1,716 research outputs found

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Advances in knowledge discovery and data mining Part II

    Get PDF
    19th Pacific-Asia Conference, PAKDD 2015, Ho Chi Minh City, Vietnam, May 19-22, 2015, Proceedings, Part II</p

    Automated design of local search algorithms for vehicle routing problems with time windows

    Get PDF
    Designing effective search algorithms for solving combinatorial optimisation problems presents a challenge for researchers due to the time-consuming experiments and experience required in decision-making. Automated algorithm design removes the heavy reliance on human experts and allows the exploration of new algorithm designs. This thesis systematically investigates machine learning for the automated design of new and generic local search algorithms, taking the vehicle routing problem with time windows as the testbed. The research starts by building AutoGCOP, a new general framework for the automated design of local search algorithms to optimise the composition of basic algorithmic components. Within the consistent AutoGCOP framework, the basic algorithmic components show satisfying performance for solving the VRPTW. Based on AutoGCOP, the thesis investigates the use of machine learning for automated algorithm composition by modelling the algorithm design task as different machine learning tasks, thus investigating different perspectives of learning in automated algorithm design. Based on AutoGCOP, the thesis first investigates online learning in automated algorithm design. Two learning models based on reinforcement learning and Markov chain are investigated to learn and enhance the compositions of algorithmic components towards automated algorithm design. The Markov chain model presents a superior performance in learning the compositions of algorithmic components during the search, demonstrating its effectiveness in designing new algorithms automatically. The thesis then investigates offline learning to learn the hidden knowledge of effective algorithmic compositions within AutoGCOP for automated algorithm design. The forecast of algorithmic components in the automated composition is defined as a sequence classification task. This new machine learning task is then solved by a Long Short-term Memory (LSTM) neural network which outperforms various conventional classifiers. Further analysis reveals that a Transformer network surpasses LSTM at learning from longer algorithmic compositions. The systematical analysis of algorithmic compositions reveals some key features for improving the prediction. To discover valuable knowledge in algorithm designs, the thesis applies sequential rule mining to effective algorithmic compositions collected based on AutoGCOP. Sequential rules of composing basic components are extracted and further analysed, presenting a superior performance of automatically composed local search algorithms for solving VRPTW. The extracted sequential rules also suggest the importance of considering the impact of algorithmic components on optimisation performance during automated composition, which provides new insights into algorithm design. The thesis gains valuable insights from various learning perspectives, enhancing the understanding towards automated algorithm design. Some directions for future work are present

    Mining Time-aware Actor-level Evolution Similarity for Link Prediction in Dynamic Network

    Get PDF
    Topological evolution over time in a dynamic network triggers both the addition and deletion of actors and the links among them. A dynamic network can be represented as a time series of network snapshots where each snapshot represents the state of the network over an interval of time (for example, a minute, hour or day). The duration of each snapshot denotes the temporal scale/sliding window of the dynamic network and all the links within the duration of the window are aggregated together irrespective of their order in time. The inherent trade-off in selecting the timescale in analysing dynamic networks is that choosing a short temporal window may lead to chaotic changes in network topology and measures (for example, the actors’ centrality measures and the average path length); however, choosing a long window may compromise the study and the investigation of network dynamics. Therefore, to facilitate the analysis and understand different patterns of actor-oriented evolutionary aspects, it is necessary to define an optimal window length (temporal duration) with which to sample a dynamic network. In addition to determining the optical temporal duration, another key task for understanding the dynamics of evolving networks is being able to predict the likelihood of future links among pairs of actors given the existing states of link structure at present time. This phenomenon is known as the link prediction problem in network science. Instead of considering a static state of a network where the associated topology does not change, dynamic link prediction attempts to predict emerging links by considering different types of historical/temporal information, for example the different types of temporal evolutions experienced by the actors in a dynamic network due to the topological evolution over time, known as actor dynamicities. Although there has been some success in developing various methodologies and metrics for the purpose of dynamic link prediction, mining actor-oriented evolutions to address this problem has received little attention from the research community. In addition to this, the existing methodologies were developed without considering the sampling window size of the dynamic network, even though the sampling duration has a large impact on mining the network dynamics of an evolutionary network. Therefore, although the principal focus of this thesis is link prediction in dynamic networks, the optimal sampling window determination was also considered

    Automated design of local search algorithms for vehicle routing problems with time windows

    Get PDF
    Designing effective search algorithms for solving combinatorial optimisation problems presents a challenge for researchers due to the time-consuming experiments and experience required in decision-making. Automated algorithm design removes the heavy reliance on human experts and allows the exploration of new algorithm designs. This thesis systematically investigates machine learning for the automated design of new and generic local search algorithms, taking the vehicle routing problem with time windows as the testbed. The research starts by building AutoGCOP, a new general framework for the automated design of local search algorithms to optimise the composition of basic algorithmic components. Within the consistent AutoGCOP framework, the basic algorithmic components show satisfying performance for solving the VRPTW. Based on AutoGCOP, the thesis investigates the use of machine learning for automated algorithm composition by modelling the algorithm design task as different machine learning tasks, thus investigating different perspectives of learning in automated algorithm design. Based on AutoGCOP, the thesis first investigates online learning in automated algorithm design. Two learning models based on reinforcement learning and Markov chain are investigated to learn and enhance the compositions of algorithmic components towards automated algorithm design. The Markov chain model presents a superior performance in learning the compositions of algorithmic components during the search, demonstrating its effectiveness in designing new algorithms automatically. The thesis then investigates offline learning to learn the hidden knowledge of effective algorithmic compositions within AutoGCOP for automated algorithm design. The forecast of algorithmic components in the automated composition is defined as a sequence classification task. This new machine learning task is then solved by a Long Short-term Memory (LSTM) neural network which outperforms various conventional classifiers. Further analysis reveals that a Transformer network surpasses LSTM at learning from longer algorithmic compositions. The systematical analysis of algorithmic compositions reveals some key features for improving the prediction. To discover valuable knowledge in algorithm designs, the thesis applies sequential rule mining to effective algorithmic compositions collected based on AutoGCOP. Sequential rules of composing basic components are extracted and further analysed, presenting a superior performance of automatically composed local search algorithms for solving VRPTW. The extracted sequential rules also suggest the importance of considering the impact of algorithmic components on optimisation performance during automated composition, which provides new insights into algorithm design. The thesis gains valuable insights from various learning perspectives, enhancing the understanding towards automated algorithm design. Some directions for future work are present

    Proceedings of the GIS Research UK 18th Annual Conference GISRUK 2010

    Get PDF
    This volume holds the papers from the 18th annual GIS Research UK (GISRUK). This year the conference, hosted at University College London (UCL), from Wednesday 14 to Friday 16 April 2010. The conference covered the areas of core geographic information science research as well as applications domains such as crime and health and technological developments in LBS and the geoweb. UCL’s research mission as a global university is based around a series of Grand Challenges that affect us all, and these were accommodated in GISRUK 2010. The overarching theme this year was “Global Challenges”, with specific focus on the following themes: * Crime and Place * Environmental Change * Intelligent Transport * Public Health and Epidemiology * Simulation and Modelling * London as a global city * The geoweb and neo-geography * Open GIS and Volunteered Geographic Information * Human-Computer Interaction and GIS Traditionally, GISRUK has provided a platform for early career researchers as well as those with a significant track record of achievement in the area. As such, the conference provides a welcome blend of innovative thinking and mature reflection. GISRUK is the premier academic GIS conference in the UK and we are keen to maintain its outstanding record of achievement in developing GIS in the UK and beyond
    • …
    corecore