using the
phase unwrapping software presented in chapter 4.

Phase unwrapping algorithms have been an active area of research since the 1980s. A majority

of the early work on phase unwrapping algorithms have been designed for 2D phase data process-

ing (An et al., 2000; Chavez et al., 2002; Liang, 1996; Moon-Ho Song et al., 1995; Ying et al., 2006;

Zhou et al., 2009). Recent works have addressed the problem of unwrapping three-dimensional phase

data (Abdul-Rahman et al., 2009; Cusack and Papadakis, 2002; Langley and Zhao, 2009a; Liu and Dran-

gova, 2012; Liu et al., 2012) and Jenkinson (2003) presented a method for N -dimensional phase unwrap-

ping. The existing phase unwrapping methods can be broadly classified into three different categories:

path-following (Chavez et al., 2002; Cusack and Papadakis, 2002), cost function optimisation (Jenkin-

son, 2003; Moon-Ho Song et al., 1995; Nico et al., 2000; Ying et al., 2006) and parametric modelling

methods (Langley and Zhao, 2009a; Liang, 1996).

The path-following phase unwrapping methods apply line integrals over a phase gradient map. In

the context of one-dimensional phase unwrapping, Itoh (1982) showed that the wrapped phase gradient

module 2⇡ are the same as the corresponding true phase gradient if the latter is less than ⇡ radians

everywhere (Itoh condition). Hence, the unwrapped phase can be obtained by integrating the wrapped

phase gradient provided the Itoh condition is satisfied. However, this smoothness constraint is frequently

violated in practice due to presence of noise and genuine phase discontinuities. For multidimensional

phase unwrapping, the integration result not only depends in the beginning and end points but also on the

chosen path of the line integral (Ghiglia et al., 1987). Most path-following methods attempt to handle

this inconsistency by optimising the integration path. The branch-cut algorithm proposed by Goldstein

et al. (1988) restrict the integration through the image to paths without discontinuities. These algorithms
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assume that the phase discontinuities lie on the paths between the positive and negative phase residues,

known as branch cuts. The phase can be unwrapped along any path that does not cross the branch cuts.

Another popular variant of the path-following algorithm rely on the estimation of a quality map (Abdul-

Rahman et al., 2009; Cusack and Papadakis, 2002). These algorithms aim to ascertain the noise as a

function of space and unwrap the less noisy parts first. This is done to ensure that the unwrapping errors

due to noise do not propagate throughout the image. These quality maps are usually derived from the

wrapped phase image and include criteria such as phase derivative variance, maximum phase gradient

and second phase difference (Ghiglia and Pritt, 1998). The robustness of these algorithms depend on

whether reliable information about the phase noise can be extracted from the wrapped phase image. In

the context of MRI phase unwrapping, the magnitude image has been used as a quality map to identify

regions with high signal to noise ratio (Ying et al., 2006).

The cost-function based phase unwrapping treats the problem as a maximum likelihood (ML) or

a maximum a posteriori (MAP) probability estimation problem. In this approach, phase unwrapping is

formulated as an optimisation problem where a defined cost function maps unwrapped solutions to scalar

costs. The optimisation routine than aims to find the unwrapping solution with the minimum associated

cost. A popular automated phase-unwrapping algorithm called PRELUDE was proposed by Jenkinson

(2003) and is part of the freely available FSL software package (Smith et al., 2004). PRELUDE can be

used for phase unwrapping images of any dimension and has been widely used for unwrapping 3D MRI

phase images. The method uses a region merging approach to optimise a cost function that penalises

phase differences across boundaries between these regions. The regions are created by splitting the

phase image into connected components, inside which the phase remains within a given interval. The

algorithm works by iteratively merging regions until there are no more interfaces between regions. The

cost function that the algorithm minimises is the sum of squared difference in phase between region

interfaces.

C
AB

=

X

j,k2N (j)

= (�
Aj

� �
Bk

)

2

where C
AB

is the cost over regions A and B. j is the index of a voxel in region A, while k is

the index of a voxel in region B, such that the voxels are adjacent i.e. in the same simply connected

neighbourhood: k 2 N (j). The total cost over the whole volume is the sum of the costs over all the

interfaces, which is minimised using a best-pair-first region merging approach.

Another cost-function based phase unwrapping method was proposed by Ying et al. (2006), who

model the true phase function using a Conditional random field and perform inference on it by max-

imising the MAP probability. The work was developed for unwrapping of 2D phase images but can be

extended easily to higher dimensional images. The phase is assumed to change smoothly through the

image and this is encoded through the sum of square difference potential of the true phase between neigh-

bouring voxels. The MAP configuration is found by using a dynamic programming approach (Bellman,

2003) coupled with iterated conditional mode optimisation algorithm (Besag, 1986). A quality map can

be easily integrated into this algorithm to further improve its robustness by a simple modification of the
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cost function to include a weighting term.

In the parametric modelling approach of (Langley and Zhao, 2009a,b), the phase map is modelled as

a product of three one-dimensional Gegenbauer polynomials used as the basis functions. The unwrapped

phase is modelled as �(x, y.z) = Q
N

(x, y, z) + r(x, y, z) where r(x, y, z) is the residual and denotes

the residual term and incorporates all expansion terms larger than N and noise. The expansion term

Q
N

(x, y, z) is given by:

Q
N

(x, y, z) =

NX

n=0

nX

m=0

mX

p=0

a(n,m, p)C
n�m

(x)C
m�p

(y)C
p

(z)

The expansion term is hence a linear combination of the Gegenbauer polynomials where C
a

terms

represent the Gegenbauer polynomials of order n and a(n,m, p) are the expansion coefficients. The

Gegenbauer expansion coefficients are then calculated using the gradient of the wrapped phase map.

This phase modelling method can also use other complete sets of orthogonal functions as basis functions

like the Legendre or Chebyshev polynomials or Fourier series with minor modifications.

Most field map based correction methods will apply phase unwrapping as a pre-processing step

before the computing the field inhomogeneity as described by eq. (2.1).

2.2.2 Susceptibility Artefact Correction with Image Registration

A popular alternative to field maps is correcting for susceptibility artefacts is to use image registration

techniques. Correction of susceptibility artefacts can be formulated as an image registration problem

where the task is to estimate the deformation field which will bring the distorted image with a cor-

responding undistorted image. In this approach, EPI images are non-linearly warped to register with

anatomical MR images, like the T1 or T2-weighted images. The anatomical images have a much larger

spectral bandwidth and do not suffer from any significant susceptibility artefacts. The image registra-

tion process computes the deformation required to match the EPI image to the anatomical image and

the resulting transformation will, in theory, provide the EPI image free of susceptibility induced dis-

tortions. A generic deformable registration based correction was first proposed by Kybic et al. (2000),

which registered the baseline B0 EPI image to the undistorted T2-weighted MR image. The transfor-

mation was parameterised using B-splines and the mean squared difference between the two images

was used as a similarity measure. The optimisation was done using conjugate gradient descent using

analytical derivatives in a coarse-to-fine multiresolution framework. This registration algorithm did not

account for the intensity distortions associated with the EPI distortions. This was addressed in the work

done by Studholme et al. (2000) which added an intensity correction term, based on the Jacobian of the

estimated transformation, in the registration step. This is because the change in geometry because of

distortion redistributes the acquired signal over the reconstructed voxels, which is proportional to the

Jacobian of the corresponding transformation. When geometric distortion occurs, there is a change in

the coordinate system from intended image location (x, y, z) to displaced values (x1, y1, z1), described

by a transformation T . The Jacobian of the transformation is given by the following determinant:
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Considering that the displacement due to distortion is only significant in the phase encode direc-

tion (y), then the Jacobian can be simplified as:
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The registration uses the undistorted anatomical and the EPI images as the target and source image

respectively and takes the intensity distortions into account by using the Jacobian corrected EPI image

during the registration process. The algorithm optimises the transformation T
AE

from the anatomical

onto the EPI image. The intensity distortion are taken into account by recomputing the EPI intensities

during image registration as I
AE

= I
E

(T
AE

)J
AE

where I
AE

is the Jacobian corrected EPI image in

the space of the reference anatomical image, I
E

(T
AE

) is the transformed EPI image where T
AE

is the

current estimate of the transformation and J
AE

is its Jacobian. The algorithm used cubic B-splines to

parameterise the deformation field and used normalised mutual information as the similarity measure,

which was optimised using a simple iterative gradient descent approach. Using the Jacobian term to

modify the EPI intensities as described will result in bright regions of the image being more sensitive to

local changes in the transformation estimate than darker regions. To avoid this bias, the authors used the

log transformation to compute the Jacobian corrected EPI image as ˆI
AE

= log(I
E

(T
AE

)) + log(J
AE

).

This idea was put in a variational framework by Tao et al. (2009) where they formulate the problem as a

one-dimensional partial differential equation which describes the evolution of the displacement field as

optimisation of EPI-structural image alignment.

Merhof et al. (2007) developed a graphics hardware accelerated version of the free form deformation

algorithm which utilised the normalised mutual information as a similarity measure. The proposed

method utilised simultaneous perturbation stochastic approximation (SPSA) as the optimisation routine.

This optimisation method only relies on evaluation of the similarity measure and does not require the

computation of the gradient of the similarity measure. The essential feature of SPSA, which provides its

power and relative ease of use in difficult multivariate optimization problems, is the underlying gradient

approximation that requires only two similarity measurement evaluations per iteration regardless of the

dimension of the optimization problem. This also results in an algorithm which is much faster than the

one utilising the classical finite difference method for approximating the gradient. However, this work

does not constrain the deformation to only occur in the phase encode direction and neither did it use the

intensity corrected EPI images during the registration process. Even though the work was evaluated in

the context of correction of susceptibility artefacts in EPI images during neurosurgery, it should be seen

as another variant on the free form deformation algorithm with a different optimiser. Furthermore, the

execution time for the non-linear registration was around 50 minutes which makes it unsuitable for use
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during surgical procedure. However, the computation time is likely to be reduced further on modern

graphics hardware.

A registration algorithm that has received a lot of attention recently is the large deformation dif-

feomorphic metric mapping, commonly referred to as LDDMM (Beg et al., 2005). LDDMM provides

a diffeomorphic transformation (one-to-one, invertible, smooth transformations) which preserve topol-

ogy. This allows for preservation of topology even in presence of extreme distortions. Huang et al.

(2008) applied LDDMM to correct for susceptibility induced deformation on 3T diffusion images. A

significant drawback of this method is that it used intensity based cost functions, which cannot be used

for registration of images of different modalities like EPI image with T1-weighted image, for example.

Additionally, it is computationally too expensive to be used in the neurosurgical setting.

Another diffeomorphic registration algorithm to correct for susceptibility artefacts was proposed

by Ruthotto et al. (2012) which formulated the problem in a variational framework. The method intro-

duces a nonlinear regularisation functional which controls the intensity modulations and also ensures that

the estimated transformation is diffeomorphic. This approach requires reversed gradient strategy i.e. ac-

quiring two EPI volumes with inverted phase encoding gradients which results in identical images apart

from their opposite directions (Andersson et al., 2003; Chang and Fitzpatrick, 1992). The registration

task is then to find the transformation such that the corrected datasets are as similar as possible. Whilst

this approach is highly interesting, we do not consider methods for correction of susceptibility artefacts

using the reversed gradient approach in this work as the current acquisition protocol at our clinical centre

is bound to the use of field maps. This is because changes in clinical protocols need to go through the

ethical approval process at NHNN, which can take significantly long time to acquire.

Irfanoglu et al. (2011) combined the field map and image registration methods by first estimating a

B0 field map from an initial segmentation of a distortion free structural image and tissue susceptibility

maps using the method described in Jenkinson et al. (2004). A non-uniform B-spline grid is then sampled

as a function of estimated displacements. The image is densely sampled with grid knots where large

distortions are expected and sparsely sampled at locations where distortions are homogeneous. This

method, however, requires accurate segmentation of the undistorted T1 image and knowledge of tissue

susceptibility values, which can be quite difficult to specify accurately around the resection area.

2.3 Discussion
Large efforts have been devoted towards accurately estimating brain shift during neurosurgery and it

remains an active area of research. As interventional imaging capabilities continue to grow, the need

for time-efficient multimodal image analysis becomes paramount. My work was motivated towards

exploiting the structural and diffusion imaging capabilities of the current state of the art iMRI scanners

to estimate the deformations during neurosurgery. As we are interested in localising white matter tracts

like the Optic Radiation during the intervention, I propose utilising information from both structural

and diffusion MR images to perform the image registration. To achieve this, I propose a modified

normalised mutual information based similarity measure which combines the information from these

two MR modalities in a principled manner. I also developed a GPU accelerated implementation that can
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be used well-within the time constraints of a typical neurosurgical procedure. This is described in detail

in chapter (5).

Presence of geometric distortions in diffusion MRI images hinder their effective use for neurosur-

gical guidance. Even though there is some body of work around correcting for susceptibility artefacts in

EPI images, it largely remains an ignored problem in the context of neurosurgery. Hence, the susceptibil-

ity artefact correction literature does not focus on its application in the neurosurgical scenario. My work

in this topic aims to combine the field map and image registration methods using a principled approach.

The proposed method computes the B0 field inhomogeneity map as well as the uncertainty associated

with the estimated solution. Image registration is then used to further refine the results in regions of high

uncertainty. The algorithm is fast enough to be used for neurosurgical guidance due to use of efficient

graph based inference technique. The proposed method is described in detail in chapter (4).

In chapter 3, I will describe the theory behind graph cuts, which is the main computational tech-

nique behind my work on correction of susceptibility artefacts. Additionally, I will also describe the

relevant components of the medical image registration algorithm which is used in the proposed method

for estimation of brain shift.



Chapter 3

Overview of Computational Techniques

To address the challenges described in chapter 1, use of medical image registration and techniques based

on discrete optimisation are proposed in chapters 4 and 5. This chapter will lay the theoretical ground-

work for these techniques which are extensively used in the subsequent chapters of this thesis.

3.1 Discrete Optimisation: Graph Cuts

The correction of susceptibility artefacts in iMRI images has been formulated as a discrete energy min-

imisation problem in this thesis. Discrete optimisation techniques, in particular Graph Cuts, have re-

ceived a lot of attention recently from the computer vision community particularly due to fast computa-

tion time. This section provides an overview of Graph Cuts based optimisation techniques and lays the

theoretical groundwork for chapter 4. I will give an introduction to probabilistic graphical models and

describe how graph cuts can be used to perform inference on classes of undirected graphical models.

3.1.1 Energy Minimisation

Many problems in medical imaging can be formulated as finding the most probable values of some

hidden or unobserved variables, which can take on either discrete or continuous values. For discrete

variables, these problems are referred to as labelling problems as the solution involves assigning the

most probable label to the hidden variables. Labelling problems are ubiquitous in medical image anal-

ysis especially in the area of medical image segmentation, registration and artefact correction. These

problems can be naturally formulated in terms of energy minimisation where a labelling configuration is

sought that minimises some energy function.

Graph cuts have emerged as an efficient framework for solving such discrete labelling problems. In

particular, efficient graph cuts based minimisation algorithms have been extremely successful for infer-

ring the maximum a posteriori (MAP) solutions of Markov and Conditional Random Fields which are

extensively used to model a wide range of problems in medical image analysis. These random fields

belong to the class of probabilistic graphical models, which use graphs to encode the conditional de-

pendence between the random variables. The following sections describe the background theory behind

these random fields and how graph cuts can be used to do inference on them.
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3.1.2 Probabilistic Graphical Models and Random Fields

Probabilistic Graphical Models (PGMs) represent the marriage between graph theory and probability

theory. They are tools for dealing with two common problems that arise throughout image processing:

complexity and uncertainty modelling. PGMs use a graphical structure to represent the probability

distributions of random variables. Each random variable corresponds to a node in the graph and the links

between the nodes encode the statistical dependence between the variables. Given a PGM, the joint or

conditional probability distributions can be decomposed as a product of functions defined on the subset

of the random variables. This can greatly simplify the modelling of multivariate joint distributions and

efficient algorithms exist that can exploit the graph structure to compute the marginal or conditional

probabilities of interest.

A PGM is represented by a graph G = hV, Eiwhere V is the set of graph nodes and E denotes the set

of edges between the graph nodes. The nodes correspond to the random variables and the edges describe

the probabilistic relationships between the random variables. In this thesis, we will only be dealing with

undirected PGMs in which the edges E consist of undirected links only. Markov Random Fields (MRFs)

and Conditional Random Fields (CRFs) are two closely related undirected graphical models that have

been widely used for many image analysis problems including, but not limited to, image denoising,

restoration and segmentation.

A Markov Random Field (MRF) is a generative model that models the joint probability distribution

of the unknown labels X and the observations Y . MRFs model the interactions among a set of random

variables through the local interactions within a selected neighbourhood system. Represented as an

undirected graph, a node X
j

is a neighbour of the node X
i

if and only if they share an edge. The Markov

property in MRFs implies that a variable X
i

is conditionally independent of all other variables given its

neighbours; P (X
i

|X\X
i

) = P (X
i

|X
Ni) where N

i

is the set of neighbours of a random variable X
i

.

As established by the Hammersley-Clifford theorem (Besag, 1974; Moussouris, 1974), the joint

distribution modelled by the MRF can be specified as a Gibbs distribution:

P (X,Y ) =

1

Z
exp(�

X

c2C
D

c

(X
c

, Y
c

)) (3.1)

where P (X,Y ) is the joint probability distribution, C is the set of cliques i.e. sub-graphs in which

each random variable is a neighbour of all other random variables, D
c

(X
c

, Y
c

) is an energy function that

is defined on a given clique c, Z is the partition function and is calculated by marginalisation over all the

random variables in the MRF. This is needed to ensure that P (X,Y ) is a valid probability distribution.

