
University of Nottingham

Automated Design of Local Search
Algorithms for Vehicle Routing
Problems with Time Windows

Weiyao Meng

14342160

Supervised by

First Supervisor: Rong Qu
Second Supervisor: Dario Landa-Silva

Thesis submitted to the University of Nottingham
for the degree of Doctor of Philosophy

June 2023

Abstract

Designing effective search algorithms for solving combinatorial optimisation

problems presents a challenge for researchers due to the time-consuming

experiments and experience required in decision-making. Automated algo-

rithm design removes the heavy reliance on human experts and allows the

exploration of new algorithm designs. This thesis systematically investi-

gates machine learning for the automated design of new and generic local

search algorithms, taking the vehicle routing problem with time windows

as the testbed.

The research starts by building AutoGCOP, a new general framework for

the automated design of local search algorithms to optimise the composi-

tion of basic algorithmic components. Within the consistent AutoGCOP

framework, the basic algorithmic components show satisfying performance

for solving the VRPTW. Based on AutoGCOP, the thesis investigates the

use of machine learning for automated algorithm composition by modelling

the algorithm design task as different machine learning tasks, thus investi-

gating different perspectives of learning in automated algorithm design.

Based on AutoGCOP, the thesis first investigates online learning in au-

tomated algorithm design. Two learning models based on reinforcement

learning and Markov chain are investigated to learn and enhance the com-

positions of algorithmic components towards automated algorithm design.

The Markov chain model presents a superior performance in learning the

compositions of algorithmic components during the search, demonstrating

its effectiveness in designing new algorithms automatically.

The thesis then investigates offline learning to learn the hidden knowledge

of effective algorithmic compositions within AutoGCOP for automated al-

gorithm design. The forecast of algorithmic components in the automated

composition is defined as a sequence classification task. This new machine

learning task is then solved by a Long Short-term Memory (LSTM) neural

i

network which outperforms various conventional classifiers. Further anal-

ysis reveals that a Transformer network surpasses LSTM at learning from

longer algorithmic compositions. The systematical analysis of algorithmic

compositions reveals some key features for improving the prediction.

To discover valuable knowledge in algorithm designs, the thesis applies se-

quential rule mining to effective algorithmic compositions collected based

on AutoGCOP. Sequential rules of composing basic components are ex-

tracted and further analysed, presenting a superior performance of au-

tomatically composed local search algorithms for solving VRPTW. The

extracted sequential rules also suggest the importance of considering the

impact of algorithmic components on optimisation performance during au-

tomated composition, which provides new insights into algorithm design.

The thesis gains valuable insights from various learning perspectives, en-

hancing the understanding towards automated algorithm design. Some

directions for future work are present.

ii

Acknowledgements

This thesis would not have happened without many people who accompa-

nied me during the whole or part of the work in my private and academic

life. Therefore, I would like to take this moment to sincerely thank these

people and acknowledge their invaluable help.

I am immensely grateful to my supervisors, Professor Rong Qu and Profes-

sor Dario Landa-Silva, for their unwavering support and patience through-

out my PhD study and research. Their guidance and dedication have

played a pivotal role in shaping me into an independent researcher, and

have equipped me with essential skills beyond the scope of my studies. I

am truly grateful for their encouragement of my personal and professional

development.

In addition, I extend my gratitude to Dr Jason Atkin and Professor Chris-

tian Wagner for their insightful feedback and constructive comments on

the progress of my project. I also would like to express my special thanks

to Dr Xingxing Hao from Northwest University for his valuable advice and

support during the initial stages of my PhD. Their guidance has been in-

valuable to my research, and I am truly thankful for their help.

I would like to thank all members of the COL Lab at the University of

Nottingham, for contributing to such a vibrant and delightful research en-

vironment that has enriched my experience. In particular, I extend special

thanks to Dr Salman Arif, Dr Yun He, Dr Warren G. Jackson, Salim Maaji,

Han Meng, Rebecca Tickle, and Dr Wenjie Yi from the COL Lab, as well as

Dr Feng Chen from the Computer Vision Lab, and Dr Elif E Firat, Zeyang

Liu, Dr Yuan Tian, and Wen Zheng from the VisTAG Lab at the Uni-

versity of Nottingham. Their support, insightful discussion and friendship

have been invaluable to me. I would also like to acknowledge the constant

encouragement and support I received from Dr Jeremie Clos, Dr Peer-Olaf

Siebers and Adam Walker.

iii

I would like to extend my heartfelt appreciation to my dear friends back

in China, with a special mention to Qing Huang, Yiqing Liu, Yuanwei Li,

Xinyi Zhang, and Liyi Pan. Their unwavering support has been a constant

source of strength throughout my PhD journey. To my friends, thank

you for always being there for me, believing in me, being ready to lend a

helping hand and lifting my spirits whenever I lose faith in myself. I am

truly grateful for your enduring friendship and support.

Also, I would like to thank my partner Dr Yuzheng Chen from the PEMC

group at the University of Nottingham, for bringing me tremendous happi-

ness, for being there with me through every joyful and difficult moment of

my PhD journey, and for being my rock and a constant source of support

every step of the way.

Last but not least, I am deeply grateful to my parents, Fanyi Meng and

Peiyun Miao, as well as all my family back in China. I would not start the

journey pursuing my PhD in the UK without their unwavering support.

This thesis would not have happened without their endless love.

