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Abstract 

In parallel with the developments in imaging modalities, image-guided surgery (IGS) can 

now provide the surgeon with high quality three-dimensional images depicting human 

anatomy. Although IGS is now in widely use in neurosurgery, there remain some 

limitations that must be overcome before it can be employed in more general minimally 

invasive procedures. In this thesis, we have developed several contributions to the field of 

medical image registration and brain tissue deformation modeling. From the 

methodology point of view, medical image registration algorithms can be classified into 

feature-based and intensity-based methods. One of the challenges faced by feature-based 

registration would be to determine which specific type of feature is desired for a given 

task and imaging type. For this reason, a point set registration using points and curves 

feature is proposed, which has the accuracy of registration based on points and the 

robustness of registration based on lines or curves. 

We have also tackled the problem on rigid registration of multimodal images 

using intensity-based similarity measures. Mutual information (MI) has emerged in 

recent years as a popular similarity metric and widely being recognized in the field of 

medical image registration. Unfortunately, it ignores the spatial information contained in 

the images such as edges and corners that might be useful in the image registration. We 

introduce a new similarity metric, called Adaptive Mutual Information (AMI) measure 

which incorporates the gradient spatial information. Salient pixels in the regions with 

high gradient value will contribute more in the estimation of mutual information of image 

pairs being registered. Experimental results showed that our proposed method improves 
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registration accuracy and it is more robust to noise images which have large deviation 

from the reference image. Along with this direction, we further improve the technique to 

simultaneously use all information obtained from multiple features. Using multiple 

spatial features, the proposed algorithm is less sensitive to the effect of noise and some 

inherent variations, giving more accurate registration. 

Brain shift is a complex phenomenon and there are many different reasons 

causing brain deformation. We have investigated the pattern of brain deformation with 

respect to location and magnitude and to consider the implications of this pattern for 

correcting brain deformation in IGS systems. A computational finite element analysis 

was carried out to analyze the deformation and stress tensor experienced by the brain 

tissue during surgical operations. Finally, we have developed a prototype visualization 

display and navigation platform for interpretation of IGS. The system is based upon Qt 

(cross-platform GUI toolkit) and it integrates VTK (an object-oriented visualization 

library) as the rendering kernel. Based on the construction of a visualization software 

platform, we have laid a foundation on the future research to be extended to implement 

brain tissue deformation into the system. 
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Chapter 1 

Introduction 

1.1 Motivation 

In the last decades, image-guided surgery (IGS) has acquired great importance due to the 

rapidly evolving technology of the medical imaging. Conventionally, surgeons have to 

rely on their knowledge of human anatomy to relate two-dimensional images of magnetic 

resonance (MR) or computed tomography (CT) to the patient in the operating room. 

However this can be challenging because all patients‟ anatomies aren‟t uniform or 

identical. Thus the use of IGS navigation system has become a standard way to assist the 

surgeon in planning and guiding the surgery especially in minimally invasive surgery 

where the incision is small. Although advancements have been made for different 

components of IGS system such as localizers, registration techniques, and visualization, 

no one can confirm that the perfect model has been found for any of them. Recent trend is 

showing increased interest on the subject shown by the number of publications with the 

keywords “image guided surgery” on the PubMed database [2]. Despite the vast amount 

of literature published on the subject every year, there are research problems yet to be 

solved. This thesis is focused on addressing a small part of that problem. Among the 

different research topics related to medical image processing, this research is focused in 

two of them, medical image registration and image deformation modeling using CT and 

MR brain images as the primary source of images. 



2 
 

1.2 Problem Statement 

In the field of medical image registration, a significant breakthrough is taking place with 

the development of image similarity measures and registration algorithms based on 

entropy and specifically, mutual information (MI) measures which were derived from the 

information theory. The MI similarity metric, proposed by Collignon et al. [3] and by 

Viola et al. [4], is proven to be one of the most accurate automatic multimodal 

registration methods in Retrospective Registration Evaluation Project (RREP) [5]. 

Although it has been widely accepted in the field of medical image registration, there are 

situations which can challenge the applicability of MI and result in misregistration [6, 7]. 

Several causes for misregistration include (1) changes in patient‟s anatomy between 

scans which cause large deviation from the reference image; (2) poor image quality or the 

images are in low resolution; (3) incorrect registration outcomes as a result of local 

maxima and interpolation methods; and (4) weak statistical dependence between different 

imaging modalities, such as MR and ultrasound. As such there is a need to devise 

methods that are more robust to handle a wide variety of registration difficulties. 

Furthermore, the focus of this research in medical image analysis of IGS system is 

extended to understand and model the deformations that occur both pre-operatively and 

intra-operatively. In order to provide accurate spatial navigation and guidance, IGS relies 

on the accuracy of coregistration of the patient‟s position in operating room, patient-

specific images generated by CT or MR, and surgical instrument location (see Figure 

1.1). This accuracy is dependent on the assumption of accurate initial registration and a 

static relationship between patient and image model. However, brain tissue deformation 

and shifting occurs during surgery can compromise this spatial relationship. It is due to 
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various reasons including tissue retraction/ resection, gravity, hyperosmotic drugs, and 

pathology [8-10]. To date, it has been reported that the range of surface shift could differ 

from 1 to 2.5cm [11], while subsurface movement was 6 to 7mm from their preoperative 

image during surgery [10, 12]. Since the brain undergoes varying levels of deformations 

at different stages of the surgery, the navigation system based on preoperative images 

cannot accurately describe such movements which subsequently could lead to surgical 

error. In order to address this problem, attempts to characterize the deformation led to the 

development of intraoperative imaging. Although intraoperative CT/MR scanners offer 

powerful solution to brain deformation, they have been questioned to justify various 

limitations and their cost-effectiveness. In fact, we are looking at the possibility of 

building a deformation visualization technique using finite element (FE) methods to 

simulate the intraoperative brain shift. If the soft tissue deformation could be detected, 

and update the pre-operative images, then this technology could have a major impact on 

many more common procedures. This medical image visualization technique is a research 

effort to provide better navigation during the actual surgical procedure. 

1.3 Objective 

IGS is a surgical technique for localizing anatomical structures on the basis of 

preoperative image data and determining the optimal surgical path to reach these 

structures. Figure 1.2 shows the block diagram of the research project implementation, 

which consists of a data processing interface module (blue area) and the tracking devices 

(orange area). The blue area is the scope of this thesis which will be discussed in the 

following chapters. The overall purpose of this thesis is to develop a new registration 
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technique and investigate brain deformation modeling based on FE analysis within the 

field of IGS. The underlying hypotheses are: (1) incorporating the spatial information 

available within images will significantly improve the performance of the MI based 

image registration and (2) advanced visualization technique can improve the performance 

of the surgeon. The scopes of this research project are listed as the following: 

1. Develop new information-theoretic algorithms to improve the image registration 

process in terms of accuracy and robustness. 

2. Investigate brain tissue deformation phenomena induced by probe insertion based 

on FE analysis. 

3. Develop a prototype of visualization and navigation system. 

 

 

 

Figure 1.1: Typical instrument tracking scenario. A number of coordinate 

transformation calculations must be made to relate between different coordinate 

systems. 
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1.4 Research methodology 

In this section, we outline the research methodology that was followed to fulfill the 

objective above. 

1. The requirements and system architecture of IGS were first investigated to better 

understand the environment in which the newly proposed methods were expected 

to operate. 

2. Secondly, we surveyed and reviewed the existing image registration algorithm 

designed specifically for medical context. This ranges from feature based 

registration to intensity based algorithm. 

3. Thirdly, feature-based registration will be investigated with nonlinear image 

deformation. For this reason, a point set registration method using points and 

curves feature is proposed. 

  

Figure 1.2: Block diagram of image-guided surgery system architecture. 



6 
 

4. Fourthly, we made some adaptations to the most efficient registration algorithm 

among the surveyed – MI algorithm by using gradient information. The 

performance of the adaption technique was analyzed and compared to the existing 

MI algorithm. 

5. Fifthly, we made several improvements to overcome the weaknesses of the 

existing MI algorithm and introduced Multi-Features Mutual Information (MF-

MI) to incorporate multiple image features. 

6. Sixthly, we studied the brain deformation phenomena induced by probe insertion 

based on FE analysis to provide useful information concerning brain tissues 

deformation when under external stress. 

7. Next, we build a prototype of visualization and navigation system for 

interpretation of IGS based on ITK and VTK libraries. 

1.5 Thesis outline 

This thesis is organized into seven (7) chapters. The first two chapters are introduction 

and literature review of the existing methods related to our research area. Chapter 3 

describes the development of point set registration method using points and curves 

feature. The next two chapters, chapter 4 and 5 are focused on the improvement of MI 

registration technique. Chapter 6 explains the implementation of prototype IGS 

visualization system and presents modeling of soft tissue deformation based on finite 

element analysis. Lastly, chapter 7 draws conclusions about the research discussed 

herein. The following provides a brief description of every chapter: 
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 Chapter 2: Literature Review 

In this chapter, a review of the research topics is outlined. First, we introduce the 

workflow of IGS and explain the components related to IGS system, namely 

registration, tracking, and visualization. Second, a brief overview of medical 

image registration on the registration framework was covered. Finally, we 

discussed the existing research work to enhance MI technique and a state of the 

art of the soft tissue modeling techniques. 

 Chapter 3 – Improved Nonlinear Point Set Registration by Uniform Curve 

Features Subdivision Technique 

For this chapter, feature-based registration will be investigated with nonlinear 

image deformation. A point set registration method using points and curves 

feature was proposed, which has the accuracy of registration based on points and 

the robustness of registration based on lines or curves. We consider the alignment 

of two features as point sets alignment. The extracted line or curve pairs are 

modeled by point sampling so that they are subdivided according to curvature and 

length of curves. The mechanism of uniform subdivision of curves segment 

ensures that the subdivided points can match the original curve as close as 

possible and fulfill the requirement of point set registration. We have tested the 

algorithm on real medical images and apply TPS transformation to describe 

nonlinear deformation. The experimental result reveals that the image registration 

algorithm with combination of point and curve feature is a feasible approach. The 

following publication was a result of work conducted based on this chapter: 
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1. Tan Chye Cheah, S.Anandan Shanmugam, and Ang Li Minn: „Medical 

image registration: Comparison and evaluation of nonlinear 

transformation algorithms‟. Proc. Biomedical Engineering and Sciences 

(IECBES), 2010 IEEE EMBS Conference on, Kuala Lumpur, Nov. 30 

2010-Dec. 2 2010. 

 

 Chapter 4 – Adaptation of Mutual Information Measure by Using Image 

Gradient Information 

In this chapter, we have presented the adaptation of mutual information measure 

which incorporates the spatial information based on significance of pixels. We 

assumed that the image locations with a strong gradient contain high information 

value, which could be useful for the image registration. The proposed method 

uses a simple way to enrich the image description by integrating the gradient 

information. Experimental results showed that the proposed method improves 

registration accuracy and it is more robust to noise images which have large 

deviation from the reference image. The following publications were a result of 

work conducted based on this chapter: 

1. Tan Chye Cheah, S.Anandan Shanmugam, and Ang Li Minn: „Medical 

Image Registration by Maximizing Mutual Information Based on 

Combination of Intensity and Gradient Information‟. International 

Conference on Biomedical Engineering (ICoBE), 2012 IEEE ICoBE 

Conference on, Penang, Feb. 27 2012-Feb. 28 2012. 
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2. Tan Chye Cheah, S.Anandan Shanmugam, and Ang Li Minn. (2012). 

"Adaptation of Mutual Information Measure by Using Image Gradient 

Information." Journal of Medical Imaging and Health Informatics 2(3): 

313-319. 

 

 Chapter 5 – Multi-Features for Mutual Information based Medical Image 

Registration 

The method presented in this chapter is an extension of previous work aimed 

towards registration of multiple spatial features. We proposed multi-features 

mutual information (MF-MI) measure to simultaneously use all information 

obtained from multiple features. One major contribution of MF-MI is the 

incorporation of multiple image features into MI algorithm, while allowing a 

flexible choice of the spatial information through weighting coefficients. The 

method is thoroughly investigated and its accuracy and robustness are evaluated 

on both simulated and experimental data. Through quantitative evaluations, the 

MF-MI measure is proven to handle a wide variety of registration difficulties. 

Using multiple spatial features, the proposed algorithm is less sensitive to the 

effect of noise and some inherent variations, giving more accurate registration. 

The following publication was a result of work conducted based on this chapter: 

1. Tan Chye Cheah and S.Anandan Shanmugam (2015). "Multi-Features for 

Mutual Information based Medical Image Registration." Journal of 

Medical Imaging and Health Informatics 5(5): 1076-1083. 
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 Chapter 6 – Image-guided surgery system: Development of data visualization 

interface with navigation probe-tissue interaction 

In this chapter, a prototype visualization display and navigation platform was built 

for interpretation of IGS. The main framework is based upon Qt (cross-platform 

GUI toolkit) and it integrates VTK (an object-oriented visualization library) as the 

rendering kernel. This system has finished several main functions, like DICOM 

data displaying in multi-planar reformation and image-patient registration. This 

chapter also presents a simple physical modeling to analyze the deformation and 

stress tensor experienced by the brain tissue during surgical operations. FE 

software COMSOL Multiphysics was used for discretizing and solving partial 

differential equations that describe the brain tissue deformation. Simulation 

results have displayed that the brain shape deformations and brain tissue 

deformation experience around the probe tip. Based on the construction of a 

visualization software platform, we have laid a foundation on the future research 

to be extended to implement brain tissue deformation to the data processing 

module. By modeling, it gives us some simulation data on actual implementation 

of the system. The following publication was a result of work conducted based on 

this chapter: 

1. Tan Chye Cheah, S.Anandan Shanmugam, Alwin Kumar Rathinam, and 

Vicknes Waran: „Modeling the interaction between navigation probe and 

deformable brain tissue based on finite element analysis: preliminary 

study‟. Biomedical Engineering and Sciences (IECBES), 2012 IEEE 

EMBS Conference on, Langkawi, Dec. 17 2012-Dec. 19 2012. 
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 Chapter 8 – Conclusion and Future Work 

This chapter provides a summary of the main results and contributions of the 

thesis, followed by a description of the future applications and research directions 

that can be used to build on this work. 
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Chapter 2 

Image-guided surgery (IGS) 

2.1 Introduction 

IGS is a surgical technique to provide navigation and guidance by establishing the spatial 

correspondence on the basis of images obtained preoperatively. It requires accurate 

spatial correlation between the image space (coordinate system within the acquired image 

series) and physical space (coordinate system relevant to patient‟s anatomy). The process 

is often referred to as registration. To fulfill this task accurately, the identification of 

landmark points or fiducials fixed to the patient and their corresponding location in the 

pre-operative images are required. These points are then used to derive the coordinate 

transformation matrix that map the position of image space and physical space. 

Generally, a least-squares approach is used to obtain the correct registration between 

corresponding points. Once registration has been established, any position of a pointer in 

the patient‟s body is displayed accordingly in the image data. Usually, the pointer tip is 

projected as crosshairs in the corresponding three orthogonal views (axial, coronal and 

sagittal slices of the image series) as shown in Figure 2.1. With the tracking information 

provided, the position of the tip is shown on the screen simultaneously and is updated 

continuously as the surgeon maneuvers through the anatomy of the patient. Based on the 

accurate visual feedback, IGS system enhances the information integration of the surgeon 

and makes it possible to carry out surgical procedures that are more precise and less 

invasive than conventional procedures. In general, IGS procedure comprises three phases. 
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 Preoperative phase 

Before an operation, patient‟s data is collected through different imaging 

modalities such as X-rays, CT, MR, ultrasound and nuclear imaging. The image 

data provides important information about the structural and the functional 

meaning of objects of interest in the image space. The objects of interest can be 

tumors, major vessels, or physiologically important brain structures. Based on the 

information, surgeon can plan the surgical path and determine exactly the size, 

shape, location and orientation of the craniotomy to be performed. 

 Intraoperative phase 

Before the surgery starts, the preoperative images and surgical plan are transferred 

to the computer in the operating room. The patient's head will be fixed to the 

operating table to avoid shifting. Patient registration is required to register patient 

or physical space to image space before the preoperative images can be used 

interactively. It is a process of determining feature points based on the fiducial 

markers or anatomical landmarks from CT or MRI image data and relating them 

to the corresponding patient data. The paired points need to be matched accurately 

to provide a rigid-body transformation matrix which describes their relationship. 

Coordinate matching ensures that any point seen in the image data corresponds to 

an actual point in the patient‟s anatomy. Once registration has been established, 

the surgeon can then safely navigate and execute their surgical plan accordingly. 
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 Postoperative phase 

The preoperative and intraoperative information are combined with additional 

images to verify the technical results of the procedure and to assess the longer-

term clinical results for the patient. 

 

 

2.2 System architecture 

In the following section, the components related to IGS system, namely registration, 

tracking, and visualization will be further explained. 

2.2.1 Registration 

Registration is the process of spatial and temporal alignment of two separate data sources. 