The size of the clique has a major influence on the computational complexity in an MRF model.

A vast number of image processing problems have been formulated using a first-order MRF, where the

maximum clique size is 2. In such a first-order MRF, the joint probability distribution can be written as:

P (X,Y ) =

1

Z

Y

i2V
�(X

i

, Y
i

)

Y

i,j2V,j2Ni

 (X
i

, X
j

) (3.2)

where �(X
i

, Y
i

) is the unary potential since it is associated with only one label variable X
i

. Sim-

ilarly,  (X
i

, X
j

) is the pairwise potential term and is defined on the clique neighbourhood. The unary
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potential is typically called the data term and it measures how much assigning a label to an MRF node

i disagrees with the observed data. The pairwise potential is usually called the prior term as it encodes

our prior belief on labelling configurations of neighbouring MRF nodes. This typically encourages

fewer label changes between neighbouring nodes and for that reason is also usually called the smoothing

term. Figure. (3.1)(a) shows an MRF example for an image labelling problem. Given the observations

Y (y1, y2...yn), the MRF model can be used to infer the labels X by maximum a posteriori (MAP)

inference.

Often we would like to use pairwise potentials that are data dependent. For example, if two neigh-

bouring voxels differ greatly in their intensities, then they are likely to belong to different classes. Hence,

labelling configurations that assign them different labels should not be heavily penalised during the op-

timisation. This can be achieved by defining the pairwise potential  (X
i

, X
j

) in such a way that it also

depends on the observed data Y . A Conditional Random Field (CRF) is a probabilistic model which

allows the use of data dependent potential functions.

In contrast to an MRF, a CRF is a discriminative model that directly models the posterior proba-

bility distribution of a set of random variables X , given the data Y . CRFs were first introduced in the

domain of natural language processing (Lafferty et al., 2001) and have been widely used in image pro-

cessing tasks (Sutton and Mccallum, 2007). Compared to the MRF model, CRFs do not model the joint

probability distribution and focuses directly on the labelling problem given the observations. In addition,

it also naturally considers the discontinuity of the labels since the interactions between the labels can be

automatically adjusted by the observations. A CRF can be viewed as a special case of an MRF, where

the MRF is globally conditioned on the data.

Similarly to the MRF model for joint distributions, the CRF model assumes that the posterior prob-

ability distribution of a set of random variables X follows the Markov property and can be represented

as a Gibbs distribution and can be decomposed into a product of potential functions:

P (X|Y ) =

1

Z(Y )

exp(�
X

c2C
E

c

(X
c

|Y )) (3.3)

where E
c

(X
c

|Y ) is an energy function defined on the set of random variables X
c

in the clique

c, conditioned on the observations Y . Now the energy function depends on the observation Y . The

partition function Z is also a function of the observations Y and can be calculated by marginalising over

X . Figure. (3.1)(b) shows a CRF example for an image labelling problem. In contrast to the MRF, the

potential functions are related to all of the observations Y .

3.1.3 Inference on MRFs: Maximum a Posteriori Estimation

The most popular way to estimate an MRF is through the maximum a posteriori (MAP) estimation. The

MAP-MRF approach was introduced by Geman and Geman (1984) in the context of image analysis.

They were the first to make an analogy between image analysis and statistical mechanics systems. A

typical scenario is when we wish to estimate the unobserved MRF configuration on the basis of some

observed data. Then, the MAP labelling x? of a random field is defined as equation (3.4).
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a b

Figure 3.1: (a) A simple MRF model for image labelling. MRF is a generative model that models the
joint distribution P (X,Y ) of the output labels of random variables X and observations Y . (b) A similar
CRF model for image labelling. In contrast to the MRF model, it is a discriminative model and models
the conditional posterior probability P (X|Y ) directly. The unary term in a CRF at a node i is a function
of all of the observation data Y and the label x

i

rather than just y
i

and x
i

only as is the case for the
MRF model. In the MRF model the pairwise potentials are independent of the observations. However,
in the CRF model they are also a function of the observations which allows us to include data dependent
pairwise potentials.

x?

= argmax

x2X

P (x|Y ) (3.4)

This can be achieved by minimising the corresponding log-transfomed Gibbs energy function whose

form is given by equation (3.5). Note that in the optimisation, the term involving the partition function

can be treated as a constant and does not need to be considered. E
c

(x
c

) is the potential function defined

over the clique as described before for the MRF and CRF models.

E(x) = � logP (x|Y )� logZ =

X

c2C
E

c

(x
c

) (3.5)

3.1.4 Energy Minimisation via Graph Cuts

Graph cuts have emerged as a popular framework for computing the MAP solutions for various discrete

labelling problems in computer vision and have recently received much attention in the medical image

analysis community. Graph cuts have achieved popularity because efficient algorithms are available for

computing inference on graphs of arbitrary topology. In many cases, globally optimal solutions can be

found for important classes of energy functions commonly encountered in many medical image analysis

problems. Even for energy functions where the global optimal solutions cannot be guaranteed, graph

cuts can usually be used to find strong local minima of the energy function. This section will introduce

the basic concepts and notation associated with it.

Let G = hV, Ei be a weighted graph where V is the set of vertices and E is the set of edges. V has

two special vertices called the terminals. Traditionally, one of them is called the source and the other

one is called the sink and they are usually represented by letters s and t respectively. A cut C ⇢ E is a
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set of edges such that the terminals are separated in the induced graph. Additionally, no proper subset of

C separates the terminals in G. An example cut is illustrated in figure (3.2). The cost of the cut equals

the sum of its edge weights. The minimum cut problem is to find the cut with the smallest cost. It was

shown (Ford and Fulkerson, 1962) that the cut with the minimum cost can be found by computing the

maximum flow between the terminal vertices in the graph.

a b

s

t

a b

s

t

a b

s

t

a b c

Figure 3.2: A simple graph configuration on a regular grid. The squares denote the source and the sink
vertices. The circles denote the other vertices. The red lines show the edges between the nodes. The
dashed blue lines show edges which form a cut. (a) shows the original graph. (b) shows a graph with a
valid cut. The dashed blue lines separate the graph into two sub-graphs which separate the source and
the sink vertices. (c) shows a graph with an invalid cut. The cut is not valid because, if the dashed edges
between nodes a and b are removed, the remaining dashed edges still form a cut.

3.1.5 Submodular Functions

Minimising an arbitrary energy function is NP-hard in general (Kolmogorov and Zabin, 2004). How-

ever, there exist families of energy functions for which the minima can be found in polynomial time.

Submodular set functions constitute one such family of functions which have been extensively studied.

Many optimisation problems relating to submodular functions can be solved efficiently. In some respects

they are similar to convex/concave functions encountered in continuous optimisation. In their seminal

paper Kolmogorov and Zabin (2004) showed submodularity to be a necessary and sufficient condition

for a function to be representable by a graph.

A function E(x1, x2) of two binary variables {x1, x2} is submodular if and only if the inequality

of equation (3.6) is satisfied.

E(0, 0) + E(1, 1)  E(0, 1) + E(1, 0) (3.6)

It was shown by Kolmogorov and Zabin (2004) that an energy function of n binary variables with

the form of equation (3.7), where E
i

is the unary energy term and E
ij

is the pair-wise energy term, can
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be represented by a graph as long as each pair-wise term E
ij

is submodular i.e. it satisfies the inequality

in equation (3.6).

E(x1, x2, ....xn

) =

nX

i=1

E
i

(x
i

) +

nX

i=1;i<j

E
ij

(x
i

, x
j

) (3.7)

3.1.6 Graph Construction for Submodular Functions

Kolmogorov and Zabin (2004) showed how to construct graphs for functions of the form of equa-

tion (3.7). All edges in the graph are assigned some weight or cost. There are two types of edges in

a graph: n-links and t-links. n-links connect pairs of neighbouring voxels and they represent the neigh-

bourhood interaction in a random field. Hence, the n-links correspond to the prior and the smoothness

term and are usually used to encode the penalty term for label discontinuities between voxels. This repre-

sents the E
ij

(x
i

, x
j

) term in equation (3.7). The t-links connect voxels with the terminals (source/sink).

The cost of a t-link connecting a voxel and a terminal corresponds to a penalty for assigning the corre-

sponding label to the voxel. This cost is normally derived from the data term E
i

(x
i

) in equation (3.6).

Consider a binary labelling problem i.e. the set of labels is binary: X = {0, 1}. Considering the

energy function of the form as in equation (3.7), the unary function depends only on the variable x
i

. Let

us define the terminal edge weights as follows:

ws,i = E
i

(1), w
i,t = E

i

(0) (3.8)

where w
s,i

is the weight of the edge from the source vertex to graph vertex i and w
i,t is the weight of the

edge from i to the sink vertex. In the case, x
i

2 s and takes the label 0, the edge e
i!t is in the cut. Hence,

by equation (3.8)(b), w
i,t = E

i

(0) is added to the cost of the cut. Similarly, when x
i

2 t, ws,i = E
i

(1)

is added to the cost of the cut. To ensure non-negative weights for the unary terms, if E
i

(0) < E
i

(1)

then we add the edge es!i

with the weight E
i

(1) � E
i

(0). Otherwise, the edge e
i!t is added with the

weight E
i

(0)� E
i

(1). This is demonstrated graphically in figure (3.3).

Focussing on the pairwise smoothing term, let us define the following edge weights. This is also

shown graphically in figure (3.4)(a)

w
j,t = a, w

i,i

= b, ws,i = c (3.9)

where i, j are nodes which are mutual neighbours. Then the cut costs for the four possible combinations

of (x
i

, x
j

) are the following. This is also reflected in figure (3.4)(b-e)

E
i,j

(0, 0) = a, E
i,j

(0, 1) = b, E
i,j

(1, 0) = c+ a, E
i,j

(1, 1) = c, (3.10)

Dropping subscripts for brevity, we have equation (3.11) after simple algebraic manipulation. Since

the right hand side is an edge weight, it must be non-negative for polynomial time algorithms to be

applicable. Note that this constraint gives rise to the submodularity inequality condition of equation (3.6).

E(0, 1) + E(1, 0)� E(0, 0)� E(1, 1) = b (3.11)
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Figure 3.3: Edge definitions and weights for the unary terms. (a) Graph for E
i

when E
i

(1) > E
i

(0). (b)
Graph for E

i

when E
i

(1)  E
i

(0). The unary terms can be arbitrary as one of the terminal edges for a
graph vertex is always in the cut. Hence, adding the same constant weight to both ws,i and w

i,t does not
affect the choice of which edge to cut.
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Figure 3.4: Representation of the smoothing term of the energy function of equation (3.7). (a) is the
graphical representation of the edge weights as defined in equation (3.9). (b-e) shows the cut boundary
and the cut cost when the vertices take the different label configurations.

Assuming the submodularity constraint is met, we can rewrite the cut costs for the four possible

combinations as follows:

(x
i

, x
j

) = (0, 0) = E(1, 0)� E(1, 1)

(x
i

, x
j

) = (0, 1) = E(0, 1) + E(1, 0)� E(0, 0)� E(1, 1)

(x
i

, x
j

) = (1, 0) = E(1, 0)� E(1, 1) + E(1, 0)� E(0, 0)

(x
i

, x
j

) = (1, 1) = E(1, 0)� E(0, 0)

Note that if we add E(0, 0) + E(1, 1) � E(1, 0) to each of the four cost values, we see that each

equals to E
i,j

(x
i

, x
j

). Since we are adding the same value to the four possible outcomes, it does not

affect their relative costs and the minimum cut still corresponds to the labelling with the minimum energy.

Combining the costs as described in equation (3.8) and equation (3.12), we have to add the following
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edge weights for each neighbouring pair (i, j) 2 N in our graph:

ws,i = E
i

(1) +

X

i,j2N

E
i,j

(1, 0)� E
i,j

(0, 0)

w
j,t = E

i

(0) +

X

i,j2N

E
i,j

(1, 0)� E
i,j

(1, 1)

w
i,j

= E
i,j

(0, 1) + E
i,j

(1, 0)� E
i,j

(0, 0)� E
i,j

(1, 1)

If any of the edge weights ws,i or w
j,t is negative, it can be made non-negative by adding a constant

weight to them as explained before. The minimum cut on such a graph can be found by pushing the

maximum flow from the source to the sink vertices (Ford and Fulkerson, 1962).

3.1.7 Multi-label Optimisation with Graph Cuts

Graph Cuts can also be used to exactly optimise convex energy functions which involve variables taking

more than two labels (Ishikawa, 2003). The graph creation proposed in Ishikawa (2003), the label of

a discrete random variable is found by observing which data edge is cut. This construction is valid

for a restricted class of energy functions (convex priors) and do not include energies with non-convex

priors, like the Potts model (Potts, 1952). In addition, for problems with large label sets, this method is

extremely memory intensive and impractical.

A popular alternative is to break the multi-way cut into a series of binary s-t cut problems. In

such cases, the global optimum cannot be usually guaranteed. However, graph cuts can be used to

find a solution which is a strong local mimima of the energy function (Boykov et al., 1998). These

solutions for certain problems are shown to be better than the ones obtained by other methods (Boykov

and Kolmogorov, 2004). Boykov et al. proposed two algorithms that rely on an initial labelling and

an iterative application of binary graph cuts. At each iteration, an optimal range move is performed

to either expand (↵-expansion algorithm) or swap labels (↵ � � swap algorithm) (Boykov et al., 1998,

2001). Although convergence and error bounds are guaranteed, the initial labelling may influence the

result of the algorithm. Also, it is important to note that the ↵ � � swap algorithm can only be applied

when the smoothness term is a semi-metric i.e.

E(↵,�) = 0 () ↵ = � (3.14a)

E(↵,�) = E(�,↵) � 0 (3.14b)

The ↵-expansion algorithm is even more restrictive and can only be applied when the smoothness

term is a metric i.e. in addition to the semi-metric conditions, the following triangle inequality must also

apply.

E(↵,�) � E(↵, �) + E(�,�) (3.15)

A new set of multi-label algorithms were proposed in Veksler (2009) that act on a larger set of

labels than those in (Boykov et al., 2001). More recent approaches based on linear programming re-
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laxation using primal-dual (Komodakis et al., 2008), message passing (Kolmogorov, 2006) and partial

optimality (Kohli et al., 2008) have been proposed.

For multi-label energy minimisation, this thesis use of the ↵-expansion algorithm for energy min-

imisation in multi-label CRFs. The ↵-expansion algorithm belongs to the class of move-making algo-

rithms, which operate by making a series of changes (also called moves) to the solution such that these

changes do not lead to an increase in the solution energy. In each iteration, the algorithm searches for

a lower energy solution in a pre-defined neighbourhood (also called the move space) around the current

solution. It is important to highlight the distinction between moves and move-spaces. In the ↵-expansion

algorithm we have |X| possible move-spaces (one for every possible label in the label set X). However,

we have 2

n possible moves within each move-space (one corresponding to each node taking on a binary

value). An ↵-expansion move (where ↵ 2 X) finds the minimum energy move within the move-space

↵.

The main-idea behind ↵-expansion algorithm is to successively segment all the nodes taking the

label ↵ from the non-↵ nodes where the label ↵ is changed at every iteration. The algorithm iterates

through every possible ↵ value till the algorithm converges. The optimal ↵-expansion move can be

performed at every iteration in polynomial time as long as the pairwise energy terms form a metric.

Chapter 4 makes extensive use of graph cuts to perform unwrapping of the MRI phase images to

compute the magnetic field inhomogeneity maps. The field map based correction is used in conjunction

with an image registration step, which is also formulated using graph cuts. Graph cuts provide a very

fast algorithms to tackle these problems within the time constraints of a neurosurgical procedure.

The following section provides an overview of medical image registration. Medical image registra-

tion is one of the most popular ways to estimate the brain shift between the preoperative and intraopera-

tive images. It has also been used extensively for correction of susceptibility artefacts. I will provide an

introduction to image registration and explain the main components of the image registration algorithms

used in this thesis in chapters 4 and 5. Image registration is an extremely active area of research in

medical image processing. This section will only provide an overview of areas that are relevant in the

context of the works presented in subsequent chapters.

3.2 Medical Image Registration
A broad overview of medical image registration was given in chapter 2. In the following sections, I will

describe the various components of the image registration algorithm which are relevant to this thesis.

3.2.1 Parametric Non-rigid Transformation Models: Cubic B-splines

As described, accurate brain shift estimation requires the use non-rigid image registration which typically

has a very high number of degrees of freedom. A popular approach is to use a parametric transformation

model where the estimated deformation field is parameterised using another function. The number of

degrees of freedom is usually lower than the number of voxels in the image when using a parametric

transformation model. Typically, smooth transformation models are used to promote physically realistic

deformations. However, regularisation still need to be employed to ensure plausible deformations. The
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image registration methods described in this thesis parameterise the deformation field using cubic B-

splines as used in the popular free form deformation (FFD) algorithm (Modat et al., 2010; Rueckert

et al., 1999).

