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Abstract

Supporting high performance computing pipelines over

wide-area networks is critical to enabling large-scale dis-

tributed scientific applications that require fast responses

for interactive operations or smooth flows for data stream-

ing. We construct analytical cost models for computing

modules, network nodes, and communication links to es-

timate the computing times on nodes and the data transport

times over connections. Based on these time estimates, we

present the Efficient Linear Pipeline Configuration method

based on dynamic programming that partitions the pipeline

modules into groups and strategically maps them onto a set

of selected computing nodes in a network to achieve mini-

mum end-to-end delay or maximum frame rate. We imple-

mented this method and evaluated its effectiveness with ex-

periments on a large set of simulated application pipelines

and computing networks. The experimental results show

that the proposed method outperforms the Streamline and

Greedy algorithms. These results, together with polyno-

mial computational complexity, make our method a poten-

tial scalable solution for large practical deployments.

1 Introduction

The demands of large-scale collaborative applications in

various scientific, engineering, medical, and business do-

mains are beyond the capabilities of the traditional solu-

tions based on standalone workstations. These applica-

tions typically involve distributed compute-intensive tasks

of ever-increasing complexity that require pooling globally-

dispersed resources to produce unprecedented data collec-

tions, simulations, visualizations, and analysis. In recent

years, a wide variety of system resources including su-

percomputers, data repositories, computing facilities, net-

work infrastructures, storage systems, and display devices

have been increasingly developed and deployed around the

globe. Such resources are typically shared over the Inter-

net or dedicated connections, and must be optimally sched-

uled to account for their availability, utilization, capacity,

and performance. Optimizing the network performance of a

complex computing task in distributed environments is cru-

cial to improving both the utilization of expensive system

resources and the productivity of application end users.

We consider two types of large-scale computing appli-

cations with linear workflows or pipelines comprising of a

number of modules or subtasks that are to be executed in a

sequential manner in a distributed network environment:

1. We first consider interactive applications where a sin-

gle dataset is sequentially processed along a comput-

ing pipeline. A typical example is an interactive pa-

rameter update on a remote visualization system that

triggers a sequence of processing subtasks for data fil-

tering, isosurface extraction, geometry rendering, im-

age compositing, and final display [13].

2. We consider streaming applications where a series

of datasets continuously flow through a computing

pipeline. Typical examples include a video-based real-

time monitoring system for detecting criminal suspects

at an entrance that performs feature extraction and de-

tection, facial reconstruction, pattern recognition, data

mining, and identity matching on images that are con-

tinuously captured.

For interactive applications, we aim to minimize the end-to-

end delay of a pipeline to provide fast response, while for

streaming applications, our goal is to maximize the frame

rate of a pipeline to achieve smooth data flow 1.

The application performance in terms of end-to-end de-

lay or frame rate is determined by the computing times

of modules running on a network node and the transport

1In some contexts, the frame rate is also referred to as throughput, i.e.

the number of final data items produced or transferred in a unit of time.
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times incurred over communication links. Due to the dis-

parate characteristics of data sources, computing modules,

network nodes, and communication links, a common de-

sign goal is to optimally map the modules of a computing

pipeline onto a set of strategically selected network nodes

for execution. Such a mapping scheme must account for the

temporal constraints in the form of linear execution order

of computing modules and spatial constraints in the form of

geographical distribution of network nodes and their con-

nectivity. Note that conventional scheduling methods is

mainly focused on the temporal aspects of the modules shar-

ing multiple instances of the resource of the same type.

The mapping and scheduling problems have been ex-

tensively studied by researchers in various disciplines [7,

10, 12, 8] and continue to be the focus of attention of

the distributed computing community due to their theo-

retical significance and practical importance, especially as

the grid computing technology prevails [5, 4, 6]. In [3],

Benoit et al. discussed the mapping of computing pipelines

onto different types of fully connected networks with iden-

tical processors and links (fully homogeneous platform),

with identical links but different processors (communica-

tion homogeneous platform), or with different processors

and links (fully heterogeneous platform). A grid scheduling

algorithm, called Streamline [2], is developed for placing

a coarse-grain dataflow graph on available grid resources.