When the mathematical relationship between a point in one data source and the 

homologous point in another source is known, the data are considered registered. If that 

relationship can be reduced to a simple translation and rotation transformation, the 

Figure 2.1: Multiplanar views of brain images. Top left: coronal, middle left: Sagittal, 

bottom left: Axial, right: the result of stacking images together. 
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registration is considered rigid. Registration is one of the key components of IGS system 

because it brings together preoperative image data, intraoperative tracking information, 

the patient and the surgical instruments' coordinate. There are great differences on the 

technical approaches depending on the type of data to be matched. A comprehensive 

survey was done by many researchers [13-16] and we can categorize the registration into 

image-to-image registration and image-to-physical space registration according to 

different registration characteristics. 

The field of registration has been dominated by the techniques of image-to-image 

registration, whether inter-subject registration, intra-subject registration, or inter-modality 

registration. In image-to-image registration, point-based registration [17-19] has the 

advantage to easily quantify the quality of the registration. However the greatest 

disadvantage is that it relies on point identification and is difficult to be used 

retrospectively. One of the solutions is using surface structures where surfaces are 

extracted from image sets and fitted together like a hat on a head [20, 21]. In a landmark 

paper by West et al. [5], a blinded evaluation of the accuracy of several retrospective 

image-to-image registration techniques was performed. In order to ensure blindness, 

image sets were made available to researchers in the field. The participants could use 

their own techniques for registration of the image sets. After their results had been 

submitted, the gold-standard results were revealed and the registration quality was then 

quantified. This study showed that point-based and intensity-based image-to-image 

registration techniques performed significantly better than surface-based registrations. In 

Section 2.3, we will further explain the difference between feature-based and intensity-

based registration and discuss the state-of-the-art image registration techniques. 
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In IGS system, image-to-physical space registration realizes the spatial 

transformation between both types of information for medical intervention. The most 

effective technique to register these spaces is to identify homologous features in both the 

image space and the physical space using stereotactic frames or fiducial markers. Frame-

based stereotactic device was initially developed by Horsley & Clark [22] to give the 

patients' body a coordinate system. Although stereotactic frames [23, 24] provide a robust 

basis for registration, they are uncomfortable and invasive. Based on this idea, frameless 

stereotaxy was developed to replace the invasive stereotactic frame-based method. 

Frameless method refers to the anatomical landmarks on the subject or artificial markers 

attached to the subject. Such anatomical landmarks should be uniquely identified, 

distributed evenly over the image volume and carry significant morphological 

information of the image. Because of the limited good intrinsic points to serve as 

reference points, researchers have tried placing the artificial markers on the patient for 

use in registration. These artificial markers can be noninvasive and designed to stick to 

the skin [25] or invasively implanted into the bone [26, 27]. Registration based on these 

extrinsic markers is often automated and fast because they are easily detected in the 

images. 

2.2.2 Tracking 

Tracking is an essential feature to accurately determine the position of instruments 

relative to the patient anatomy during surgery. It consists of determining the relationship 

between the instrument, the anatomy, and the image coordinate frame. By rigidly 

mounting the tracking objects to surgical instruments, the instruments can be localized 

within the tracking system coordinate frame. The component that delivers this 
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information to the IGS system is called tracker or localizer. This tracking information is 

necessary to IGS system for accurate navigation and guidance. Currently available 

tracking systems use electromagnetic, optical, and mechanical tracking techniques. 

Because of the flexibility and performance, electromagnetic tracking and optical tracking 

are the main choice for IGS system [28, 29]. 

Electromagnetic tracking system [30, 31] uses an electromagnetic field generator 

and the surgical instruments are embedded with small electromagnetic coils. The 

magnetic field is generated by the field generator at a stationary base. The tracking of the 

relative position and orientation of the localization device is based on measuring the field 

strengths at the receiving coils. Although this method does not require a line of sight 

between the transmitter and receiver, it is sensitive to ferromagnetic material such as iron, 

cobalt, nickel, and steels. It has been reported that ferromagnetic material can create 

significant distortion in the operating room environment and cause translation errors up to 

8.4 mm RMS and rotation errors up to 166° [32]. Optical tracking [33, 34] provides great 

accuracy and is not influenced by any nearby conducting or metallic objects. The object 

location would be measured by two cameras positioned at a defined distance from each 

other. It uses stereo vision techniques to determine the position of target objects. Optical 

tracking is divided into active and passive tracking. Active optical tracking is where the 

light transmitted from the object though LEDs. For passive tracking, the light is 

transmitted from an infrared light source at the optical tracking system and reflected by 

the markers. Since passive tracking offers simple tool construction, the active tracking is 

seldom used in operating room now [28]. A recent article [35] comparing optical and 

electromagnetic tracking systems mentioned that optical tracking has additional 
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advantages of higher accuracy. In Table 2.1, measurement accuracies of these tracking 

systems are summarized [36]. 

Tracking 

method 

Company Position 

accuracy (RMS) 

Orientation 

accuracy (RMS) 

Electromagnetic Ascension Technologies Inc. 0.7-1.4 mm 0.5-1.0° 

Optical  Northern Digital Inc. 0.1-0.15 mm - 

Mechanical Immersion Corp. 0.23-0.43 mm 0.01° 

 

2.2.3 Visualization 

Visualization is one of the primary interfaces to provide a clear and accurate 

representation of all relevant data in a timely manner. Depending on the task to be 

performed and the nature of the target structures, the challenge is to determine how it 

should be best presented. Basic 2D visualization requires less computational power, so 

real-time update of the display can be achieved easily. Although for diagnostic 

procedures, 2D visualization is often sufficient, to guide interventional procedures, more 

complete visualization of 3D volume information is more useful and desirable. The two 

common techniques for 3D volumetric data rendering are surface rendering and volume 

rendering. Each rendering method provides different information depending on the needs 

of the surgeon. 

2D visualization of the 3D volume 

Conventional method of visualizing volumetric images is to present multiple images in 

slice-by-slice format. Multi-planar reformatting is a common technique of visualizing 

medical image data which generating 2D planes that cut through the volumetric 3D data. 

Table 2.1: Typical accuracy measurements of tracking methods for IGS system. 



19 
 

It is a simple method because the image data have been acquired and saved in a 

sequential collection of parallel 2D slices. Presentation of multi-planar images often uses 

three separate panels, one for each orthogonal orientation, namely axial, sagittal, and 

coronal views. By simultaneously displaying the three orthogonal views, surgeon can 

have a quick observation of the volumetric data in IGS system. Although the information 

provided is limited to the data contained in the specific planes, its main advantage is 

speed since only limited data are processed and displayed. 

Surface Rendering 

3D visualizations are often generated using surface rendering because of the 

comparatively small amount of data necessary to render the object in three dimensions. It 

is done by rendering its surface opaque while making the rest of the image volume 

transparent. Surface rendering works well in instances where there is a relatively large 

and clearly defined surface like bones. However the potentially important information 

about anatomical structures and pathologies inside the surface-rendered structure is lost. 

Generally, surface rendering techniques require segmentation of the image volume. The 

most common technique for extracting the boundaries from volume data is the iso-

surface. This is often done in combination with thresholding. Once the boundary has been 

clearly identified, the contours of the segmented volumes can be built as a polygonal 

mesh. One of the common algorithms for surface rendering is the marching-cubes 

algorithm [37]. The inputs are the triangular meshes extracted from the image volume 

representing the surface of the anatomical structures of interest. 
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Volume Rendering 

Volume rendering involves projection of rays to the objects within the 3D field of view. 

It differs from surface rendering in that it does not require surface extraction of the image 

data. For each voxel that the ray encounters, a lookup table is used to map the voxel 

values into the resulting object properties (e.g., color and transparency information). 

Once the assigning process is accomplished, then the “camera” perspective must be set 

since the data are displayed as the view from a camera and the volumetric data can be 

displayed in an arbitrary manner. Rendering of every voxel allows for visualizing natural 

geometrical structures and the representation of the complete volume data. It is best 

suited for complex anatomy with fine details like the brain. Although volume rendering 

offers great flexibility, there is a drawback on performance due to the large amounts of 

data required to create an accurate visualization. 

2.3 Medical image registration in IGS: A summary 

Registration is a general term that is used to describe the process of developing a spatial 

mapping between sets of data. In image processing, comparing or combining the 

information content of images is achieved by investigating the relationship between two 

or more images. The task of establishing this correspondence is called image registration. 

Such a procedure can find applications in many diverse fields, such as medical image 

analysis (e.g. diagnosis), neuroscience (e.g. brain mapping), computer vision (e.g. stereo 

image matching for shape recovery), astrophysics (e.g. the alignment of images from 

different frequencies), military applications (e.g. target recognition), etc. However, a 
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major application of this is in the field of image-guided surgery through image 

registration. 

A typical image registration framework consists of three components: a similarity 

measure that quantifies the quality of alignment; geometric transformations that align the 

geometric difference of images; and an optimizer that search the optimum transformation 

as quantified by the similarity measure. Figure 2.2 illustrates these components. The main 

idea is to search iteratively for the geometric transformation that applied to the floating 

image by optimizing (i.e. minimizes or maximizes) a similarity measure. As shown in 

Figure 2.2, the floating image is compared with the reference image using a similarity 

measure. The similarity measures can be based on the distances between certain 

homogeneous features (e.g. landmark points) or differences of image intensity 

information in the two image sets. Hence we can classify the medical image registration 

techniques into feature-based and intensity-based methods. Differences in image 

registration techniques are explained in greater detail in the following section. Based on 

the similarity measure, new transformation parameters are estimated to provide a better 

registration result from the two image sets. The floating image is then interpolated and 

transformed with the new parameters and again compared with the reference image to 

allow further improvement in transformation parameters by the optimization steps. This 

process is repeated until no further improvement is possible. The optimum transformation 

parameters will be used to register the floating image to the reference image. 



22 
 

 

 

A number of reviews and surveys have been published in this area [13, 14, 38]. In 

these surveys, excellent overviews and categorizations of image registration techniques 

were provided. From the methodology point of view, registration algorithms can be 

classified based on certain homogeneous features or image intensity values. The 

following section presents the technical background of these methods. 

2.3.1 Feature-based registration 

Feature-based registration involves identifying the corresponding landmarks or features 

and applying the transformation function that is required to spatially match these features 

efficiently. These features can have a clear morphological meaning (e.g. the anatomical 

landmarks of the human brain, fiducial markers in imaging modalities, etc.), or they can 

be of geometrical interest only (e.g. lines, corners, surfaces, etc.). A preprocessing step is 

usually needed to extract these features manually or semi-automatically, which makes the 

performance of the algorithm heavily depends on the feature identification. In feature-

based registration, it can be subdivided into landmark-based and segmentation-based 

methods. 

 

Reference Image 

Floating Image 

Similarity 

measure 

Optimization 

Geometric 

transformation 

Input images 

Figure 2.2: Image registration framework. 
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Landmarks can be intrinsic (anatomical or geometrical salient points) or extrinsic 

(artificial markers attached to the subject) points that are identifiable in both image 

modalities. Fiducial markers are usually used as a "gold standard" for brain image 

registration because they are easily detected in the images. The registration based on 

these extrinsic landmarks is often automated and widely used in IGS system, where 

registration efficiency is one of the primary concerns. In registration based on anatomical 

landmarks [19], the corresponding morphological feature points are usually identified by 

a trained medical physician. The accuracy of the registration result is highly dependent on 

the user‟s experience to accurately identify the anatomical landmarks. Due to the small 

number of points which can be used as stable anatomical landmarks, registration 

algorithms are usually apply with rigid transformations. On the other hand, geometric 

landmarks are the salient points with some geometrical property which can be segmented 

automatically such as corner points, intersection points, and local extrema. The accuracy 

of registration may depend on the precision of the segmentation algorithms. Although 

identification of three landmark points will be sufficient to establish the rigid 

transformation, it is usual to use more than three points to average out the feature 

identification error. 

Segmentation based methods offer wide range of possibilities for solving the 

registration problem because boundaries or surfaces in medical images are normally more 

distinctive than landmark points. The curve and surface segmentation based methods can 

be categorized into rigid model and deformable model based. The term rigid model is 

used to simply describe that the same corresponding features are extracted from both 

images. These features are to be registered by fitting algorithms. One of the most well-



24 
 

known and successful surface fitting techniques is the head hat algorithm [39]. This 

approach relies on a simple segmentation step to extract two equivalent surfaces from the 

imaging modality. The registration is determined by iteratively transforming the hat 

surface with respect to the head surface until the closest fit of the two surfaces is found. 

Other popular rigid model based techniques include hierarchical chamfer matching [40] 

and the Iterative Closest Point (ICP) algorithm [41]. Rigid based registration methods are 

well suited for intra-subject registration because the features which are being matched are 

generally the same as they are obtained from the same individual. 

Deformable model based methods are much more applicable for inter-subject 

registration. The extracted structure (e.g. surfaces or boundaries) from one image is 

elastically deformed to fit the second image. The deformation process is always done 

iteratively, small deformations at a time and restricted by elastic modeling constraints 

applied onto the segmented curve or surface. Therefore it is best suited to find local 

curved transformations between images, instead of finding global rigid transformations. 

Deformable curves as “snakes” or active contours were proposed by Kass [42] to provide 

effective contour extraction techniques. Active contours are energy minimizing splines 

driven by both internal and external energy. It can be easily manipulated and self-

adapting in their search for a minimal energy state. Thus they are popular in image 

segmentation and shape modeling[43], boundary detection and extraction [44], object 

tracking and analysis [45], and deformable registration [46, 47]. 
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2.3.2 Intensity-based registration 

Intensity based registration methods also referred to as voxel based methods. These 

methods directly utilize the intensity information within the image and fully automated 

without requiring segmentation or extensive user interactions like feature-based 

registration. These approaches are generally more flexible and more robust in the 

situation where features are difficult to determine as intensity-based registration operate 

on the full image content rather than a representative structure, such as landmark points 

or surfaces. In intensity-based image registration, a cost function or similarity measure is 

defined, and the image datasets are iteratively transformed until the cost function is 

optimized. There are several well established intensity-based similarity measures used in 

image registration such as intensity differences, intensity cross-correlation and 

information theory. 

 The methods of minimizing the intensity difference are usually based on the sum 

of squared differences (SSD) between two images. SSD [48] is suitable for 

monomodality image registration (e.g. serial MR registration) when the intensity 

differences among the data are sufficiently small. The assumption behind the SSD 

computed from the voxel intensity is that the corresponding structures in both images 

should have identical intensities. Thus, SSD measure is very sensitive to a small number 

of voxels that have very large intensity differences between reference image and floating 

image. This undesirable property obviously can lead to false monomodality image 

registration. Cross correlation technique [49, 50] were introduced to help overcoming the 

problem of the differing levels of intensity values between images. The registration is 

obtained by maximizing the similarity between images of the same object that may be 
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different due to various acquisition conditions. Cross correlation is based on the 

assumption that there is a linear relationship between the intensity values of two images. 

However it is not always true for complex multimodal images. Therefore the correlation 

techniques cannot always achieve reliable registration results in multimodality 

registration. 

Information theory 

The basics of information theory were laid by Claude Shannon in his paper “A 

Mathematical Theory of Communication” [51]. Using the probability theory, Shannon 

defined measures such as entropy (H, the measures of the uncertainty on the occurring of 

a random variable) and mutual information (MI, the measure of the correlation between 

two signals). In this section, we present these two key concepts of information theory and 

explain their use as similarity criteria in image registration. For a good reference of the 

information theory, refer to Cover et al. [52] and Pluim at al. [53]. 

Shannon entropy is commonly used as a standard information measure in many 

engineering areas, where information is simply the result of a selection from a finite 

number of possibilities. The entropy H of a discrete random variable X with values in the 

set X = [x1, x2, …, xn] is defined as: 

 

(1)

 

where p(x) is the probability distribution of random variable X. The Shannon entropy can 

also be calculated for an image on the distribution of image intensity values by counting 

the number of times each grey value occurs in the image and dividing those numbers by 

𝐻 𝑋 =  − 𝑝 𝑥 log 𝑝 𝑥 

𝑥∈𝑋
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the total number of occurrences. A low entropy value will be yielded by an image 

consisting of almost a single intensity, which is an image containing very little 

information. An image consisting of several different intensities will have a high entropy 

value. If we consider another random variable Y with probability distribution p(y) 

corresponding to values in the set Y = [y1, y2, …, ym], the joint entropy of X and Y is 

defined as: 

 

(2)

 

where p(x, y) is the joint probability. Joint entropy provides a method to measure the 

amount of information in the combined image. If the two images are completely 

independent, their joint entropy will be at a maximum value. The more similar the images 

are, the lower their joint entropy compared to the sum of the individual entropies. The 

concept of joint entropy can be visualized using a joint histogram calculation from a 

floating image and a reference image, which are shown in Figure 2.3. The left panel is 

generated from the images when aligned, the middle panel was rotated 1°, and the right 

panel was rotated by 5°. In image registration, when the images are correctly aligned, the 

joint histograms have tight clusters, and the joint entropy is minimized. These clusters 

disperse as the images become less well registered, and correspondingly, the joint entropy 

is increased. Besides the Shannon‟s entropy, other different entropy have been used in 

image registration are Rényi entropy [54, 55], Jumarie entropy [56, 57], Tsallis entropy 

[58-60] and Havrda-Charvat entropy [61, 62]. 