Cubic B-splines have the desirable property of generating deformations that are C2 continuous i.e.

their first and second derivatives are continuous. The basic idea is that a uniformly spaced cubic spline

control point mesh is overlaid on the image. The spline control points control the position of certain

voxels in their neighbourhood. So, by perturbing the control points, local deformations can be induced

in the image. In one dimension, the new position of a point (~x) is given by:

T(~x) =
3X

l=0

B
l

✓
~x

�
� b~x

�
c
◆
µ
i+l

(3.16)

where µ
i

are the control points taken into account to compute the new position and � is the spacing

between the control points. To compute displacement in one dimension, 4 neighbouring control points

are used, two before the indexed point and two after the indexed point. The functions B0 to B3 are the

approximated third-order spline basis functions given by:

B0(u) =
(1� u)3

6

B1(u) =
3u3 � 6u2

+ 4

6

B2(u) =
�3u3

+ 3u2
+ 3u+ 4

6

B3(u) =
u3

6

In three dimensions, the new position of a point can be computed by 3-D tensor product of the

one-dimensional cubic B-splines as:

T(~x) =

3X

l=0

3X

m=0

3X

n=0

B
l

(u)B
m

(v)B
n

(w)µ
i+l,j+m,k+n

(3.18)

where u, v, and w are the relative position of the index point along each of the axes. i, j and k

are the indices of the first control points that influence the indexed point position along each of the axes.

As evident from equation (3.18), the location of a point is influenced by the grid of 4 ⇥ 4 ⇥ 4 = 64

surrounding control points in 3-D. This local influence of the control points is what makes cubic B-

splines a very popular option to model local deformations.

Despite the parametric nature of the transformation and the C2 continuity of the B-spline transfor-

mation model, prior information on the deformation field needs to be incorporated into the registration

process to promote realistic, topology-preserving deformation. The regularisation used is based in the

bending energy of the spline (equation 3.19) and is composed of the second-order derivatives of the

B-spline deformation which can be computed analytically from the B-spline basis functions due to the

C2 continuity of the transformation model. Bending energy was first used in a non-rigid registration

algorithm by Rueckert et al. (1999) and has the advantage of being zero for affine transformations and

hence only penalises the non-affine component of the transformation.
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3.2.2 Similarity Measure: (Normalised) Mutual Information

As described before, the similarity measure is used to assess the quality of warping between the target

and source images. The similarity measure, in other words, describes how similar two images are to each

other after a geometric transformation. This thesis uses global and local variants of the popular mutual

information (MI) as a measure of similarity during image registration. The key advantage of MI and its

variants is their ability to easily handle complex relationships between the intensities in the two images.

They requires no a-priori model of the relationship between the image intensities and can handle image

registration between different modalities.

Information theoretic approaches for registration of medical images were introduced by Maes et al.

(1997); Viola and Wells (1995) when both these groups used MI as the similarity measure. MI is a

concept from information theory that measures the amount of information one image has about the

other. Before introducing MI, it is important to understand the concept of entropy.

Entropy is the measure of information and the marginal and joint entropies can be defined as Shan-

non’s entropy (Shannon, 1948) as:

H(A) = �
X

i

p(i) log p(i)

H(A,B) = �
X

i,j

p
i,j

log p(i, j)

Shannon’s entropy of an image can be estimated by computing the probability distribution of the

image intensities. This can be estimated, for example, by computing a histogram of image intensities i.e.

counting the number of times each grey value occurs in the image and dividing those numbers by the

total number of occurrences to generate a valid probability distribution. So, an image consisting of only

one intensity will correspond to having low entropy as it contains little information. On the other hand,

an image with equal number of many different intensity values will have high entropy as it contains a lot

of information. In terms of the shape of the probability distribution, the former corresponds with a single

peaked distribution with no dispersion and the latter corresponds to a widely dispersed distribution. This

can be extended to a pair of images where the joint entropy can be similarly estimated where we compute

the joint probability distribution i.e. find the probability of a pair of image intensities to occur together.

Image registration can be thought of as minimising the joint entropy between two im-

ages (Studholme et al., 1995). It can be intuitively visualised as when the images are misaligned,

there is no overlap between corresponding structures. Hence, the resulting joint histogram is dispersed

as corresponding image intensities do not overlap. As the image comes into alignment, corresponding

intensities between the two images overlap and the joint histogram becomes less dispersed. This is

visualised in figure (3.5). An alternative way to think about it is in terms of uncertainty between image
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intensities. When the images are not aligned, one is more uncertain about the corresponding intensities

in the two images as the joint histogram is dispersed. However, this uncertainty decreases as the images

come into alignment and we get a sharper and less dispersed joint histogram.

From the concept of entropy, given two images A and B, MI can be defined as:

MI(A,B) = H(A) +H(B)�H(A,B) (3.21)

where H(.) is the marginal entropy for a given image and H(A,B) is their joint entropy. The

expression for MI contains the term �H(A,B) which implies that maximising the mutual information

between two images is related to minimising the joint entropy between them. Using joint entropy alone

as the similarity measure in image registration suffers from the problem that it is possible to reduce joint

entropy by decreasing the information content in either image. Hence, reducing the amount of overlap

between two images will decrease the joint entropy at the cost of increasing the misalignment between

the images. Hence, if the misalignment between the two images is so large that they only overlap in

the background areas of the image, joint entropy will be quite low. MI tries to avoid this problem by

including the marginal entropies of the two images H(A) and H(B) in the similarity measure. When

there is little overlap or overlap only between non-anatomical regions, the marginal entropy terms will

also be low. Hence, they act as a penalising term and discourage transformations that decrease the

information between overlapping regions of the two images.

a b

Figure 3.5: Effect of registration on dispersion of the joint histogram. The image intensities have been
normalised between 0 and 63 (a) shows the joint histogram when the images are not aligned. Corre-
sponding image intensities do not overlap resulting in a more dispersed joint histogram. (b) shows the
decrease in the dispersion of the joint histogram as the images come into alignment. Registration brings
the corresponding structures into alignment and there is more overlap between corresponding intensi-
ties. This is an example when the image intensities have a linear relationship and come from the same
modality. A more complex multi-modal histogram might result when performing registration between
different modalities but the same principle about reduction of joint entropy applies.

An alternative expression for MI that encapsulates the concept that registration results in decrease

of uncertainty between the two images can be written as:
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MI(A,B) = H(A)�H(A|B) or alternatively,

MI(A,B) = H(B)�H(B|A)

This expression of MI is equivalent to equation (3.21) but offers a different perspective. H(B|A)

is conditional entropy of image B given the image A. From the perspective of entropy as a measure of

uncertainty, this expression of MI tells us that given two images A and B how much does the uncertainty

about one image decreases given the other image. Maximising MI is equivalent to minimising this

uncertainty as denoted by the H(B|A) or H(A|B) term.

Even though MI attempts to alleviate the problems related to using joint entropy alone in image

registration by including the marginal entropies in its measure, it was shown by Studholme et al. (1999)

that MI is not invariant to change in size of background regions. To overcome this problem, Studholme

et al. (1999) proposed the normalised mutual information (NMI) which was empirically shown to be less

sensitive to overlap size. NMI is defined as:

NMI(A,B) =

H(A) +H(B)

H(A,B)

(3.23)

The registration algorithms described in chapters 4 and 5 use variants of mutual information as the

similarity measure.

3.2.3 Optimisation: Conjugate Gradient Descent

Chapter 5 used a conjugate gradient ascent to find the optimal transformation between the target and

source images. This approach is more efficient than a simpler steepest ascent optimisation, and is less

memory intensive than Newton type algorithms. Moreover, it has the advantage to be parallel-friendly

which makes it attractive for use in neurosurgical scenarios. Gradient descent based optimisation tech-

niques require the computation of the gradient of the cost function. In chapter 5, these gradients are

computed analytically which results in a significant speed-up of the registration algorithm.

This chapter introduced the computational techniques that underpin the algorithms that I have de-

veloped during my PhD. Image registration is a critical pre-processing step in most image analysis tasks.

As described in chapter 2, a lot of research effort has been devoted to developing image registration

algorithms. Although non-rigid image registration algorithms that use information from multiple imag-

ing modalities exist, they are computationally expensive. In chapter 5, I propose a non-rigid registration

algorithm that can register images from structural and diffusion MRI within the time constraints of a neu-

rosurgical procedure. I propose an extension to the normalised mutual information similarity measure

which allows for using multiple images of different modalities in the registration algorithm. The compu-

tational burden is overcome through the refactoring of the original free form deformation algorithm and

employing GPUs to perform parallel processing.

Graph cuts have become very popular in the computer vision community for performing MAP op-

timisation. One of the main reasons for their widespread adoption is the reasonable low computational

cost and strong guarantees on the solution obtained through their use. In the following chapter, I will

apply Graph cuts to perform susceptibility artefact correction on diffusion images acquired during neu-
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rosurgical intervention. I will show how we can use Graph cuts to not only obtain the MAP solution

of our model parameters but also how we can get an estimate of the uncertainty associated with these

parameters. This uncertainty information is then used to further improve our estimate of the distortion

due to the susceptibility artefacts.



Chapter 4

Susceptibility Artefact Correction

Echo Planar Imaging (EPI) is the de-facto MRI imaging protocol of choice for diffusion weighted imag-

ing (DWI) sequences due to its rapid acquisition time. The recent improvements in iMRI technology have

made the current commercial iMRI scanners capable of performing diffusion imaging which allows for

imaging of critical white matter tracts along with the surgical target areas. However, as described before,

EPI images are prone to various imaging artefacts including those arising due to main magnetic field

inhomogeneities. In the context of neurosurgery, this leads to severe geometric and intensity distortions

around the resected brain area. I have shown that diffusion weighted MRI images along with structural

images can increase the localisation accuracy of brain structures during neurosurgical procedures (Daga

et al., 2012; Winston et al., 2011). There is also an interest in performing tractography on interventional

DWI images to segment white matter structures of interest (Andrea et al., 2012; Cardoso et al., 2012;

Chen et al., 2009; Sun et al., 2011). Hence, it becomes increasingly important to accurately compensate

for susceptibility artefacts to be able to use EPI images for effective neuronavigation. There are strict

time constraints associated with a neurosurgical procedure. Hence, any proposed solution must be com-

putationally fast enough to work within these requirements. The current patient transfer time from the

intra-operative scanner, after an imaging session, to the surgical bed at NHNN is between 7� 9 minutes.

All image analysis tasks must be performed within this time window to ensure no extra time is added to

the surgery.

In this chapter, I propose to meet the aforementioned challenges by combining the fieldmap and

image registration based correction approach in a unified scheme. The main idea behind this work is a

novel phase unwrapping algorithm that can also compute the uncertainty associated with the estimated

fieldmap. The deformation field generated from the fieldmap correction step and the associated uncer-

tainty measure are used to initialise and adaptively guide a subsequent image registration step. The

overall workflow can be visualised as figure 4.1. The proposed work is also suitable to be used within

the time constraints of a neurosurgical environment due to use of fast optimisation provided by graph

cuts and has been successfully integrated into the surgical workflow at NHNN in London, UK.

The main contributions of this work are:

• A phase unwrapping algorithm using dynamic graph cuts that also determines the uncertainty

associated with the estimated solution.
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Phase 
Images Phase Unwrap

Deformation
Field

Uncertainty
Information

Image
Registration

Corrected 
EPI Image

EPI 
Image

T1w MRI

Figure 4.1: The proposed workflow for correction of susceptibility artefacts in EPI images acquired dur-
ing neurosurgery. The field map is calculated using the acquired phase images which are unwrapped
using the proposed algorithm. The estimated deformation field and the uncertainty information associ-
ated with the phase unwrapping step is used to initialise the image registration step where the EPI image
and the corresponding undistorted T1-weighted MRI image is used as the source and the target images
respectively. The registration step is selectively driven in regions of high uncertainty to improve the
results in areas where the field map might have resulted in a sub-optimal solution.

• A registration algorithm that can be adaptively driven using the uncertainty information estimated

from the phase unwrapping step to refine the results in areas where the fieldmap estimates are

likely to be incorrect.

• Demonstrate the use of the proposed method during neurosurgery at NHNN, London on 13 patients

within the time constraints of the intervention.

4.1 Associated Publications
• Daga, P., Modat, M., Winston, G., White, M., Mancini, L., McEvoy, A. W., Thornton, J., Yousry,

T., Duncan, J., Ourselin, S.: Susceptibility artefact Correction by combining B0 field maps and

non-rigid registration using graph cuts. (2013) Proc. SPIE, Medical Imaging. Winner: Best

student paper award.

• Daga, P., Pendse, T., Modat, M., White, M., Mancini, L., Winston, G., McEvoy, A. W., Thornton,

J., Yousry, T., Drobnjak, I., Duncan, J., Ourselin, S.: Susceptibility Artefact Correction using

Dynamic Graph Cuts: Application to Neurosurgery. (2014) Medical Image Analysis.

The rest of the chapter is organised as follows: Section 4.2 describes the noise model in the MRI

phase images and highlights the assumptions of our phase model. Section 4.3 describes the graph cuts

based phase unwrapping method. Section 4.4 describes how uncertainty information can be computed

from the phase unwrapping step and can be used with an image registration method to further improve

results. Validation on synthetic and clinical datasets are descrived in section 4.6.1 and 4.6.2 respectively.

4.2 Noise in MRI Phase Images
The noise characteristics of MRI images were studied in detail by Gudbjartsson and Patz (1995). MRI

phase images are reconstructed from the real and the imaginary images by calculating pixel by pixel the

arctangent of their ratio. This is a nonlinear function and therefore the underlying noise distribution is

not Gaussian anymore. The distribution of the phase noise, �✓, is given by equation (4.1).
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where A is the noise-free phase value and � is the standard deviation of noise in the real and imag-

inary channels (the noise is assumed to be identically distributed in the two channels). The underlying

general distribution of the phase noise is, therefore, non-Gaussian. However, if we consider the case

when A = 0 i.e. in background image regions where there is only noise, the distribution simplifies to

p(�✓) = 1/2⇡ which corresponds to a uniform probability in all phase directions. Considering another

case, where A� � i.e. image regions where the signal is significantly greater than noise, we also obtain

a simpler distribution as:

p(�✓) ⇡ 1

2⇡(�/A)2
exp(

��✓2
2(�/A)2

) (4.2)

Hence, the phase noise distribution can be assumed to be additive zero mean Gaussian distributed

when A � �. The signal to noise ratio in iMRI images is typically lower than conventional MRI

images. However, the Gaussian assumption of noise distribution is appropriate even for fairly small

signal to noise ratios as was shown by Gudbjartsson and Patz (1995). The field map estimation method

presented later in this chapter is formulated under this Gaussian noise distribution assumption.

4.3 Phase Modelling
As described in chapter 2, a popular method for estimating the magnetic field map is to use the phase

difference between two MR images acquired at different echo times. The phase measurements at the

two echo times can be used to generate the field map through equation (2.1) which can be converted to

a one-dimensional voxel shift using equation (2.2). Hence, accurate correction of susceptibility artefacts

is contingent upon being able to accurately measure the phase at the different echo times. However,

the phase images are uniquely defined only in the range of (�⇡,⇡] and the phase images need to be un-

wrapped at each voxel by an unknown integer multiple of 2⇡ to obtain the true phase as in equation (2.3).

In the absence of noise provided that the underlying field is spatially continuous, the only discontinu-

ities that can occur in the measured phase image is due to wrapping itself. In that specific case, phase

unwrapping is relatively easy to address. To unwrap, the phase difference between adjacent samples is

calculated and if it is greater than ⇡, phase wrapping has occured. In the absence of noise, the measured

phase image can be correctly unwrapped provided that there are no discontinuities between adjacent

voxels in the true phase image that are greater than ⇡. While this algorithm is simple to implement, it

can fail in areas with low signal to noise and these errors can propagate through the overall unwrapping

process creating unwrapping failure over a large area.

To cope with this issue, I propose a Bayesian approach to the phase unwrapping problem. As

already described, phase unwrapping is an ill-posed problem in the presence of noise and becomes in-

tractable without regularisation. Similar to Ying et al. (2006), the phase is modelled as a Markov Random

Field (MRF) where the true phase �
t

and the wrapped phase �
w

are treated as random variables. The
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aim is to find the discrete label configuration k that gives the maximum a posteriori (MAP) estimate of

the phase wraps as shown in equation (4.3). MRF is an intuitive choice for this problem as an individual

voxel does not provide any information to perform the phase unwrapping and there is a need to specify

spatial constraint and relationships among neighbouring voxels, which can be done conveniently through

an MRF. Furthermore, there are computationally attractive options at our disposal to perform inference

on such a system.

�
t

= max

k

P (�
w

|�
t

)| {z }
Likelihood

P (�
t

)| {z }
Prior

(4.3)

The likelihood term in equation (4.3) is modelled as �(�
w

�W (�
t

)), where � is the delta function

and W (�
t

) is the wrapped true phase. This is ill-posed and additional constraints on the true phase

are incorporated in terms of prior probabilities. The MR phase can be modelled as a piecewise smooth

function where the smooth component is due to the inhomogeneities in the static MR field and the non-

smooth component arises due to changes in the magnetic susceptibility at boundaries between tissues of

different types. The spatial smoothness is enforced by modelling the true phase as a MRF and incorpo-

rating the smoothness model through a suitable potential function. In this work, I model the true phase

as a six-neighbourhood pairwise MRF where the pairwise potential function used is the sum of square

of difference of the true phase between adjacent neighbours. Owing to the MRF-Gibbs equivalance (Li,

1994), the phase unwrapping problem is to find the MRF labelling or configuration that minimises the

energy E(k|�
w

):

E(k|�
w

) = argmin

k

X

i2I

X

⌦

V (��i
t

) (4.4)

where I are the image voxels, ⌦ is the set of neighbours for a given voxel at location i. V (��i
t

) is

the potential function defined on the difference potential between a voxel i and its neighbours in ⌦.