iv

Contents

Abstract i

Acknowledgements iii

Chapter 1 Introduction 1

1.1 Background and motivations 1

1.2 Research aim and objectives 6

1.3 Main works and contributions 9

1.4 Thesis outlines . 11

1.5 List of publications . 15

Chapter 2 Related Works 16

2.1 The vehicle routing problem 18

2.2 Search algorithms for Vehicle Routing Problems 22

2.3 A review of learning in automated design of search algorithms 47

2.4 Machine learning . 76

2.5 Summary . 86

Chapter 3 AutoGCOP: A General Framework for Au-

tomated Design of Local Search Algorithms 89

3.1 Introduction . 91

3.2 The AutoGCOP framework with extended GCOP model . . 92

3.3 Effectiveness of algorithmic components on VRPTW 99

3.4 Conclusions . 107

Chapter 4 Online learning to predict algorithmic com-

ponents for automated algorithm composition110

4.1 Introduction . 112

v

4.2 Learning models . 113

4.3 Effectiveness of the learning models on VRPTW 119

4.4 Concluisons . 126

Chapter 5 Offline learning to predict algorithmic com-

ponents for automated algorithm composition127

5.1 Introduction . 129

5.2 The new machine learning task on algorithm composition . . 131

5.3 Data collection and process for machine learning 132

5.4 Learning from algorithmic components 137

5.5 Findings of classification methods on automated algorithm

composition . 140

5.6 Conclusions and discussions 152

Chapter 6 Sequential rule mining on the compositions

of algorithmic components 157

6.1 Introduction . 159

6.2 Data of algorithm design for data mining 162

6.3 Automated algorithm design with sequential rule mining . . 166

6.4 Findings of sequential rules for algorithm design 168

6.5 Performance of sequential rules for automated algorithm com-

position . 175

6.6 Conclusions . 188

Chapter 7 Conclusions and future works 191

7.1 Conclusions . 192

7.2 Future research directions 199

Appendices 203

Appendix A Machine Learning for Evolutionary Compu-

tation - the Vehicle Routing Problems Com-

petition 204

vi

A.1 Introduction . 204

A.2 Description of the competition 205

A.3 Solution evaluator . 207

A.4 Summary . 208

Bibliography 209

vii

List of Tables

2.1 Classification of papers studying automated algorithm gen-

eration. 72

3.1 The algorithmic components tk ∈ At in the extended GCOP

model. 94

3.2 Instantiation of widely used local search metaheuristics in

the literature using different elementary algorithmic com-

ponents in the Improvement procedure within the unified

AutoGCOP framework. 97

3.3 The component sets considered in the AutoGCOP frame-

work, i.e. termination criteria tk ∈ At, operators oi ∈ Ao,

and acceptance criteria aj ∈ Aa. 99

3.4 Characteristics of the benchmark VRPTW instances. 101

3.5 Performance comparison of RN-GCOP with different opera-

tor sets. Average of objective function values out of 10 runs

are presented. The best results are in bold. The results are

highlighted with ∗ if one method is significantly better than

the other method based on Mann–Whitney–Wilcoxon test

at a 95% confidence level. RN3: RN-GCOP with a subset

of Ovrp−basic (which excludes three worse-performing opera-

tors). RN6: RN-GCOP with six operators in Ovrp−basic. . . . 103

viii

3.6 Solution quality of RN-GCOP with different operator sets

Ovrp−basic and Obasic using the same computational time.

RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with

Ovrp−basic. Average of objective function values out of 10

runs are presented. 104

4.1 A set of update strategies in the proposed GCOP methods,

i.e. Update() for updating the learning models M 117

4.2 Characteristics of the benchmark VRPTW instances. 120

4.3 Comparison between GCOP methods with different learning

(IP-GCOP and TP-GCOP) against the random RN-GCOP

and RG-GCOP methods. The best, average (AVG) and

standard deviation (SD) of objective function values out of

31 runs are presented. 121

4.4 Performance comparison between IP-GCOP and TP-GCOP

using the Mann–Whitney–Wilcoxon test. The comparison

between TP↔ IP is shown as +, -, or ∼ when TP-GCOP is

significantly better than, worse than, or statistically equiva-

lent to IP-GCOP, respectively. 121

4.5 The intra-domain scores for IP-GCOP and TP-GCOP with

different update methods. The best results (smallest values)

for each method are in bold. 123

4.6 Pairwise performance comparison between different Update()

methods with IP-GCOP using the Mann–Whitney–Wilcoxon

test. The comparison between A ↔ B is shown as +, -, or

∼ when A is significantly better than, worse than, or statis-

tically equivalent to B, respectively. 124

ix

4.7 Pairwise performance comparison for the TP-GCOP with

different Update() methods using the Mann–Whitney–Wilcoxon

test. 124

4.8 Comparison of solution quality between the published best-

known results and the best solutions from IP-GCOP and TP-

GCOP out of ten runs. NV denotes the number of vehicles.

TD denotes the total travel distance. Results that are better

than or the same as the best known are in bold. 125

5.1 Features of the benchmark VRPTW instances, including ve-

hicle capacity (VC), scheduling horizon (SH), customer dis-

tribution type (DT), service time (ST), time window density

(TWD) and width (TWW). 133

5.2 Features of the operators in operator sequences, including

relative neighbourhood size (NS), involved routes of opera-

tion (IR) and operation type (OT). 134

5.3 The appearance of each oi in Table 5.2 as the label of the

extracted operator sequences. 136

5.4 Representative re-sampling methods. 137

5.5 Data size of re-sampled training data and testing data. . . . 142

5.6 The AUC results of different learning models on data sets

processed by different re-sampling methods. 143

5.7 Pairwise performance comparison on the LSTM with LSTM-

basic and RF using the Mann–Whitney–Wilcoxon test. The

+, -, or ∼ indicates if the LSTM is significantly better than,

worse than, or statistically equivalent to LSTM-basic and

RF, respectively. 143

5.8 Sample size of the training data re-sampled by RU with dif-

ferent imbalance levels. 145

x

5.9 Comparison of model performance on the data with only

O index and the data with additional features, based on

the Mann–Whitney–Wilcoxon test. The +, -, or ∼ indicate

if O index with an additional feature is significantly better

than, worse than, or statistically equivalent to data with just

O index, respectively. 149

5.10 The top 10 important features found by RF. 150

5.11 Comparison of model performance on operator sequence data

with different feature sets using Mann–Whitney–Wilcoxon

test. The +, -, or ∼ indicates that O index with important

features is significantly better than, worse than, or statisti-

cally equivalent to O index with other features, respectively. 151

6.1 Features of the benchmark VRPTW instances, including ve-

hicle capacity (VC), scheduling horizon (SH), customer dis-

tribution type (DT), service time (ST), time window density

(TWD) and width (TWW). 163

6.2 Features of the basic operators for solving VRPTW, includ-

ing relative neighbourhood size (NS), involved routes of op-

eration (IR) and operation type (OT). 164

6.3 Top 10 sequential rules with the #sup and #conf values and

the proportional values (indicated by prop) on the dataset

with different length settings l. Commonly occurred sequen-

tial rules in the four sets are in bold. 169

6.4 Top 10 sequential rules for the data sets of all selected in-

stances. Commonly occurred sequential rules in the three

sets are in bold. 170

xi

6.5 Categorisation of the basic oi ∈ Ao based on their impact

on VRPTW optimisation objectives, i.e., number of vehicles

(NV) and total travel distance (TD). 171

6.6 Top 10 sequential rules for the data sets of different cus-

tomer distribution types (i.e., Type-C, Type-R and Type-

RC). Commonly occurred sequential rules in the three sets

are in bold. 173

6.7 Top 10 sequential rules for the data sets of different schedul-

ing horizon types (i.e., Type-1 and Type-2). Commonly oc-

curred sequential rules in the two sets are in bold. 173

6.8 Comparison between the SeqRuleGCOP method with the

extracted top 10 frequent sequential rules against RN-GCOP

and MC-GCOP for effectiveness validation. The best and

second-best results are in bold and italics, respectively. . . . 179

6.9 Comparison between the SeqRuleGCOP method with the

extracted top 10 frequent sequential rules against RN-GCOP

and MC-GCOP for generality evaluation. The best and

second-best results are in bold and italics, respectively. . . . 179

6.10 Comparison between SeqRuleGCOP against VND for effec-

tiveness validation. 182

6.11 Comparison between SeqRuleGCOP against VND for gen-

erality evaluation. 182

6.12 Performance comparison between RN-GCOP and RN-GCOP -

group. The best results are in bold. The AVG results are

highlighted with ∗ if one method is significantly better than

the other method based on Mann–Whitney–Wilcoxon test. . 185

xii

6.13 Performance comparison between MC-GCOP and MC-GCOP -

group. The best results are in bold. The AVG results are

highlighted with ∗ if one method is significantly better than

the other method based on Mann–Whitney–Wilcoxon test. . 185

6.14 Performance comparison between VND and VND group. The

best results are in bold. The AVG results are highlighted

with ∗ if one method is significantly better than the other

method based on Mann–Whitney–Wilcoxon test. 186

7.1 A summary of the main studies of different learning methods

in the thesis. 198

xiii

List of Figures

1.1 Chapter structure and correlations with research questions

and objectives of the thesis. ML: machine learning. The

abbreviations used in the figure are as follows: ML (Ma-

chine Learning), AutoAD (Automated Algorithm Design),

RQ (Research Question), and RO (Research Objective). . . . 13

2.1 A classification of vehicle routing heuristics (Laporte et al.,

2000), (Liu et al., 2023). 24

2.2 Illustration of intra-route heuristics. The nodes are cus-

tomers and the lines are routes. The red lines and red nodes

are the segments of the routes removed/added by the im-

provement heuristics. 30

2.3 Illustration of inter-route heuristics. The nodes are cus-

tomers and the lines in different colours are different routes.