The basic idea of mutual information (MI) [3, 6, 63] comes from information 

theory which measures the statistical dependence between two random variables or the 

𝐻 𝑋, 𝑌 =  −  𝑝 𝑥, 𝑦 log 𝑝 𝑥, 𝑦 

𝑦∈𝑌𝑥∈𝑋
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amount of information that one random variable contains about the other. For discrete 

random variables X and Y with their respective marginal probability distributions 

     ,        and joint probability distribution      ,   , MI is defined as: 

 

(3)

 

   

(a) (b) (c) 

 

MI is also related to the joint entropy information theory by the following equation: 

MI(X,Y) = H(X) + H(Y) – H(X,Y) (4) 

If X and Y are two images that are geometrically related by the registration 

transformation, the terms H(X) and H(Y) are denoted as the entropy of the reference 

image and floating image respectively, while H(X,Y) is the joint entropy of both images. 

The equation (4) can be interpreted that maximizing MI will tend to find as much as 

possible of the information that exists in both images so that at the same time they 

explain each other well. The relationship between all the above measures can be 

expressed by the Venn diagram, as shown in Figure 2.4. The advantage of MI compared 

𝑀𝐼 𝑋, 𝑌 =    𝑃𝑋𝑌 𝑥, 𝑦 𝑙𝑜𝑔
𝑃𝑋𝑌 𝑥, 𝑦 

𝑃𝑋 𝑥 𝑃𝑌 𝑦 
𝑥,𝑦

 

Figure 2.3: Example 2D joint entropy histogram of (a) Identical MR images of the 

head, (b) floating image was rotated 1°, and (c) floating image was rotated 5°. 
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with other similarity measure is that the image intensities corresponding to the same 

object between different images are statistically related. It does not depend on any 

relationship between the intensities in the floating image and reference image like cross 

correlation technique [50, 64]. Therefore the applicability of MI registration is widely 

applied in medical image registration problems, covering monomodality as well as 

multimodality registrations [65, 66]. Because of the statistical notion of MI measure, it is 

sensitive to the amount of overlap between both images. Normalized mutual information 

(NMI) measures were introduced by Studholme et al. [67] to overcome this problem. 

This is shown in equation (5): 

 

(5)

 

 

 

  

𝑁𝑀𝐼 𝑋, 𝑌 =  𝐻 𝑋 + 𝐻 𝑌  /𝐻 𝑋, 𝑌  

H (X|Y) H (Y|X) MI(X, Y) 

H (X) H (Y) 

H (X, Y) 

Figure 2.4: H(X) and H(Y) denote the separate entropy values of image X and Y, 

respectively. H(X,Y) is the joint entropy of the image intensities. Correct registration 

of the image is assumed to be equivalent to maximization of the mutual information 

MI(X,Y) of the images. 
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2.3.3 Review of mutual information variants 

MI is a similarity measure that was pioneered both by Collignon et al. [3] and by Viola et 

al. [4]. Within a few years, it became the most investigated measure for medical image 

registration and the number of papers published related to MI based registration has 

grown rapidly. MI registration has received so much attention that, a few years after 

being proposed for image registration, a comprehensive survey based on mutual 

information was presented by Pluim et al. [53] addressing almost 160 papers on that 

topic. This section presents the survey and review of recent literature concerning various 

improvements on MI based image registration. The intention of this section is not to 

exhaustively evaluate all existing techniques, but to highlight a few approaches that 

inspire this research development. Because of the sheer volume of available papers, we 

narrow our analysis to medical image registration and incorporation of spatial 

information into MI algorithm.  

2.3.3.1 Quantitative-qualitative measure of mutual information (Q-MI) 

In paper [68], Hongxia et al. proposed a similarity measure to consider not only the 

probability of image intensity, but also the utility of each voxel in calculating the MI of 

two images. This method was motivated by Belis at al. [69] that different voxels, even 

having the same intensity, should be treated differently because they may have different 

characteristics and utilities on image registration. The utility of each voxel in an image 

can be determined according to the regional saliency value calculated based on scale-

space map [70]. The salient voxels will have higher utility values and they will contribute 

more in measuring the MI of the two images under registration. 
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By denoting the two images under registration as the reference image R and the 

floating image F, and letting IR and IF be the intensity values of the two images, 

respectively, the Q-MI incorporates the qualitative aspect of image into the measure of 

MI as follows: 

 

(6)

 

The optimal transformation between both images can be obtained by maximizing the Q-

MI value. In equation (6), the marginal and the joint image intensity distributions, p(IR), 

p(IF) and p(IR, IF), can be estimated by simply calculating the marginal and the joint 

histograms of images within the overlap region. u(IR, IF) is a joint utility for each 

intensity pair (IR, IF), which is used to determine the amount of useful information that 

one image contain about another. 

2.3.3.2 Combined gradient intensity-based registration (GI-MI) 

This adaptation of the MI measure was proposed by Pluim et al. [71]. This is one of the 

early works that focused on incorporating spatial information into MI-based image 

registration. The authors extended MI measures (both standard and normalized MI) to 

include spatial information that is present in each of the images. This extension is 

accomplished by multiplying the normalized MI with a weighting function based on 

gradient information. The authors highlighted that image gradients by themselves have 

been shown to be useful registration criteria [72] because a strong gradient signify the 

transition of tissues, which provide high information value. 

𝑄𝑀𝐼 𝑅, 𝐹; 𝑈  =    𝑢 𝐼𝑅 , 𝐼𝐹 𝑝 𝐼𝑅 , 𝐼𝐹 log
𝑝 𝐼𝑅 , 𝐼𝐹 

𝑝 𝐼𝑅 𝑝 𝐼𝐹 
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For a volume image, the gradient vector is computed for each sample point x = 

[x1, x2, x3] where each component is the gradient in one of the image dimension. It is 

worth to mention that the gradient term is based not only on the gradient magnitude, but 

also on the orientation of the gradients. The gradient angle αx,y (σ) is calculated according 

to the following expressions: 

 

(7)

 

where ∇x(σ) denoting the gradient vector at point x of scale σ and | · | denoting 

magnitude. Since the algorithm interested to include the strong gradients that appear in 

both images, the gradient weighting function G(A,B) is calculated by multiplying the 

angle function with the minimum of the gradient magnitudes: 

 

(8)

 

Finally, the proposed registration measure becomes 

 
(9)

 

2.3.3.3 Region mutual information (RMI) 

The RMI proposed by Daniel et al. [1] is an extension of MI that efficiently takes regions 

of corresponding spatial information into account. Due to the reason of MI treats images 

as 1D signal, extending the dimensionality of the histograms is one of the logical ways to 

extend MI. However the main drawback of increasing the dimensionality is more samples 

are needed to populate the space to get a reasonable estimate of entropy and it‟s 

𝛼𝑥,𝑦 𝜎 = arccos
∇𝑥 𝜎 . ∇𝑦 𝜎 

 ∇𝑥 𝜎   ∇𝑦 𝜎  
 

𝐺 𝐴, 𝐵 =  𝑤 𝛼𝑥,𝑥′ 𝜎  𝑚𝑖𝑛  ∇𝑥 𝜎  ,  ∇𝑥
′ 𝜎   

 𝑥,𝑥′ ∈ 𝐴∩𝐵 

 

𝑀𝐼𝑛𝑒𝑤 𝐴, 𝐵 = 𝐺 𝐴, 𝐵 𝑀𝐼 𝐴, 𝐵  
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computationally expensive. Therefore as the size of the neighborhood increases, the 

authors decouple the entropy calculation by projecting the data onto each of the d new 

axes, and summing the entropies along each dimension. In the formulation of RMI, each 

data point represents a pixel and its neighborhood as depicted in Figure 2.5a. The 

proposed algorithm proceeds as follows: 

 

(a) (b) 

 

1. Given two images, create a vector vij representing the co-occurrences of the pixels 

and their neighbors for some specified square radius r as shown in Figure 2.2b. 

This vector is now a point pi in a d-dimensional space. 

2. Given radius r and m x n images, a distribution of N = (m-2r) (n-2r) points 

represented by a d X N matrix is obtained. 

3. Subtract the mean from the points so that they are centered at the origin.  

 

(10)

 

Figure 2.5: (a) An illustration of the relationship of its data point. (b) The co-

occurrences of the pixel points in corresponding image neighborhoods. [1] 

𝑃0  = 𝑃 −
1

𝑁
 𝑝𝑖
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4. Calculate the covariance of the points. 

 

(11)

 

5. Estimate the joint entropy as: Hg(C) 

6. Estimate the marginal entropies as Hg (CA) and Hg (CB) where CA is the  
 

2
 

 

2
  

matrix in the top left of C and CB is the  
 

2
 

 

2
  matrix in the bottom right. 

7. Calculate the RMI=Hg(CA) + Hg(CB) - Hg(C) 

2.3.3.4 Conditional mutual information (cMI) 

Because of the calculation of MI is typically based upon a global joint histogram, Dirk 

Loeckx et al. [7] proposed conditional mutual information (cMI) as a new similarity 

measure using a local estimation of the joint histogram for nonrigid image registration. 

The authors regarded the spatial coordinates of pixels in the reference image as prior 

known conditions. Similarly to RMI, the conditional probability distribution is also 

extending the joint histogram with a spatial dimension representing the spatial 

distribution of the joint intensities. Hence cMI I(R,F|X) between the reference and 

floating intensity distributions R and F given the spatial distribution X is expressed as: 

 

(12)

 

Following this formulation, cMI calculates the information that is shared between (R,F) 

but not available in X. The cMI measure was incorporated in a tensor-product B-spline 

registration algorithm [73], using the same kernel to calculate the weighted average of the 

𝐶 =
1

𝑁
𝑃0𝑃0

𝑇  

𝐼 𝑅, 𝐹 𝑋 = 𝐻 𝑅 𝑋 + 𝐻 𝐹 𝑋 − 𝐻 𝑅, 𝐹 𝑋  
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B-spline deformation coefficients and for the spatial distribution of the joint intensities 

over the joint histogram. 

2.3.3.5 Spatial encoding mutual information (SEMI) 

Xiahai Zhuang et al. [74] proposed a unified function to encode the spatial information 

into the computation of joint probability distribution function (PDF). They suggested two 

points for improving MI in nonrigid registration. The first idea is that to create the global 

and local intensity class linkage. The local estimation was mixed with the global 

estimation under a weighting function. Based on this idea, the authors introduced a new 

parameter, λ ϵ [0, 1] indicating the trade-off between the local information and global 

information, to provide a general weighting scheme for them such that ω = ω(λ). By 

valuing w(λ), the importance of the local information from the global information can be 

differentiated. Another idea is to encode the fine detail of spatial information within the 

local estimation of the joint probability distribution to provide important information for 

correcting local misalignment. This encoding is achieved by weighting the contribution 

of pixel pairs to the joint histogram table according to their spatial coordinates: 

 

(13)

 

ε(x) is the weighting function to encode spatial information at coordinate x. By using a 

constant value, εx = 1, equation (13) becomes the conventional estimation method.  

  

𝐻 𝑟, 𝑓 =  𝜔𝑟 𝐼𝑟 𝑥  

𝑥

𝜔𝑟  𝐼𝑓 𝑥  . 𝜀 𝑥  
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2.3.3.6 Higher-order mutual information 

Ruekert et al. [75] proposed an extension of the MI framework which incorporates spatial 

information based on higher-order image structure into the registration process. The 

entropy of images can be calculated by using the probability of co-occurrence of intensity 

pairs within a neighborhood in the image. For example, the second-order entropy of an 

image can be defined as: 

 

(14)

 

p(i, j) denotes the joint probability that a voxel has intensity i while its neighboring voxel 

has intensity j. The joint probability p(i, j) can be estimated from a co-occurrence matrix 

between neighboring voxel pairs in a single image. The authors have chosen a 

neighborhood which is defined by the six nearest neighbors of each voxel. In contrast to 

the computation of first-order approximations of the marginal and joint entropies which 

only requires the calculation of the 2D joint histogram, the computation of second-order 

approximations of the marginal and joint entropies requires the calculation of the 4D joint 

histogram of both images. Due to the high dimensionality of this histogram, the authors 

have limited the number of histogram bins to 16 bins per dimension for the calculation of 

second-order information measures. The results showed that 4D histograms with 16 bins 

per dimension represent a good compromise between total number of bins and the 

average number of samples per bin. 

  

𝐻2 𝑋 = −  𝑝 𝑖, 𝑗 log 𝑝 𝑖, 𝑗 

𝑗𝑖
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2.3.3.7 Local linear embedding and hybrid entropy (LLE-HE) 

In paper [76], Qi Li et al. explored the spatial information solution by including ordinal 

features (OFs) into MI registration measure. OFs are defined based on the qualitative 

relationship between two image regions and it is proven useful in the pattern recognition 

task [77]. The OFs with different orientations are extracted by Sum-Difference Ordinal 

Filters (SDOFs) [78] to represent the spatial information between neighboring pixels. 

However the extracted OFs with different orientations are high dimensional and contain a 

lot of unessential redundant information. In order to minimize the redundant information 

and reduce computational cost, LLE [79] algorithm is used to reduce the dimensionality 

and different directional OFs are needed to fused together by using Zhang‟s inverse 

mapping method of LLE [80]. In this final fused OF, redundant information is minimized 

and complementary information is reserved and emphasized. 

Similarly to cMI, the registration algorithm is also extending the joint histogram 

with a spatial dimension representing the spatial distribution. A similarity measure based 

on hybrid entropy is calculated between the reference and floating intensity distributions 

R and F given the spatial distribution X: 

 

(15)

 

During the registration process, the information shared by (R, X) is always unchanged, 

which has no influence on the registration results except that computational time is 

increased. Based on the above analysis, R and X are joined together and the unity (R, X) is 

registered with F. HE(R,F,X) incorporate the spatial information into MI and does not 

include unchanging information. So HE(R,F,X) can efficiently measure the intensity 

𝐻𝐸 𝑅, 𝐹, 𝑋 = 𝐻 𝐹 + 𝐻 𝑅, 𝑋 − 𝐻 𝑅, 𝐹, 𝑋  
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information and spatial information in both of medical images and effectively reduce the 

influence of noise by OF. 

2.3.4 Performance comparison and discussion 

The performance comparison between the reviewed mutual information variants are 

discussed in this section. Note that, in our survey in Section 2.3.3, we focused only on 

those MI variants that incorporate spatial information. Table 2.1 therefore gives the 

summary of performance comparison between the reviewed MI variants presented in 

sections 2.3.3. We use the – symbol to denote that the authors do not provide any 

information in terms of algorithm performance. Mutual information is based on a single 

pixel joint probability model. Several causes for misregistration have been mentioned in 

the Section 1.2. To rectify these shortcomings, Pluim et al. [53] also mentioned the 

challenges to “correct” the assumption of Shannon entropy that the intensity values of 

neighboring pixels are uncorrelated. According to the reviewed methods, we categorize 

them into two main approaches, (1) dimensionality approach and (2) hybrid approach. 

Because MI technique treats each image as 1D signal, attempts have been made by many 

researchers to incorporate spatial information by extending the dimensionality of the 

histograms. These methods were effective for the improvement of registration quality. 

However the curse of dimensionality is an important limitation as the improved 

performance comes at the cost of increasing the computational complexity of cost 

function calculation. Hybrid approach on the other hand does not suffer from such issue. 

It is an alternative way to incorporate spatial information by combining the MI similarity 

measure with the additional term that describes spatial information. A critical look at 

Table 2.2 shows the hybrid approaches provide similar registration accuracy with the 
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dimensionality approaches with low computational cost for rigid registration. Thus, in 

view of the fact that the hybrid approaches offer some advantages over the 

dimensionality approaches as highlighted above, our focus is looking at the possibility of 

developing a simple method to combine multiple spatial features into the MI similarity 

measure by using hybrid approach. 
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Q-MI GI-MI RMI cMI SEMI 

Higher-order 

MI 
LLE-HE 

Dimensionality/ 

Hybrid 

Hybrid Hybrid Dimensionality Dimensionality Hybrid Dimensionality Dimensionality 

Rigid/ nonrigid Rigid Rigid Rigid Non-rigid Non-rigid Non-rigid Rigid 

Spatial 

information 

Saliency 

measure to 

represent the 

utility pixel 

Gradient 

information 

High 

dimensional 

histogram 

Spatial 

dimension in 

joint histogram 

Pixel-wise 

spatial 

encoding 

Co-occurrence 

matrix 

Ordinal features 

Optimization Multi-

resolution 

framework 

Powell‟s 

method 

- Quasi Newton 

method 

Gradient 

ascent 

method 

- Particle swarm 

optimization 

method 

Computational 

cost 

Low cost Low cost 174sec 

O(n
2
d

2
) 

10610sec 

number of 

evaluations per 

iteration: 

ν x 3(ni +1) 

- - 156.2msec 

Accuracy 1.07mm 

(CT/MR) 

2.64mm 

(PET/MR) 

1.37mm 

(CT/T1) 

2.43mm 

(PET/T1) 

1.25mm 

(CT/X-Ray) 

92% 

(successful 

rate) 

Surface 

distance: 2.5-

5mm (CT/MR) 

4.64±1.36m

m 

(simulated 

T1/T2) 

0.58mm 

(simulated 

T1/T1) 

> 90% (success 

rate) 

Limitation/ 

issue 

- Gradient 

term 

fluctuate due 

to various 

imaging 

conditions 

Higher 

computational 

complexity due 

to higher 

dimension 

Higher 

computational 

complexity due 

to higher 

dimension 

- Only include 

one neighbor 

pixel which 

leaves out a 

great deal of 

spatial 

information 

Higher 

computational 

complexity due 

to higher 

dimension 

 
Table 2.2: The comparison of the reviewed literature on the image registration. 
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2.4 Soft tissue deformation modeling 

In order to provide spatial navigation and guidance, IGS systems rely on the assumption 

that rigid body transformation remains valid throughout the intervention. However 

studies have shown that this assumption is not always valid [8, 9] and the brain could 

deform after the skull is opened and before the surgery is started. The overall accuracy of 

the IGS system is reduced, which are often unacceptable for many surgical applications. 