The unknown integer wraps are denoted by k. The following subsection describes how this integer

constrained global optimisation problem can be efficiently solved using graph cuts.

4.3.1 Energy Minimization via Graph Cuts

As described in chapter 3, graph cuts have emerged as a popular method for optimisation of such multi-

label problems (Boykov et al., 2001; Kolmogorov and Zabin, 2004). A first-order MRF of the form

of equation (3.7) can be represented by a graph as long as the pairwise terms satisfy the inequality

constraint of equation (3.6). If such a graph can be constructed, then fast inference algorithms are

available to compute the MAP configuration of this MRF. It is easy to see that the proposed energy

function of equation (4.4) has the structure of equation (3.7) with a null unary data term. The question

is what pairwise energy term can we use which will satisfy the inequality constraint of equation (3.6).

Unfortunately, there is no obvious way to formulate the pairwise energy term in such a fashion due to

the additive term �
w

(i) in equation (2.3). However, it can be shown that as long as the pairwise energy

function V of equation (4.4) is convex, this problem can still be solved through iterative graph cuts.

If the pairwise energy term V is convex and if the minima of E(k|�
w

) is not reached, a binary



4.3. Phase Modelling 65

image � 2 (0, 1) exists such that E(k + �|�
w

) < E(k|�
w

). For brevity let us consider the problem in

one dimension and assume a two neighbourhood MRF system. Let ki
t+1 = ki

t

+ �i be the wrap count at

time t+1 at voxel i. Then, we have equation (4.5) where ��
t

is the difference in the true phase between

the MRF neighbours.

��
t

= 2⇡(ki
t+1 � ki�1

t+1) + (�i
w

� �i�1
w

) (4.5)

After algebraic manipulation of equation (4.5), the energy function can be rewritten as equa-

tion (4.6).

E(kt + �|�
w

) = argmin

k

X

i2I

X

N
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Now considering the terms in equation (3.6):

E(0, 0) = V (t)

E(1, 1) = V (t)

E(1, 0) = V (2⇡ + t)

E(0, 1) = V (�2⇡ + t)

where

t = 2⇡(ki
t

� ki�1
t

) + (�i
w

� �i�1
w

)

As V is convex, Eij

(0, 0)+Eij

(1, 1)  Eij

(0, 1)+Eij

(1, 0) or V (2⇡+t)+V (�2⇡+t) � 2⇥V (t).

Hence, the proposed energy term can be represented by a graph.

Figure 4.2(a) shows how an elementary graph between two MRF neighbours is constructed when

Eij

(1, 0)� Eij

(0, 0) > 0 and Eij

(1, 0)� Eij

(1, 1) > 0. Similar constructions for other case exists as

described in chapter (3). The complete graph is built by merging the elementary graphs for each node

pair as illustrated in figure 4.2(b). After the complete graph is built the minimum cut on it can be found

by pushing the maximum flow between the source and sink.

Hence, as long as the pairwise energy function employed is convex, we can represent the proposed

MRF model with a graph. In this work, I employed the sum of the square of the L2 norm between

the MRF neighbours as the pairwise energy function. However, any vector norm � 1 can be used.

Now, an iterative graph cut algorithm can be constructed which can efficiently find the minimum energy

configuration of this MRF. This algorithm is described as pseudocode in listing (1).

Phase measurements in low signal areas tend to be less reliable and these areas can be discounted

by assigning a weight to each voxel based on its magnitude. Similar to Ying et al. (2006), I use the

magnitude image as a quality map and assign greater weight to voxels having large magnitude values.



66 Chapter 4. Susceptibility Artefact Correction
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Figure 4.2: Graph Construction. (a) shows the construction of the elementary graph for a single pairwise
term when Eij

(1, 0) � Eij

(0, 0) > 0 and Eij

(1, 0) � Eij

(1, 1) > 0. Note that the graph can only
have non-negative edge weights. (b) shows the building of the graph by merging the elementary graphs
together. After the graph is constructed, maximum flow algorithm can be used to find the minimum cut
(denoted by the dashed line) on the graph.

After the phase images are unwrapped, the deformation field to correct the EPI image can be com-

puted through equations (2.1) and (2.2). However, as previously mentioned, the estimated deformation

can be inaccurate in image areas with low signal. In the following section, I will describe a way to com-

pute the uncertainty associated with the estimated fieldmap and how this uncertainty information can be

used in conjunction with an image registration step to further improve the results.

4.4 Uncertainty Estimation and Image Registration
This section explains how one can combine the fieldmap correction technique described in the previous

step with image registration based techniques. The two techniques can be unified by estimating the

uncertainty from the fieldmap step and using it with image registration to refine the deformation in

image areas where the estimated fieldmap is likely to be inaccurate. The following sub-section describes

how uncertainty information can be estimated during the phase unwrapping step.

4.4.1 Uncertainty Estimation in Phase Unwrapping

Besides fast MAP inference, another advantage of using graph cuts is its ability to be able to generate

the uncertainty associated with the most likely MRF configuration. It was shown by Kohli and Torr

(2008) that the uncertainty associated with the MAP solution can be estimated using graph cuts through

computation of max-marginals. Max-marginals are a general notion and can be defined for any function

as equation (4.7). Hence, the max-marginal (↵
v;j) is the maximum probability over all possible MRF

configurations where an MRF site x
v

is constrained to take the label j (x
v

= j).

↵
v;j = max

x2L,xv=j

P (x|Y ) (4.7)

The max-marginals can be used to compute the confidence measure (!) associated with any random

variable labelling as equation (4.8).
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Algorithm 1 The basic phase unwrapping algorithm
1: procedure PHASEUNWRAP(WrappedPhaseImage)
2: k  k0  0 . Set the initial wraps to 0

3: i 1 . Flag to keep iterating
4: while i 6= 0 do
5: Create E(0, 0), E(0, 1), E(1, 0), E(1, 1) for every voxel . Create graph
6: Compute max flow . Perform binary optimisation
7: for all voxels x, y, z do
8: if voxel(x, y, z) 2 T then . The voxel belongs to the sink sub-graph
9: k0(x, y, z) k(x, y, z) + 1 . Make a 2⇡ jump

10: else
11: k0(x, y, z) k(x, y, z) . Keep the current state
12: end if
13: end for
14: if E(k0) < E(k) then . Energy has decreased
15: k  k0

16: else
17: i 0 . We have reached the minima
18: end if
19: end while
20: return k . k contains the number of 2⇡ jumps at every voxel
21: end procedure

!
v;j =

max

x2L,xv=j

P (x|Y )

P
k2L

max

x2L,xv=k

P (x|Y )

=

↵
v;jP

k2L

↵
v;k

(4.8)

Therefore, the confidence !
v;j for a random variable x

v

to take the label j is given by the ratio of

the max-marginal associated with assigning label j to variable x
v

to the sum of max-marginals for all

possible label assignments for the variable x
v

.

As shown by Kohli and Torr (2008), this confidence can be expressed in terms of min-marginal

energies. Min-marginal ( ) is the minimum energy obtained when we constrain a random variable to

take a certain label and minimise over all the remaining variables as in equation (4.9).

 
v;j = argmin

x2L,xv=j

E(x) (4.9)

The energy and probability of a labelling configuration are related through the expression for Gibbs

energy function as:

E(x) = � logP (x|Y )� logZ (4.10)

where Z is the partition function. Substituting the value of P (x|Y ) in equation (4.7) we have:

↵
v;j = max

x2L,xv=j

(exp(�E(x)� logZ))

=

1

Z
exp(� argmin

x2L,xv=j

E(x))

Finally substituting equation (4.9), we have:
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↵
v;j =

1

Z
exp(� 

v;j) (4.12)

Note that the knowledge of the partition function is not necessary to compute the max-marginal

confidence measure. As an example, let us consider computing the max-marginal for a voxel to take

a certain label 0. For the sake of simplicity, let us assume that it is a binary problem and only two

configurations for this voxel are possible namely 0 and 1. The max-marginal value for this voxel to take

the label 0 is given by:

!
v;0 =

1
Z

exp(� 
v;0)

1
Z

exp(� 
v;0) +

1
Z

exp(� 
v;0)

(4.13)

Note that the Z’s cancel out from the numerator and denominator.

Hence, the confidence measure (!
v;j) associated with any random variable x

v

to take the label j

can be expressed in general terms as equation (4.14), without estimating the partition function Z.

!
v;j =

exp(� 
v;j)P

l2L

exp(� 
v;l)

(4.14)

Dynamic Graph Cuts can be used to compute !
v;j for each voxel at every binary optimization step

in a very efficient manner. A given MRF node can be constrained to belong to the source or the sink

by adding an infinite capacity edge between it and the respective terminal node. No other changes need

to be made to the graph and the required min-marginal can be computed by optimizing the resulting

MRF. Hence, to compute the min-marginals at every binary optimisation step, one has to optimise one

such MRF for every node v and each of the two labels. Usually these MRFs are very close to each

other and form a slowly varying dynamic MRF system, which means that the search trees from previous

computations can be efficiently reused, which greatly reduces the computation time.

This confidence map generated from the phase unwrapping step gives us a way to combine field

map and image registration based susceptibility artefact correction techniques in an intuitive way. Areas

of high uncertainty from the phase unwrapping step indicate where the generated field map is more likely

to be unreliable. This knowledge can be used to adaptively refine the results in these areas using image

registration. The following section describes how the generated deformation field and the confidence

map can be used in an image registration framework to further improve the results.

4.5 Image Registration Framework
The displacement field and the confidence map generated from the phase unwrapping step are used to

initialise the subsequent non-rigid registration step. As discussed in chapter 2, registration between the

distorted EPI images and the undistorted T1/T2 weighted MR images is a popular alternative to using

field maps for correcting for susceptibility artefacts. In this section, I will show how the two approaches

can be combined using the uncertainty information derived from the phase unwrapping step.

The registration algorithm I developed follows closely from Glocker et al. (2008); So et al. (2011)

and is formulated as a discrete multi-labelling problem. The deformation field is parameterised using
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cubic B-splines as in Modat et al. (2010); Rueckert et al. (1999) which has the desirable property of

generating smooth deformations.

A mutual information based image similarity measure was chosen for the proposed image registra-

tion algorithm. The key advantage of mutual information based measures is their ability to easily handle

complex relationships between the intensities in the two images. They require no a-priori model of the

relationship between the image intensities and can handle image registration between different modali-

ties. Typically, graph cuts based optimisation algorithms cannot use such global similatity measures in

the optimisation as it is difficult to adapt them directly in the data term in equation (3.7). To overcome

this problem, a local variant of normalised mutual information (SEMI) as described by Zhuang et al.

(2011) is used as the similarity measure. SEMI computes mutual information in a local region with

respect to each of the control points. However, it uses a hierarchical weighting scheme to differentiate

the contributions of different voxels to the similarity measure. The weighting scheme is chosen such

that the weight given to a voxel is monotonically decreasing with respect to the distance between the

voxel and the spline control point. Under this scheme, the joint histogram is computed as shown in

equation (4.15) where I
r

(x) and I
f

(x) are the reference and transformed floating images. w
r

and w
f

are Parzen windows functions and the joint histogram is calculated for the local region ⌦

s

. �

s

(x) is

a weighting function for the spatial encoding and is a Gaussian kernel centered on the control point.

Hence, local joint histograms are computed for each of the control points and the corresponding data

term used is generated by computing the normalised mutual information (Studholme et al., 1999) from

each of these these joint histograms. The local nature of the similarity measure allows the problem to be

formulated in the MRF framework which can be solved using the graph cuts framework.

H
s

(r, f) =
X

x2⌦s

(w
r

I
r

(x)w
f

I
f

(x))�
s

(x) (4.15)

As registration is an ill-posed problem, priors on the estimated deformation field is usually intro-

duced in the form of a smoothness term. A simple smoothness term would be to use the magnitude of the

displacement vector difference at every registration iteration. This would result in registration scheme

where incremental updates to the deformation field are penalised. This update scheme has the advantage

of fulfilling the inequality constraint of equation (3.6) and can be easily accomodated into the graph cuts

framework. However, it does not provide a regularisation over the full time course of the registration.

In this work, I penalise the magnitude of the difference in the deformation as in Glocker et al. (2008) to

perform a full regularisation as:

E
ij

(x
i

, x
j

) = |(R(i) + d
i

)� (R(j) + d
j

)| (4.16)

where R(.) projects the current displacement field to the control points and d is the displacement

updates for the current iteration. It is worth noting that the inequality constraint of equation (3.6) for

the pairwise term is not guaranteed to be met anymore. However, this is rarely a problem in practice

as demonstrated in Glocker et al. (2008). The MRF nodes where the edge weights turn negative and

the inequality constraint was violated were handled by setting those pairwise edge weights to zero. In



70 Chapter 4. Susceptibility Artefact Correction

practice, this condition was only encountered in a handful of voxels.

The geometric distortion due to susceptibility is dominant in the phase encode (PE) direction. Hence

the B-spline control points are constrained to move only in the PE direction. A discrete set of displace-

ments is considered in the PE direction and a label assignment to a control point is associated with

displacing the control point by the corresponding displacement vector. In this work, the step size is cho-

sen to be one-third of the voxel size along the PE direction. Therefore, registration is done by solving

this discrete multilabel problem modelled in the first-order MRF, where the cubic B-spline control points

are the random variables and the goal is to assign individual displacement values to these nodes.

The final task that remains is to integrate the uncertainty information from the field map estimation

step into the registration framework. The registration is initialised with the deformation field obtained

from the field map. The goal is to adaptively drive the registration in areas where the field map results

are uncertain. This is achieved by modulating the weight of the global penalty term (� in equation 4.17)

by the confidence map obtained during the phase unwrapping step. This has the effect of keeping the

weight of the penalty term high in regions where the fieldmap is estimated with a low level of uncertainty

thus discouraging large displacements whilst relaxing it in regions of high uncertainty to allow for more

displacement. Hence, the spatially varying cost function takes the form of equation (4.17) where �
i

is the

spatially varying confidence at voxel i, � is the global penalty term weight and SEMI
i

is the unary data

term at control point i. The pairwise term E
ij

(x
i

, x
j

) is as defined in equation (4.16). The penalty term

weights are initialised by projecting the confidence map on the control point grid. This cost function is

optimised using an ↵-expansion variant of the graph cuts minimisation algorithm (Boykov et al., 2001).

E = �
X

i2I

[(1� �
i

�)⇥ SEMI
i

] + [�
i

�⇥ E
ij

(x
i

, x
j

)] (4.17)

Similar to Studholme et al. (2000), the intensity distortions, due to susceptibility artefacts, are taken

into account by recomputing the EPI intensities during image registration as I
f

= I
Tf

J
T

where I
f

is

the Jacobian corrected EPI image in the space of the reference anatomical image, I
Tf

is the transformed

EPI image where T is the current estimate of the transformation and J
T

is its Jacobian determinant.

4.6 Validation

4.6.1 Validation Using Simulated Data

I validated the phase unwrapping algorithm using simulated phase MRI data. To conduct the simulations,

an MRI simulator software package was used: POSSUM (Physics-Oriented Simulated Scanner for Un-

derstanding MRI) (Drobnjak et al., 2006, 2010). POSSUM is a simulator which generates realistic MR

images. The simulator achieves this by simulating an MR scanner with various scanner input parameters

operating on a physical model of the brain. The output of the simulator is the signal received from the

receiver coil of the simulator scanner. The algorithm solves fundamental Bloch equations (Bloch, 1946)

to model the behaviour of the magnetisation vector for each voxel of the brain and for each tissue type

independently. The signal coming from one voxel is obtained by analytical integration of magnetisation

over its spatial extent, and the total signal is formed by numerically summing the contributions from
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all the voxels. For a given brain phantom, pulse sequence and magnetic field values, POSSUM gener-

ates realistic MR images. Magnetic field values are calculated by solving Maxwell’s equations which

as an input use an air-tissue segmentation of the brain, and their respective susceptibility values. These

magnetic field values are fed into the Bloch equation solver in POSSUM, resulting in images with real-

istic susceptibility artefacts. A further, in-depth description of POSSUM is presented in Drobnjak et al.

(2006).

I use a 3D digital brain phantom from the MNI BrainWeb database, which is thoroughly segmented

into various tissues such as grey and white matter, cerebrospinal fluid, and has a good air-tissue seg-

mentation (Collins et al., 1998). I assume a 1.5T scanner, and use appropriate MR parameter values for

white matter (T1 = 833ms, T2 = 83ms, spin density ⇢ = 0.86); (grey matter T1 = 500ms, T2 = 70ms,

⇢ = 0.77) and CSF (T1 = 2569ms, T2 = 329ms, ⇢ = 1) (Rooney et al., 2007). A typical fieldmap se-

quence was simulated: two gradient echo images with different echo times (TE1 = 8ms, TE2 = 10ms).

Spatial resolution was 2⇥ 2⇥ 2mm and TR = 700ms.

In order to make the simulated images representative of images acquired during a surgical proce-

dure, resections were introduced into the input phantom. The resections were designed to match the

typical resections made during anterior temporal lobe resection for refractory epilepsy. Hence, actual

T1-weighted intra-operative scans were used as reference for resection design. This modified phantom

was used as an input to POSSUM and wrapped phase images and ground truth magnetic field values

were simulated. The various inputs to the POSSUM simulator is shown in figure 4.3.