This scheduling heuristic is specifically designed to im-

prove the performance of streaming applications with vari-

ous demands in grid environments. Kwok et al. proposed

Dynamic Critical-Path (DCP) scheduling algorithm [11] to

map task graphs with arbitrary computation and communi-

cation costs to a distributed network environment consisting

of fully-connected identical nodes. Chen et al. proposed

and evaluated a runtime algorithm for supporting adaptive

execution of distributed data mining on streaming data [9].

We consider the problems of minimizing the end-to-end

delay and maximizing the frame rate of a linear comput-

ing pipeline for interactive applications and streaming ap-

plications, respectively, in an arbitrary computing network.

Our design goal is to find an efficient mapping scheme that

allocates the modules of a computing pipeline to network

nodes in physical networks to achieve minimum end-to-end

delay or maximum frame rate. Based on the analytical cost

models for modules, nodes, and links, we formulate an op-

timization version of the mapping problem and propose a

solution based on the Efficient Linear Pipeline Configura-

tion (ELPC) algorithms. In particular, we develop an opti-

mal polynomial-time algorithm based on dynamic program-

ming to solve the mapping problem for minimum end-to-

end delay. Furthermore, we prove that a restricted version

of the mapping problem for maximum frame rate without

node reuse is NP-complete and develop an approximate so-

lution based on dynamic programming.

We implement the ELPC algorithms and conduct exten-

sive mapping experiments in a large number of simulated

application and network settings. In practical applications,

the bandwidth of a network transport path can be measured

using active traffic measurement technique based on a linear

regression model described in [14], and the processing time

of a computing or visualization module can be measured

using similar techniques described in [13]. These meth-

ods achieve high accuracy in performance estimation as ev-

idenced by extensive real experimental results. However,

the details of these cost models and performance measuring

techniques are out of the scope of this paper.

For comparison purposes, the Streamline algorithm

adapted to linear pipelines and a Greedy algorithm are also

implemented and tested with the same simulation datasets

on the same computing platform. The performance mea-

surements show that the ELPC algorithms yield superior

mapping performance in terms of minimum end-to-end de-

lay or maximum frame rate over the existing methods.

The rest of the paper is organized as follows. In Sec-

tion 2, we construct the analytical cost models for pipeline

and network components and formulate an optimization

version of each pipeline mapping problem. In Section 3,

we propose solutions based on the ELPC algorithms to

the pipeline mapping problems and also describe the other

two algorithms for comparison. The implementation de-

tails, simulation setup, and performance evaluations are pre-

sented in Section 4. We conclude our work and discuss

some future work in Section 5.

2 Cost Models and Problem Formulation

2.1 A General Computing Pipeline

A number of large-scale computational applications in

various scientific, engineering, medical, and business fields

require efficient executions of computing tasks that consist

of a sequence of linearly arranged modules, also referred

to as subtasks or stages. These modules form a so-called

computing pipeline between a data source and an end user.

For a small-scale standalone application where an end

user accesses a local data source, the entire computing

pipeline may be executed on a single computer. However,

for large-scale distributed applications where data sources

are not located at the same site as end users, we are faced

with a challenge to support increasingly complex comput-

ing pipelines over wide-area networks that comprise hetero-

geneous computing nodes and communication links. The

remote visualization in next-generation scientific applica-

tions such as Terascale Supernova Initiative (TSI) [1] is a

typical example, where the simulation datasets generated

on remote supercomputers must be retrieved, filtered, trans-

ferred, processed, visualized, and analyzed by a collabora-
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tive team of geographically distributed scientists. Note that

a computing pipeline with only two end modules reduces to

a traditional client/server based computing paradigm.

Due to the disparate nature of data sources and the

intrinsic heterogeneity of network nodes, communication

links, and application computing tasks, deploying compo-

nent modules on different sets of computing nodes can re-

sult in substantial performance differences. The pipeline

mapping problems in our work are to find an efficient map-

ping scheme that maps the computing modules onto a set

of strategically selected nodes to (i) minimize end-to-end

delay for interactive applications where a single dataset is

processed sequentially along a computing pipeline, and (ii)

maximize frame rate for streaming applications where mul-

tiple datasets are fed into a computing pipeline in a batch

processing mode to sustain continuous data flow.