Thus the deformation needs to be accounted to maximize the effectiveness of IGS 

systems. A potential solution to the misalignment between the preoperative images and 

surgical situation is to simulate the deformations, and warp the preoperative images to 

reflect the real surgical scene. Recent studies have shown promising results to use 

biomechanical models to estimate displacements in order to update the preoperative 

images [11, 81-85]. The following section will describe various deformation modeling 

methods and its applications in soft tissue deformation. 

2.4.1 Deformation modeling methods 

At present, the modeling of soft tissue deformation has been widely studied. Essentially, 

they are applied in the field to simulate the deformation behavior of non-rigid objects due 

to external influences both in surgery planning [86, 87] and in real-time surgical 

applications [88, 89]. The methods for deformation modeling were developed based on 

the models ranged from heuristic approach to continuum mechanical approach. The first 

approach is a straight forward modeling method based on geometry of deformable 

objects. According to some predefined rules, the shape of the object is transformed by 

adjusting control points or shape parameters. However, in order to produce more realistic 
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models, they must be based on physical properties of soft tissues. As a result, the second 

approach implicitly is based on the hypothesis of the continuum mechanics models. 

Considering physical property of deformable objects, external forces, and environmental 

constraints on object deformation, the continuum mechanics model can be simulated with 

certain realism. In particular, the related work on modeling will be reviewed and 

compared in the following section. 

2.4.1.1 Heuristic approach 

The first class is based on purely geometric techniques. Generally, these techniques are 

computationally efficient, and they rely on the skill of the developer rather than on 

physical principles. Heuristic based geometric models can be divided into three 

categories, deformable splines, mass-spring model, and chain mail model. 

Deformable splines 

In the field of computer aided geometric design (CAGD), deformable splines serve to 

numerically obtain smooth and rounded curves, surfaces, or volumes. Among the 

different existent techniques are the Bezier curves and many other methods of specifying 

curves with a small vector of numbers, including: double-quadratic curves, B-splines, 

rational B-splines, non-uniform rational B-splines (NURBS), and β-splines. In these 

examples, the curve or surface is represented by a set of control points. By moving the 

control points, the form of the respective curve, surface, or volume changes in a 

predictable manner. This parameter-based object representation is computationally 

efficient and supports interactive modification. However, this level of control is 

sometimes a disadvantage due to the precise specification or modification of curves or 
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surfaces can be laborious. Even a perceptually simple change may require adjustment of 

many control points. Textbooks by Bartels et al. and Farin provide comprehensive 

coverage of curve and surface modeling with splines [90, 91]. 

Mass-spring model 

Mass-spring model is one of the techniques that have been used effectively for 

deformable object modeling. In this model, deformable objects are represented by a mesh 

of springs or spring damper elements which are connected to a large number of mass 

points. The spring is often linear, but non-linear springs can be used to model soft tissues 

that exhibit inelastic behavior. The spring forces and the motion of a single mass point 

are governed by the Newton‟s second law. If a point   has mass  , then the right hand 

side is the forces acting on the mass point: 

   ̈ = −   ̇ + ∑    +     (16) 

where   is the damping coefficients,     is the force applied on mass  , and    is the sum 

of other external forces like gravity or user applied forces acting on mass  . Due to their 

computational simplicity, they have been widely used in surgical simulation where large 

and complex deformation must be present without sacrificing real-time response to user 

interaction. 

Pioneering work has been reported by Terzopoulos et al. in which they created 

non-linear mass-spring models of the facial soft tissues [92]. Montgomery et al. describe 

a surgical simulation software library that uses mass springs for a number of different 

modeling simulations [93]. Bucholz et al. determined the average shift of structures into 

three classes – low, moderate, and high shift and modeled the response of the brain to 



44 
 

surgery by using mass-spring model and intraoperative ultrasound [94]. Skrinjar and 

Duncan used mass spring model and applied Kelvin solid property model to describe 

intraoperative brain deformation. However, this research group abandoned mass-springs 

models for finite element models in the subsequent work due to the difficulty to apply 

accurate model parameters and the limitation of physical realism of mass-springs models 

[95]. 

Chain mail model 

The chain mail model is similar to mass-spring type model. But instead of linking the 

different elements with springs, these are interconnected like links of a chain. It simulates 

a deformable object by the interaction between these chain elements. That is to say, the 

motion of every unit is associated with its neighboring units. Within a certain limit, each 

link can move freely without influencing its neighbors. When the stretching or 

compressing of two units has gone beyond the predefined limits, the deformation 

displacements are propagated directly to the corresponding adjacent links. To achieve an 

elastic relaxation behavior, the relative unit positions are adjusted to minimize the energy 

of the whole system. Just like the mass-spring model, the great advantage of the chain 

mail algorithm is its simplicity. So far, chain mail approaches have only been used 

successfully in real time for 3D objects consisting of very few elements [96]. 

2.4.1.2 Continuum mechanical approach 

Continuum mechanical approach is an entirely different way to deal with the issue of 

deformable objects. It is based on the laws of continuum mechanics that considers the 

equilibrium of a solid body acted on by external forces. The deformation is a function of 
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these acting forces and the object's material properties. Because there is not possible to 

find a general analytical solution, a number of numerical methods are used to 

approximate the object deformation, with the two best known approaches being finite 

element methods and boundary element methods. 

Finite element methods 

The predominant technique used in continuum mechanics problems is the finite element 

modeling (FEM) method. Originally, FEM was developed to approximately resolve 

differential equations defined for a certain domain with some given corresponding 

boundary conditions. To do so, the deformable object is discretized into a finite number 

of elements and joined at discrete points called nodes. This model can be described using 

the constitutive, kinematic and dynamics equations, such as viscoelastic, fluid elastic, etc. 

Then, the displacement is approximated with polynomial equations over each element 

and the solution is subject to constraints at the node points and element boundaries. In the 

simplest linear case, the resulting system of equations can be represented as: 

  =   (17) 

where F and U are the externally applied force and nodal displacement vector, 

respectively, and K is the stiffness matrix describing the material properties. Once the 

equations are solved, the node displacement of each element can be calculated by 

interpolation using the shape functions. For the nonlinear material like soft tissue, the 

stiffness matrix depends on the displacement and the solution of deformation problem 

can become more complicated. 
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Most researchers apply the FEM to image-guided surgery have focused on linear-

elastic models of the brain. Skrinjar et al. used linear elasticity to deal with the problem 

of brain shift during craniotomy based on surface displacement [95]. Ferrant et al. tracks 

the key surfaces of objects like cortical surface and the lateral ventricles to infer 

volumetric deformation field using a linear elastic biomechanical finite-element model 

[97]. Clatz et al. also used a linear elastic model to predict the gravity-induced 

deformation of the brain during Parkinson‟s disease procedure [98]. Wittek et al. 

introduced a non-linear viscoelastic model suitable for real-time surgical procedures [84]. 

The research group based at Dartmouth College has been extensively use porous media 

model to representing the brain in a series of porcine and human studies [9, 99-101]. 

Boundary element model 

Boundary element modeling (BEM) is another method which is similar to FEM. 

However all computations are done on the surface instead of the whole volume. This 

offers significant advantage in terms of computational efficiency over the FEM because it 

reduces the three dimensional problem (volume) to two dimensions (surface). As for the 

practical effects, this also means that only the surface of an object has to be discretized 

into patches or boundary elements. Furthermore, every node of this boundary mesh 

actually has a direct influence on all the other nodes. In the simplest linear case, the 

resulting system of equations can be represented as: 

  =    (18) 

where the influence matrices H and G are much smaller than the stiffness matrix K in the 

FEM case. U and P are the nodal displacemensst and surface force vectors, respectively. 



47 
 

Ecabert et al. introduces the use of a 2D BEM combining elastic and fluids materials to 

compensate for the brain shift occurring during surgery [102]. However this model only 

works for objects with homogenous material and non-linear equations can be difficult to 

express in BEM. Therefore it is less popular to be used in the soft tissue modeling for 

image-guided surgery. 

2.4.2 Discussion 

The above section has presented many of the techniques that have been used to 

compensating soft tissue deformation during image-guided surgery. These techniques 

range from the deformable splines to FE methods that approximate the full continuum 

mechanics model of brain deformation. Based on our literature search, the majority of the 

work completed to date has been focused on neurosurgery, they showed the ability of the 

models to predict deformation behavior, but they are not yet integrated into a system that 

could be used during surgery. Mass-spring model and FEM method are the main focus in 

deformation modeling research field. Mass spring model is a simple technique to model 

soft tissue deformation, compared with FEM technique. Due to their computational 

simplicity, they can be updated rapidly to display the dynamic behavior of the brain 

tissue. However, a significant challenge of mass-spring model is that proper values for 

the spring constants are difficult to derive from material properties, and so constitutive 

laws are difficult to express in the model. Furthermore brain tissues often undergo large 

deformations and their material properties are complex. For these reasons, FEM are 

preferable in our brain tissue deformation modeling research. 
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Chapter 3 

Improved Nonlinear Point Set 

Registration by Uniform Curve Features 

Subdivision Technique 

3.1 Introduction 

Medical image registration is the process of spatial mapping between two images that 

differ in image acquisition time, image properties, or viewpoint and subsequently 

producing a result image that is informative. For example, in postoperative assessment, in 

order to verify the technical results of the procedure, it is necessary to locate changes 

from preoperative and postoperative images through image registration. They are also 

useful to combine the complementary information from structural and functional 

imagery, like magnetic resonance imaging (MRI) and position emission tomography 

(PET). Generally, image registration methods can be divided into intensity-based and 

feature-based methods as described in Section 2.1.2. For an overview we refer to [13, 14, 

38], and the references cited therein. 

In feature-based registration, the process of feature correspondence should remain 

stable and invariant regardless of any feature variations and noise. Furthermore, 

degradations such as noise and outliers significantly challenge the accuracy of 

registration result. Thus the most preferred features extracted in advance would be points 

as its coordinates can be directly applied to find correspondence. The "points" in point set 

registration are often features extracted from an image, such as the corner points, 

boundary points or intersection points. An example of point set registration is shown in 
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Figure 3.1. Given are two images, typically called the reference image R and the floating 

image F. The goal is to identify correspondences between two sets of points and 

determine the transformation that maps one point set to the other. Iterative Closest Point 

(ICP) [41] is a popular method for rigid point set registration due to its simplicity and low 

computational complexity. ICP is an algorithm employed to assign correspondences 

based on the closest distance criterion and finds the least-squares rigid transformation 

connecting the two point sets. The algorithm iteratively revises the transformation until it 

reaches the minimum distance. For images where curve and contour extraction are more 

appropriate, feature points will be derived based on its feature characteristics such as 

edges, which have local maximum gradient magnitude, ridges, crest lines, etc. Curve and 

contour based registration has been used clinically to register medical image volumes 

[49, 103-105]. 

For this chapter, feature-based registration will be investigated with nonlinear 

image deformation. One of the challenges faced by feature-based registration would be to 

determine which specific type of feature is desired for a given task and imaging type. For 

this reason, a point set registration method using points and curves feature is proposed, 

which has the accuracy of registration based on points and the robustness of registration 

based on lines or curves. The proposed method is using hybrid approach in feature 

correspondence stage. The extracted line or curve pairs are modeled by point sampling so 

that they are subdivided according to curvature and length of curves. Then the 

mechanism of uniform subdivision of curves segment ensures that the subdivided points 

can match the original curve as close as possible and fulfill the requirement of point set 

registration. The deformation between images is described by thin plate splines (TPS), 
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which validated to be more accurate over other nonlinear transformation functions and 

more consistent in registration process even the correspondences are noisy [106]. 

 

 

3.2 Feature extraction 

3.2.1 Point extraction 

In point set registration, corresponding control points are identified by operator from both 

reference image and floating image. The corresponding points are also called 

homologous landmarks, to emphasize that they should represent the same feature in the 

different images. Generally, the point features in medical image registration are not only 

holding the geometry property, but also have some meanings in anatomy. Since control 

points are defined in pairs, the correspondence is straight forward. Automated approaches 

to feature extraction and feature correspondence are desirable but it is not the main focus 

of this chapter. Figure 3.2 shows the example of correspondence point pairs are 

Figure 3.1: Illustration of point set registration based on specified feature 

correspondence. Given two sets of points, assign the correspondences and the 

transformation that maps one point set to the other. 

Reference R Floating F 
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numbered in order to determine the relationship between reference image and floating 

image. 

  

(a) (b) 

 

3.2.2 Curve extraction 

In the process of medical image registration, matching a pair of curves differs from the 

purely curve alignment. Given a short curve and a long curve, the short curve must be 

matched as a part of the long curve with the curve alignment method. However this is not 

the case for image registration, where the curve is matched not only by aligning the 

coordinate but also by keeping consistent in the length of curve. The precision of curve 

extraction plays an important role in image registration, especially the start point and the 

end point because they decide the length of curve segment. As for our curve extraction 

method, the operator is required to mark a set of approximate points along the curve in 

Figure 3.2: An example of control points selection for (a) reference image and (b) 

source image which are numbered in pairs. 
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the image. The discrete points Pi (i=1,…, N) cannot represent curve feature precisely, so 

the curves need to be modeled and connected by line segment. 

3.2.3 Uniform curve subdivision 

There are numerous approaches proposed for alignment of curve features. The famous 

concepts are chamfer matching [40] and head hat matching algorithm [39]. In this 

section, we attempt a different method to match the similarity of curve features as close 

as possible. Based on the curve feature extracted earlier, whose start and end point 

correspond to the same image attribute, points will be interpolated in equal distance 

throughout the entire curve segment. The total number of interpolated points for related 

curve pairs will be equal, enabling the point correspondence to be determined easily. The 

process of modeling of a correspondence curve pair is same. Figure 3.3(a) and (b) are the 

result of our curve extraction method, where blue point is the approximate point along the 

curve feature and blue line is the modeled curve segment. Figure 3.3(c) demonstrates the 

curve subdivision result, where green points are the distributed points based on our 

proposed subdivision algorithm.  

The process of curve subdivision is summarized below: 

1. Calculate total distance between consecutive points Pi and Pi +1 in Pi (i=1,…, N). 

2. Specify NumP value to generate NumP points that interpolate a curve. 

3. Calculate interval distance ɗ by dividing the total distance with NumP value. 

4. Calculate the distance dist from current point Pcurr to the subsequent point in Pi. 

5. If distance is enough (d <= ɗist), generate a new point between Pcurr and Pcurr +1 in 

such a way that the distance between Pcurr and new point is interval ɗ. 
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6. If distance is not enough (d < ɗist), accumulate distance to the adjacent point. The 

curve segment in [Pcurr, Pcurr +1] needs not to be subdivided, and then turn to step 

4. 

7. The curve is subdivided continuously until fulfill the constraint i < N – 1. 

8. When the subdivision is stopped, the discrete points along the curve feature are 

obtained. 

   

(a) (b) (c) 

 

3.3 Nonlinear Point Set Registration 

The point set registration method involves identifying corresponding control points, 

matching the points set and estimating the image transformation from the locations of the 

control points. Due to the deformable nature of medical brain images, it generally has 

nonlinear geometric differences. At times, the local deformation is small and can be 

negligible. Hence using linear transformation is sufficient to register those images. When 

the geometric differences are huge and complex, nonlinear registration is needed to 

Figure 3.3: Landmark extraction and correspondence for uniform distributed points. 

(a) blue point is the approximate point along the curve feature. (b) blue line is the 

modeled curve segment. (c) the curve subdivision result, where green points are the 

distributed points based on our proposed subdivision algorithm. 
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provide more accurate transformation. Thin plate spline (TPS) is one of the most 

commonly employed transformation function for nonlinear image registration. It was first 

used by Goshtasby [92] in the registration of remote sensing images and then by 

Bookstein [107] in the registration of medical images. The main reason for choosing TPS 

in our algorithm is because it can produce a smoothly interpolated spatial mapping to 

address image deformation. The registration technique was implemented in MATLAB 

[108]. 

Given two sets of 2D control point pairs pi and qi , i=1,2,…,n in the reference and 

floating image respectively, TPS is capable of warping the points pi arbitrarily close to 

points qi  (x, y) based on the function of: 

 

(19)

 

where  

 n is the number of control points.  

 the coefficients ai characterize the affine part of the spline-based transformation, 

while the coefficients wi characterize the non-affine part of the transformation. 

 pi is the i th landmark.  

 U(|| (x, y) – pi ||) = || (x, y) – pi ||
2 

log (||(x, y) – pi ||
2
) is the radial basis function. 

The additional boundary conditions as shown in equation (20) must be satisfied to solve 

the equation (19). 