The red nodes are the customers of the routes changed by

the improvement heuristics. 31

2.4 A categorisation of the algorithm design decisions. 54

2.5 General scheme of how automated algorithm design works. . 54

2.6 An extended classification of automated algorithm design. . 55

xiv

2.7 The structure of a basic LSTM cell (Smagulova and James,

2020). At each time step t, Xt is an input vector, Ct de-

notes the cell state vector, and ht is the hidden state vector

calculated based on Ct. Three gating units, i.e., input gate,

forget gate and output gate, return vectors denoted as it, ft

and Ot, respectively. 81

2.8 Input data representation in RNNs (including LSTM) (Skydt

et al., 2021). 82

2.9 The structure of the original Transformer network for sequence-

to-sequence learning (Vaswani et al., 2017). 83

2.10 A sequence database (left) and some sequential rules found

(right) (Fournier-Viger et al., 2011). 84

3.1 Comparison in the average solution objective value (out of

ten runs) between each operator in Ovrp−basic against RN-

GCOP with Ovrp−basic on the 100-customer instances, with

error bars representing the standard deviation. o0: oinxchg.

o1: obwxchg. o2: oinins. o3: obwins. o4: orr. o5: 2-opt∗. 102

3.2 Comparison in the average solution objective value (out of

ten runs) between each operator in Ovrp−basic on the 1000-

customer instances, with error bars representing the stan-

dard deviation. o0: oinxchg. o1: obwxchg. o2: oinins. o3: obwins. o4:

orr. o5: 2-opt∗. 102

3.3 The improvement of the random GCOP method with Ovrp−basic

(denoted as RN vrp) compared to the same method with

Obasic (denoted as RN basic). The amount of Improvements

= (RN basic−RN vrp)/RN basic. 105

xv

3.4 Convergence curves of RN-GCOP with different operator

sets on the 100 customer instances given the same time.

RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with

Ovrp−basic. 106

3.5 Convergence curves of RN-GCOP with different operator

sets on the 1000 customer instances given the same time.

RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with

Ovrp−basic. 107

4.1 The MIP updated during six iterations 118

4.2 The MTP updated during six iterations 118

4.3 Proportion of each operator called in the best algorithm com-

positions obtained by IP-GCOP and TP-GCOP, compared

with RN-GCOP and RG-GCOP, for solving instance C101. . 122

4.4 Proportion of each operator called in the best algorithm com-

positions obtained by IP-GCOP and TP-GCOP, compared

with RN-GCOP and RG-GCOP, for solving instance C206. . 122

5.1 An example operator sequence represented by features, in-

cluding features of the sequence and the corresponding label. 135

5.2 The structure of the proposed LSTM. 138

5.3 The structure of the proposed Transformer network. 139

5.4 Performance comparison of RF and LSTM on the data sets

processed with different re-sampling methods. 144

5.5 The performance change of RF and LSTM on the data sets

processed by RU with different data imbalance levels. RU1,

RU2, RU3, RU4 and RU5 denotes RU with the ratio of ma-

jority class to minority class 1:1, 2:1, 3:1, 4:1 and 5:1, re-

spectively. 146

xvi

5.6 The comparison of learning models in terms of the AUC

performance. 147

5.7 The AUC performance comparison of learning models on

data sets with different features in Figure 5.1. 148

5.8 Comparison of different feature sets using the performance

of learning models. 150

6.1 Comparison between RN-GCOP and MC-GCOP according

to the AVG results of the best N runs out of 1000 runs, for

solving C102 and C202. 165

xvii

Chapter 1

Introduction

1.1 Background and motivations

An optimisation problem is the problem of searching for the best config-

uration of a set of variables with the aim of maximising or minimising

some objectives (Blum and Roli, 2003). Generally, optimisation problems

can be categorised into two groups, i.e., one has solutions encoded with

real-valued variables, and the other with solutions encoded with discrete

variables (Blum and Roli, 2003). Combinatorial optimisation problems

(COPs) fall into the latter category. They aim to find the optimal solution

among a finite set of solutions. COPs are well-known for their numerous

applications in domains such as scheduling, logistics, network design and

operations research (Vesselinova et al., 2020).

Heuristic algorithms, ranging from classic heuristics to meta-heuristics,

have been extensively studied in solving complex COPs (Blum and Roli,

2003). These algorithms do not guarantee optimal solutions but often pro-

vide a high-quality solution in a reasonable time, thus have been rapidly

1

1.1. BACKGROUND AND MOTIVATIONS

developed in recent years in different domains (Talbi, 2009). Extensive

research has been dedicated to designing effective meta-heuristics for a va-

riety of practical applications (Boussäıd et al., 2013).

The design of effective heuristic algorithms usually follows an iterative and

manual process where a large number of decisions need to be made (Hoos,

2008). Some of the basic and common decisions include representation

(solution encoding), objective function, and constraint handling. These

decisions are essential steps in algorithm design, however, do not directly

determine the specific algorithms that are produced (Talbi, 2009). Other

decisions, such as the search scheme (single-solution-based or population-

based), the set of algorithmic components (such as operators, acceptance

criteria, etc.) and the parameter settings, are directly related to algorithm

designs. Given the growing complexity of COPs, the design and develop-

ment of effective search algorithms present a challenge for researchers due

to the extensive expertise and efforts required in decision-making (Pillay

et al., 2018b).

In recent studies, a great amount of research effort has been made in au-

tomating the algorithm design process. Releasing human experts from the

tedious design process is a primary motivation, i.e., to produce effective

algorithms with less human involvement in the algorithm design process.

In addition, the performance of manually designed algorithms highly relies

on the experience and effort of the human experts, who may only consider

a limited number of designs, leaving a significant number of potential algo-

rithms unexplored (Hoos, 2008). Automation in algorithm design helps to

explore a larger scope of candidate algorithms, some of which may never

be considered by manual designs. Therefore, automated algorithm design

is becoming an important field of research in different research domains,

such as machine learning (He et al., 2021), software engineering (Woodward

2

1.1. BACKGROUND AND MOTIVATIONS

et al., 2016), (Petke et al., 2017), optimisation research and evolutionary

computation (Pillay et al., 2018b).