2.2 Cost Models of Pipeline and Network
Components

We construct an analytical cost model for each pipeline

and network component to facilitate the mathematical for-

mulations of the aforementioned mapping problems. The

computational complexity of a computing module Mi is de-

noted as ci, which, together with the incoming data size

mi−1, determines the number of CPU cycles needed to com-

plete the subtask defined in the module. The output data

of size mi is sent to its immediate successor node in the

pipeline for further processing. Note that the actual runtime

of a computing module also depends on the capacity of the

system resources deployed on the selected network node as

well as their availability during runtime.

The processing capability of a network node is a com-

plex notion that combines a variety of host factors such

as processor frequency, bus speed, memory size, storage

performance, and presence of co-processors. For simplic-

ity, we use a normalized quantity pi to represent the over-

all computing power of a network node vi without speci-

fying its detailed system resources. The communication

link between network nodes vi and v j is denoted as Li, j ,

which is characterized by two attributes, namely bandwidth

(BW) bi, j and minimum link delay (MLD) di, j. The trans-

fer time of a large message is mainly constrained by band-

width, while minimum link delay could be a significant

overhead for the transfer of a message with size comparable

to the Maximum Transmission Unit (MTU) of the underly-

ing network. In practical applications, we may employ a

linear regression-based method to estimate the bandwidth

and minimum link delay of a communication link [14]. We

estimate the computing time of module Mi running on net-

work node v j to be Tcomputing(Mi,v j) =
mi−1ci

p j
and the trans-

fer time of message size m over a communication link Li, j

to be Ttransport(m,Li, j) = m
bi, j

+ di, j.

2.3 Problem Formulation

We now present the mathematical formulations of the

general computing pipeline mapping problems based on

the cost models defined above. We consider an under-

lying transport network that consists of k geographically

distributed computing nodes denoted by v1,v2, . . . ,vk−1,vk.

Node vi, i = 1,2, . . . ,k − 1,k has a normalized computing

power pi and is connected to its neighbor node v j, j =
1,2, . . . ,k − 1,k, j 6= i with a network link Li, j of band-

width bi, j and minimum link delay di, j. The trans-

port network is represented by a graph G = (V,E), |V | =
k, where V denotes the set of network nodes (vertices)

and E denotes the set of communication links (edges).

Note that the transport network may or may not be a

complete graph, depending on whether the node deploy-

ment environment is the Internet or a dedicated net-

work. The general computing pipeline consists of n se-

quential modules, M1,M2, . . . ,Mu−1,Mu, . . . ,Mv−1, . . . . . . ,
Mw, . . . ,Mx−1,Mx, . . . ,Mn, where M1 is a data source and

Mn is an end user. Module M j, j = 2, . . . ,n performs a com-

puting module of complexity c j on the data of size m j−1

received from its predecessor module M j−1 and generates

and sends data of size m j to its successor module M j+1.

The objective of a general mapping scheme is to de-

compose the pipeline into q groups of modules denoted by

g1,g2, . . . ,gq−1,gq, and map them onto a selected path P

of q nodes from a source node vs to a destination node vd

in the transport network, where q ∈ [1,min(k,n)] and path

P consists of a sequence of unnecessarily distinct nodes

vP[1] = vs,vP[2], . . . ,vP[q−1],vP[q] = vd . For each mapping,

we consider two cases: (i) with node reuse, two or more

modules, either contiguous or non-contiguous (the selected

path P contains a loop) in the pipeline, are allowed to run

on the same node; (ii) without node reuse, a node on the

selected path P executes exactly one module. Note that the

path reduces to a single computer when q = 1.
• Minimal total delay for interactive applications

An important requirement in many collaborative applica-

tions is the interactivity of the system. We achieve the

fastest system response by minimizing the total computing

and transport delay of the pipeline from the source node to

the destination node:

Ttotal(Path P o f q nodes) = Tcomputing + Ttransport

= ∑
q
i=1 Tgi

+ ∑
q−1
i=1 TLP[i],P[i+1]

= ∑
q
i=1

(

1
pP[i]

∑ j∈gi, j≥2

(

c jm j−1

)

)

+ ∑
q−1
i=1

(

m(gi)
bP[i],P[i+1]

)

,

(1)

where we assume that the inter-module transport time

within one group on the same node is negligible.
• Maximal frame rate for streaming applications