 

(20)

 

𝑓 𝑥, 𝑦 = 𝑎1 + 𝑎2𝑥+ 𝑎3𝑦+ 𝑤𝑖𝑈   𝑥, 𝑦 − 𝑝𝑖  

𝑛

𝑖=1

 

  𝑤𝑖 = 0

𝑁

𝑖=1

; 𝑤𝑖𝑥𝑖 = 0

𝑁

𝑖=1

;   𝑤𝑖𝑦𝑖 = 0

𝑁

𝑖=1
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3.4 Experiment and results 

Experimental results are presented in this section to demonstrate the application of the 

proposed method in coping with nonlinear deformations in clinical images. Image quality 

was inspected through subjective and objective quality assessments. Subjective quality 

assessment is the visual inspection to verify that the algorithms have successfully align 

floating image close enough to fit the reference image. There is no “golden criteria” in 

objective quality evaluation, but for demonstrating the validity of our method we choose 

root mean square error and mutual information to assess the results. The transformation 

performance was evaluated in the categories below. 

a) Error parameter 

The registration accuracy is evaluated by computing Root Mean Square Error 

(RMSE). MSE quantizes level of error between two images through the average of 

total sum of squared differences between both images. RMSE is the square root of 

MSE. 

 (21)

 

 (22)
 

where M and N is the number of rows and columns in an image. x is the intensity 

value of grayscale image from 0 – 255. 

  

𝑀𝑆𝐸 =
1

𝑀𝑁
   𝑥𝑖,𝑗 − 𝑥′𝑖,𝑗 

2
𝑁

𝑗=1

𝑀

𝑖=1

 

𝑅𝑀𝑆𝐸 =  𝑀𝑆𝐸 
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b) Degree of matching 

The degree of matching is calculated using mutual information. It is a statistical 

measurement between two images' content and checks the matched information rate. 

It is generally accepted to assess multimodal image registration. 

 

(23)

 

There are two experiments were conducted to demonstrate the performance of the 

proposed approach. First, we used a pair of sagittal images from two different patients 

[109] to illustrate the inter-subject registration. The aim of inter-subject image 

registration is to establish correspondence between the brains of two different individuals. 

In the second experiment, we used pre-operative image and intra-operative image after 

resection [110], representing intra-subject registration with the presence of significant 

geometric variations. In image-guided interventions, tissue can move and deform 

between preoperative scans and the intervention. These deformations may either be due 

to voluntary movements or involuntary activities such as breathing and heartbeat, or may 

be induced by an intervention. Based on intra-operative information, intra-subject 

registration is applied for predicting deformation of adjacent tissues. 

Shown in Figure 3.4(a) and (b) are the reference and floating image with 

geometric differences. The first row displays the sagittal images from two different 

patients, while the second row contains pre-operative image and intra-operative image 

after resection. Six salient point pairs were chose from both images, distributed all over 

the object of interest. For sagittal images, boundary of head was selected as curve feature 

and extracted from both images which interpolate a total of 31 control points. For another 

𝑀𝐼 𝑋, 𝑌 =   𝑃𝑋𝑌 𝑥, 𝑦 𝑙𝑜𝑔
𝑃𝑋𝑌 𝑥, 𝑦 

𝑃𝑋 𝑥 𝑃𝑌 𝑦 
𝑥,𝑦

 



57 
 

dataset, brain tissue was selected as curve feature and interpolates a total of 45 control 

points. Figure 3.4(c) is the intensity difference between Figure 3.4(a) and (b). Given the 

locations of two point sets, we applied TPS algorithm to estimate the non-rigid 

transformation. The registration result is Figure 3.4(d), in which feature points are 

matched accurately. Figure 3.4(e) demonstrates the linear subtraction of the aligned 

image and reference image. The proposed method performs well and demonstrates 

visually accurate image alignment. The two mentioned quality metrics are utilized to 

quantify the registration performance, which are presented in Table 3.1. 

In the first simulation, the proposed algorithm was successfully registered the 

image with an average intensity RMS error of 26.86 and MI value of 1.26. The proposed 

hybrid feature method achieved lower intensity error as compared with the point or curve 

feature alone. MI value also indicates that the proposed algorithm attained higher 

matched information rate of the image content. In the second set of simulation, the global 

distortions consist of non-rigid shape of the brain tissue and a removed region due to 

craniotomy. The proposed algorithm also successfully registered the image with an 

average intensity RMS error of 23.32 and MI value of 1.20. Hybrid feature approach is 

able to achieve better results as compared with the point or curve feature alone. 

 

 

 Registration quality Point Curve Hybrid 

Inter-subject 

registration 

Error parameter (RMSE) 35.0131 28.6687 26.8644 

Degree of matching (MI) 1.1391 1.1222 1.2567 

Intra-subject 

registration 

Error parameter (RMSE) 20.6699 27.0818 23.3145 

Degree of matching (MI) 1.1436 1.1191 1.2028 

Table 3.1: The comparison of the registration performance based on point or curve 

features with the proposed hybrid method. 
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(a) Reference (b) Floating (c) Before (d) Registered (e) After 

 

 

 

Figure 3.4: Image registration result. (a) Reference image and point set, (b) Floating image and point set, (c) difference 

between (a) and (b), (d) the registered floating image, (e) difference between (a) and (d). 
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3.5 Discussion and conclusion 

Feature-based image registration is a spatial mapping process for determining the point-

by-point correspondence between two images. The performance of point set registration 

algorithm depends on: 1) the performance of its feature correspondence step and 2) the 

performance of the transformation function that warps floating image to the reference 

image based on accurate feature correspondence information. Determining the specific 

type of feature for a given task and imaging type is a challenge faced by feature-based 

registration, as it was mentioned in the previous section. 

Our contribution includes the following aspects. We introduce the idea that 

incorporating the curve feature into nonlinear point set registration, which has the 

accuracy of registration based on points and the robustness of registration based on 

curves. We consider the alignment of two features as point sets alignment. According to 

this idea, we proposed the extracted curve pairs are modeled by straight line, and then 

they are subdivided uniformly according to curvature and length of curves. Moreover, the 

combination of independent points and curve sampling points help to balance the general 

point distribution in point set registration. In designing the experiments, we have tried to 

simulate with what we consider to be two of the major obstacles facing by nonlinear 

registration algorithms: geometry variations and missing data between the reference and 

floating images. We tested the proposed method on inter-subject and intra-subject 

medical images and apply TPS transformation to describe nonlinear local deformation. 

The experimental results reveal that the image registration algorithm with combination of 

point and curve feature is a feasible approach and accurate registration is possible under a 
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significant amount of geometric and intensity variations. In addition, hybrid feature 

approach achieved better results as compared with the point or curve feature alone. 

 

  



61 
 

Chapter 4 

Adaptation of Mutual Information 

Measure by Using Image Gradient 

Information 

4.1 Introduction 

In chapter 3, we have tackled the problem of spatial mapping using points and curves 

feature in point set registration. In this chapter, we will concentrate on rigid registration 

of multimodal images using voxel similarity measures. An information theoretic 

approach is presented for finding the correct alignment of an object in medical image. An 

advantage of the method presented in this chapter is that they require no preprocessing of 

the images, as the point set registration methods mentioned in the previous chapter. From 

a practical point of view, intensity-based registration is desirable because its results are 

objective and quantitative analysis is possible. 

The registration method applies the concept of mutual information (MI) to 

measure the statistical dependence between the image intensities of corresponding voxels 

in both images. Because no assumptions are made regarding the nature of this 

dependence and no limiting constraints are imposed on the modalities involved, MI is a 

general and powerful criterion, which can be applied on a large variety of applications. 

Retrospective Registration Evaluation Project (RREP) has done an extensive evaluation 

on the performance of various registration methods, the results demonstrated the superior 

performance of MI for automatic multimodal registration [111]. However, MI ignores the 
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spatial information contained in the images such as edges and corners that might be 

useful in the image registration. Since the joint intensity histogram by itself is 

insufficient, our focus is to increase registration robustness and accuracy by taking spatial 

information into consideration. Here, we introduce the Adaptive Mutual Information 

(AMI) measure which incorporates the gradient spatial information. The decision to 

choose gradient information is motivated by the fact that the image locations with a 

strong gradient have high information value, which could be useful for the image 

registration. Salient pixels in the regions with high gradient value will contribute more in 

the estimation of mutual information of image pairs being registered. Experimental 

results showed that our proposed method improves registration accuracy and it is more 

robust to noise images which have large deviation from the reference image. 

This chapter will present a review of the MI registration criterion and its 

application for multimodal medical image registration. We start with a discussion of the 

theory and implementation of the MI registration algorithm as originally presented by 

Collignon et al. [3] in Section 4.2. The proposed AMI approach is discussed in Section 

4.3. Validation of the AMI registration criterion is discussed in Section 4.4 and the 

registration performance of AMI is compared with the MI algorithm. Section 4.4.1 

examines the registration accuracy of the proposed method. Section 4.4.2 reviews the 

robustness of the algorithm with respect to noise and we conclude the chapter in Section 

4.5. 
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4.2 Mutual information registration algorithm 

4.2.1 Mutual information theory 

The basic idea of mutual information (MI) [3, 6, 63] comes from information theory 

which measures the statistical dependence between two random variables or the amount 

of information that one random variable contains about the other. For discrete random 

variables X and Y with their respective marginal probability distributions      ,        

and joint probability distribution      ,   , MI is defined as: 

 

(24)

 

MI is also related to the joint entropy information theory by the following equation: 

MI(X,Y) = H(X) + H(Y) – H(X,Y) (25) 

= H(X) – H(X|Y) (26) 

= H(Y) – H(Y|X) (27) 

If X and Y are two images that are geometrically related by the registration 

transformation, the terms H(X) and H(Y) are denoted as the entropy of the reference 

image and floating image respectively, while H(X,Y) is the joint entropy of both images. 

The MI similarity measure suggests that the images are geometrically aligned when 

MI(X,Y) of the corresponding images is maximal. If both marginal entropy H(X) and H(Y) 

are to be independent, which is the case there is no overlap area between two images, 

MI(X,Y) = 0. If either H(X) or H(Y) is completely contained in the other, both images X 

𝑀𝐼 𝑋, 𝑌 =    𝑃𝑋𝑌 𝑥, 𝑦 𝑙𝑜𝑔
𝑃𝑋𝑌 𝑥, 𝑦 

𝑃𝑋 𝑥 𝑃𝑌 𝑦 
𝑥,𝑦
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and Y are one-to-one related, MI(X,Y) = H(X) =H(Y). However, if both images only 

partially overlap, the MI measure becomes clear in equation (25), which can be 

interpreted that maximizing MI will tend to find as much as possible of the information 

that exists in the both images so that at the same time they explain each other well. 

Additional properties of MI are summarized in Table 4.1 (see [112] for their proof). 

 

Non-negativity: I(X,Y) ≥ 0 

Independence: I(X,Y) = 0         ,   =      .       

Symmetry: I(X,Y) = I(Y,X) 

Self-information: I(X,X) = H(X) 

Boundedness: I(X,Y) ≤ min( H(X), H(Y) ) 

≤ ( H(X), H(Y) )/ 2 

≤ max( H(X), H(Y) ) 

≤ H(X,Y) 

≤ H(X) + H(Y) 

Data processing: I(X,Y) ≥ I(X,T(Y)) 

 

4.2.2 Image registration using mutual information 

Unlike point set registration, the MI registration criterion does not require any 

preprocessing or segmentation of the images. MI based registration rely on the relative 

occurrence of intensity values in each of the images separately and their co-occurrence in 

both images combined. Although multimodal images of the same scene may have 

different intensity representation, the same voxels of the same object are not totally 

independent, but are statistically related. As such the applicability of MI is widely applied 

Table 4.1: Some properties of mutual information. 
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in multimodality registration problems [3, 65, 66, 113]. While originally MI was 

introduced for multimodality image registration, MI has also been used successfully for 

monomodality image registration, for instance, serial MR images [114], fMRI time series 

images [115], or mammogram images [116]. 

In the following section we will refer the two image data that are to be registered 

as the reference image, X and floating image, Y. Let x denote the image intensity in the 

reference image and y the intensity in the floating image. Intensities x and y are related 

through the geometric transformation Tα defined by the registration parameter α.  

The MI algorithm is summarized below: 

1. The reference and the floating image intensities are first linearly rescaled to the 

range [0,NX  – 1] and [0,NY – 1], with NX and NY as the number of intensities in the 

images. Typically, we use NX = NY = 256.  

2. Allocate an NX x NY array for the total number of bins in the joint histogram. 

3. Compute the joint intensity histogram JHIS(X,Y) of the overlap part X ∩ Y in the 

images by finding the intensity pairs. For every pixel i ∈ X ∩ Y, if the intensity 

value in X is X(i)= x, and the corresponding value in Y is Y(i)= y, then JHIS(x,y) = 

JHIS(x,y) + 1. 

4. Calculate the normalized joint intensity histogram. 

 

(28)

 

5. Calculate the joint image intensity distributions based on the normalized joint 

intensity histogram. 

𝑃𝐷𝐹 𝑥, 𝑦 =
𝐽𝐻𝐼𝑆 𝑥, 𝑦 

∑ 𝐽𝐻𝐼𝑆 𝑥, 𝑦 𝑥,𝑦
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(29)

 

6. Calculate the marginal intensity distributions by the sums of the rows and the 

columns of the normalized joint histogram. 

 

(30)

 

 

(31)

 

7. The MI registration criterion is then evaluated by equation (24). 

8. Repeat step 1 – 7 to search the transformation parameters that maximize the 

mutual information. The optimal registration parameter α
*
 is found from 

 
(32)

 

4.3 The proposed adaptive mutual information (AMI) 

4.3.1 Image gradient information 

The gradient information is a measure of the image intensities changing rate between 

neighboring voxels and it is commonly used for edge detection process. We assumed that 

the image locations with a strong gradient contain high information value, which could be 

useful for the image registration. Furthermore, the gradient intensity utilizes all the 

information which is in a medical image and as such, is suitable for the registration 

problem. The gradient function, ∇ ̅ of a 2D image is defined as the gradient vector, Gx, 

Gy in x and y directions: 

𝑃𝑋𝑌 𝑥, 𝑦 =    𝑃𝐷𝐹 𝑥, 𝑦 

𝑦𝑥

 

𝑝𝑋 𝑥 =  𝑃𝐷𝐹 𝑥, 𝑦 

𝑦

 

𝑝𝑌 𝑦 =  𝑃𝐷𝐹 𝑥, 𝑦 

𝑥

 

𝛼∗ = arg𝑚𝑎𝑥𝛼  𝐼 𝑋, 𝑌  
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(33)

 

The corresponding voxels in the reference and the floating image are denoted by  ̅ and 𝑌̅, 

respectively. There are a number of different ways to calculate gradient information from 

images. In the work presented here, we used a simple approach where the gradient 

magnitude is calculated by applying the x and y components of the two-dimensional 

numerical gradient according to the following expressions: 

 
(34)

 

4.3.2 Normalized mutual information based on significance of pixels 

In image registration, the significance of pixels in a medical image is not the same. Since 

high gradient magnitude is preferred, the significance of a pixel Si is determined by 

incorporating the scaled gradient magnitude as follows: 

 

(35)

 

Gi is the gradient magnitude values derived from the equation (34) and Ii is the original 

intensity values of the image. The result of Si is the saturation with the maximum of one 

and the minimum of zero because the addition of the terms requires normalization. The 

result image is then linearly rescaled to the range [0,NX  – 1] and [0,NY – 1]. Typically, we 

use NX = NY = 256. The intensity transitions that are depicted in the image are emphasized 

by adding the gradient term to the original image, as shown in the Figure 4.1. 

∇𝑋̅ =  
𝐺𝑥
𝐺𝑦

 =

 
 
 
 
 
𝛿𝑋̅

𝛿𝑥
𝛿𝑋̅

𝛿𝑦 
 
 
 
 

 

 ∇𝑋̅ =  ∇x2 + ∇y2 

𝑆𝑖 =
 𝐺𝑖 + 𝐼𝑖 

 𝐺𝑚𝑎𝑥 + 𝐼𝑚𝑎𝑥 
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Because of the statistical dependency, MI is sensitive to the amount of overlap between 

both images. Normalized mutual information (NMI) measures were introduced by 

Studholme et al. [67] to overcome this problem. This is shown in the following equation: 

 

(36)

 

We will therefore use NMI to combine the intensity and gradient information into a 

single cost function. Finally, the complete MI cost function is expressed below: 

 

(37)

 

where Sr and Sf are the significance of pixels of both the reference and floating image 

derived from the equation (35). By applying mutual information to the gradient 

magnitude images themselves would seem rational to incorporating spatial information. 

Therefore we also experiment it and discuss the result in Section 4.4. 

   

(a) (b) (c) 

 

𝑁𝑀𝐼 𝑋, 𝑌 =  𝐻 𝑋 + 𝐻 𝑌  /𝐻 𝑋, 𝑌  

𝐴𝑀𝐼 𝑆𝑟 , 𝑆𝑓 =  𝐻 𝑆𝑟 + 𝐻 𝑆𝑓  /𝐻 𝑆𝑟 , 𝑆𝑓  

Figure 4.1: Example of the intensity changes and contribution of gradient information 

to the resultant image. A transaxial slice of a MR image is shown in (a) and the 

corresponding gradient image calculated according to (48) is presented in (b). The 

resultant image (c) is found by summing over intensity value of original image and 

gradient image based on the formula (35) stated above. 
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4.4 Comparative studies between MI and AMI 

The performance of the registration criterion was evaluated for rigid registration of the 

brain images. In this work, the main idea behind the validation method was to compare 

the similarity measures of different transformation parameter α relative to their true 

position. This was done by first applying a known transformation to an image and then 

transforms the image within the search space. We will plot the similarity measures graph 

to compare their global maxima and the smoothness of the search space. First, 

experiments with known image transformation show the quality of the registration 

method. Further tests reveal the robustness of the method with respect to Gaussian noise. 