Based on a new taxonomy defined in (Qu et al., 2020), the current research

in automated algorithm design has been categorised into three themes,

namely automated configuration, automated selection and automated com-

position. Automated configuration aims to automatically select parameter

values for specific target algorithm(s) to solve a collection of problem in-

stances (Hutter et al., 2007). Automated selection aims to automatically

select the most suitable algorithm from a portfolio of candidate algorithms

for a set of training instances thus solving new testing instances. Auto-

mated composition aims to automatically compose heuristics or compo-

nents of arbitrary algorithms to solve the problem at hand (Qu et al.,

2020). Automated configuration and selection take a top-down method in

algorithm design, to consider parameters and algorithms themselves in the

decision space, thus the resulting algorithms are variants of the target al-

gorithms. Automated composition takes a bottom-top method to compose

flexibly a set of algorithmic components, thus generating new algorithms

(Qu et al., 2020).

The automated algorithm design is fast emerging along with the successful

research development in machine learning (Qu, 2021b). Machine learn-

ing (ML) algorithms can “learn” knowledge from data to make predictions

or decisions without being explicitly programmed to do so (Bishop and

Nasrabadi, 2006). From the aspect of machine learning, the search process

of heuristic algorithms generates a considerable volume of data (Karimi-

Mamaghan et al., 2022), which has been discarded in the literature. Various

machine learning techniques, ranging from classification to reinforcement

learning, have been applied to build learning models for automated algo-

rithm design. In the context of automated algorithm design, the learning

3

1.1. BACKGROUND AND MOTIVATIONS

process can be online or offline based on data availability. Online learning

continuously learns from newly arriving data gathered during solving the

optimisation problem at hand to update the learned knowledge in algo-

rithm design. Offline learning learns from the complete dataset which is

available before the problem-solving begins, without incremental updates

in the algorithm design process.

In (Qu et al., 2020), a new model named General COP (GCOP) formally

defines the problem of algorithm design itself as a COP. The decision vari-

ables of GCOP consist of elementary algorithmic components, thus the

design of various algorithms can be defined as flexible compositions of ba-

sic components. The objective of GCOP is to optimise the composition of

these components. Solving the GCOP thus automates the design of the best

algorithms for solving the problem at hand. GCOP provides a standard

to support automated algorithm design (Qu et al., 2020) by formulating

various search algorithms in one model.

Recent advances in automated algorithm design have evidenced that auto-

matically designed algorithms might outperform some manually designed

algorithms. This indicates that automated algorithm design can greatly

benefit from machine learning due to the generalisation and predictive

power of machine learning. However, there are many types of machine

learning models, each with its own assumptions, algorithms, and perfor-

mance characteristics. An essential question is how machine learning algo-

rithms can be leveraged to learn from the large amount of complex data

generated in the search process. In other words, how machine learning can

be applied effectively in learning from the search data to produce effective

algorithm designs. This question is the primary motivation behind the

work in this thesis.

4

1.1. BACKGROUND AND MOTIVATIONS

In light of recent developments, it is now becoming more evident that useful

information is hidden in the data generated during the search. These new

findings encourage further analysis of the data of effective algorithm designs

for producing new effective algorithms to the literature (Qu et al., 2020).

Machine learning can capture both explicit and implicit knowledge from the

data. Explicit knowledge is directly observable or explicitly described, such

as rules and patterns. Implicit knowledge refers to information that is not

explicitly stated or easily represented, which can be embedded in learning

models such as neural networks. However, most of the research in the field

of automated algorithm design focuses on building learning models. The

knowledge from effective algorithm designs has been rarely studied.

In addition, with more machine learning models investigated in automated

algorithm design, the rich and new knowledge acquired from the data is

captured in the learning models. This hidden knowledge is, however, im-

plicit to interpret. Few studies in automated algorithm design have fo-

cused on the interpretability of machine learning, which makes it difficult

to understand why certain decisions are being made for producing effec-

tive algorithms. Enhancing the interpretability of learning is important for

acquiring valuable insights into decision-making processes and identifying

the key factors that contribute to the development of effective algorithms.

By proposing the most basic algorithmic components, GCOP defines a large

space of algorithm designs. Most of the studies of automated algorithm

design however focused on the design of specific heuristics or investigating

hand-picked procedures, thus only a smaller number of algorithm designs

are considered (Qu et al., 2020). In principle, larger algorithm design spaces

can be expected to contain better-performing algorithms (Hoos, 2008). The

new GCOP standard calls for further investigations of automated algorithm

design (Qu et al., 2020), however, requires coherent frameworks to explore

5

1.2. RESEARCH AIM AND OBJECTIVES

the insights on designing effective algorithms with these components.

1.2 Research aim and objectives

This thesis gathers the most recent advances in machine learning and au-

tomated algorithm design to fill the aforementioned knowledge gap. The

research aim of the thesis is to investigate how to leverage machine learning

to automatically design effective local search algorithms based on the new

GCOP standard, thus enhancing the understanding of algorithm design

and introducing new effective algorithms to the literature. In the context

of three lines of research in automated algorithm design, this thesis focuses

on automated composition.

To achieve this aim, the following research questions (RQs) are formulated

to support the investigations in the thesis:

• RQ1: How to conduct investigations based on the GCOP model?

• RQ2: How to use machine learning in automated algorithm design?

To answer RQ1, two research objectives (ROs) have been identified:

• RO1: to develop a coherent framework to support the automated

algorithm design based on the general GCOP model. This objective

is to support the automated design of local search algorithms and

systematic investigations on effective algorithm designs.

• RO2: to examine the performance of the elementary algorithmic com-

ponents of the GCOP model in automated algorithm design. This

objective is to justify the effectiveness of the basic GCOP components

in automated algorithm design.

6

1.2. RESEARCH AIM AND OBJECTIVES

The outcomes of RO1 and RO2 set the base for the subsequent research

for answering RQ2. RQ2 can be divided into two sub-questions:

• RQ2.a: What to learn? This question emphasises the knowledge that

can be learned by machine learning in the algorithm design process.

• RQ2.b: How to learn? This question focuses on various learning

methods for automated algorithm design.

To address RQ2, it is crucial to align the analysis of investigations with

the specific learning tasks at hand. The definition of machine learning

tasks determines the learning target, the type of knowledge that can be

acquired from the data, and the choice of learning methods. To answer

RQ2, several ROs have been identified with a focus on different perspectives

of learning, including the form of knowledge (i.e., explicit, implicit), the way

of extracting knowledge (i.e., online learning, offline learning), and the way

of using knowledge (i.e., different ways of modelling algorithm design tasks

into machine learning tasks).

• RO3: to investigate different online learning behaviour. This ob-

jective is to identify effective learning behaviour that can be used

to design effective learning models for automated algorithm design.

Effective algorithm designs can be produced and collected for subse-

quent investigations of useful knowledge to support algorithm design.

• RO4: to learn implicit knowledge within the data of effective algo-

rithm designs with offline learning. This objective is to build machine

learning models which can capture useful knowledge from the data

to support automated algorithm design.

• RO5: to learn explicit knowledge within the data of effective algo-

rithm designs with offline learning. This objective focuses on the

7

1.2. RESEARCH AIM AND OBJECTIVES

interpretability of learning to gain insights into the decision-making

involved in the design of effective algorithms.