We maximize the frame rate to produce the smoothest data

flow for streaming applications where datasets are contin-

uously generated and fed into the pipeline. This goal is
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achieved by identifying and minimizing the time incurred

on a bottleneck link or node, which is defined as:

Tbottleneck(Path P o f q nodes)

= max
Path P o f q nodes

i=1,2,...,q−1







Tcomputing(gi),
Ttransport(LP[i],P[i+1]),
Tcomputing(gq)







= max
Path P o f q nodes

i=1,2,...,q−1



















1
pP[i]

∑
j∈gi and j≥2

(

c jm j−1

)

,

m(gi)
bP[i],P[i+1]

,
1

pP[q]
∑

j∈gq and j≥2

(

c jm j−1

)



















.

(2)

In Eqs. 1 and 2, we assume that the first module M1 only

transfers data from the source node and the last module Mn

only performs certain computation without data transfer.

3 Algorithm Design

To optimize the network performance of comput-

ing pipelines in distributed environments, we propose a

polynomial-time mapping scheme, Efficient Linear Pipeline

Configuration (ELPC) to strategically map computing mod-

ules to network nodes for minimum end-to-end delay or

maximum frame rate. We will also briefly present other two

mapping algorithms we used for performance comparison.

3.1 ELPC Algorithms

3.1.1 Minimum End-to-end Delay with Node Reuse

For interactive applications, our goal is to minimize the end-

to-end delay incurred on the nodes and links from the source

to the destination to achieve the fastest response. Since a

single dataset is processed and there is only one module be-

ing executed at any particular time, nodes can be reused but

are not shared simultaneously among different modules.

Let T j(vi) denote the minimal total delay with the first j

modules mapped to a path from the source node vs to node

vi under consideration in the network. Then, we have the

following recursion leading to the final solution T n(vd):

T j(vi)
j=2 to n,vi∈V

=

min







T j−1(vi)+ c jm j−1
/

pvi
,

min
u∈ad j(vi)

(

T j−1(u)+ c jm j−1
/

pvi
+ m j−1

/

bu,vi

)

(3)

with the base condition computed as:

T 2(vi)
vi∈V,and vi 6=vs

=

{ c2m1
/

pvi
+ m1

/

bvs,vi
, ∀evs,vi

∈ E

∞ , otherwise
(4)

on the second column. Here, we ignore the transport time

between modules within one group on the same comput-

ing node. Every cell T j(vi) in the table shown in Fig. 1

the
i-th

node
vi

(total k

nodes)

mapping the first j modules (M1,…, Mj) to a network path from vs to vi

vs

v2

v3

v4

.

.

.

2 3 4 5 ...... y n-1 n

vp

T3(v2)

T
2(v2)

T2(vs) Tn(vs)T3(vs)

u1

u2

u3

u1

u2 T
4(vo)

T
y(vp)

vd

Tn(vd)Tn-1(vd)

vo

.

.

.

.

.

.

x ...... ......

T
x(v3)

T5(vo)

Tn-1(v4)

1

T1(vs)

Figure 1. Construction of 2D matrix in ELPC

for minimum end-to-end delay.

represents an optimal mapping solution that maps the first j

modules in the pipeline to a path between the source node vs

and node vi in the network and is calculated from the inter-

mediate mapping results stored in the left column T j−1(·).
We provide a correctness proof of this ELPC algorithm,

where we consider two sub-cases at each recursive step, the

minimum of which is chosen as the minimum total delay

to fill in a new cell T j(vi). In sub-case (i), we run the new

module on the same node running the last module in the

previous mapping subproblem T j−1(vi). In other words, the

last two or more modules are mapped to the same node vi.