For better understanding and visualization for the results, we analyze separately rotation 

and translation. 

The similarity measure was implemented in MATLAB [108] and two different 

datasets are used in the experiments, which are acquired from the Whole Brain Atlas 

website [117]. Dataset A contains high resolution MR and CT images, while dataset B 

contains MR images of different slice. CT/MR and MR/MR image pairs with known 

transformation parameter are registered in order to validate the registration accuracy. 

Registration of MR/MR images is a common monomodality scenario for intensity-based 

registration. The same tissue characteristics are imaged and the structure in the images is 

similar. Registration of CT/MR images is a more difficult problem because CT image 

depict different anatomical details compare to MR image. However the corresponding 

structures and gradients are appearing in both images. The reference and floating image 

pairs are presented in Figure 4.2. In all experiments, the default joint histogram size used 

in the algorithm is 256 x 256. 
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(a) CT image (b) MR image 

  

(c) MR image 14
th

 slice (d) MR image 15
th

 slice 

 

4.4.1 Registration accuracy estimation 

In this experiment, the transformations were performed with respect to the rotation range 

of [−20°, 20°] around its center point, and translation range of [−20, 20] (pixels) on x-

axis to search for the optimum value of the registration function. Since the datasets were 

originally aligned, the ground-truth transformation parameters are known. Any shift or 

rotation away from their original positions will decrease the similarity measure of image 

pair. The registration result of the normalized mutual information (NMI), gradient-based 

Figure 4.2: 2D image slices used in our experiments. The top row is the dataset A: 

CT/MR image pair; the bottom row shows the dataset B: MR/MR image pair. 
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mutual information (GMI) using the gradient image and the proposed adaptive mutual 

information (AMI) were compared in the experiments. To evaluate the performance of 

the methods, the plots of different similarity measures values against the changes in 

translation in x-axis (Tx) as well as the changes in rotation about z-axis (Rz) are shown. 

The results of the MR/MR monomodality registration are presented in Figure 4.3. 

The left figure shows the curve functions for rotation around its center point. Clearly, 

AMI yield the highest similarity value and the correct registration solution was found. It 

also can be seen that NMI function has a local minimum at the position of correct 

alignment, where the highest similarity value lies on the -1° rotation. There is only a 

single strong optimum for AMI and GMI, which coincides with the correct registration 

result. The AMI measures produced slightly better result compared to NMI and GMI 

measures, although the differences were not significant. In the right figure, the curve 

functions for translation in the horizontal direction are shown. All three methods found 

the correct registration solution and showed a single high peak value. 

Figure 4.4 shows the results of the CT/MR registration experiment. The left figure 

is the curve functions for rotation around its center. Again, NMI function doesn‟t give the 

correct registration result and it has a local minimum at the position of correct alignment. 

The highest similarity value lies on the 1° rotation. To further pinpoint the performance 

of AMI, the rotation range is extended to [-60°, 60°] and showed in the bottom row of 

Figure 4.4. The results demonstrated that AMI produces a sharper peak and decreased 

faster than other methods as the image rotated away from their original positions. In the 

right figure, the curve functions for translation in the horizontal direction are shown. The 
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results are similar except NMI has slight misregistration which was circled out in the 

figure. 

  

(a) (b) 

 

4.4.2 Robustness to noise 

Subsequently, we carry out noise experiments with the CT/MR dataset. In this section, 

the floating image was added the Gaussian white noise with the mean set to zero, and 

variances are respectively 0.01, 0.02, 0.03, 0.04, and 0.05. The Gaussian noise affects 

independently all pixels of the images and thus highly corrupts the information content. 

Under these five conditions, we are looking for a smooth function with a sharp peak. In 

Figure 4.5, we observed that NMI doesn‟t produce a global maxima and it failed to 

preserves the curve function after the noise variance of 0.02. On the other hand, AMI 

function preserves the curve function from distortion at each noise level within the 

rotation range of [-60°, 60°]. Although GMI and AMI also have a local minimum at the 

position of correct alignment due to the noise corruption, they produce the result more 

closely to the correct registration solution. Table 4.2 shows the rotation error for all five 

Figure 4.3: Similarity measures result for MR/MR image registration. From left to 

right: (a) rotation around its center point, (b) translation in the horizontal direction. 
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datasets and emphasize the lowest value in bold. The rotation error of both GMI and CMI 

measures are below 3°. 

Noise 

variance 
NMI GMI AMI 

0.01 -3° 1° 1° 

0.02 -8° 2° 1° 

0.03 -10° 2° 3° 

0.04 -25° 2° 2° 

0.05 -31° 2° 3° 

 

4.5  Discussion and conclusion 

MI is an effective similarity measure for multimodal image registration. As applied here 

the technique is intensity-based, rather than feature-based. Such an approach avoids the 

task of identifying corresponding features information in two different modalities, which 

is difficult to automate for a wide range of clinical data. Despite the general promising 

results, there are situations which can challenge the applicability of MI and result in 

misregistration. In this chapter, we have presented the adaptation of mutual information 

measure which incorporates the spatial information based on significance of pixels. We 

assumed that the image locations with a strong gradient contain high information value, 

which could be useful for the image registration. The proposed method uses a simple way 

to enrich the image description by integrating the gradient information. We experimented 

with various modalities of brain images and showed that our method is more reliable than 

the existing mutual information method. From the result, we can see that AMI does not 

only make the similarity measure sharper, but also decrease the interpolation induced 

Table 4.2: The rotation error for all the five dataset based on NMI, GMI and CMI 

methods. The values highlighted in bold emphasize the lowest error. 
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local minima. It also demonstrated that AMI is more robust to noise than existing MI 

method. In cases in which MI performs well, the registration result of AMI is similar to 

MI and the global maxima do not alter significantly. Another similarity measure was 

included in the experiment by simply applying mutual information to gradient images. 

The idea seems logical in incorporating spatial information and the results showed that 

GMI generates the correct registration solution as AMI. However, because a lot of 

intensity information is discarded, the GMI value is much lower compare to AMI. 

  

(a) (b) 

  

(c) (d) 

 

Figure 4.4: Similarity measures result for CT/MR image registration. The top row 

shows the rotation range of [-20°, 20°], and translation range of [-20, 20] on x-axis. 

The bottom row shows the rotation range of [-60°, 60°], and translation range of [-60, 

60] on x-axis. From left to right: (a) rotation around its center point, (b) translation in 

the horizontal direction. 
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(a) (b) 

 
(c) (d) 

 
(e) 

 

 

  

Figure 4.5: CT Similarity measures result for CT/MR noise image registration. The 

Gaussian white noise was added to the floating image, with the mean is zero, and 

variances are respectively (a) 0.01, (b) 0.02, (c) 0.03, (d) 0.04, and (e) 0.05. 
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Chapter 5 

Multi-Features for Mutual Information 

based Medical Image Registration 

5.1 Introduction 

Recently mutual information (MI) has grown to be accepted as a popular similarity 

measure and widely being recognized in the field of medical image registration. 

However, a known disadvantage of MI-based image registration is the lack of concern on 

any spatial information and involves only the pixel intensities as an input feature. To 

avoid this additional spatial information is required. It has been shown in the previous 

chapter that incorporating gradient information into MI algorithm can overcome some of 

the shortcomings of the conventional technique. The method presented in this chapter is 

an extension of previous work aimed towards registration of multiple spatial features. 

From the vast amount of feature choices that describe the structural information of 

images, we would like to incorporate the spatial feature that: (a) classify information-rich 

areas; (b) return values that are a smooth decreasing function of misregistration. Along 

this direction, we propose multi-features mutual information (MF-MI) measure to 

simultaneously use all information obtained from multiple features. The method is 

thoroughly investigated and its accuracy and robustness are evaluated on both simulated 

and experimental data. Through quantitative evaluations, the MF-MI measure is proven 

to handle a wide variety of registration difficulties. Using multiple spatial features, the 

proposed algorithm is less sensitive to the effect of noise and some inherent variations, 

giving more accurate registration. 
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The organization of this chapter is as follows. Section 5.2 explains about the 

registration framework and implementation. The spatial features used for the image 

registration are discussed in Section 5.3. Evaluation is performed on the medical images 

and we illustrate the clinical relevance of the proposed method for image registration 

involving CT, MR, MR-PD, and SPECT images of the head, see sections 5.4. The 

conclusion is drawn in Section 5.5. 

5.2 Multi-features enhanced mutual information algorithm (MF-MI)  

In a survey of MI-based image registration [53], Pluim et al. provided a comprehensive 

review of the MI algorithm and mentioned the challenges to “correct” the assumption of 

Shannon entropy that the intensity values of neighboring pixels are uncorrelated. Multi-

channels or multi-dimensions mutual information are one of the important trends in 

image registration to overcome the shortcoming of MI technique. The idea behind this is 

to include additional channels or dimensions in joint intensity histogram that describe the 

spatial information which in turn helps to increase the robustness and accuracy of the 

registration algorithm. However, as dimensionality increases, the power of histogram 

statistics decreases and more samples are needed to fill the joint histogram up to a 

sufficient level, so that MI can be reliably estimated. In this chapter, we propose an 

extension of the standard single feature MI similarity measure to a multi-features MI 

measure to solve the problem of joint probability distribution estimation in a multi-

dimensional feature space. The proposed measure incorporates the commonly used image 

intensity feature with additional spatial features, such as image gradients or other texture 
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parameters. According to their complementary properties, additional spatial features are 

assimilated in MF-MI similarity measure: 

 

(38)

 

where the λ value ranges from the value one to zero. This property is very important for 

the weighting function because the output of equation presents a fraction whose value 

extends from zero to one. 

The MF-MI similarity measure is defined as the aggregate measure of MI from a 

set of spatial distribution extracted from the images. The correct image registration is 

achieved by the maximization of the MF-MI value. Being a linear combination, all of the 

properties (as listed in Table 4.1) held by the MI automatically hold for the MF-MI, such 

as non-negativity, independence, symmetry, etc. Given the reference image R and 

floating image F, H(Ri), H(Fi), and H(Ri ,Fi) are the marginal entropies derived from all 

image features [i=1, …, i=N]. The weighting coefficients λi specify the relative 

contribution of each image feature to the MF-MI. When a single feature is used with λ1 = 

1, MF-MI is equivalent to the commonly used NMI similarity measure. When multiple 

features (i > 1) are used, the weights λi can be adjusted for specific dataset to resolve the 

potential ambiguities. By valuing the weighting coefficient, we can differentiate the 

importance of the spatial information from the normal intensity information. The best 

weights (λ values) for each image feature were obtained by experimental method. The 

procedure is as follows: 

𝑀𝐹𝑀𝐼 𝑅, 𝐹 =   𝜆𝑖
  𝐻 𝑅𝑖 +  𝐻 𝐹𝑖  

𝐻 𝑅𝑖 , 𝐹𝑖 

𝑁

𝑖=1

,    0 ≤  𝜆𝑖 ≤  1 
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1. Calculate NMI of each image feature according to equation (24). The experiments 

were performed with respect to the rotation range of [−90°, 90°] around its center 

point, to search for the optimum value of the registration function. 

2. Initialize ci = 1 and di = N
2
+N. 

3. Calculate the entropy of each image feature according to the equation (1). If 

entropy (i) > entropy (i+1), then ci = ci + 1, else ci+1 = ci+1 + 1. 

4. If i < N, then increment i and go to step 3. 

5. The weights λi of each image feature is found from. 

 

(39)

 

5.3 Spatial features 

Now that the registration framework for multi-features mutual information has been 

defined, spatial features need to be chosen. From the vast amount of choices, we are 

looking for the features that describe the spatial information of images and supply 

supplementary features to the algorithm, which may improve the registration quality. The 

term spatial information is the parameters that describe and provide important details 

about the image such as image gradient, edges, corners, texture, etc. To analyze the 

spatial features, we are trying to explore standard statistical measures from texture 

parameters. The texture parameter refers to the characterization of the spatial variation in 

pixel intensities, which is useful in retrieving the information available from medical 

images. Because texture has so many different varieties, we have selected gradient 

magnitude and standard deviation filter for further investigation. However the standard 

𝜆𝑖 =
𝑐𝑖
𝑑𝑖
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deviation image feature was not included in the chapter because MF-MI with standard 

deviation image feature produces poorer registration result in all experiments. Besides, it 

provides similar image intensity profile with adaptive image gradient. Based on the 

objective of MF-MI, the image feature should describe the spatial information of images 

and supply supplementary features to the algorithm, which may improve the registration 

quality. Therefore only image gradient will be discussed in the following sections. 

5.3.1 Adaptive image gradient 

Gradient magnitude is a measure of the image intensities changing rate between 

neighboring pixels. It is normally used to detect the object boundaries where pixels 

change their intensity suddenly. By deriving gradient magnitude map, pixels at object 

boundaries would give large values, which may only occupy a small part of the whole 

image volume. On the other hand, the background regions and anatomical structures 

would give small and almost constant values. Thus, we define a new image feature, 

namely adaptive image gradient (AIG), by incorporating the spatial information about the 

distance of a pixel to the object boundary into the original image. In developing AIG 

feature, we made the following modifications to the original gradient magnitude map to 

vary it smoothly and gradually from object boundaries towards similar image regions. 

1. We begin by defining a gradient operator, ∇ G in an image. In this work, we used 

the x and y components of the two-dimensional numerical gradient to calculate the 

gradient magnitude according to equation (34). 

2. Then, we derived a logical gradient map of the image by performing element 

comparison to the gradient magnitude, where each element of the logical gradient 

map is: 
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 Logical 1 (true) if the corresponding element of gradient magnitude is greater 

than zero. 

 Logical 0 (false) if the corresponding element of gradient magnitude equals 

zero. 

3. Based on the binary information in logical gradient map, we perform distance 

transform by calculating the Euclidean distance between each pixel that is set to 

zero (0) and the nearest nonzero pixel. In 2D image, the Euclidean distance 

between (x1, y1) and (x2, y2) is 

 
(40)

 

4. The result is then linearly rescaled to the range [0, 1]. The AIG feature is 

determined by multiplying the distance transform result to the gradient magnitude 

map, as shown in Figure 5.1(b). 

Following this formulation, the AIG value increases smoothly and gradually as the pixel 

position moves from boundaries towards interiors of anatomical structures. With this 

property, the AIG feature can provide detailed spatial information, which is about the 

distance of a pixel to a certain object‟s boundary, and therefore is superior to the 

traditional gradient magnitude map. 

5.3.2 Intensity profile comparison 

As a comparative illustration, we individually computed the intensity value profiles of the 

original image and AIG feature map of a clinical image. The original image is shown in 

Figure 5.1(a), while Figures 5.1(b) present the corresponding slice from the AIG maps. 

For a detailed explanation, Figures 5.1(c) and (d) respectively present the value profiles 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =   𝑥1 − 𝑥2 2 +  𝑦1 − 𝑦2 2 
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of the same line (marked as dashed lines) shown in Figures 5.1(a) and (b). Note that the 

values from individual images are re-scaled to [0, 1] for a fair comparison. As suggested 

by the figures, feature values in Figure 5.1(c) are very sparse, where the majority value is 

small and constant. On the contrary in Figure 5.1(d), the value variation from boundaries 

towards homogenous regions provides more information details. In addition, much more 

structural information can also be found in the AIG map. For instance, regions close to 

boundaries in Figure 5.1(b) suggest much more information than those in Figure 5.1(a). 

   

(a) (b) 

   

(c) (d) 

 

  

Figure 5.1: (a) and (b) are slices respectively selected from a clinical MR-T1 image 

volume and its corresponding AIG maps. (c) and (d) are value profiles of lines in (a) – 

(b), which are marked as dashed lines. 
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5.4 Experimental Results 

In this section, we conduct several experiments with MATLAB software [108] to 

evaluate the performance of different spatial features that we have selected. An ideal 

registration function should present a global maximum close to the correct transformation 

parameters. Moreover, the registration function should be smooth and convex with 

respect to different transformation parameters and the number of local maxima of the 

registration function should be as small as possible. In our experiment, the NMI method 

was used as the baseline for comparison of results. Subsequently, we will highlight some 

typical registration functions for different registration problems. In Section 5.4.2, we 

shall evaluate the robustness of the spatial features by adding Gaussian white noise to the 

floating image. In Section 5.4.3, the robustness of the spatial features to different image 

overlaps was assessed. 

5.4.1 Registration Quality Estimation 

A good registration algorithm should be able to recover the accurate transformation 

between two images. Accordingly, the registration quality of the NMI and MF-MI 

similarity measure is evaluated based on a wide variety of registration problems: 

multimodality registration and monomodality registration of different time series images. 

The medical images involved were obtained from the Whole Brain Atlas (WBA) 

database [117]. Only 2D images from the central slice of the axial view are selected for 

registration due to the large number of registration tasks involved. For visual inspection, 

the brain images used in the experiment are shown in Figure 5.2 and Figure 5.3. A 

summary of each data set is given below. 