A good understanding of the data is essential for clearly defining the ma-

chine learning task. Based on the defined GCOP model, an algorithm

can be seen as a composition of algorithmic components (Meng and Qu,

2021), which suggests an algorithmic composition can be represented by

a sequence of algorithmic components. In automated composition, the

decision-making regarding algorithmic components may vary over time.

Thus, a hypothesis can be formed regarding the sequential and temporal

features of the algorithmic compositions. The investigations for answering

RQ2 are mainly based on this hypothesis.

Based on the above ROs, this thesis investigates automated algorithm de-

sign using Vehicle Routing Problems with Time Windows (VRPTW) as

the domain example. As a widely investigated optimisation problem in op-

erational research (Wong, 1983), the basic vehicle routing problem (VRP)

(Fisher and Fisher, 1995) consists of ordering and assigning customer de-

livery demands to a set of vehicles. The objective is to minimise the total

travel costs serving all the customers. Variants of VRP have been inves-

tigated with complex constraints (Braekers et al., 2016) to address dif-

ferent real-world scenarios. In the most widely studied VRPTW variant,

customers must be served within specified time intervals (Cordeau et al.,

2007). The design of effective heuristic algorithms to solve VRPTW re-

mains a challenge for researchers, providing an ideal testbed to investigate

of machine learning in automated algorithm design.

8

1.3. MAIN WORKS AND CONTRIBUTIONS

1.3 Main works and contributions

In the thesis, a series of studies have been conducted based on the identified

RQs and ROs. The main contributions of the thesis can be summarised as

follows:

1. This thesis presents an extended taxonomy of automated algorithm

design, along with a categorisation of the decisions involved in the al-

gorithm design process. The proposed categorisation and taxonomy

contribute to capturing recent advances in automated algorithm de-

sign, thus establishing a more structured way of analysing the existing

literature.

2. This thesis presents a new general AutoGCOP framework to support

the automated composition of elementary algorithmic components,

thus supporting the automated design of local search algorithms.

3. Within the consistent AutoGCOP framework, this thesis confirms the

satisfying performance of the elementary algorithmic components for

the VRPTW. This serves as the baseline to conduct further investi-

gations on effective algorithm compositions.

4. Within AutoGCOP, the thesis evaluates reinforcement learning and

Markov chain as a means of online learning to compose algorith-

mic components, investigating the effectiveness of learning on the

individual performance of algorithmic components and the transi-

tion performance of algorithmic components. Results within the gen-

eral AutoGCOP framework confirm the superior performance of the

Markov chain model (which observes transition performance) in the

automated design of new local search algorithms, thus suggesting the

benefits of learning the transitions between algorithmic components.

9

1.3. MAIN WORKS AND CONTRIBUTIONS

5. Within AutoGCOP, the thesis investigates the implicit knowledge

with machine learning models which can be acquired from effective

algorithmic compositions offline.

(a) Firstly, the prediction of algorithmic components in automated

algorithm compositions is formally defined as a sequence pre-

diction task for machine learning, supported by the underlying

GCOP model theoretically. With the collected data upon the

basic GCOP components, the newly defined machine learning

task introduces new challenges to the machine learning com-

munity and encourages cross-disciplinary collaborations between

evolutionary computation and machine learning.

(b) Secondly, the thesis confirms the superior performance of Long

Short-term Memory (LSTM) in the defined new machine learn-

ing task on automated algorithm design. To the best of our

knowledge, it is the first attempt to propose an LSTM model in

the automated design of search algorithms.

(c) Thirdly, the analysis of different features of the collected data

confirms the effectiveness and contributions of problem instance

features and search stage in algorithmic compositions. These

identified two types of features offer new insights and inform

further effective algorithm design.

6. Within AutoGCOP, the thesis investigates explicit knowledge in ef-

fective algorithm designs with sequential rule mining.

(a) With the collected data on the basic GCOP components, the

thesis investigates the sequential rules of composing basic com-

ponents. To the best of our knowledge, it is the first research

work on sequential rule mining, a classical mining technique,

10

1.4. THESIS OUTLINES

in learning from effective algorithm designs towards automated

algorithm design.

(b) Secondly, this thesis confirms the satisfying effectiveness and

generality of the sequential rules on basic components in auto-

mated algorithm design.

(c) The investigation of the sequential rules suggests a novel way

of grouping the basic operators based on their impact on opti-

misation objectives, which was previously not considered in the

literature. The analysis of operator groups with GCOP meth-

ods confirms their effectiveness in the automated composition

of groups of operators. Furthermore, grouping operators effec-

tively reduces the search space of algorithm design. This allows

automated algorithm design to focus on a subset of algorithm

designs in the search space. The automated design process could

find good algorithms more quickly if the reduced search space

is promising. However, there is a possibility of neglecting cer-

tain regions of the search space that may contain the potentially

better or the best algorithms.

1.4 Thesis outlines

This section introduced the structure of the thesis to offer a clear roadmap

of what lies ahead. Figure 1.1 presents an overview of the main chapters

and their correlations to the identified RQs and RQs.

First, Chapter 2 ”Related works” introduces the recent advances in re-

lated research areas to provide the context for the studies of the thesis.

The ROs of this thesis are further explained based on the related research

11

1.4. THESIS OUTLINES

background.

Among the proposed ROs, this thesis first focuses on RO1 and RO2 by

building a coherent algorithm design framework and assessing the perfor-

mance of the basic GCOP components. In Chapter 3, a general AutoGCOP

framework is built to support the automatic composition of elementary al-

gorithmic components based on the general GCOP model, thus designing

local search algorithms automatically. Based on the AutoGCOP frame-

work, this chapter analyses the performance of the most basic algorithmic

components and justifies their effectiveness in designing search algorithms

capable of solving VRPTW.

12

1.4. THESIS OUTLINES

F
ig
u
re

1
.1
:
C
h
a
p
te
r
st
ru

ct
u
re

a
n
d

co
rr
el
a
ti
o
n
s
w
it
h

re
se
a
rc
h

q
u
es
ti
o
n
s
a
n
d

o
b
je
ct
iv
es

o
f
th

e
th

es
is
.
M
L
:
m
a
ch

in
e
le
a
rn

in
g
.
T
h
e
a
b
b
re
v
ia
ti
o
n
s
u
se
d

in
th

e
fi
g
u
re

a
re

a
s
fo
ll
o
w
s:

M
L

(M
a
ch

in
e
L
ea

rn
in
g
),

A
u
to
A
D

(A
u
to
m
a
te
d
A
lg
o
ri
th

m
D
es
ig
n
),

R
Q

(R
es
ea

rc
h
Q
u
es
ti
o
n
),

a
n
d
R
O

(R
es
ea

rc
h
O
b
je
ct
iv
e)
.