Lesion Image Segmentation 
Data

Scanner 
Specification

Brain Phantom
B0 Inhomogeneity 

File
Pulse Sequence

POSSUM

Figure 4.3: The various inputs to POSSUM to simulate the MRI phase images. Lesions are man-
ually drawn in the input phantom image. The B0 inhomogeneity file describes change in magnetic
field strength inside the cranium due to tissue susceptibility differences. To calculate these distortions,
Maxwell’s equations are solved at each voxel in an air-tissue segmentation volume using the perturbation
method. Finally, the MRI pulse sequence (eg. EPI) characteristics can be specified for each simulation.

For the validation, various levels of Gaussian noise were added to the ground truth unwrapped

phase images. The corrupted images were then wrapped back to generate the phase images to be used as
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Noise variance (rad.) 0.08 0.26 0.52 0.71 0.87 1.0 1.2
MCR (proposed) 0.01 0.05 0.11 0.13 0.17 0.19 0.23

MCR (PRELUDE) 0.01 0.06 0.14 0.19 0.23 0.24 0.31
Time-1 (proposed) sec. 5 5 6 8 8 8 9

Time-2 (proposed) sec. 25 25 28 28 27 30 32

Time (PRELUDE) sec. 4 22 161 534 1642 2532 4077

Table 4.1: Misclassification ratio (MCR) and execution time (in seconds) for generating the fieldmap
from the synthetic phase images. The MCR is defined as the ratio between the voxels that were incor-
rectly wrapped to the total number of voxels. For small amounts of phase noise (noted in radians), both
the proposed phase unwrapping algorithm and PRELUDE perform similarly. However, for larger noise
levels, the proposed algorithm results in lower MCR. The execution time of PRELUDE for high levels
of phase noise does not satisfy the stringent time requirements of neurosurgery, while the proposed algo-
rithm executes well within the time constraints. Time-1 refers to the time taken by the proposed method
to do phase unwrapping without confidence map estimation. Time-2 is for phase unwrapping along with
confidence map estimation. All times are reported in seconds. The mean noise variance in the standard
clinical datasets produced on the iMRI was 0.71 radians (corresponding simulation result highlighted in
green).

input for the unwrapping algorithms. For comparison, the images were unwrapped using the proposed

unwrapping algorithm as well as with PRELUDE (Jenkinson, 2003), a freely available software package

available with FSL (Smith et al., 2004) and used within the neuroimaging community.

The quantitative unwrapping results for the proposed method and PRELUDE are shown in table 4.1.

The results were compared with the original (ground truth) phase, and the misclassification ratio (MCR)

was calculated. The MCR is the ratio of the number of voxels that were incorrectly unwrapped to the

total number of voxels. Both PRELUDE and the proposed unwrapping algorithm perform comparably

well under low-noise conditions. However, at higher noise levels the proposed algorithm outperforms

PRELUDE both in terms of MCR and execution time. In addition, the proposed algorithm also generates

the confidence associated with the unwrapping solution and can compute it within the time constraints

associated with a neurosurgical procedure. A visual example is shown in figure 4.4. Some discontinuities

around the lesion still exist when unwrapping with PRELUDE but not when using the proposed phase

unwrapping technique. Figure 4.4(f) shows the confidence map generated along with the unwrapped

image.

4.6.2 Validation Using Clinical Data

I used the proposed algorithm on 13 datasets that were acquired using interventional MRI during tempo-

ral lobe resection procedures for surgical management of temporal lobe epilepsy. The imaging was done

as part of an audit to quantify the benefits of using iMRI on patient outcome for subjects having tem-

poral lobe resections. The images were acquired using a 1.5T Espree MRI scanner (Siemens, Erlangen)

designed for interventional procedures. The T1-weighted MR image, used in the registration step, had a

resolution of 1.1 ⇥ 1.1 ⇥ 1.3mm using a 3D FLASH sequence with TR = 5.25ms, TE = 2.5ms and flip

angle = 15

�. The EPI images used a single shot scheme with GRAPPA parallel imaging (acceleration

factor of 2) and had a spatial resolution of 2.5mm ⇥2.5mm ⇥2.7 mm. The phase encoding was applied

in the anterior-posterior direction and the total read-out time was 35.52 ms. The noise variance in these

datasets was measured in manually selected region of interest known to only contain air. The mean noise
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variance was 0.71 radians.

Validation of the proposed susceptibility correction in the absence of ground truth deformation

is not trivial. A popular approach has been to identify landmarks on the EPI and T1-weighted or T2-

weighted MR images (obtained with conventional spin or gradient echo sequences with negligible spatial

distortion) and measure the distance between the landmarks before and after performing the correction.

However, this method tends to bias the results towards image registration based schemes. This is be-

cause intensity based registration algorithms tend to perform better in regions with high contrast which

is precisely where landmarks can be reliably identified. Secondly, it is very difficult to reliably pick

landmarks on interventionally acquired EPI images due to increased levels of noise, low spatial reso-

lution and presence of deformation. Since I was interested in achieving accurate artefact correction in

the white matter areas, I focused on looking at the effect of susceptibility correction on residual tensor

fit errors. One significant source of tensor fit errors is the geometric distortions arising from suscepti-

bility artefacts. Hence, accurate correction of susceptibility artefacts should reduce residual errors after

performing tensor fitting. A previous study also demonstrated that nonlinear correction of susceptibility

artefacts resulted in smaller tensor fit errors (Kim et al., 2006).

The normalised sums of square of diffusion tensor fit errors (�2) is given by equation 4.18 where N

signals are fitted and S
m

and S
f

are the measured and fitted signals respectively (Papadakis et al., 2002).

�2
=

NP
i=1

(S
m

� S
f

)

2

NP
i=1

S2
m

(4.18)

The diffusion tensors were reconstructed using dtifit (Smith et al., 2004) and sum of square residual

errors for the diffusion tensor fits were obtained for the 13 subjects. For the validation, the initial sums of

square residual tensor fit errors were computed for all subjects. Correction was performed after unwrap-

ping the phase maps using PRELUDE and the proposed phase unwrapping algorithm. I also performed

the correction using the registration algorithm described in section 4.5 and finally using the proposed

method combining the fieldmap and image registration algorithm. The quantitative results are described

in table 4.2. A paired t-test showed that the proposed method showed a statistically significant reduc-

tion (p-value < 10

�3) in residual tensor fit errors when compared to fieldmap and image registration

based techniques alone. Figure 4.5 shows a representative slice where the corrected B0 image using the

proposed method shows good visual correspondence with the undistorted T1-weighted image.

4.7 Discussion
I have presented a novel susceptibility correction algorithm that can be used with the time constraints

of a typical neurosurgical procedure. While distortion correction is routinely done in the diffusion and

fMRI imaging community, it is not the case in the interventional MRI community. This is because the

use of diffusion MRI imaging for guiding interventions is not a common practice. In this work, I have

taken two of the most commonly used methods for correction of susceptibility artefacts and unified them

in a principled manner. Initial validation results indicate that combining information from field maps and
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a b

c d

e f

Figure 4.4: Results from phase unwrapping. (a) is a masked slice through a noise free wrapped image.
(b) is the same image where the ground truth unwrapped image was corrupted with Gaussian noise.
(c) shows the ground truth unwrapped image. (d) shows the unwrapping result from PRELUDE. Some
areas with phase discontinuities are visible in the unwrapped result (highlighted in red). (e) Shows the
unwrapped image using the proposed phase unwrapping algorithm where no phase discontinuities are
evident. (f) shows the confidence map obtained using the proposed algorithm.
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Initial PRELUDE Fieldmap only Reg. only Proposed
3.08(1.94) 1.92(1.14) 1.51(1.23) 1.31(0.97) 1.23(0.84)
2.94(1.89) 1.51(1.42) 1.48(1.35) 1.14(0.87) 1.12(0.73)
2.97(3.56) 1.94(2.26) 1.94(2.26) 1.98(1.56) 1.03(1.21)
3.40(3.17) 2.71(1.54) 2.42(1.06) 2.51(1.99) 2.34(0.98)
1.76(1.42) 1.43(1.36) 1.38(1.11) 1.12(0.76) 1.08(0.81)
2.27(2.30) 1.23(1.08) 1.36(1.02) 1.68(1.54) 1.22(1.12)
3.85(3.91) 2.78(2.51) 2.42(2.02) 2.53(1.91) 2.39(1.62)
2.70(2.37) 2.12(1.43) 2.04(1.51) 2.04(1.63) 1.72(1.43)
3.60(3.51) 2.53(2.01) 2.19(1.84) 2.61(2.30) 1.81(0.93)
2.32(1.85) 1.32(1.01) 1.45(1.04) 1.76(1.34) 1.41(0.96)
2.17(2.11) 1.16(0.86) 1.12(0.72) 1.47(1.14) 1.07(0.93)
2.81(2.62) 1.93(1.62) 1.59(1.22) 2.12(1.69) 1.41(1.04)
2.02(2.17) 1.16(0.91) 1.07(0.86) 1.41(1.38) 1.01(0.92)
2.76(0.63) 1.82(0.58) 1.69(0.46) 1.82(0.52) 1.44(0.47)

Table 4.2: Mean(standard deviation) of the sum of square errors for diffusion tensor fitting in interven-
tionally acquired diffusion weighted images for thirteen subjects. The first column (Initial) shows the
initial mean error. The second column (PRELUDE) shows the fit errors after correcting for susceptibility
artefacts using PRELUDE. The third column (Fieldmap only) shows the tensor fit errors after correct-
ing for susceptibility artefacts using the fieldmap generated after unwrapping the phase maps using the
proposed phase unwrapping algorithm. The fourth columns (Reg. only) shows the tensor fit errors after
correcting for susceptibility artefacts using the proposed registration algorithm. The final column (Pro-
posed) shows the tensor fit errors after combining the fieldmap and image registration methods using
the proposed method. The proposed method showed statistically significant improvement over the other
methods (p-value < 10

�3). The final row shows the mean tensor fit errors and standard deviation over
all the cases.

image registration yield a better estimate of the underlying distortion. However, further validation needs

to be done to ascertain whether the proposed method offers any tangible benefits in terms of patient

outcome. Typically, the accuracy with which a surgeon can perform a particular neurosurgical procedure

is limited and this imposes a limit on how much additional benefit we can confer through interventional

imaging.

This susceptibility correction algorithm is used as a preprocessing step before the brain shift estima-

tion to correct the interventionally acquired diffusion MRI images. The following chapter will describe

an intensity based image registration algorithm, which combines information from boh structural and

diffusion MRI, and can be used for accurate estimate of brain shift during neurosurgery.
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a b

c d

Figure 4.5: Images showing the result of correcting for susceptibility-induced spatial distortion using our
algorithm. (a) shows the gold-standard high resolution T1-weighted image acquired during surgery. (b)
shows the uncorrected B0 image with a large geometric distortion around the resected area. (c) shows
the result of correcting for susceptibility artefacts using the proposed fieldmap estimation. (d) shows
further improvement in the result when combined with the image registration step.



Chapter 5

Optic Radiation Localisation during

Neurosurgery

As stated in the chapter 1, accurate localisation of the target lesions as well as functionally eloquent brain

areas is needed to minimise chances of new morbidity to the patient and improve surgical outcome. The

current commercial iMRI neuronavigation systems use rigid registration between the preoperative and

intraoperative images and as described in chapter 2, rigid registration cannot capture the deformations

caused by brain shift as these deformations are highly non-linear. Furthermore, the current iMRI neuron-

avigation systems also do not use the multimodal imaging capabilities of the iMRI scanners to estimate

the mapping between preoperative and intraoperative images.

In this chapter, I propose a new image registration method designed specifically for estimation of

brain shift during neurosurgery. I will demonstrate that the proposed algorithm can be executed within

the time constraints of a typical neurosurgery procedure. Furthermore, the proposed algorithm makes

use of diffusion weighted imaging along with traditional structural MRI to estimate the brain shift. I

will show that this results in a more accurate estimate of the brain shift and leads to better localisation

of optic radiation during surgery. This work has been integrated into the surgical workflow at NHNN in

London, UK. The main contributions of this work are:

• An image registration algorithm designed for estimation of brain shift during neurosurgery.

• A similarity measure for use in image registration that utilises information from both structural

and diffusion MRI to estimate brain shift and localise the optic radiation during surgery.

• Validation that shows improved localisation of optic radiation when using the proposed similarity

measure.

5.1 Associated Publications
• Daga P., Winston G., Modat M., White M., Mancini L., Cardoso M. J., Symms M., Stretton J.,

McEvoy A. W., Thornton J., Micallef C., Yousry T., Hawkes D., Duncan J. S., Ourselin S.: Accu-

rate Localisation of Optic Radiation during Neurosurgery in an Interventional MRI Suite. (2012)

IEEE Transactions on Medical Imaging.
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• Winston G., Daga P., Stretton J., Modat M., Symms M., McEvoy A. W., Ourselin S., Duncan J. S.:

Optic Radiation Tractography and Vision in Anterior Temporal Lobe Resection. (2011) Annals of

Neurology.

• Daga, P., Winston, G., Modat, M., Cardoso, M. J., White, M., McEvoy, A. W., Thornton, J.,

Hawkes, D., Duncan, J., Ourselin, S.: Improved neuronavigation through integration of intra-

operative anatomical and diffusion images in an interventional MRI suite, (2011), IPCAI.

• Daga, P., Winston, G., Modat, M., Cardoso, M. J., Stretton, J., Symms, M., McEvoy, A. W.,

Hawkes, D., Duncan, J., Ourselin, S.: Integrating Structural and Diffusion MR Information for

Optic Radiation Localisation in Focal Epilepsy Patients, (2011), IEEE ISBI.

• Winston, G., Daga, P., Stretton, J., Modat, M., Symms, M., McEvoy, A. W., Ourselin, S., Duncan,

J.: Propagation of Probabilistic Tractography of the Optic Radiation in Epilepsy Surgery, (2011)

ISMRM.

5.2 Methods
An intuitive solution to the challenge of accurate localisation of surgical targets and functionally eloquent

brain regions is to incorporate information from structural and diffusion MR images into a non-rigid

image registration scheme. To the best of my knowledge, there is relatively little body of work around

such multichannel image registration schemes. This is especially true when we look at registration

algorithms that can be used within a neurosurgical environment. iMRI systems have steadily grown in

their capabilities to provide multimodal imaging. However, the image analysis algorithms used within

the iMRI environment have failed to keep up with these developments. There are a few general purpose

multi-channel image registration schemes developed by the medical image analysis community but none

of them are designed specifically for the purposes of intraoperative brain shift estimation. A multi-

channel variation of the demons algorithm was proposed by Park et al. (2003) to register DTI datasets and

create a group diffusion tensor atlas. Similarly, Avants et al. (2007) presented a multivariate approach

using fused structural and diffusion data. Even though both these works used images from various

modalities, there is no explicit formulation to utilise the shared information present in the various images

and they ignore any influence that one image modality may have in explaining the structure of the other.

More recently, Li and Verma (2011) proposed a multichannel registration scheme that fuses information

from multiple modalities using feature analysis through Gabor wavelets transform. A novel multivariate

mutual information (MI) based similarity measure called diffusion paired MI which uses structural MRI

and DTI datasets in a unified similarity measure was presented by Studholme (2008). This method

exploits the shared information between the structural MRI image and the diffusion tensor components.

However, it requires the computation of 7 four-dimensional joint histograms for computation of the joint

entropy. This computational complexity renders it currently unsuitable for use in a neurosurgical setting

due to the time constraints.

In this work, I propose using a bivariate normalised mutual information as the image similarity

measure in order to incorporate information from both structural and diffusion MRI imaging modalities
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in image registration. An advantage of using this measure is also that it utilises the shared information

within the images of these two modalities. To incorporate the information from diffusion MRI images, I

use fractional anisotropy (FA), which is widely used scalar index derived from eigenvalues of a diffusion

tensor.

5.2.1 Fractional Anisotropy

A commonly used model to infer the tissue microstructure from diffusion weighted imaging is the dif-

fusion tensor imaging (DTI) model. DTI models the diffusion process with a Gaussian distribution and

estimates a symmetric, positive-definite 3⇥3 matrix called the diffusion tensor (DT). FA is a scalar value

derived from the DT that describes the degree of anisotropy of the diffusion process. The expression for

FA is given as:

FA =

r
3

2

q
(�1 � ˆ�)

2
+ (�2 � ˆ�)

2
+ (�3 � ˆ�)

2

p
�1 + �2 + �3

(5.1)

where �1, �2 and �3 are the eigenvalues of the DT and ˆ� = (�1 + �2 + �3)/3 also called trace

of the DT. FA is a scalar value between 0 and 1. FA is low in regions where the diffusion tends to be

isotropic (e.g. the cerebrospinal fluid) and high where there is preferred diffusion along one direction

due to highly ordered white matter tracts (corpus callosum, for instance). Hence, FA allows inference on

the underlying tissue microstructure environment.