Therefore, we only need to add the computing time of the

last module on node vi to the previous total delay, which

is represented by a direct incident link from its left neigh-

bor cell in the two-dimensional table. In sub-case (ii), the

new module is mapped to node vi and the last node u in a

previous mapping subproblem T j−1(u) is one of the neigh-

bor nodes of node vi, which is represented by an incident

link from a neighbor cell on the left column to node vi. In

Fig. 1, a set of neighbor nodes of node vi are enclosed in a

cloudy region in the previous column. Some cells may not

be the neighbor nodes of node vi since the network under

consideration has an arbitrary topology. We calculate the

end-to-end delay for each mapping of an incident link of

node vi and choose the minimal one, which is further com-

pared with the one calculated in sub-case (i) (direct incident

link from the left neighbor cell). The minimum of these

two sub-cases is selected as the total minimum end-to-end

delay for the partial computing pipeline mapping to a path

between node vs and node vi. The fact that adding a new

module and a new link at each step does not affect the opti-

mality of the partial solutions previously calculated for the

subproblems guarantees that the final solution is optimal for

a given mapping problem. The complexity of this algorithm
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is O(n×|E|), where n denotes the number of modules in the

linear computing pipeline and |E| is the number of edges in

the distributed network.

3.1.2 Maximum Frame Rate without Node Reuse

The maximum frame rate that a computing pipeline can

achieve is limited by the bottleneck unit, i.e. the slow-

est transport link or computing node along the entire

pipeline [15]. Node reuse in streaming applications causes

resource sharing, and hence affects the optimality of the so-

lutions to previous mapping subproblems. Here we consider

a restricted version of the mapping problem for maximum

frame rate by limiting the use of each node to a single mod-

ule. In this restricted mapping problem, we attempt to find

the widest network path with exact n nodes to map n mod-

ules in the pipeline on a one-to-one basis. By “widest”,

we mean that the network path has the minimum bottleneck

among all feasible paths. Hence, the problem can be sim-

plified to the exact n-hop widest path problem, whose com-

plexity is equivalent to that of the exact n-hop shortest path

problem (ENSP), which is shown to be NP-complete below.

Theorem: ENSP is NP-complete.

Proof: Obviously, ENSP is in NP class. We show its NP-

hardness by reducing Hamiltonian Path (HP) problem to it.

Given an arbitrary instance IHP in HP problem, we

can transform it into an instance IENSP of ENSP problem,

i.e. IHP ∈ HP ⇒ IENSP = f (IHP) ∈ ENSP, where f (·) is

a polynomial-time transformation function. Consider in-

stance IHP: given an arbitrary graph G = (V,E) with n + 1

vertices, v0,v1,v2, · · · ,vn, does there exist a simple path

from v0 to vn such that it contains each vertex exactly once?

We build instance IENSP from instance IHP as follows. First,

we make a copy of the entire graph topology of G and de-

note it as graph G′ = (V ′,E ′) with n + 1 vertices, where

V ′ = V and E ′ = E . Second, in graph G′, we set the weight

of all edges to be 1 and choose a bound B = n. Instance

IENSP asks if there exists a simple path from v′0 to v′n with

exact n hops such that the total path distance D ≤ B = n.

Now we prove that there exists a simple path from v0 to

vn in G that contains each vertex exactly once if and only if

there exists a simple path with exact n hops from v′0 to v′n in

G′ whose distance D ≤ B = n. Given a solution (path) P to

IHP, we can find a path P′ in G′ that only consists of edges

corresponding to those of P in G. Obviously, path P′ has

exact n hops and satisfies the bound condition on its path

distance, i.e. D = n ≤ B. Therefore, path P′ is a solution

to IENSP. Similarly, given a solution (path) P′ to IENSP, i.e.

P′ has exact n hops and its distance D ≤ B = n, we can find

a path P in G that consists of edges corresponding to those

of P′ in G′. Path P contains each vertex exactly once and

therefore is a solution to IHP. This concludes the proof for

the NP-completeness of ENSP.

We develop an approximate solution to this problem by

adapting the dynamic programming method for minimum

end-to-end delay to this problem with some necessary mod-

ifications. Let 1/T j(vi) denote the maximal frame rate with

the first j modules mapped to a path from source node vs to

node vi in an arbitrary computer network. We have follow-

ing recursion leading to the final solution T n(vd):

T j(vi)
j=2 to n,vi∈V

= min
u∈ad j(vi)

(

max
(

T j−1(u),c jm j−1
/

pvi
,m j

/

bu,vi

))

(5)

with the base condition computed as:

T 2(vi)
vi∈V,and vi 6=vs

=

{

max
(

c2m1
/

pvi
,m1

/

bvs,vi

)

, ∀evs,vi
∈ E

∞ , otherwise

(6)

on the second column in the table.