R
el

at
ed

 w
or

ks
(C

h
a
p
te

r
2
)

R
O

1:
 t

o
 p

ro
p
o
s
e
 a

 c
o
h
e
re

n
t

fr
a
m

e
w

o
rk

 f
o
r

G
C

O
P

R
O

2:
 t

o
 i

n
v
e
s
ti

g
a
te

 p
e
rf

o
rm

a
n
c
e
 o

f
a
lg

o
ri

th
m

ic

c
o
m

p
o
n
e
n
ts

 i
n
 G

C
O

P

R
es

ea
rc

h
ai

m
to

 i
n
v
e
s
ti

g
a
te

 h
o
w

 t
o
 u

s
e
 M

L
 i

n
 A

u
to

A
D

b
a
s
e
d
 o

n
 G

C
O

P

R
Q

1
H

o
w

 t
o
 c

o
n
d
u
c
t

in
v
e
s
ti

g
a
ti

o
n
s
 b

a
s
e
d
 o

n
 G

C
O

P
?

R
Q

2
H

o
w

 t
o
 u

s
e
 M

L
 i

n
 A

u
to

A
D

?

-
R

Q
2
.a

:
w

h
a
t

to
 l

e
a
rn

?

-
R

Q
2
.b

:
h
o
w

 t
o
 l

e
a
rn

?

R
O

3:
 t

o
 i

n
v
e
s
ti

g
a
te

 d
if

fe
re

n
t

o
n
li

n
e
 l

e
a
rn

in
g
 b

e
h
a
v
io

u
r

in

A
u
to

A
D

R
O

4:
 t

o
 i

n
v
e
s
ti

g
a
te

 i
m

p
li

c
it

 k
n
o
w

le
d
g
e
 w

it
h
 o

ff
li

n
e
 M

L
 f

o
r

A
u
to

A
D

R
O

5:
 t

o
 i

n
v
e
s
ti

g
a
te

 e
x
p
li

c
it

 k
n
o
w

le
d
g
e
 w

it
h
 o

ff
li

n
e
 M

L
 f

o
r

A
u
to

A
D

S
e
t

th
e
 b

a
s
e

A
ut

oG
C

O
P

fr
am

ew
or

k
&

Pe

rf
or

m
an

ce
 o

f G
C

O
P

co
m

po
ne

nt
s

(C
h
a
p
te

r
3
)

O
nl

in
e

le
ar

ni
ng

 w
ith

in
 A

ut
oG

C
O

P
(C

h
a
p
te

r
4
)

O
ffl

in
e

le
ar

ni
ng

 fo
r i

m
pl

ic
it

kn
ow

le
dg

e
w

ith
in

 A
ut

oG
C

O
P

(C
h
a
p
te

r
5
)

O
ffl

in
e

le
ar

ni
ng

 fo
r e

xp
lic

it
kn

ow
le

dg
e

w
ith

in
 A

ut
oG

C
O

P
(C

h
a
p
te

r
6
)

P
ro

d
u
c
e
 d

a
ta

C
on

cl
us

io
ns

 &
 F

ut
ur

e
w

or
ks

(C
h
a
p
te

r
7
)

13

1.4. THESIS OUTLINES

Chapter 3 can be seen as the base for the development of automated com-

position methods and the systematic analysis of effective algorithmic com-

positions in the following chapters. Based on the proposed AutoGCOP

framework in Chapter 3 and the ROs for answering RQ2, Chapter 4, Chap-

ter 5, and Chapter 6 investigate learning in automated compositions with

different perspectives in the form of knowledge (i.e., explicit, implicit), the

way of extracting knowledge (i.e., online learning, offline learning), and the

way of using knowledge (i.e., different ways of modelling algorithm design

tasks into machine learning tasks). The learning targets in these chapters

mainly focus on the knowledge of the sequential relations between ele-

mentary algorithmic components in GCOP towards automated algorithm

design.

Based on RO3, Chapter 4 investigates online learning to compose algorith-

mic components within AutoGCOP. Reinforcement learning and Markov

chain are evaluated as a means of learning the individual performance of

algorithmic components and learning the transition performance of algo-

rithmic components.

In Chapter 5, the prediction of algorithmic components is formally defined

as a sequence prediction task for machine learning for RO4. This chapter

evaluates LSTM and Transformers as a means of learning from the collected

data on the basic GCOP components, predicting the operators for auto-

mated composition. Different types of information in the search process

are investigated as features to enhance the prediction.

Based on RO5, Chapter 6 focuses on investigating explicit knowledge in the

form of rules between algorithmic components. The collected data on the

basic GCOP components are analysed with sequential rule mining. Exper-

imental studies evaluate the effectiveness and generality of the sequential

14

1.5. LIST OF PUBLICATIONS

rules of basic components in automated algorithm design.

Finally, Chapter 7 concludes this thesis, discusses the obtained results, and

proposes promising research directions, especially on (1) generalisation of

the proposed framework to other COPs, (2) extension of the proposed

framework to more general search frameworks, (3) and investigations on

other categories of algorithmic components.

1.5 List of publications

The following publications have arisen during the study for this thesis and

are related to the work herein. They are listed below in chronological order.

1. Meng, W. and Qu, R. (2021). Automated design of search algorithms:

Learning on algorithmic components. Expert Systems with Applica-

tions, 185:115493.

The content of this paper is covered in Chapter 3 and Chapter 4.

2. Meng, W. and Qu, R. (2023a). Automated design of local search algo-

rithms: Predicting algorithmic components with lstm. Expert Systems

with Applications, page 121431.

The content of this paper is covered in Chapter 5.

3. Meng, W. and Qu, R. (2023b). Sequential rule mining for automated

design of meta-heuristics. In Proceedings of the Companion Confer-

ence on Genetic and Evolutionary Computation, pages 1727–1735.

The content of this paper is covered in Chapter 6.

15

Chapter 2

Related Works

Contents

2.1 The vehicle routing problem 18

2.1.1 Vehicle routing problem with time windows . . 19

2.1.2 Problem instances for VRPTW 22

2.2 Search algorithms for Vehicle Routing Problems . . . 22

2.2.1 Classical heuristics 25

2.2.2 Meta-heuristics 33

2.2.3 Discussions . 46

2.3 A review of learning in automated design of search

algorithms . 47

2.3.1 An extended taxonomy of automated design of

search algorithms 49

2.3.2 Learning in automated algorithm configuration 57

2.3.3 Learning in automated algorithm selection . . . 60

2.3.4 Learning in automated algorithm composition . 64

2.3.5 Learning in automated algorithm generation . . 71

2.3.6 Summary . 73

16

2.4 Machine learning . 76

2.4.1 Markov chain 78

2.4.2 Neural networks 79

2.4.3 Sequential rule mining 83

2.5 Summary . 86

17

2.1. THE VEHICLE ROUTING PROBLEM

This chapter provides an overview of the background and techniques used

in this thesis. Section 2.1 introduces the definitions of the classic Vehi-

cle Routing Problems (VRPs), followed by a more detailed mathematical

formulation of the VRP with Time Windows (VRPTW) which is the case

study of this thesis. Section 2.2 provides an overview of the existing heuris-

tic algorithms for VRPs, with a particular focus on meta-heuristics which

have shown powerful performance in solving real-life large-scale problems.

Section 2.3 presents a comprehensive review of automated algorithm de-

sign, with a specific focus on machine learning techniques that have been

used to automate the search algorithm design process. Section 2.4 intro-

duces the background of machine learning techniques used in this study.

Finally, Section 2.5 provides a summary of the previous studies discussed

in this chapter.