5.2.2 Bivariate NMI

The bivariate NMI (Daga et al., 2011a,b, 2012) that I propose that combines structural MRI and FA

images in a unified image registration similarity measure. Instead of a single target and source image,

we now consider a pair of target and source images. In this case, the target and source image pairs

consist of intra-operative and pre-operatively acquired structural and fractional anisotropy (FA) images

respectively. The bivariate NMI similarity measure (S) between the target and source images {R1, R2}
and {F1, F2} respectively is given by extending the conventional NMI definition as follows:

S(R1, R2, F1(T), F2(T)) =

H(R1, R2) +H(F1(T), F2(T))

H(R1, R2, F1(T), F2(T))

, (5.2)

where T is the current deformation between the target and source images. H(R1, R2) and

H(F1(T), F2(T)) represent the joint entropy between the two target images and the two deformed

source images respectively. H(R1, R2, F1(T), F2(T)) is the joint entropy between the four input

images and is computed using Shannon’s formula for entropy as:

H(R1, R2, F1(T), F2(T)) =

�
X

r

1

,r

2

,f

1

,f

2

p(r1, r2, f1,f2)⇥ log(p(r1, r2, f1, f2)),

where r1, r2, f1 and f2 are the voxel intensities of images R1, R2, F1(T) and F2(T) respectively.
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Each probability is computed using a joint histogram H as:

p(r1, r2, f1, f2) =
H(r1, r2, f1, f2)P

r

1

,r

2

,f

1

,f

2

H(r1, r2, f1, f2)
,

where a Parzen Window (Mattes et al., 2003; Thevenaz and Unser, 2000; Viola and Wells, 1995) is

used to estimate the joint histogram:

H(r1, r2, f1, f2) =
X

~x2R

⇥
�3

(R1(~x), r1)⇥ �3
(R2(~x), r2)

⇥ �3
(F1(T(~x)), f1)⇥ �3

(F2(T(~x)), f2)
⇤

where �3 is a cubic B-Spline kernel which is used as the Parzen window kernel. The Parzen window

technique essentially involves adding weight in the vicinity of the voxel intensities rather than doing a

simple increment of the joint histogram bin. This is shown to be more robust in presence of noise and

intensity non uniformities.

The transformation model used in the proposed image registration is the parametric cubic spline

model. The spline transformation model is described in more detail in chapter (4) and is omitted here.

In order to ensure plausibility of the estimated transformation, a penalty term is usually added

to the similarity measure as a smoothness constraint. Hence, there is a balance between unconstraint

optimization of the similarity measure and the smoothness of the estimated transformation. The bending

energy (BE) of the transforming spline is used as a penalty term to constrain the solution as equation 3.19.

The objective function for the registration is given by:

⌦(R,F (T)) = ↵⇥ S � (1� ↵)⇥ BE

This objective function is optimised using a conjugate gradient ascent scheme. Gradient ascent is a

first-order optimisation scheme and requires computation of the first derivative of the similarity measure

with respect to the control point position. In order to compute the derivative of the NMI, one must

compute the derivative of the joint entropy terms. This can be achieved by computing the derivative

of the probability of each group of intensities. The derivative of each probability can be calculated by

computing the derivative of the joint histogram according to each degree of freedom which is given by:
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ijk

=

X
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(5.3)

where ⇠ are the x, y and z components of the control point µ
ijk

. @F (p)
@p

is the gradient of the

deformed floating image with respect to the current transformation parameters. @�

3(u,f)
@u

are the first
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order derivatives of the cubic B-spline given by:

dB0(u)/du = (�u2
+ 2u� 1)/2

dB1(u)/du = (3u2 � 4u)/2

dB2(u)/du = (�3u2
+ 2u+ 1)/2

dB3(u)/du = u2/2

where the input parameter u is the input to the B-spline basis function and has a support width of

[-2, 2] for cubic B-splines. For computational efficiency, the proposed gradient of the bivariate NMI

is initially computed at each voxel position and then convolved with the appropriate B-spline kernel to

produce the gradient value at each B-spline node position. The analytical derivative of the BE term is

also needed and it was computed as defined in Modat et al. (2010).

The registration is performed using a multi-resolution approach where three levels of pyramidal

downsampling are used to perform the registration. The registration is performed at the coarsest levels

first and the deformation field is propagated to initialise the next finer level. In the experiments, the

control point spacing was 5 voxels. For example, an image with dimensions of 282⇥ 352⇥ 154 voxels

result in a B-spline grid of 61⇥ 75⇥ 35 control points.

As I have previously mentioned, non-rigid registration is a computationally expensive process and a

fast implementation is needed to use this technology in the neurosurgical setting. In this work, I leverage

the parallel computing capabilities of modern GPUs and implement the proposed algorithm in a parallel

friendly manner to satisfy the stringent time constraints of the surgical procedure. Current GPU-based

image registration implementations have been reviewed in Fluck et al. (2011). However, most of these

implementations use sum of squared differences (SSD) as the similarity measure, which is not suitable

for multi-modal image registration. Mutual Information based implementations have also been reported

but none of them currently provide a multichannel similarity measure.

The CUDA framework (NVIDIA, 2008) was used for the implementation of the proposed algorithm

on the GPU. CUDA utilises the many-core architecture of the modern GPUs for data-parallel compu-

tation processes. The majority of the GPU functions (termed kernels) for the registration algorithm are

previously described in Modat et al. (2010). The implementation for the proposed multivariate scheme

extends the registration algorithm to include GPU accelerated computation of the joint histogram and

the analytical gradient of the proposed similarity measure as defined previously.

Computation of the marginal and joint entropies as described in equation (5.2) is computationally

expensive when done serially on a CPU. The core of the computational complexity is shared between

the Parzen Window smoothing of the joint histogram and the marginalisation along the reference and

resampled floating image axes to compute the marginal entropies. Considering the use of 64 bins per

image, a serial implementation has to perform 4 ⇥ 64

4 iterations in order to smooth the joint histogram

using the Parzen window approach. In my parallel implementation, the smoothing of the joint histogram

is done on the GPU by using four serial CUDA kernels; one for each dimension of the joint histogram.

For a bin size of 64 along each dimension, each of these kernels launch 64

3 CUDA threads where each
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concurrent thread effectively smoothes one line of the joint histogram along the given direction.

The marginalisation of the joint histogram along the two reference and the two resampled floating

image axes is split into four CUDA kernels corresponding to each joint histogram axis. Each concurrent

thread sums a line along a given direction. To manage loss of accuracy due to the use of single precision

floating point in GPUs, compensated summation (Kahan, 1965) is used for accumulation in these kernels.

One of the major contributors to the speed improvement of the proposed algorithm is the use of

the analytical objective function gradient as described in equation (5.3). This is significant as the usual

symmetric difference based computation of the gradient is computationally extremely expensive. How-

ever, the implementation of equation (5.3) as it stands involves significant computational redundancy,

since each voxel is included in the neighbourhood of many control points. In addition, it is also memory

intensive as each spline node requires one joint histogram per degree of freedom. To alleviate these prob-

lems, a voxel-centric rather than a node-centric approach is used. The gradient of the proposed similarity

measure is initially computed at the voxel position as in Modat et al. (2010). This allows each concurrent

CUDA thread to process each voxel independently. A convolution with the cubic B-spline curve which

corresponds to the basis functions in the deformation model is applied to the voxel-based gradient field

to obtain the required gradient values at the spline control point positions.

The source code for the registration algorithm can be freely downloaded under an open source

licence1.

5.3 Validation
The validation of the proposed algorithm focuses on the two main criteria: registration accuracy and the

computation time. As previously mentioned, the registration needs to accurately localise the structures of

interest within the time constraints of neurosurgery. For assessing the accuracy of the image registration,

I use a numerical phantom and also pre- and post-operative clinical datasets from a set of 20 patients

who underwent anterior temporal lobe resection for treatment of refractory focal epilepsy. To validate

the applicability of the algorithm in the interventional setting, I apply the algorithm retrospectively to 10

interventional MRI datasets acquired from 5 subjects and assess its accuracy by correlating the predicted

outcome with the observed post-operative VFD.

5.3.1 Validation Using a Numerical Phantom

A numerical phantom was constructed in order to assess the accuracy of the proposed registration

algorithm. For the structural image phantom (see figure 5.1), a very high resolution digital phantom con-

taining finger and sheet like collapsed sulci and gyri was created, simulating the structure of the cortex.

The phantom was created on a 0.25 mm equivalent isotropic image with a size of 180⇥ 180⇥ 120 vox-

els. Gaussian noise was added in the Fourier domain to create the Rician noise corrupted phantom. The

fibre tracts were created to span the white matter region of the phantom as shown in figure 5.1(c). This

phantom allowed for comparison of the proposed registration algorithm against univariate registration

schemes that use anatomical or diffusion only images.

1http://sourceforge.net/projects/niftyreg
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a b c

Figure 5.1: Numerical phantom. (a) shows the simulated cortical layer, (b) shows the 3-dimensional

reconstruction of the phantom surface and (c) shows the simulated white matter tracts spanning the

phantom.

Known random deformations were applied to the phantom and three different registration schemes

were used to recover the deformation. First, the structural phantom was registered to the deformed

structural phantom to simulate registration between structural images. Secondly, the WM phantom,

which was also a scalar image and designed to simulate fractional anisotropy images, was registered

to the deformed WM phantom to simulate registration using the diffusion imaging modality. Finally,

I registered the images using the proposed registration algorithm using the multivariate NMI as the

similarity measure. For structural and WM only registrations, univariate NMI was used as a similarity

measure and the same registration algorithm in terms of the transformation model and optimisation

scheme was used in all the registrations. I performed the analysis by repeating the experiment with 100

different deformations. The results over the whole phantom and the white matter area are illustrated in

table 5.1. The proposed method improved registration accuracy over the whole phantom and also over the

simulated white matter regions. Even though the designed numerical phantom is a simple simulation of

the clinical environment of the temporal lobe, it demonstrates that the use of complementary information

in a registration scheme can indeed improve registration accuracy.

Initial Structural Tract Joint

All 1.69(0.22) 1.15(0.17) 1.50(0.22) 1.05(0.17)

WM 1.70(0.09) 1.08(0.07) 0.92(0.08) 0.87(0.06)

Table 5.1: Mean (standard deviation) Euclidean distance errors in voxels. The second column quantifies

the initial misalignment. Subsequent columns correspond to the error after registration using the struc-

tural information, the WM tract information and the joint information respectively. Errors are computed

within the whole phantom (All) (middle row) and the white matter (WM) (bottom row).
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5.3.2 Quantitative Validation on Post-Operative Clinical MRI Data

I used data from 20 subjects who had undergone temporal lobe resection for treatment of refractory focal

epilepsy. Structural MRI scans, DTI and visual field measurements were acquired before surgery and

3�5 months following surgery. Significant VFD can be caused by damage to the optic radiation during

the intervention. I analysed the pre- and post-operative MRI scans and correlated the visual field deficit,

which was determined by a visual field assessment, with the optic radiation resection as predicted by the

different registration schemes. Standard clinical sequences were performed on a 3T GE Excite II scanner

(General Electric, Milwaukee, WI, USA) including a coronal T1-weighted volumetric fast spoiled gradi-

ent echo (SPGR) acquisition with 170 contiguous 1.1 mm thick slices. The field of view was 24 cm, the

acquisition matrix size was 256 ⇥ 256 and the reconstructed image resolution was 0.9 mm ⇥ 0.9 mm ⇥
1.1 mm. DTI data were acquired using a cardiac-triggered single-shot spin-echo planar imaging (EPI)

sequence with TE = 73 ms. Sets of 60 contiguous 2.4-mm thick axial slices were obtained covering the

whole brain, with diffusion sensitizing gradients applied in each of 52 non-collinear directions [b value

of 1200 mm2 s�1 (sigma = 21 ms, delta = 29 ms, using full gradient strength of 40 mT m�1)] along

with six non-diffusion weighted scans. The field of view was 24 cm, and the acquisition matrix size was

96 ⇥ 96, zero filled to 128 ⇥ 128 during reconstruction giving a reconstructed voxel size of 1.875 mm

⇥ 1.875 mm ⇥ 2.4 mm.

VFD Quantificatiom

Pre- and post-operative visual fields were assessed by Goldmann perimetry and the V/4e isoptre was

used for analysis. Due to the high variability observed between Goldmann perimetry sessions (Parrish

et al., 1984) and the lack of pre-operative data in some patients, visual field loss was calculated using the

areas of the upper quadrants as follows:

VFD = 1� [area of upper quadrants contralateral to resection]
[area of upper quadrants ipsilateral to resection]

The use of the unaffected upper quadrant ipsilateral to the side of surgery as the reference for each patient

allowed for the use of post-operative data alone and eliminated inter-session variability. No significant

asymmetry in the upper quadrants was observed on pre-operative Goldmann perimetry, and no deficits

within the ipsilateral upper quadrants were observed in post-operative fields.

Optic Radiation Parcellation

The optic radiation parecellation was done according to the established clinical protocol at the Chalfont

Centre for Epilepsy in London. All the parcellations were performed by my clinical collaborator Dr.

Gavin Winston. The optic radiation was identified in the pre-operative diffusion images by conducting

multi-tensor Probabilistic Index of Connectivity (PICo) as implemented in Camino (Cook et al., 2006).

A 15 voxel seed region across the base of Meyer’s loop was defined with a way point in the lateral wall

of the occipital horn of the lateral ventricle and a midline exclusion mask. Tracking from the seed was

performed using 50000 Monte Carlo iterations, an angular threshold of 180� and a fractional anisotropy
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threshold of 0.1, in order to ensure that the paths detected would not erroneously enter areas of cere-

brospinal fluid, and yet had sufficient angular flexibility to allow tracking of Meyer’s loop. Finally, a

coronal exclusion mask was used to remove artefactual connections to adjacent white matter tracts, such

as the fronto-occipital fasciculus, anterior commissure and uncinate fasciculus (Yogarajah et al., 2009).

An objective, iterative process was performed to determine the optimum location for this mask whereby

the exclusion mask was moved posteriorly until it began to coincide with Meyer’s loop, identified by a

visible thinning of the estimated trajectory of the optic radiation, typically associated with a reduction

in tract volume greater than 10%. A connectivity distribution was generated from each voxel in the

seed region and combined into an overall connectivity map representing the maximum observed connec-

tion probability to each voxel within the brain from all the voxels within the seed region. For display

purposes, the connectivity distributions were thresholded at 5%, representing a compromise between

retaining anatomically valid tracts and removing obviously artefactual connections.

I registered the pre-operative dataset to the post-operative dataset using only anatomical images,

only diffusion images and using the proposed method. Automatic skull-stripping (Smith, 2002) was per-

formed on the images prior to registration to ensure that all non-brain related tissues were removed from

the image. Optic radiation was propagated using the deformation field generated by the three registration

schemes. The damage to the optic radiation was quantified by measuring the anteroposterior distance

from the anterior part of Meyer’s loop in an axial plane to the resection margin measured in millimetres

in the T1-weighted MRI image. This is illustrated in figure 5.2. The validation results are shown in

table 5.2. Spearman rank order correlation coefficient was used to measure the relationship between

the measured visual field deficit and the predicted damage to the optic radiation. It is worth noting that

the Spearman correlation coefficient does not assume that both datasets are normally distributed. The

predicted damage to the optic radiation when using the proposed registration scheme correlates better

with the measured visual field deficit (Spearman correlation coefficient: 0.79, p = 0.002) and there is a

trend towards higher correlation for the proposed method. Further clinical details about this study can

be found in Winston et al. (2011).

Figures 5.3 and 5.4 show the Bland-Altman plots generated when comparing the structural only

and FA only image registration schemes with the proposed method. The scatterplot shows the average

of the damage to the optic radiation as predicted by the methods under comparison on the horizontal

axes and their difference on the vertical axes. The plots show that the proposed method differs from

both the structural and FA only methods as a few of the observations are close or outside the range

of agreement which was defined as mean bias ±1.96 standard deviations, which is the 95% limits of

agreement assuming that the differences are normally distributed. However, the question of whether this

disagreement between the methods is clinically important needs to be investigated and is currently being

undertaken through a clinical study at NHNN.

5.3.3 Quantitative Validation on Interventional MRI Datasets

Evidence for improvement of patient outcome must be demonstrated before changes to a clinical work-

flow can be made. For this purpose intra-operative DTI datasets were acquired from twelve subjects
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(a) (b)

Figure 5.2: Figure (a) illustrates the quantification of the optic radiation resection. Figure (b) shows a
clinical example where the subject suffered visual deficit. The propagated pre-operative optic radiation
(red) overlaps with the resected area (blue).

Figure 5.3: Bland Altman assessment indicates that the 95% limits of agreement between the structural
only image registration and the proposed method ranged from 5.74 mm to -5.85 mm.
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Figure 5.4: Bland Altman assessment indicates that the 95% limits of agreement between the FA only
image registration and the proposed method ranged from 4.41 mm to -4.19 mm.
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Figure 5.5: Regression line for the predicted damage to Meyer’s loop using the proposed registration
method and the observed visual field deficit in the 12 patients that suffered from visual field deficits.
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Case Visual Deficit Structural FA Proposed
1 0 �1.1 0 0
2 0 0 1.1 0
3 0 �18.7 �16.5 �17.6
4 0 �5.5 �11 �6.6
5 0 �4.4 �5.5 �4.4
6 0 4.4 0 0
7 0 0 �1.1 �2.2
8 0 0 �1.1 �1.1
9 0.103 �2.2 7.7 4.4
10 0.208 9.9 7.7 6.6
11 0.265 7.7 6.6 4.4
12 0.276 3.3 6.6 7.7
13 0.315 4.4 4.4 4.4
14 0.380 9.9 7.7 7.7
15 0.393 5.5 8.8 6.6
16 0.508 20.9 20.9 16.5
17 0.634 9.9 8.8 8.8
18 0.667 7.7 12.1 12.1
19 0.740 5.5 4.4 7.7
20 0.915 15.4 14.3 18.7
CC 0.44 0.42 0.79

Table 5.2: Spearman correlation coefficient (CC) of the measured visual deficit against the predicted
damage to the optic radiation by using the three registration schemes (using structural images, fractional
anisotropy (FA) images and using both structural and FA images through the proposed method) for the
12 subjects that suffered visual deficit. Columns 3-5 show the predicted damage (reported in mm by
measuring the anteroposterior distance from the anterior part of optic radiation to the resection margin)
to the optic radiation. The last row shows the CC of the A-P distance against the visual field assessment
scores for subjects with VFD.