The steps for filling out the 2-D table for the maximum

frame rate differ from those for the minimum total delay

in the following aspects: at each step, we ensure that the

current node has not been used previously in the path and

calculate the bottleneck of the path instead of the total de-

lay. This solution is heuristic because when a node has been

selected by all its neighbor nodes at previous optimization

steps, we may miss an optimal solution if this node is the

only one leading to the destination node or obtain a subop-

timal solution if there are multiple nodes leading to the des-

tination node. We would also like to point out that this case

is extremely rare as shown in our extensive experiments.

3.2 Streamline Algorithm

Agarwalla et al. proposed a grid scheduling algorithm,

Streamline, for graph dataflow scheduling in a network with

n resources and n×n communication links [2]. The Stream-

line algorithm considers application requirements in terms

of per-stage computation and communication needs, appli-

cation constraints on co-location of stages (node reuse), and

availability of computation and communication resources.

This scheduling heuristic works as a global greedy algo-

rithm that expects to maximize the throughput of an appli-

cation by assigning the best resources to the most needy

stages in terms of computation and communication require-

ments at each step. The complexity of this algorithm is

O(m × n2), where m is the number of stages or modules

in the dataflow graph and n is the number of resources or

nodes in the network.

3.3 Greedy Algorithm

A greedy algorithm iteratively obtains the greatest imme-

diate gain based on certain local optimality criteria at each

step, which may or may not lead to the global optimum. We

design a greedy mapping scheme that calculates the end-to-

end delay or maximum frame rate for the mapping of a new
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Figure 2. Mapping performance comparison
of ELPC, Streamline, and Greedy.

module onto the current node when node reuse is allowed

or one of its neighbor nodes and chooses the minimal one.

This greedy algorithm makes a mapping decision at each

step only based on current information without consider-

ing the effect of this local decision on the mapping perfor-

mance in later steps. The complexity of this algorithm is

O(m× n), where m denotes the number of modules in the

linear pipeline and n is the number of nodes in the network.

4 Implementation and Experimental Results

4.1 Implementation

The proposed ELPC is implemented in C++ and runs on

a Windows XP desktop equipped with a 3.0 GHz CPU and

2 Gbytes memory. For performance comparison purposes,

we implement the other two algorithms, namely, Stream-

line and Greedy, in C++ on the same computing platform.

We conduct an extensive set of mapping experiments for

minimum end-to-end delay and maximum frame rate using

a wide variety of simulated application pipelines and com-

puting networks. We generate these simulation datasets by

randomly varying the following pipeline and network at-

tributes within a suitably selected range of values: (i) the

number of modules, module complexities, input data sizes,

and output data sizes in a pipeline; (ii) the number of nodes,

node processing power, number of links, link bandwidth,

and minimum link delay in a network.

We consider four parameters for each module in a

pipeline: ModuleID, ModuleComplexity, InputDataInBytes

and OutputDataInBytes. Note that the parameter Module-

Complexity is an abstract quantity that does not only de-

pend on the computational complexity of the algorithm in

the module but also the implementation details such as the

specific data structures used in the program. The parame-

ter InputDataInBytes denotes the size of the data received

and processed by the current module, which together with

the module complexity and the node computing power, de-

termine the module execution time. The partial result pro-

duced by an intermediate module is denoted by the param-

eter OutputDataInBytes and serves as input data to its suc-

cessor node along the pipeline.

We define three parameters for a computing node:

NodeID, NodeIP, and ProcessingPower. Note that the pa-

rameter ProcessingPower is an abstract quantity that char-

acterizes the general computing capability of a network

node, which is primarily determined by the processor fre-

quency, memory size, and bus speed. For each transport

link, we define five parameters: startNodeID, endNodeID,

LinkID, LinkBWInMbps and LinkDelayInMilliseconds. The

computing networks considered in our experiments are not

necessarily completely connected but essentially arbitrary

in topology described in the form of an adjacency matrix.

For each mapping problem, we designate a source node

and a destination node to run the first module and the last

module of the pipeline. This is based on the considera-

tion that the system knows where the raw data is stored and

where an end user is located before optimizing the pipeline

configuration over an existing network.

