2 research outputs found

    Optimizing Network Performance of Computing Pipelines in Distributed Environments

    Get PDF
    Supporting high performance computing pipelines over wide-area networks is critical to enabling large-scale distributed scientific applications that require fast responses for interactive operations or smooth flows for data streaming. We construct analytical cost models for computing modules, network nodes, and communication links to estimate the computing times on nodes and the data transport times over connections. Based on these time estimates, we present the Efficient Linear Pipeline Configuration method based on dynamic programming that partitions the pipeline modules into groups and strategically maps them onto a set of selected computing nodes in a network to achieve minimum end-to-end delay or maximum frame rate. We implemented this method and evaluated its effectiveness with experiments on a large set of simulated application pipelines and computing networks. The experimental results show that the proposed method outperforms the Streamline and Greedy algorithms. These results, together with polynomial computational complexity, make our method a potential scalable solution for large practical deployments

    Efficient Implementation of Stochastic Inference on Heterogeneous Clusters and Spiking Neural Networks

    Get PDF
    Neuromorphic computing refers to brain inspired algorithms and architectures. This paradigm of computing can solve complex problems which were not possible with traditional computing methods. This is because such implementations learn to identify the required features and classify them based on its training, akin to how brains function. This task involves performing computation on large quantities of data. With this inspiration, a comprehensive multi-pronged approach is employed to study and efficiently implement neuromorphic inference model using heterogeneous clusters to address the problem using traditional Von Neumann architectures and by developing spiking neural networks (SNN) for native and ultra-low power implementation. In this regard, an extendable high-performance computing (HPC) framework and optimizations are proposed for heterogeneous clusters to modularize complex neuromorphic applications in a distributed manner. To achieve best possible throughput and load balancing for such modularized architectures a set of algorithms are proposed to suggest the optimal mapping of different modules as an asynchronous pipeline to the available cluster resources while considering the complex data dependencies between stages. On the other hand, SNNs are more biologically plausible and can achieve ultra-low power implementation due to its sparse spike based communication, which is possible with emerging non-Von Neumann computing platforms. As a significant progress in this direction, spiking neuron models capable of distributed online learning are proposed. A high performance SNN simulator (SpNSim) is developed for simulation of large scale mixed neuron model networks. An accompanying digital hardware neuron RTL is also proposed for efficient real time implementation of SNNs capable of online learning. Finally, a methodology for mapping probabilistic graphical model to off-the-shelf neurosynaptic processor (IBM TrueNorth) as a stochastic SNN is presented with ultra-low power consumption
    corecore