(two interventional time-points for each subject for a total of twenty four datasets) undergoing temporal

lobe resection for treatment of refractory focal epilepsy. These data sets were assessed retrospectively

as part of a formal clinical audit exercise according to the data governance protocols at NHNN. In all

the twelve cases pre-operative T1-weighted MR and diffusion weighted MR data were acquired. Pre-

operative MR scans were acquired on a 3T MR GE Excite II scanner (General Electric, Waukesha,

Milwaukee, WI, USA) and included a T1-weighted coronal volumetric acquisition with a spatial reso-

lution of 0.9 ⇥ 0.9 ⇥ 1.1 mm. DTI data using 52 gradient directions was acquired using a single-shot

spin-echo planar imaging (EPI) sequence with a spatial resolution of 1.9 ⇥ 1.9 ⇥ 2.4 mm. For all 12

subjects, MRI data acquired during the intervention after the temporal pole resection. The intra-operative

protocol included a T1-weighted 3D FLASH sequence with TR = 5.25ms, TE = 2.5ms, flip angle = 15�

and have a spatial resolution of 1.1 ⇥ 1.1 ⇥ 1.3mm. DTI data using 30 gradient directions and a spatial

resolution of 2.5⇥ 2.5⇥ 2.7 mm were also acquired. The FA images generated from the DTI data were

corrected for susceptibility artefacts using the algorithm described in chapter 4.

Challenges With Intra-Operative Tractography

The validation of the pre- to intra-operative image registration results is challenging due to the absence

of a suitable gold standard. Tractography techniques use diffusion MRI data acquired on the millimetre

scale to infer underlying axonal connectivity on the micrometer scale. An assumption inherent in the dif-
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fusion tensor model is that the fitted principle eigenvector represents the orientation of a coherent axonal

bundle within each voxel. It has become increasingly apparent that the majority of voxels contain mul-

tiple fibre orientations (Jeurissen et al., 2010) and that models that take account of this can better depict

tracts in regions of crossing fibres (Behrens et al., 2007). Moreover, the use of deterministic tractography

techniques which provide a single estimate of the path at each point can lead to erroneous tracts in the

presence of noise. The structure of interest, Meyer’s loop of the optic radiation, is a tightly curving struc-

ture which lies in close proximity to another white matter bundle, the uncinate fasciculus, and thus poses

a particular challenge for tractography algorithms. A multitensor probabilistic tractography algorithm in

which up to two independent fibre populations are modelled per voxel was thus employed for the pre-

and post-operative data within this paper. This uses a previously validated technique (Yogarajah et al.,

2009) and probabilistic tractography has been shown to be superior in its depiction of Meyer’s loop to

deterministic algorithms (Nilsson, 2010).

In intra-operative datasets, the lower signal-to-noise ratio and fewer gradient directions do not allow

the fitting of a multitensor model (Behrens et al., 2007). The lower SNR leads to greater uncertainty

within the tractography and consequently greater spread with distance in the tractography results. The

poorer spatial resolution also hinders depiction of tightly curved structures as the direction of a tract

may change within a voxel violating the assumptions of the tensor model. For these reasons and the fact

that tractography algorithms are inherently highly sensitive to the seed region selected (Ciccarelli et al.,

2003), a direct comparison of pre-operative and intra-operative tractography results is not appropriate.

Assessment of Registration Accuracy with Intra-Operative MRI

Despite the fact that tractography is not reliable on intra-operative datasets, these datasets still provide

information to drive image registration. FA is a diffusion anisotropy measure that is known to be robust

to noise (Armitage and Bastin, 2000; Hasan et al., 2004) and, therefore, is a good candidate for use

in image registration algorithms. I validated the registration accuracy in the intra-operative setting by

performing the registration with the proposed method between the pre- and intra-operative datasets

and between the intra- and post-operative datasets. The deformation fields obtained from these two

registrations were composed to produce the deformation field from the pre- to post-operative datasets.

This is schematically illustrated in figure 5.6. The pre-operatively delineated tract was propagated using

this deformation field and compared with the tract obtained from registration of the pre- to post-operative

dataset as in section 5.3.2 for similarity. The propagated tract obtained by direct registration of the pre-

and post-operative datasets using the proposed method was shown to correlate best with the observed

VFD in section 5.3.2 and is used as the ground truth in this experiment.

In order to assess the consistency of tract propagation, the average distance between the skeleton of

the ground truth tract and the closest voxel in the skeleton of the propagated tract was calculated. The

skeletons were generated first by placing an initial bounding box around the tract. This bounding box

was then skeletonised, with the probability of belonging to the tract as a priority function. Thus, as the

skeleton will not be medial in a euclidean sense but rather in a probabilistic sense, thin 1D isthmuses

were used as locking points resulting in a 1 voxel thick 6 connected skeleton. As the average distance is
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calculated for every point in the skeleton and one skeleton might be longer than the other, the reported

values will slightly overestimate the true distance between the skeletons. This overestimation effect can

also occur due to the resolution of the image and the fact that the skeleton is not sub-voxel accurate. The

true distance will thus be slightly smaller than the reported values.

A visual example is shown in figure 5.7. The mean distance measures and the associated standard

deviation are shown in table 5.3. In addition, a correlation analysis as in 5.3.2 was performed by cal-

culating the correlation coefficient between the VFD and the predicted damage to the optic radiation by

using the deformation field obtained by the registration scheme described in figure 5.6. They showed a

strong correlation (Spearman correlation coefficient: 0.76, p = 0.003) for this small cohort.
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Figure 5.6: Validation of the proposed registration scheme using the intra-operative datasets. The pre-
operative images are initially non-rigidly registered to the intra-operatively acquired images using the
proposed method. In a second non-rigid registration step, the intra-operative images are registered to the
post-operative images. The two deformation fields acquired from the registration steps are composed
together to generate the final deformation field. I show that the predicted damage to the optic radiation
using this deformation field correlates strongly with the observed VFD.

(a) (b) (c)

Figure 5.7: Figure (a) shows a mesh rendering of the optic radiation obtained by directly registering the
pre- to the post-operative dataset using the proposed registration scheme. I showed that it correlates best
with the observed visual field deficit and is used as the ground truth for validating the intra-operative
registration. Figure (b) shows the meshed optic radiation obtained by composition of the deformation
fields obtained by registering the pre- to the intra-operative dataset and the intra- to the post-operative
dataset. The solid colour in (a) and (b) denote the 1 voxel thick skeleton of the tracts. Figure (c) shows
the close overlap of (a) and (b).

5.3.4 Computational Performance Validation

Through the use of the parallel processing capabilities of the GPUs, significant reduction to the compu-

tation time was achieved. We used NVIDIA’s C2050 Tesla processors for the benchmarks. The mean



5.3. Validation 91

Case Intra-operative time point VFD Mean distance(std.)

1 1 10.3 2.37(1.05)
2 2.43(1.81)

2 1 20.8 1.57(1.96)
2 1.06(1.31)

3 1 26.5 3.31(2.02)
2 3.01(1.61)

4 1 27.6 1.53(1.73)
2 1.06(1.52)

5 1 31.5 1.12(0.92)
2 1.43(0.98)

6 1 38.0 3.42(2.15)
2 3.57(2.07)

7 1 50.8 2.82(2.21)
2 2.93(2.77)

8 1 59.7 1.65(1.29)
2 1.72(1.18)

9 1 66.7 2.86(2.71)
2 2.57(2.13)

10 1 73.2 2.16(2.21)
2 2.11(2.72)

11 1 91.5 1.54(1.05)
2 1.77(1.09)

12 1 0 1.89(1.86)
2 2.50(2.56)

CC 0.76

Table 5.3: Mean distance and standard deviation (in mm) between the optic radiation skeleton obtained
by direct registration of the pre- and post-operative datasets and the optic radiation skeleton obtained
by the composition of the deformation fields from registering the pre- to an intra-operative dataset and
registering the intra- to the post-operative dataset. For each case, the analysis was carried out using the
two available intra-operative time points i.e. there were two intra-operative scan sessions during the
surgery. Additionally, the predicted damage to the optic radiation was also measured in a similar manner
to 5.3.2. Spearman correlation coefficient (CC) shows that the propagated optic radiation correlates well
with the observed VFD even when using the intra-operative datasets for the intermediate registration.
Case 12 was excluded from the correlation analysis as the subject did not suffer any VFD.

time for affine registration of the target and source images for the five interventional subjects was 18

seconds. The average time for non-rigid registration using the proposed method is 2 minutes and 55 sec-

onds. In comparison, the mean time for CPU based affine registration is 37 seconds and for the non-rigid

registration it is 25 minutes and 54 seconds. In addition, there is an overhead of doing the skull-stripping

and generating the FA images for the interventional scans. However, these times are not significant. The

current transfer time of the patient from the scanner to the operating table at NHNN is between 7 � 12

minutes and the proposed registration algorithm is fast enough to cope with this time constraint. GPUs

are constantly evolving in design and we expect further increase in computation time through the use of

updated hardware.

The following chapter will describe the clinical integration of methods developed in this thesis into

the surgical workflow at NHNN, London.
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Chapter 6

Clinical Integration

One of my main motivations for pursuing this PhD was to be able to work on a project that might

eventually be used in clinical practice to improve patient care. As part of my PhD, I integrated the

algorithms described in chapter (4-5) into the surgical workflow at NHNN, London. This work was

done in close collaboration with my collaborators at NHNN: Dr. Mark White and Dr. Laura Mancini.

This chapter provides an overview on the underlying workflow architecture. In order to ensure that the

workflow is usable, it is automatic and requires minimal user interaction. The workflow is schematically

depicted in figure (6.1). Certain tasks like extraction of the brain mask from the intraoperative T1-

weighted image are not highlighted for reasons of brevity. For every surgical procedure, this workflow is

transformed into a format that can be easily parsed by a software program through the use of Javascript

Object Notation (JSON). JSON1 is a lightweight, human readable, data interchange format and has

wide support with software libraries available for parsing JSON input for all major computer languages.

The JSON specification file for the neurosurgical workflow is automatically generated and the only

user interaction step is to specify the patient identifier. The requisite pre and intraoperative images are

retrieved from the hospital PACS system made avalable for processing. Each JSON block corresponds to

a image analysis process that needs to be executed. For processes where protocol specific information is

required, for example the table offset position for the gradient non-linearity correction, they are extracted

from the image metadata.

1http://www.json.org
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Figure 6.1: Workflow depicting the various inputs/outputs and the processes for the interventional MRI

image analysis workflow. The various inputs and outputs are highlighted in orange while the processes

are highlighted in yellow. The final output, which is the optic radiation in the intraoperative space, is

highlighted in green. Some of the processes like the brain mask generation are not highlighted in this

workflow for reasons of brevity. This workflow is dynamically generated for every surgery through a

data interchange format called JSON. The JSON input is parsed and automatically executed within 7-8

minutes.
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The following shows an example JSON files that represent the flowchart of figure (6.1) describing

the full intraoperative image analysis pipeline for a specific subject. The “comments” section in each

JSON block documents the task that will be performed making documentation part of the data generation

process. This dynamically generated JSON file is parsed by a Python2 based software program which

executes the workflow serially. The whole workflow can be executed in 7-8 minutes. The resulting

propagation of the optic radiation in the intraoperative space is examined by a radiologist before injecting

it into the neuronavigation system for surgical guidance.

{

"correct_non_linearity": [

{

"input": "/input/i1_t1.nii",

"output_def": "output/gradunwarp_t1_def.nii",

"coeffs": "input/coeff.grad",

"off_x": "0",

"off_y": "0",

"off_z": "24",

"comment": "Correct the T1 image for gradient non-linearities."

},

{

"input": "/input/i1_fa.nii",

"output_def": "/output/gradunwarp_fa_def.nii",

"coeffs": "/input/coeff.grad",

"off_x": "0",

"off_y": "0",

"off_z": "44",

"comment": "Correct the FA image for gradient non-linearities."

},

{

"input": "/input/i1_fm_pha.nii",

"output_def": "/output/gradunwarp_phase_def.nii",

"coeffs": "/input/coeff.grad",

"off_x": "0",

"off_y": "0",

"off_z": "44",

"comment": "Correct the phase image for gradient non-linearities."

2http://www.python.org
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}

],

"resample_after_gradwarp": [

{

"input": "/input/i1_t1.nii",

"output": "/output/i1_t1_gradwarp_corrected.nii",

"def": "/output/gradunwarp_t1_def.nii",

"comment": "Apply the gradwarp correction to the T1 image."

},

{

"input": "/input/i1_fm_pha.nii",

"output": "/output/i1_fm_pha_gradwarp_corrected.nii",

"def": "/output/gradunwarp_phase_def.nii",

"comment": "Apply the gradwarp correction to the phase image."

}

],

"susceptibility": [

{

"input": "/input/i1_fa.nii",

"output_def": "/output/susceptibility_def.nii",

"phase_diff_image": "/input/i1_fm_pha.nii",

"mag": "/input/i1_fm_mag1.nii",

"phase_encode_direction": "+y",

"read_out_time": "35.52",

"echo_time_difference": "4.76",

"comment": "Correct the FA image for susceptibility artefacts."

}

],

"compose_grad_warp_susceptibility_deformations": [

{

"input": "/input/i1_fa.nii",

"gradwarp_def": "/output/gradunwarp_fa_def.nii",

"susceptibility_def": "/output/susceptibility_def.nii",

"output_def": "/output/gradwarp_susceptibility_correction_def.nii",
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"comment": "Compose the deformation fields from correction steps".

}

],

"resample_diffusion_to_anatomical": [

{

"target": "/output/i1_t1_gradwarp_corrected.nii",

"source": "/input/i1_fa.nii",

"output": "/output/i1_fa_to_t1.nii",

"nr_def": "/output/gradwarp_susceptibility_correction_def.nii",

"comment": "Resample the FA image into the T1 space".

}

],

"reorient_before_reg": [

{

"input": "/output/i1_t1_gradwarp_corrected.nii",

"surgery_side": "r",

"output": "/output/i1_t1_gradwarp_corrected_reoriented.nii",

"comment": "Reorient the T1 image to a standard axes."

},

{

"input": "/output/i1_fa_to_t1.nii",

"surgery_side": "r",

"output": "/output/i1_fa_to_t1_reoriented.nii",

"comment": "Reorient the FA image to a standard axes."

}

],

"brain_mask": [

{

"input": "/output/i1_t1_gradwarp_corrected_reoriented.nii",

"output": "/output/i1_t1_gradwarp_corrected_reoriented_mask.nii",

"comment": "Generate intraop T1 brain mask."

},
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{

"input": "/input/preop_t1.nii",

"output": "/output/preop_t1_mask.nii",

"comment": "Generate preop T1 brain mask."

}

],

"rigid_registration": [

{

"target": "/input/preop_t1.nii",

"source": "/input/preop_b0.nii",

"mask": "/output/preop_t1_mask.nii",

"output": "/output/pre_b0_to_t1.nii",

"transform": "/output/pre_b0_to_t1.txt",

"comment": "Rigidly register preop T1 to the B0 image."

}

],

"resample_rigid": [

{

"target": "/input/preop_t1.nii",

"source": "/input/preop_fa.nii",

"transform": "/output/pre_b0_to_t1.txt",

"output": "/output/preop_fa_to_t1.nii",

"comment": "Resample the preop FA to t1 space using the rigid transformation."

}

],

"affine_registration": [

{

"target": "/output/i1_t1_gradwarp_corrected_reoriented.nii",

"source": "/input/preop_t1.nii",

"mask": "/output/i1_t1_gradwarp_corrected_reoriented_mask.nii",

"output": "/output/pre_t1_to_i1_t1_affine.nii",

"transform": "/output/pre_t1_to_i1_t1_affine.txt",

"comment": "Affinely register the preop T1 to intraop T1."

}

],
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"merge": [

{

"image_1": "/output/i1_t1_gradwarp_corrected_reoriented.nii",

"image_2": "/output/i1_fa_to_t1_reoriented.nii",

"output": "/output/i1_4D.nii",

"comment": "Generate a 4D image to be used for non-rigid registration."

},

{

"image_1": "/input/preop_t1.nii",

"image_2": "/output/preop_fa_to_t1.nii",

"output": "/output/preop_4D.nii",

"comment": "Generate a 4D image to be used for non-rigid registration."

}

],

"mc_nonrigid_registration": [

{

"target": "/output/i1_4D.nii",

"source": "/output/preop_4D.nii",

"mask": "/output/i1_t1_gradwarp_corrected_reoriented_mask.nii",

"aff": "/output/pre_t1_to_i1_t1_affine.txt",

"output": "/output/pre_t1_to_i1_t1_nrr.nii",

"transform": "/output/pre_t1_to_i1_t1_cpp.nii",

"comment": "Perform the multichannel non-rigid registration."

}

],

"propagate": [

{

"target": "/output/i1_t1_gradwarp_corrected_reoriented.nii",

"source": "/input/pre_or.nii",

"transform": "/output/pre_t1_to_i1_t1_cpp.nii",

"output": "/output/preop_or_to_i1_t1.nii",

"comment": "Propagate the preoperative OR in the intraop space."