4.2 Illustration of ELPC Mapping Scheme

To better illustrate the pipeline mapping process, we plot

the path selected by ELPC for minimum end-to-end delay

in Fig. 3 and the one for maximum frame rate in Fig. 4 for

the small-scale problem consisting of 5 modules, 6 nodes,

and 32 links. In Fig. 3, the first two modules run on the

source node with NodeID = 0, both module 2 and module

3 run on an intermediate node with NodeID = 4, and the last

module runs on the destination node with NodeID = 5. In

Fig. 4, a path consisting of nodes with NodeID = 0,3,1,4
and 5 is selected for running five consecutive modules and

the bottleneck is located on the last node.

4.3 Performance Comparison

With a large set of simulated application pipelines and

computing networks described above, we performed exten-

sive experiments on pipeline mapping using ELPC, Stream-

line, and Greedy, respectively. The measured execution

time of these algorithms varies from milliseconds for small-
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Figure 3. The optimal path with minimum
end-to-end delay calculated by ELPC.

scale problems to seconds for large-scale ones. A set of

typical performance measurements in terms of minimum

end-to-end delay and maximum frame rate collected in 20

different cases are tabulated in Fig. 2 for comparison. The

relative performance differences of these three algorithms

observed in other cases are qualitatively similar. In inter-

active applications that minimizes end-to-end delay for the

fastest response, since only one single dataset sequentially

flows through each module along the path, we allow net-

work nodes to be reused but there is only one module exe-

cuting on a selected node at any time. In streaming appli-

cations that identify and minimize the bottleneck node or

link for the smoothest workflow, node reuse is disabled. We

would like to point out that there may not exist any feasi-

ble mapping solution in some extreme test cases where the

shortest end-to-end path is longer than the pipeline or the

pipeline is longer than the longest end-to-end path but net-

work nodes are not allowed for reuse. Here, the length of a

path or pipeline refers to the number of nodes or modules.

For a visual performance comparison, we plot the per-

formance measurements of minimum end-to-end delay and

maximum frame rate produced by these three algorithms

in Fig. 5 and Fig. 6, respectively. We observed that ELPC

exhibits comparable or superior performances in minimiz-

ing end-to-end delay and maximizing frame rate over the

other two algorithms in all the cases we studied. Since the

end-to-end delay represents the total delay from a source

node to a destination node, a larger problem size with more

network nodes and computing modules generally (not ab-
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Figure 4. The optimal path with maximum
frame rate calculated by ELPC.

solutely, though) incurs a longer mapping path resulting in

a longer end-to-end delay, which explains the increasing

trend in Fig. 5. The maximum frame rate, the reciprocal

of the bottleneck in a selected path, is not particularly re-

lated to the path length, and hence the performance curves

in Fig. 6 lack an obvious increasing or decreasing trend in

response to varying problem sizes.

5 Conclusions and Future Work

We designed an ELPC scheme based on dynamic pro-

gramming that strategically maps modules of computing

pipelines to shared or dedicated network environments

to achieve the minimum end-to-end delay and maximum

frame rate. We constructed cost models to quantitate the

characteristics of modules of application pipelines and com-

puting nodes and communication links in distributed net-

works. We implemented ELPC as well as the other two

scheduling algorithms, Streamline and Greedy, and per-

formed extensive pipeline mapping experiments using sim-

ulated application pipelines and computing networks. The

experimental results show that the ELPC exhibits superior

mapping performance over the other methods.

In the mathematical model of nodes, we used a normal-

ized quantity to represent the processing power for simplic-

ity. However, a single constant is not always sufficient to

describe the node computing capability, which highly de-

pends on the type and availability of system resources and

could be time varying in a dynamic environment. The time-
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Figure 5. Performance comparison of minimum

end-to-end delay for three algorithms.
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Figure 6. Performance comparison of maximum
frame rate for three algorithms.

varying nature of system resources’ availability makes it

challenging to perform an accurate prediction or estimation

of the execution time of a computing module in a real net-

work environment. We will investigate sophisticated perfor-

mance models to characterize real-time computing node be-

haviors and estimate more accurate module execution time.

In the perspective of algorithm design, it would be of

our future interest to study the pipeline mapping problem

for maximum frame rate in the case of node reuse. We will

also extend linear pipelines to graph workflows and study

the complexity of and develop efficient solutions to graph

workflow mapping problems in distributed environments.
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