2.1 The vehicle routing problem

The Vehicle Routing Problem (VRP) is a well-studied combinatorial opti-

misation problem in operational research (Wong, 1983). It was first intro-

duced as the truck dispatching problem in (Dantzig and Ramser, 1959) for

determining the most efficient routes for a fleet of vehicles to visit a set of

locations with specific demands while minimising the overall travel distance

or cost. The problem was later extended in (Clarke and Wright, 1964) to

include trucks with varying capacities that need to service several delivery

depots from and back to a central depot. Since then, variants of VRPs

have been developed serving different needs of a variety of transportation

and logistics scenarios (Braekers et al., 2016).

The basic VRP concerns routing for a fleet of vehicles to serve a number

18

2.1. THE VEHICLE ROUTING PROBLEM

of customers with delivery demand from and back to a depot (Fisher and

Fisher, 1995). The most commonly used objectives in VRP research are

minimising the total travel distance (TD) and the number of vehicles re-

quired (NV) (Osman, 1993). Numerous VRP variants have been proposed,

reflecting practical constraints and objectives specific to different real-world

scenarios (Eksioglu et al., 2009). The Capacitated VRP (CVRP) and the

VRP with Time Window constraints (VRPTW) are two variants that re-

ceived the most attention from the research community (Toth and Vigo,

2002). In CVRP (Toth and Vigo, 2002), each vehicle has a certain demand

and should be satisfied when serving each customer’s demand, concerning

the issue that delivery vehicles have limited capacity. VRPTW concerns

the constraint that customers must be served within specified time inter-

vals (Cordeau et al., 2007). Recent surveys on VRPs and their variants

can be found in (Eksioglu et al., 2009), (Kumar and Panneerselvam, 2012),

(Braekers et al., 2016) and (Tan and Yeh, 2021).

2.1.1 Vehicle routing problem with time windows

VRPTW is one of the most studied VRP variants since it represents a

series of common applications in the real world. The VRPTW can be

modelled as follows (Chen et al., 2016). A routing network is represented

by a graph G = (V,E) where V = {v0, v1, ..., vn} represents a depot (v0

) and n customers (v1, ..., vn). Each vi is associated with a non-negative

demand qi and service time si, while q0 = 0 and so = 0. Each edge

e ∈ E = {(vi, vj) : vi, vj ∈ V, vi ̸= vj} represents the link between customers

vi and vj associating with a travel distance dij.

A fleet of K vehicles is used to serve all customer demands. To customer vi,

the service start time bi must be within the time window [ei, fi], where ei

19

2.1. THE VEHICLE ROUTING PROBLEM

and fi denote the earliest and latest time to serve qi. If a vehicle arrives at vi

at time ai < ei, a waiting time wi = max{0, ei−ai} required. Consequently,

the service start time bi = max{ei, ai}. Each vehicle of a capacity Q travels

on a route connecting a subset of customers starting from v0 and ending

within the scheduling horizon [e0, f0].

Decision variables:

The decision variable Xk
ij = 1 if the edge from vi to vj is assigned in the

route of vehicle k (k ∈ K); otherwise Xk
ij = 0.

Objective function:

Minimise K (2.1)

Minimise
∑
k∈K

∑
vi∈V

∑
vj∈V

Xk
ij · dij (2.2)

Constraint: ∑
k∈K

∑
vi∈V

Xk
ij = 1,∀vi ∈ V \ {vo} (2.3)

∑
k∈K

∑
vj∈V

Xk
ij = 1,∀vj ∈ V \ {vo} (2.4)

∑
k∈K

∑
vi∈V

∑
vj∈\{v0}

Xk
ij = n (2.5)

∑
vj∈V

Xk
oj = 1,∀k ∈ K (2.6)

∑
vi∈V

Xk
ij −

∑
vj∈V

Xk
ji = 0,∀k ∈ K, vj ∈ V \ {vo} (2.7)

∑
vi

Xk
io = 1,∀k ∈ K (2.8)

ei ≤ bi ≤ fi, ∀vi ∈ V (2.9)

∑
vi∈V

∑
vj∈V

Xk
ij · qi ≤ Q, ∀k ∈ K (2.10)

20

2.1. THE VEHICLE ROUTING PROBLEM

Xk
ij ∈ {0, 1},∀vi, vj ∈ V, k ∈ K (2.11)

Objective (2.1) is to minimise the number of vehicles, while objective (2.2)

is to minimise the total travel distance. Constraints (2.3-2.5) limit every

customer to be visited exactly once and all customers are served. Con-

straints (2.6-2.8) define the route of vehicle k. Constraints (2.9) and (2.10)

guarantee feasibility in terms of the time window constraints and vehicle

capacity constraints, respectively. Constraint (2.11) defines the domain of

the decision variable Xk
ij.

VRPTW is a more practical variant of the CVRP as it introduces the

time window constraints that customers must be served within specified

time intervals (Cordeau et al., 2007). However, this additional constraint

makes VRPTW more complex than CVRP as it introduces an additional

dimension of time during routing. The design of effective search algo-

rithms for VRPTW can be a time-consuming and iterative process, re-

quiring significant domain expertise. Therefore, the algorithm design for

solving VRPTW remains a challenging problem for the research commu-

nity.

The focus of this thesis is to investigate strategies for automated algorithm

design for solving VRPTW. Specifically, this study considers the dual ob-

jectives of minimising the number of vehicles (NV) and minimising the

total travel distance (TD) by a weighted sum objective function used in

the literature (Walker et al., 2012) as shown in Equation (2.12), where C

denotes a sufficiently large number to ensure that K is always the primary

objective. This thesis seeks to contribute to the development of automated

algorithm design for effectively solving complex optimisation problems by

solving the VRPTW with dual objectives.

21

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

f =
∑
k∈K

k∑
vi∈V

∑
vj∈V

Xk
ijdij + C ×K (2.12)

2.1.2 Problem instances for VRPTW

The Solomon (Solomon, 1987) and Hombeger-Gehring (Homberger and

Gehring, 1999) instances are widely tested in the VRPTW literature. Both

data sets consist of six types of instances, i.e., C1, C2, R1, R2, RC1, and

RC2. These instances vary with respect to the customer distribution type

(i.e., random, clustered, and mixed), vehicle capacity (i.e., short and long),

and the density and tightness of the time windows. The usage of these in-

stances allows for a systematic comparison of the performance of different

algorithms in solving the VRPTW with different problem characteristics.

Customer distribution types and scheduling horizons are the key problem

instance features investigated in many studies. Type-C instances are char-

acterised by customers being located in several clusters. Type-R instances

have customers randomly distributed geographically, while Type-RC in-

stances are a combination of both. Short scheduling horizons and lower ve-

hicle capacities are typical for Type-1 instances, whereas Type-2 instances

have longer scheduling horizons and larger vehicle capacities.

2.2 Search algorithms for Vehicle Routing

Problems

Different search algorithms, including exact methods and approximation

approaches, have been proposed to address VRPs (Laporte et al., 1992).

Among various algorithms, exact methods can guarantee optimal solutions.