}

],
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"unorient_after_reg": [

{

"input": "/output/preop_or_to_i1_t1.nii",

"surgery_side": "r",

"output": "/output/preop_or_to_i1_t1_unoriented.nii",

"comment": "Orient the image into the original intraop T1 image."

}

]

}



Chapter 7

Clinical Findings

In the previous chapters, I described the development of computational techniques that estimates the

brain shift during a neurosurgical procedure. The estimated brain shift was used to propagate the pre-

operative tractography onto the intraoperative images and localise it during surgery. I showed that this

technique could accurately predict the degree of VFD and it could be used within the time constraints of

a neurosurgical procedure. I suggested that display in a neuronavigation suite of the location of the optic

radiation would be useful in avoiding surgical damage.

In this chapter, assessment of whether the display of preoperative tractography during ATLR can

reduce the severity of VFD and increase the proportion of patients that can drive is performed. The

patients are also followed up post surgery to assess whether it has an affect on post-operative seizure

outcome. Secondly, assessment of whether the correction of brain shift during surgery using iMRI

provides additional benefit is also performed. This work was lead by my clinical collaborator Dr. Gavin

Winston.

7.1 Methods

7.1.1 Subjects

21 patients (age range, 23-63 years; median, 36 years; 8 male) with medically refractory TLE undergo-

ing ATLR at NHNN, London were studied. All patients had structural MRI scans performed at 3T, video

electroencephalographic (EEG) telemetry, neuropsychology, neuropsychiatry, and if necessary intracra-

nial EEG recordings prior to surgery. Structural MRI scans, diffusion tensor imaging (DTI) and visual

fields were acquired before surgery and 3 months following surgery (range 70-145 days). The study was

approved by the National Hospital for Neurology and Neurosurgery and the Institute of Neurology Joint

Research Ethics Committee, and informed written consent was obtained from all subjects.

7.1.2 Comparison Cohort

For comparison to previous clinical practice, a cohort of patients who underwent the same assessment

and ATLR by the same neurosurgeon in a conventional operating theatre without tractography-based

image guidance between 2009 and 2012 was selected, comprising 44 patients (age range, 17-68 years;

median, 39 years; 17 male; 21 left, 23 right ATLR).
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7.1.3 Optic Radiation Tractography

Preoperative and postoperative MRI studies were performed on a 3T GE Signa HDx scanner (General

Electric, Waukesha, Milwaukee, WI) as previously described. Tractography of the optic radiation was

performed using the multi-tensor probabilistic index of connectivity model (19) in the Camino toolkit

(20). Tractography data were corrected for image distortion due to gradient non-linearities and magnetic

susceptibility artefacts as described in chapter 4.

7.1.4 Surgery and Intraoperative Imaging

All patients underwent ATLR in the iMRI suite at NHNN. During surgery, the neuronavigation system

provides real-time tracking of surgical markers and tools and visualization facilities. The operating

room is equipped with a confocal surgical microscope that supports the injection of colour overlays

from the neuronavigation system. The location of the microscopes focal point is tracked using the

navigation system and an array of four infra-red reflectors mounted on the microscopes optical head.

Before surgery, anatomical scans were performed for use with the neuronavigation system. Repeat

anatomical and diffusion scans were acquired after the craniotomy and dura opening (timepoint 1) to

provide guidance in entering the ventricle which was manually delineated for display by a radiologist and

at the end of the surgery (timepoint 2) to confirm adequate resection. This is highlighted schematically

in figure (7.1).

Figure 7.1: Image analysis workflow for the two cohorts. For cohort 1, gradient non-linearity correction

was applied and rigid registration was performed to propagate the Optic Radiation in the intraoperative

space. For cohort 2, gradient non-linearity correction, susceptibility artefact correction and brain shift

correction was applied to propagate the preoperatively segmented Optic Radiation. Image courtesy of

Dr. Gavin Winston.
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In the first cohort of patients (9 subjects), preoperative imaging including tractography of the optic

radiation was transferred to the neuronavigation system and registered to intraoperative images using

registration provided by the BrainLAB neuronavigation software. This performs only a rigid transfor-

mation which does not correct for brain shift. In the second cohort of patients (12 subjects), preoperative

and intraoperative images were processed with the workflow that included gradient non-linearity and sus-

ceptibility correction followed by full non-linear registration of the combined preoperative T1-weighted

image and FA map to the intra-operative imaging as described in chapter (6). The corrected images

were transferred to the neuronavigation system for display. Processing was performed using graphical

processing units to ensure the entire procedure could be performed quickly enough not to delay surgery.

The outline of the optic radiation was projected onto the navigation display and the operating mi-

croscope display. In cohort 1, additional error margins of 1.5mm in the anatomical antero-posterior

direction and 1.5mm isotropic were added to account for the lack of compensation for susceptibility

artefacts and potential brain shift respectively.

7.1.5 Primary Outcome: Visual Fields

Pre- and postoperative visual fields were assessed using Goldmann perimetry. To quantify the VFD,

postoperative visual fields were scanned and the areas enclosed by the V4e and I4e isopters in each

upper quadrant (UQ) were determined. Visual field loss for each isopters was calculated as described in

chapter 5 and the mean of the two figures was taken. The use of a single timepoint eliminates the high

variability observed between Goldmann perimetry sessions (Parrish et al., 1984).

The number of patients not permitted to drive due to the VFD was determined in accordance with

UK Driver and Vehicle Licensing Agency regulations (25) with additional binocular Esterman perimetry

if necessary. UK regulations are based on EU Directive 2009/112/EC that requires a horizontal visual

field of at least 120 degrees (at least 50 degrees left and right) and 20 degrees up and down with no

deficits in the central 20 degrees.

7.1.6 Statistical Analysis

Performing the Shapiro-Wilks normality test on the VFD and degree of hippocampal resection showed

that they do not come from a normally distributed population. Hence, non-parameteric Mann-Whitney

U or independent-samples Kruskal-Wallis tests were used to detect any difference in the distribution

between groups. In contrast, the Shapiro-Wilks test showed that the observed brain shifts were normally

distributed.

7.2 Results

7.2.1 Visual Field Deficits

None of the 21 patients undergoing surgery with iMRI guidance developed a VFD that precluded driving.

The VFD were 0-41.7% of the contralateral superior quadrant (median 17.9%, IQR 28.0%) in cohort 1,

0-49.2% (median 9.2%, IQR 30.5%) in cohort 2 and 0-49.2% (median 14.5%, IQR 27.5%) overall.

Five patients in the historical cohort had equivocal Goldmann perimetry but declined Estermann as
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they did not wish to drive. Of the remaining patients, 5/39 (12.8%) failed to meet DVLA criteria as a

result of surgery. The VFD were 0-90.9% of the contralateral superior quadrant (median 24.0%, IQR

32.6%).

The distribution of VFD from those with iMRI guidance (cohorts 1 and 2 combined) was signifi-

cantly different from those without iMRI guidance (independent-samples Mann-Whitney U test p=0.043)

as shown in figure (7.2). The difference was not significant between the historical controls and each iMRI

guided cohort individually. In cohort 2, two patients had previous surgery with one having a pre-existing

minor VFD that did not preclude driving. Exclusion of these patients did not affect the significant dif-

ference but the median VFD fell to 3.4% (IQR 36.0%) in cohort 2 and to 11.0% (IQR 32.3%) in the

iMRI-guided cohort overall.
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Figure 7.2: Image analysis workflow for the two cohorts. For cohort 1, gradient non-linearity correction
was applied and rigid registration was performed to propagate the Optic Radiation in the intraoperative
space. For cohort 2, gradient non-linearity correction, susceptibility artefact correction and brain shift
correction was applied to propagate the preoperatively segmented Optic Radiation.

7.2.2 Seizure Outcome

At 3 months, 89% of patients in cohort 1, 92% in cohort 2 and 91% in the historical cohort had a good

outcome. At 12 months, 80% in cohort 1 and 83% in the historical cohort had a good outcome. The

seizure outcome results for cohort 2 were not available at the time of writing.
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Open Software Effort

Open source is a development approach that promotes transparency and promises more quality, reliability

and flexibility in the production of software (Wheeler, 2005). Due to this open nature, most licenses

allow anyone to contribute, understand, refactor and reuse the code with no restrictions. As a supporter

of this approach, the code developed during my PhD is available under a Berkeley Software Distribution

(BSD) license.

With a BSD license, redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met:

• Redistributions of source code or binaries must retain all the copyright notices, the list of condi-

tions and a disclaimer in the documentation and/or other materials provided with the distribution.

• Neither the name of the organization nor the names of its contributors may be used to endorse or

promote products derived from this software without specific prior written permission.

8.1 NiftyReg
NiftyReg, part of the NifTK suite of software developed at University College London, is an image

registration framework developed by Dr. Marc Modat. The software implements the fast free form de-

formation algorithm as described in Modat (2012). The software implements an efficient implementation

of the free form deformation algorithm Rueckert et al. (1999) and has been widely used by the medical

image analysis community. The code can be freely downloaded and used under the BSD licence from

the website http://sourceforge.net/projects/niftyreg/

Figure 8.1: Logo for Niftyreg: a registration framework developed at University College London by Dr.

Marc Modat.
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The image registration algorithm described in chapter (5) is implemented in the NiftyReg frame-

work. The input target and source images can be specified as 4-dimensional nifti images. The software

also allows the specification of the number of bins to use for the 4-dimensional joint histogram. An

example command line looks as follows:

reg_f3d -target <target_4D_image> -source <source_4D_image>

-tmask <target_mask_image> -aff <affine_transformation_file>

-result <output_4D_Image> -cpp <output_cpp_file>

-tbn 0 64 -tbn 1 32 -sbn 0 64 -sbn 1 32 -be 0.01 -gpu

where the description of the parameters are as follows:

• reg f3d: The NiftyReg executable to perform non-rigid registration.

• target: The input parameter to specify the target image. Specified as a 4dimensional image (tar-

get 4D Image).

• source: The input parameter to specify the source image. Specified as a 4dimensional image

(source 4D image).

• tmask: The input binary mask in the space of the target image (target mask image). Specifies the

area of overlap between the images.

• aff: The input affine transformation. Specified as a text file containing the 4 ⇥ 4 transformation

matrix (affine transformation file).

• result: The output registered source image in the space of the target image (output 4D image).

• cpp: The output control point position file which specifies the estimated deformation (out-

put cpp file).

• tbn: The input parameter to specify the bin size for computation of joint histogram for the target

images (can be specified for both the images).

• sbn: The input parameter to specify the bin size for computation of joint histogram for the source

images (can be specified for both the images).

• be: The input parameter to specify the weight of the bending energy term.

• gpu: The input parameter to specify to use GPUs to do the registration.



Chapter 9

Discussion and Conclusion

This thesis presented a clinical workflow and novel algorithms to accurately estimate brain shift and

propagate preoperatively segmented optic radiation onto intraoperative images. The algorithms pre-

sented in this thesis were specifically developed to work in the intraoperative setting and execute well

within the time constraints of a typical neurosurgical procedure. This work was applied on a cohort of

patients undergoing ATLR for surgical management of TLE. However, the techniques presented in this

thesis can be applied to a much broader spectrum of neurosurgical procedures than ATLR.

In chapter 4, I tackled the problem of correction of susceptibility artefacts in EPI images acquired

during a neurosurgical procedure. The susceptibility artefact correction method was based around a

novel phase unwrapping framework which formulated the unwrapping as a global optimisation prob-

lem. I presented a graph cuts based algorithm which could solve this in a very efficient manner. This

algorithm also has the added advantage of being able to calculate the uncertainty associated with the

estimated field map without adding significantly to the computation time. The uncertainty information

was exploited to selectively improve deformation estimation in regions with high uncertainty using a

non-rigid registration algorithm.

The phase unwrapping algorithm developed in chapter 4 has the potential to be used in applications

outside the realm of neurosurgery. Accurate measurement of phase is critical in various other contexts

in MRI like flow imaging and susceptibility weighted imaging (SWI). SWI is an exciting MRI imaging

modality that use the phase images to generate tissue contrast which is inherently different from con-

ventional structural MR imaging. SWI exploits the magnetic susceptibility differences between various

tissues and the phase images generated from SWI are useful for detection of cerebral microbleeds in pa-

tients with traumatic brain injuries (Haacke et al., 2009). SWI requires long echo times and suffers from

severe phase wraps especially in regions of sharp tissue susceptibility differences. Hence, unwrapping of

the SWI phase images is essential for their meaningful analysis. Figure 9.1 shows an example where the

proposed phase unwrapping algorithm successfully unwrapped an SWI phase image, while maintaining

detail about the microbleed locations as highlighted. The unwrapping was performed in less than 15

minutes on a standard computer for a 3D image of size 512⇥ 512⇥ 320. The same image took around

2 days to unwrap using PRELUDE.
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a b c

Figure 9.1: Phase unwrapping on SWI phase image for a subject with radiation therapy induced microb-

leeds. (a) shows the magnitude image. (b) is the wrapped phase image and (c) is the unwrapped phase

image obtained with the proposed phase unwrapping algorithm. The algorithm successfully recovers the

true phase while preserving information about the microbleeds in the phase image as highlighted.

The susceptibility correction method presented in this thesis is, however, not without limitations. A

limitation is that I am restricted to using convex pairwise energy function during the graph creation in the

phase unwrapping step. Ideally, I would like to employ functions which can handle the discontinuities

at sharp tissue boundaries better than the sum of squared difference energy function used here. Another

limitation of the proposed work is the use of min-marginals to estimate the confidence in the phase

unwrapping solution. However, min-marginals are not true marginal probabilities and can diverge quite

significantly from the true probabilities in the worst case scenario (Tarlow and Adams, 2012).

In chapter 5, I presented a brain shift estimation algorithm which utilises information from both

structural and diffusion MR images. Diffusion MR images have not been previously used in estimation

of brain shift. However, accurate localisation of critical white matter tracts is of surgical interest and

with the growing capabilities of the iMRI scanners, multimodal MR images can now be acquired dur-

ing neurosurgery. Its use on a limited number of clinical data showed that integrating complimentary

information from both these modalities in the proposed brain shift estimation algorithm enabled more

accurate localisation of the optic radiation. The algorithm was accelerated using GPUs and this enabled

it to be used during neurosurgery. However, we cannot draw very firm conclusions from the work pre-

sented in this thesis. The initial validation has been done on a small number of subjects and further

clinical studies are needed to quantify any potential gains that can arise from the proposed methods.

Another issue to note is that we did not perform any intra- and inter-rater variability analysis for clinical

tasks like the parcellation of the optic radiation or manually computing the overlap between the resection

boundary and the optic radiation.

In chapter 6, I presented a clinical workflow that integrates the algorithms developed in this thesis

into the surgical workflow at NHNN, London. This workflow is now used routinely during surgical

procedures and will enable further insight into some of the issues mentioned already.

In chapter 7, the clinical findings were presented where the effects of using iMRI (with and without

brain shift correction) on VFD and seizure outcome was compared against a historical cohort which did

not use iMRI. The initial study indicates significant reduction of VFD in the iMRI cohort. However,
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brain shift correction did not confer additional benefit. This could be because the observed brain shift

of the anterior tip of the lateral ventricle after craniotomy was not severe (maximum 2.8mm, mean

2.0mm). However, the proposed methods can be applied to a diverse range of neurosurgical procedures

like surgical management of low-grade glioblastomas and future studies with larger cohort sizes and

diverse procedures could reveal potential benefits arising out of its application.

9.1 Future Research Directions
Notwithstanding the improvements shown in this thesis, there are still many derived problems and as-

sociated conceptual ideas that are worth pursuing, either by myself or anyone in the medical imaging

community. This section describes my thoughts on a few of the many possible future developments in

this field.

Majority of the image registration algorithms, including the ones proposed in this thesis are based

on computing the most likely deformation field which is a point estimate and does not provide any

confidence measure associated with it. This confidence estimate along with the most likely deformation

could be useful in informing surgical decisions. This problem was tackled by Risholm et al. (2013) where

they characterised the full posterior distribution over the space of deformations using Markov Chain

Monte Carlo (MCMC) sampling methods. However, this method is computationally very expensive

and completely infeasible for use in the neurosurgical setting. To reduce the number of parameters

to estimate, the deformation was parameterised using a very coarse grid, which would increase the

registration uncertainty naturally due to partial volume effects. I feel that significant strides can be

made in this area using approximate inference method like expectation propagation (Minka, 2001), for

example. Exciting developments in the field of MCMC sampling methods like the Hamiltonian Monte

Carlo methods are also worth investing in the interest of speeding up computation time. Algorithms

using parallel samplers using GPUs or large multi-core systems could also further reduce computation

times.

Another related improvement can be made in the area of uncertainty estimation in the phase unwrap-

ping algorithm. As mentioned before, max-marginals are not true marginal probabilities. Approximate

inference methods could also have a part to play here to generate a confidence map using more principled

methods than what is proposed in this thesis, while still being computationally efficient.

One of the findings coming out of this work is that surgical guidance using iMRI results in a decrease

in VFD without adversely affecting seizure outcome. However, a major disadvantage of iMRI is its

limited availability due to the high costs associated with it. However, the information generated by the

iMRI system could be used to learn a model of the brain shift for particular kinds of surgery. This model

can then be potentially used in conjunction with sparse and low cost imaging techniques like ultrasound,

for example, to estimate brain shift in the absense of iMRI. This, I believe, would take the utility of this

work beyond the limited iMRI centres and truly make a difference.



110 Chapter 9. Discussion and Conclusion



References
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