84 
 

a) Data-set 1: CT, MR-T2, MR-PD, SPECT, 42 year-old male, Metastatic 

Bronchogenic Carcinoma, as shown in Figure 5.2. 

b) Data-set 2: CT/CT, 86 year-old male, Acute Stroke with fluent aphasia, as shown 

in Figure 5.3a. 

c) Data-set 3: MR-T2/MR-T2, Multiple Sclerosis patient, as shown in Figure 5.3b. 

d) Data-set 4: SPECT/SPECT, 36 year-old male, AIDS Dementia, as shown in 

Figure 5.3c. 

    

(a) (b) (c) (d) 

 

The experiments were performed with respect to the rotation range of [−90°, 90°] around 

its center point, and translation range of [−90, 90] (pixels) on x-axis to search for the 

optimum value of the registration function. Since the data sets were originally aligned, 

the ground-truth transformation parameters are known. Any shift or rotation away from 

their original positions will decrease the similarity measure of the image pair. The 

registration results for all four test data sets are summarized in Table 5.1 and Table 5.2. 

Table 5.1 shows the comparative performances for rotation around its center point. It can 

be observed that the MF-MI registration algorithm successfully register all pairs of 

images, compared to the NMI registration algorithm. A misalignment occurred in MR-

Figure 5.2: A slice of image series from one individual used in the multimodality 

registration experiment. (a) CT brain image. (b) MR-PD brain image. (c) MR-T2 brain 

image. (d) SPECT-Tc brain image. 
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PD/SPECT registration task, which the optimum parameter being slightly away from the 

correct global maximum which is 0°. This might be due to the fewer similarities between 

the image contents of MR-PD and SPECT. In Table 5.2, most of the cost functions point 

to the correct global solution. 

  

(a) 

  

(b) 

  

(c) 

 

Figure 5.3: A slice of image series from one individual used in the monomodality 

registration experiment. (a) CT brain image. (b) MR-T2 brain image. (c) SPECT brain 

image. 
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As summarized in Table 5.1 and Table 5.2, the MF-MI results were almost similar 

to the NMI measure in all registration cases except MR-PD/ SPECT. Although we cannot 

conclude that MF-MI is more efficient in searching for global maximum at all cases, their 

accuracy results are the same or closer to the ground truth. When the spatial information 

was used, the registration functions are improved especially for poor image 

correspondence or lower resolution images like SPECT images. 

 

Data sets 
Accuracy 

NMI MF-MI 

Multimodality   

CT/MR-T2 0 0 

MR-T2/PD 0 0 

MR-PD/SPECT 2 0 

Monomodality   

CT/CT 0 0 

MR-T2/T2 0 0 

SPECT/SPECT 0 0 

 

Data sets 
Accuracy 

NMI MF-MI 

Multimodality   

CT/MR-T2 0 0 

MR-T2/PD 0 0 

MR-PD/SPECT 0 0 

Monomodality   

CT/CT 0 0 

MR-T2/T2 0 0 

SPECT/SPECT 0 0 

 

  

Table 5.1: Comparative performances between NMI and MF-MI for the experiment of 
rotation around its center point. The “Accuracy” column is the rotation error in degree. 

Table 5.2: Comparative performances between NMI and MF-MI for the experiment of 
translation in x-axis. The “Accuracy” column is the translation error in pixel. 
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5.4.2 Robustness to Noise 

Medical images are prone to be corrupted by noise due to different conditions that can 

occur during the acquisition procedure. The goal of this experiment is to discuss the 

effect of noise to the algorithm‟s performance and the advantage of spatial information in 

terms of robustness to noise. We carried out the experiment with CT/MR-T2 image pairs 

from data-set 1 and added various levels of Gaussian white noise with mean (m = 0) and 

variance (ν = 0.0001, 0.0003, 0.002, 0.007, and 0.01) to the floating image. For these 

images, the Gaussian white noise with different variances will produce the noise level 

around 1%, 2%, 5%, 8%, and 10%. We are not interested to go further above 10% noise 

level because the Gaussian white noise highly contaminates the information content in 

medical images. Under these five conditions, we analyze the impact of noise on the 

global maximum searching and the smoothness of the function. 

The registration results for various noise levels are summarized in Table 5.3. The 

values in the column labeled with “Accuracy” are the rotation error of the registration 

function. The global maxima of the function achieved using MF-MI is closer to the 

optimum 0° and the results remained largely consistent as noise levels increased. 

However this is not the case with NMI method, where the global maximum is greatly 

influenced by the noise artifact and the accuracy decrease significantly as noise levels 

increased, where there is a noticeable increase in the rotation error for ν = 0.01. This 

registration inaccuracy can be caused by the significant loss of structural characteristics 

when high level of noise is added. As the noise level increases, the correlation between 

images is weakened and the convergence ranges are broadened. This reveals that MF-MI 

with spatial information is much less sensitive to the increase of noise compared to the 
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standard single feature NMI measure. Compared with the NMI, MF-MI has more 

information to represent the whole structure features of medical image and presents good 

stability even in a noisy environment. 

Noise level (ν) 
Accuracy 

NMI MF-MI 

   

0.0001 ≈ 1% -1 0 

0.0003 ≈ 2% -1 0 

0.002 ≈ 5% -1 0 

0.007 ≈ 8% -1 0 

0.01 ≈ 10% -2 0 

 

5.4.3 Invariance to image overlaps 

In this section an extended investigation was made to examine the behavior of measures 

to the misalignment of an image when it is presented with varying image overlaps. In 

order to look at the effect it has on registration measures, the CT/MR image set was 

truncated in-plane to produce image pairs with different overlapped regions. We used a 

simple model where there are two parameters, one controlling the changes in rotational 

alignment θ, around its center point and another controlling the field of view (FOV) to 

vary the overlaps. For simplicity, the reference image has a complete extent, while the 

floating image has a limited extent determined by the parameter FOV. Using this simple 

model, the behavior of measures can be evaluated directly for different rotational 

misalignment and field of view. The registration results for each measure and each FOV 

parameters are shown in Table 5.4. Both measures provide robust recovery of alignment 

until the FOV is reduced to 70%. MF-MI with spatial information relatively provides 

Table 5.3: Comparative performances in terms of different weighting coefficients for 
different noise level. The “Accuracy” column is the rotation error in degree. 
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good recovery of alignment for all but misalignments occurred at the FOV of 60% and 

below. To further expound the experiment result, the registration functions for rotation 

degree between -30° and 30° and field of view parameter FOV between 90% and 50% 

are shown in Figure 5.4. It can be seen that the response of all measures are affected 

considerably by the variation in field of view. As the field of view increases, the local 

maxima of the function increases and the smoothness of the function is lost. However 

MF-MI measure provides a better response with a much sharper peak at the correct 

alignment. 

Field of View (FOV) 
Accuracy 

NMI MF-MI 

   

90% 0 0 

80% 0 0 

70% -1 0 

60% -1 1 

50% 1 1 

 

  

Table 5.4: Comparative performances in terms of different weighting coefficients for 
different FOV level. The “Accuracy” column is the rotation error in degree. 



90 
 

  

(a) (b) 

  

(c) (d) 

 

(e) 

 

Figure 5.4: The registration function (CT/MR-T2) versus relative rotation for different 

field of view. From left to right: (a) 90%. (b) 80%. (c) 70%. (d) 60%. (e) 50%. 
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5.5 Discussion and Conclusion 

Although MI has been successfully applied to medical image registration, its reliability 

depends on the statistical stability of samples. Hence MI function is easily influenced by 

the intensity interpolation and noise artifacts, which may cause many local maxima that 

lead to the failure of registration. In addition, MI presents a poor performance for 

registration of images with low resolution or with small overlapped area of images. To 

overcome these weaknesses, we have introduced MF-MI for robust registration of 

monomodality and multimodality brain images. One major contribution of MF-MI 

method is the incorporation of multiple image features into MI method, while allowing a 

flexible choice of the spatial information through weighting coefficients. The constant 

weighting scheme λ was used to weigh the significance of the spatial information and it 

can be adjusted for specific dataset or fine-tuned through experiment samples. The 

performance of this weighting scheme highly depends on the parameterization of λ for 

different registration tasks. Furthermore, the proposed MF-MI measure can be computed 

for a number of additional features, as long as these features provide the same output 

image resolution. 

Through quantitative evaluations, the MF-MI has been shown to produce an 

improvement of the registration compared with standard MI using intensity information 

alone. Using multiple image features, the proposed method has reduced the effect of 

noise and some inherent variations, making the registration result more accurate. In cases 

in which MI performs well, the registration result of MF-MI is similar and the global 

maxima do not alter significantly. In summary, rigid registration experiments indicate 

that the MF-MI keeps sharp peaks and fewer local maxima all along. The main limitation 
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is in the assumption whether the image features identify enough information-rich pixels 

in the image for registration. Such issues can be further avoided and improved by other 

more reliable image feature parameters inclusion from the original image to enhance 

image registration. 
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Chapter 6 

Image-guided surgery system: 

Development of data visualization 

interface with navigation probe-tissue 

interaction 

6.1 Introduction 

The development of IGS has mostly started in neurosurgical [118-122] and orthopedic 

[123-126] applications, and is often associated to minimally invasive interventions. The 

application of IGS in surgical environment covers several aspects including: 

identification of target of interest, instrument navigation from entry point to the target and 

visualization of tracked surgical instruments on reformatted image slices. In order to 

provide accurate spatial navigation and guidance, IGS relies on the accuracy of 

coregistration of the patient‟s position in operating room, patient-specific images 

generated by CT or MR, and surgical instrument location. This accuracy is dependent on 

the assumption of accurate initial registration and a static relationship between patient 

and image model. However, brain tissue deformation and shifting occurs during surgery 

can compromise this spatial relationship. Since the brain undergoes varying levels of 

deformations at different stages of the surgery, we are looking at the possibility of 

building a deformation visualization technique using finite element (FE) methods to 

simulate the intraoperative brain shift. If the soft tissue deformation could be detected, 

and update the pre-operative images, then this technology could have a major impact on 

many more common procedures. 
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In general, medical data visualization works with either image data or mesh data. 

Image data refers to DICOM, Tiff, and Jpeg formats. Mesh data are solutions in Vtk, 

mha, Stl, Abacus, and Ansys formats. Currently there are a few toolkits developed as 

specialized library for medical image processing and visualization applications. Insight 

Segmentation and Registration Toolkit (ITK) [127, 128] provides image registration and 

segmentation algorithm implementations, while visual data representations can be created 

with the Visualization Toolkit (VTK) [129-131]. Based on ITK and VTK libraries, many 

visualization frameworks exist to provide higher level functionality and reduce the time 

to develop new applications. The Medical Imaging Interaction Toolkit (MITK) [132-134] 

proposes a highly organized library to provide support for high level user interactions in 

ITK and VTK based medical applications. The Medical Imaging Toolkit [135] is another 

library for medical image processing and visualization application development. Apart 

from these toolkits, other groups have developed different tools for medical applications 

based on ITK and VTK libraries [136]. In contrast to previously described toolkits, our 

goal in this chapter is to build a prototype visualization display and navigation platform 

for interpretation of IGS. The main framework is based upon Qt (ver. 4.8.6) and it 

integrates VTK (ver. 5.10.0) as the rendering kernel. This work is mainly developed by 

using C++ programming language, which significantly benefits the flexibility and 

extensibility of the program. 

This chapter also presents an analytical model to study the navigation probe-tissue 

interaction. Brain shift is a complex phenomenon and different reasons causing the brain 

deformation includes changes in pressure and fluid levels after the dura mater has been 

opened, physiological reactions to anesthesia and tissue retraction or resection performed 
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by the surgeon [8, 9, 89]. Although there are many different reasons for brain shift during 

medical intervention, most of the studies mentioned in the literatures [89, 137] focused in 

the development of biomechanical models which estimate displacements for the cause of 

deformation, such as direction of gravity or craniotomy procedure and require 

intraoperative measurements to constrain their model. The aim of this work is to 

investigate the pattern of brain deformation with respect to location and magnitude and to 

consider the implications of this pattern on models for correcting brain deformation in 

IGS systems. When the interactive force between the tissue and the surgical probe is 

known and the tissue properties are accurately predicted, the deformation of the tissue or 

organ can be calculated for visualization. The analytical model accounts for the probe‟s 

geometric, material properties, and also the brain tissue‟s nonlinear material properties. 

We extracted related anatomical structures from a CT image and generated a FE mesh in 

order to study the deformation of the brain. 

The rest of this chapter presents details of our developed prototype visualization 

and navigation platform as follows. In Section 6.2, a detailed description of the 

integration of toolkits and the software architecture is given. We then present the 

visualization module in Section 6.2.1, and the probe registration module in Section 6.2.2. 

In Section 6.3, a detailed finite element simulation and implementation work is given. 

Finally we present some concluding remarks in Section 6.4. 

6.2 Software development and architecture 

The architecture of the application is based on the IGS system components, as shown in 

Figure 1.2. It consists of three major software libraries, all implemented in C++, and the 
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fourth is used for the building process. In this software development work, these versions 

of the libraries were downloaded: 

 VTK version 5.10.0 

 ITK version 4.1.0 

 Qt SDK version 4.8.6 

 CMake version 2.8.11 

The Qt library provides a cross-platform framework which is very efficient for 

developing applications with a graphical user interface (GUI). The library supports all 

three major platforms (Windows, Mac, and Linux) and creates the applications that look 

at home in these environments. With the signal/slot mechanism, all the created interface 

components can be connecting to each other and activated by the GUI elements easily. 

The VTK library provides the core functionality of the application module and is used in 

the display of both the mesh formats and DICOM image formats. The ITK library was 

used to preprocess the DICOM images (finding the proper window/level for the image, 

finding the number of slices in the DICOM image set, and reading metadata embedded in 

the DICOM image such as patient name, age, etc.). Although ITK and VTK don‟t 

provide any user interface components, they enable complex applications to be built on 

top of the application level with the help of Qt platform. Figure 6.1 illustrates the basic 

idea of the system architecture based on these libraries. 

An important and challenging aspect of the development of this software module 

was to integrate all of these libraries correctly. During the initial stage in assessing the 

structure of the various components, we found out that these libraries interacted in 

unexpected ways in the difference environments. Thus CMake [138] was used to control 
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the software compilation process using compiler independent configuration file, 

CMakeLists.txt. It is a text file that contains the project parameters and specify 

configuration and build options in simple CMake language. CMake is not directly a 

compiler tool, but it will generate the native build files and workspaces that can be used 

in the Microsoft Visual Studio compiler environment [139]. 

This visualization and navigation module was built to allow effective exploration 

and visualization of medical data based on ITK and VTK libraries. The use of VTK and 

ITK for the programming platform was obvious, because it provides a number of state-of-

the-art medical data processing algorithms with a strong object-oriented architecture. One 

of the most valuable features of these libraries is its free availability, which makes it 

widely used and supported. The backbone of the application is built around the basic 

VTK pipeline to create visualization and processing module, whereas ITK is used to 

support I/O of medical image files in DICOM format and provide some preprocessing 

filters that are not present in VTK. The Qt framework and VTK‟s pipeline architecture 

allow us to build a very flexible application, which different modules can be managed 

separately. Besides, we can easily add a new module to the application without affecting 

other modules.  
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6.2.1 Volume data visualization 

The graphical layout of the software module mirrors those of mainstream visualization 

applications (e.g. 3D Slicer and OsiriX) with a standard four panel layout where the 

coronal, axial, sagittal, and 3D views of images are presented. In IGS system, the patient 

data used for visualization are DICOM image series acquired from MR or CT imaging. 

DICOM image series is a stack of images, which composed of multiple sequentially 

scanned images which constitute a 3D volume. When the user loads a DICOM image set, 

the coronal, axial, and sagittal panels hold the corresponding geometry, and the 3D panel 

holds an interactive 3D view of the three planes in space. This is shown in Figure 6.2 for 

CT volume of brain structure. The experimental medical image data used in this figure 

are provided by Visible Human Project Dataset [140]. 

To better visualize the brain structure for accurate navigation, interactive slice 

views are provided in the visualization environment. There are two types of slice views: 

axis-aligned and arbitrary view. Both allow the user to move the slices interactively 

Figure 6.1: General architecture of the software module showing some of the open-

source components and libraries that were used. 
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through mouse scroll. Orthogonal axial view is a familiar way of examining patient 

information to doctors and radiologists because the medical image data are often acquired 

in axial position. In order to provide different orthogonal orientations (sagittal and 

coronal views), the multi-planar reformatting was used to obtain any coronal and sagittal 

2D image from the original axial view images. The standard three axis-aligned slice 

views are parallel to the coordinate planes. By determining the normal vector for every 

plane, such as the normal vector of axial plane is (0, 0, 1) or (0, 0, -1), the position of the 

three orthogonal planes can be obtained. Multi-planar sectioning, as shown in Figure 6.2, 

is another approach of visualizing the three orthogonal views stacked perpendicular to 

each other to create a 3D visualization. By simultaneously displaying all three orthogonal 

views, the doctors can view the brain structure from multiple directions at the same time 

and examine the patient data comprehensively. Axis-aligned view provides orthogonal 

views of volumetric data, but the constraint on slice directions limits the freedom of 

interactive viewing and examination. In various clinical applications, it is at times 

necessary to view cross sections made at arbitrary angles through the volumetric data. As 

the shapes of the target of interest are usually irregular, a user-defined cutting plane with 

arbitrary orientations may further help the doctors to obtain information of the brain 

structure from arbitrary angles, as shown in Figure 6.3. This view can be navigated 

through the "click and drag" method of manipulating an orthogonal plane within one of 

the three views of the volume, causing other views to be reformatted according to the 

new viewpoint position. 

The visualization panels allow user interaction through intuitive mouse control. 

The DICOM set loaded into the 3D panel can be rotated in any direction to view different 
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side of the DICOM image. The contrast (window/level) of the DICOM images can be 

adjusted by the standard left mouse click in any window containing a DICOM image to 

increase or decrease the DICOM image contrast. The contrast settled on in this 

adjustment will apply to all other windows in the application. 

 

 

Figure 6.2: A four panel windows display of application module is shown. The 

window consists of axial, coronal, sagittal, and 3D overlaid display. The cross hairs 

shown in the 2D images are synchronized to allow users to localize a specific region in 

2D and the same region in 3D. 
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6.2.2 Navigation probe registration 

The navigation probe tracking allows the visualization of the brain and the probe display 

inside the virtual environment. Figure 6.4 shows a photograph of the 3D mock operating 

room setup being used to perform image-guided navigation with the patient data. A 3D 

rapid prototyped physical biomodel was reconstructed from the CT scans by CBMTI Pte 

Ltd, Kuala Lumpur. It was used as the “patient” and a simple robotic arm built by Amir, 

University Malaya, was used to provide real-time physical coordinates. A line widget was 

created as a virtual pointer to give more specific control to the users. Before the 

navigation was performed, it is necessary to register the image space to the tracked 

instrument. To establish the registration, positions of the pair points in image space and 

physical space must be obtained. The pair points are selected by clicking on 

corresponding image slices manually and capture the corresponding position at the 

Figure 6.3: Arbitrary slice view is shown. Thumbnails at left are the cutting planes 

applied to different orthogonal views, and the resulting 3D volume is in the center. 
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physical patient through robotic arm respectively. Coordinate information provided by 

the software module helps the user to position and reposition the probe to accurately 

locate the features of the calibration object in the image. The medical image was then 

registered to the physical position of the patient model using standard image-to-patient 

rigid transformations to connect the coordinate system of the model to the actual patient 

data. The navigation probe can be visualized on preoperative images according to its 

position in the physical coordinates as shown in Figure 6.5. 

 

Figure 6.4: A photograph of the 3D mock operating room setup being used to perform 

image-guided navigation with the artificial patient. 
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6.3 Modeling of navigation probe-tissue interaction 

This section presents an analytical model to study the navigation probe-tissue interaction. 

The aim of this work is to investigate the pattern of brain deformation with respect to 

location and magnitude and to consider the implications of this pattern on models for 

correcting brain deformation in IGS systems. When the interactive force between the 

tissue and the surgical probe is known and the tissue properties are accurately predicted, 

the deformation of the tissue or organ can be calculated for visualization. The model 

accounts for the probe‟s geometric, material properties, and also the brain tissue‟s 

nonlinear material properties. We extracted related anatomical structures from a CT 

image and generated a FE mesh in order to study the deformation of the brain. 

  

Figure 6.5: The probe is being tracked and a line widget is used to indicate the position 

in the system. 
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6.3.1 Finite element implementation 

In this section, a computational analysis was carried out to determine the deformation and 

stress tensor experienced by the brain tissue of the corresponding mechanical loading 

force. For the purpose of illustrating the concepts abound in this study, a 3D rapid 

prototyped physical biomodel was reconstructed from the CT scans by CBMTI Pte Ltd, 

Kuala Lumpur. Figure 6.6 shows this model with the probe pointing at the slice with the 

region of interest. From a numerical point of view, this is a highly nonlinear structural 

analysis, mainly due to the contact interaction between the brain and the navigation probe 

(stainless steel grade 316), and also the geometrical nonlinearity originating from the 

large displacement. In order to perform FE analysis, we used a commercially available 

software, COMSOL Multiphysics [141]. COMSOL Multiphysics is a general purpose 

software package for solving problems that are based on partial differential equations 

(PDEs). This study was done in two-dimensional space and the dependent variables u and 

v was defined as displacements field components according to coordinate system axes. As 

this study aimed to perform a simulation based on a patient-specific brain model, a few 

assumptions have to be made prior to the simulation. 

 A relatively idealized brain model was used to carry out the FEM simulation 

without introducing pathological information. This brain model is anatomically 

based on a normal adult‟s brain and physically based on a mechanical model 

generalized from experimental data reported on literature [142]. 

 The mechanism governing the brain shift during neurosurgery is very complicated 

as mentioned in the literature review. Thus, a simplified mechanism was assumed 

that the outer surface of the brain is fixed to the inner surface of the skull, which 
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prevents the brain from moving under the influence of gravity. The exposed 

surface and the nearby regions are free to move but the remaining surfaces are 

fixed. The scalp and the skull are not considered to influence the mechanical 

response of the brain to the quasi-static loading conditions and will be ignored in 

this study. 

 Brain tissues are recognized as an anisotropic inhomogeneous material and 

exhibit different mechanical behaviors under different surgical or pathological 

conditions. In this study, simulation of a general homogeneous and isotropic brain 

model was used. 

 

The brain tissue deformation when interacting with navigation probe is 

fundamentally governed by the following factors: (1) brain geometry, (2) brain tissue 

properties, and (3) boundary constraints due to surrounding structures that support the 

Figure 6.6: A 3D rapid prototyped physical biomodel reconstructed from the CT scans with 

the probe pointing at the slice with the region of interest by CBMTI Pte Ltd, Kuala 

Lumpur. 
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brain. To determine the patient-specific brain geometry, we extracted the geometric 

information from an axial view of a CT image, which was acquired from a 128 slices dual 

source Siemens CT imaging system in University Malaya Medical Centre (UMMC). As 

opposed to other imaging modalities, CT images have larger field of view and produce 

higher resolution of detail for brain structure, which in turn results in better segmentation 

of brain geometry. The brain tissue was manually segmented out using a Digital Imaging 

and Communications in Medicine (DICOM) processing software BioModroid (CBMTI 

Pte Ltd, Kuala Lumpur) and is indicated by green lines as two-dimensional contour 

shown in Figure 6.7(a). The image slice was exported as a jpeg image which was then 

imported into WinTopo (Softsoft Pte Ltd, UK) to convert from raster into dxf, a vector 

format. This geometry object file was imported into COMSOL Multiphysics to carry out 

the FE analysis. The surgical probe is created by using rectangle geometry with the 

diameter of 6mm. Figure 6.7(b) shows the imported brain geometry model and the 

probable surgical probe insertion location. 

The finite element model was generated by dividing all the domains into smaller 

unit called mesh unit. The meshing of the model was discretized with the free triangle 

technique. In order to achieve computational efficiency while maintaining accurate FE 

analysis, only the surface boundary was discretized with extremely fine mesh elements as 

shown in Figure 6.7(c). The FE mesh generated consisted of 21,786 elements with degree 

of freedom is approximately 90,450. To solve the constitutive equations governing the 

model, boundary conditions should be indicated properly. In this work, we assume that 

the regions nearby the contact surface are free to move but the remaining boundaries of 

the brain are fixed to the skull and no relative movement is allowed. A prescribed loading 
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was imposed by a pressure parameter load of 10N/m
2
 at the probe boundary constituting 

a force profile. For the purpose of this experiment, it is assumed that the surgical probe 

will only move in a uniform linear motion along the x+ direction of the movement, while 

the y and z directions and all possible rotations were constrained. 

Based on the available experiment data on brain tissues from literatures, we chose 

to model the brain as a nonlinear viscoelastic material which is valid for large 

deformation case. Most soft tissues are inherently viscoelastic because its stress response 

exhibit both viscous fluids and elastic solids characteristics. Similar to elastic materials, 

the elastic response is instantaneous while the viscous part occurs over time. For the 

homogeneous modeling, the whole brain was treated as a homogenous isotropic material. 

The brain tissue with white and gray matter were assigned with same material properties, 

using parameters obtained from literature [142]: tissue density, p = 1000kg/m3, Young‟s 

modulus, E = 2100Pa, Poisson‟s ratio, ν =0.45, bulk modulus, k = 1.24E8 N/m
2
, and 

shear modulus, G = 6.20E6 N/m
2
.  

   

(a) (b) (c) 

 

Figure 6.7: (a) Segmented CT image of the brain tissue used to construct a patient specific 

brain model. (b) The design of the brain model with surgical probe. (c) The meshing of the 

model generated by the software. 
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6.3.2 Simulation results and discussion 

Surgical probe insertion procedures are primarily displacement driven problems, and our 

results indicate that the deformation response of the brain tissue is sensitive to boundary 

conditions surrounding it. The stationary simulation was performed using COMSOL 

Multiphysics, a commercially available FE solver. Figure 6.8 shows the region of interest, 

Region B where the probe and brain tissue come in contact. Point A is set to be the 

evaluation point of the displacement value. The point is selected near the contact surface 

due to larger displacements occur in this area relative to the other area. Figure 6.10 

presents the simulation results of the brain tissue deformation where large deformation 

and stress is shown in red and small deformation is shown in blue. The Von Mises criteria 

was used for combining the stresses in all dimensions into an equivalent stress, which is 

then compared to the yield stress of the brain tissue. The equation for von Mises stress is 

shown below.  

 (41)

 

where σ correspond to normal stress values, and τ is the shear stress value. 

The results show that the deformations in the brain models are smooth and this 

indicates that our simulation is realistic. The initial 4 images (a-d) depict the probe with 

the force acting on the tip. After the probe breaks the brain tissue‟s surface tension as 

shown in Figure 6.10(d), the probe continues moving into the brain and the subsequent 

images have the force acting on the tip as well as around the probe's contact surface with 

the brain i.e. in the direction y+ and y-. Figure 6.9 shows a progression timeline of the 

Von mises stress value at different tool positions. The navigation probe breaks the tissue‟s 

𝜎 =  𝜎𝑥𝑥2 + 𝜎𝑦𝑦2 − 𝜎𝑥𝑥𝜎𝑦𝑦 + 3𝜏𝑥𝑦2  
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surface tension at (a) and continues moving into the brain at (b). The stress values 

continue to increase as the probe is moving in because probe is approaching to the 

evaluation point. The Von mises stress reach the highest value at the last position which is 

the nearest to the evaluation point, point A. Table 6.1 presents the Von mises stress value 

for different tool positions at a tabular format. 

This simulation results provide useful information about the probe-tissue contact 

modeling. By using the proper force parameter and the tissue properties, approximate 

deformation of the brain tissue can be determined. In addition, the deformation function 

can also be used to calculate and compensate the displacements of the anatomical 

landmarks on the contact surface of the brain due to brain shift effect. Most importantly, 

this technique does not use intraoperative imaging modality to determine the coordinates 

of preoperative points corresponding to specific intraoperative points. 
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Figure 6.8: Point A is the point of evaluation of the total displacement values. Region 

B refers to the region of interest where the FE analysis was focused upon. 

Figure 6.9: A progression timeline of the Von mises stress value at different tool 

positions. 
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(a) 0.04m (b) 0.05m  (c) 0.06m (d) 0.06m 

 

 (e) 0.06m (f) 0.065m (g) 0.07m (h) 0.075m (i) 0.08m 

 

Time unit 1 2 3 4 5 6 7 8 9 

Tool position (m) 0.04 0.05 0.06 0.06 0.06 0.065 0.07 0.075 0.08 

von Mises stress (Pa) 0 0.2863 0.71574 0.2863 43.7533 46.41968 50.38694 56.07243 64.28564 

 

Figure 6.10: Finite element simulation results of brain tissue deformation during the insertion of the probe at different time unit. 

Table 6.1: Von mises stress value for different tool positions at the evaluation point (0.15, 0.27). 



112 
 

6.4 Conclusion 

In this chapter, a visualization and navigation platform prototype was designed and 

realized based on the data visualization function of VTK and the image processing 

function of ITK. Qt library was used to provide graphical user interface elements to the 

system. This simple visualization system is useful for advancing the development work 

on image processing and brain tissue deformation function of IGS system. Using VTK to 

establish visualization subsystem can reduce numerous repeated tasks, which we can 

focus more on the algorithms and system design. This chapter also presents a simple 

biomodel to analyze the deformation and stress tensor experienced by the brain tissue 

during surgical operations. FE method was used for discretizing and solving the PDEs 

that describe the brain tissue deformation. Simulation results have showed that the brain 

shape deformations and the stress experience around the probe tip. Based on the 

observation of the simulation results, the deformation of the brain tissue of the probe 

insertion can be classified into the following three distinct phases: 

 First, the brain undergoes elastic deformation as the tip of the navigation probe 

indents the outer surface of the brain prior to puncturing the brain‟s tissue. 

 Second, the probe displacement induces a load on the brain surface. When this 

load reaches a critical threshold, the brain tissue ruptures. The rupture process is 

characterized by a sharp and recognizable peak in the deformation graph. 

 Third, following rupture, the probe penetrates the tissue by cutting its surface. 
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Finally, based on the construction of a visualization software platform, the future work 

will be extended to the data processing module to implement brain tissue deformation 

which was discussed in the modeling section. By modeling, it gives us some simulation 

data on actual implementation of the system. As a conclusion, modeling an accurate 

simulation of brain tissue deformation is rather a complex task. The brain tissue is not 

only inhomogeneous and anisotropy, but also the complex properties and mechanical 

processes have to be taken into account. However, we hope to have laid a foundation on 

the future research to profile the stress values around navigation area to further model the 

image deformation.  
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Chapter 7 

Conclusion and future work 

7.1 Summary and contributions 

Image-guided surgery is a new, rapidly evolving paradigm that will change the way 

surgery will be performed in the future. The development of new techniques that enhance 

visual image interpretation in an accurate manner is always the focus in medical research 

field. The aim of this thesis is to contribute to the research of two of these techniques, 

image registration and brain tissue deformation modeling. The contributions of this 

research are summarized as follows: 

 A point set registration method using points and curves feature. We introduce 

the idea that the points and curves feature are applied into the nonlinear image 

registration, which has the accuracy of registration based on points and the 

robustness of registration based on curves feature. The proposed method is using 

hybrid approach in feature correspondence stage. 

 The incorporation of spatial information in Adaptive Mutual Information 

(AMI). The proposed method uses a simple way to enrich the image description 

by integrating the gradient information. The decision to choose gradient 

information is motivated by the fact that the image locations with a strong 

gradient have high information value, which could be useful for the image 

registration. Salient pixels in the regions with high gradient value will contribute 

more in the estimation of similarity metric of image pairs being registered. 
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 Extension of the standard single feature MI similarity measure to a multi-

features MI (MF-MI). One major contribution of MF-MI method is the 

incorporation of multiple image features into MI method to solve the problem of 

joint probability distribution estimation in a multi-dimensional feature space. 

Furthermore, the proposed MF-MI measure can be computed for a number of 

additional features, as long as these features provide the same output image 

resolution. From the vast amount of feature choices that describe the structural 

information of images, we have tested the standard deviation filter and proposed a 

new adaptive gradient magnitude image feature for our study. 

 The study to analyze the navigation probe-tissue interaction. The 

computational analysis was carried out to determine the deformation and stress 

tensor experienced by the brain tissue of the corresponding mechanical loading 

force. The simulation results provide useful information about the probe-tissue 

contact modeling. This analytical model laid a foundation on the future research 

to profile the pattern of brain tissue deformation around navigation area to further 

model the image deformation. 

 The development of a prototype visualization display and navigation 

platform for interpretation of IGS. The main framework was designed and 

realized based on the data visualization function of VTK and the image 

processing function of ITK. By utilizing the Qt library, it overcomes the main 

drawback of the toolkit, while maintaining the object oriented concept of VTK 

and ITK. This simple visualization system is useful for our future work to extend 
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the data processing module to implement brain tissue deformation which was 

discussed in the previous chapters. 

7.2 Future work 

The work presented in this thesis can be expanded in different directions. Following 

research tasks have been outlined and can be undertaken for future research and 

development. 

 Since the MF-MI similarity metric provided very good results, a next step in our 

research would consist in investigating and evaluating the similarity metric for 

affine and nonrigid registration. Furthermore we would like to investigate the 

proposed method on an even wider range of spatial features combination. 

 The increasing capabilities of computer hardware resources encourage us to 

explore the implementation of the image registration with the fast GPU and 

parallel processing. Moreover, we would analyze the efficiency of the standard 

mutual information with the proposed MF-MI measure and other strategies to deal 

with the high-dimensional medical images. 

 Availability and quality of clinical data is always a concern throughout our 

research project. Although the registration results are satisfactory based on the 

available clinical data, it is not conclusive enough that our method is suitable for 

all types of medical images and clinical scenario. We hope to confirm the success 

rate of the method by validating a large number of input images. 

 In order to provide updated image guidance to the surgeon that incorporate 

realistic tool-tissue interaction models, some significant challenges need to be 

overcome. The three main hurdles that need to be overcome are: first, formulating 
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a methodology to incorporate the experimental result of the FE analysis 

framework to simulate realistic brain tissue deformations; second, making 

simplifications to the computational model such that the simulation runs in real 

time but does not sacrifice the realistic deformation response; and finally, the 

significant issue of clinical validation must be addressed. 

 Modeling soft tissue retraction and resection provides another significant topic of 

research. However, there is no effective way of tracking exactly which tissue has 

been resected even now and the development of research is still in its infancy. 

Modeling the effects of tissue resection is similarly difficult. 
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