22

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

However, as VRP is an NP-hard problem (Lenstra and Kan, 1981), exact

methods are often limited to small problem instances (Kumar and Pan-

neerselvam, 2012). On the other hand, approximation approaches focus

on finding an acceptable solution within a reasonable time frame, which

are often more suitable for practical applications of VRPs (Braekers et al.,

2016).

Approximation approaches for VRPs can be broadly classified into classical

heuristics and meta-heuristics in the literature (Laporte et al., 2000), (Tan

et al., 2001), (Lin et al., 2009). The heuristics developed mostly between

1960 and 1990 are known as classical heuristics, while meta-heuristics have

occurred and developed in the last decade (Laporte et al., 2000).

Classical heuristics for VRPs are usually problem-specific (Talbi, 2009) and

explore a limited region of the search space to yield good solutions faster

than an exact method. Construction heuristics and improvement heuristics

are two main types of classical heuristics for constructing and improving

routes, respectively (Laporte et al., 2000). Construction heuristics build

a set of routes from zero following some fixed empirical heuristic proce-

dures, while improvement heuristics tries to produce an improved solution

on the basis of an incumbent solution (Liu et al., 2023). Classical heuris-

tics have limited performance in solving large and complex VRPs (Kumar

and Panneerselvam, 2012). In contrast, meta-heuristics can handle more

complex problems by exploring a larger search space and using higher-level

strategies (Talbi, 2009).

A meta-heuristic is an intelligent strategy combining classical heuristics

to perform a deep exploration and exploitation of the promising area of

the search space (Desale et al., 2015). Compared to classic heuristics,

meta-heuristics conduct a more extensive exploration of the solution space

23

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

(Cordeau et al., 2002), thus have been extensively studied and proven

to achieve superior performance for solving VRPs (Laporte et al., 2000),

(Elshaer and Awad, 2020), and (Tan and Yeh, 2021). The optimisation

performance by meta-heuristics is usually better than classical heuristics

(Bräysy and Gendreau, 2005a). Many meta-heuristics have been designed

to solve VRPTWs to near-optimal solutions (Tan et al., 2001).

Meta-heuristics can be classified based on various criteria (Talbi, 2009).

Based on the preference for exploration versus exploitation during the

search, meta-heuristics can be divided into two categories, i.e., single solution-

based and population-based. Single solution-based meta-heuristics oper-

ate on a single solution during the search, while population-based meta-

heuristics manipulate a whole population of solutions. In general, basic

single solution-based meta-heuristics are designed to intensify the search in

local regions, thus more exploitation-oriented, whereas basic population-

based meta-heuristics allow for more exploration of the whole search space

(Talbi, 2009).

Figure 2.1: A classification of vehicle routing heuristics (Laporte et al., 2000), (Liu et al., 2023).

Heuristic
algorithms

Classical
heuristics

Constructive
heuristics

Improvement
heuristics

Intra-route
heuristics

Inter-route
heuristics

Meta-heuristics

Single solution-
based heuristics

Population-
based heuristics

There are numerous studies that provide systematic reviews of well-established

research fields, from classical heuristics to meta-heuristics (Laporte et al.,

24

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

2000), (Elshaer and Awad, 2020), (Tan and Yeh, 2021), and (Liu et al.,

2023). This section aims to provide a contextual understanding of vari-

ous heuristic methods for addressing VRPs, thus providing an overview of

representative studies in the VRP literature grouped based on the classifi-

cation as shown in Figure 2.1. The focus of this thesis is to investigate the

automated design of single solution-based meta-heuristics for solving the

VRPTW. Therefore, the following overview emphasises the recent advances

in this line of heuristic methods and highlights important algorithmic com-

ponents for automated algorithm design.

2.2.1 Classical heuristics

The VRP literature is extensive and includes several review works and book

chapters that discuss classical heuristics for solving VRPTW (Tan et al.,

2001), (Bräysy and Gendreau, 2005a), (El-Sherbeny, 2010) and many other

variants of VRPs (Laporte et al., 1992), (Laporte et al., 2000), (Cordeau

et al., 2005), (Laporte et al., 2014), (Liu et al., 2023). Classical heuristics

for solving VRPs can generally be classified as constructive heuristics and

improvement heuristics (Bräysy and Gendreau, 2005a). Moreover, these

standard classical heuristics are important components of meta-heuristics

(Bräysy and Gendreau, 2005a) for constructing routes in VRP and further

improving the generated solutions. This subsection presents an overview

of the widely used classical heuristics in the VRP literature, to provide

a contextual understanding of the important algorithmic components of

meta-heuristics.

25

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

Constructive heuristics

Constructive heuristics for VRPs are used to construct routes of a solution

by systematically adding customers into the partial routes to minimise cost

iteratively. The most commonly used constructive heuristics for VRPs in

the literature (Laporte et al., 1992), (Laporte et al., 2000), (Cordeau et al.,

2005) are listed as follows:

• Saving algorithm (Clarke and Wright, 1964): it starts with an initial

solution and uses a saving formula to evaluate potential cost savings

by merging short routes into longer routes.

• Insertion algorithms: unrouted customers are inserted sequentially

(Mole and Jameson, 1976) or in parallel (Christofides, 1979) to the

solution until all customers are visited. When there is no feasible

route to accept the customer, a new route would be created.

• Sweep algorithm (Gillett and Miller, 1974): it sets the depot as the

origin and divides the customers into angular clusters by rotating a

ray through customers, then process the customers in each cluster to

build routes that return to the depot.

• Cluster-first, route-second algorithm (Fisher and Jaikumar, 1981): it

separates the customers into clusters by modelling the clustering step

as a Generalised Assignment Problem (GAP), such that the feasible

cluster is generated by solving the GAP for the minimal cost, then

construct routes for each cluster.

Extensions of saving algorithms mainly focus on modifying the saving for-

mula and the selection of route pairs. These variations can be considered

as different instances of saving algorithms that employ distinct parameters

26

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

in the saving formula and various strategies to choose route pairs. A gen-

eral form of the saving formula was proposed in (Gaskell, 1967), (Yellow,

1970), which parameterised the original formula in (Clarke and Wright,

1964) to adjust the relative importance of different factors. Some studies

proposed more sophisticated saving formulas that consider multiple criteria

(Caccetta et al., 2013), (Cengiz Toklu, 2022). In terms of the selection of

route pairs, different strategies have been proposed, such as greedy selec-

tion which selects the pairs with the largest savings from the saving list, the

matching method (Altinkemer and Gavish, 1991), (Wark and Holt, 1994)

and the probabilistic function (Juan et al., 2010).

Extensions to insertion algorithms mainly focus on the customer selection

criteria and the route insertion criteria. The customer selection criteria

determine which new customers to insert, while the route insertion criteria

determine where to insert them. The most basic greedy insertion algo-

rithm selects the unrouted customers and the insertion locations with the

minimum insertion cost. The regret criterion, proposed in (Potvin and

Rousseau, 1993), measures the difference between the cost of the best po-

sition and the near-best positions as regret for insertion. Another example

criterion, proposed in (Ioannou et al., 2001), takes into account the impact

on both routed and unrouted customers in route insertion.

In the VRP literature, the sweep algorithm (Gillett and Miller, 1974) and

the cluster-first, route-second algorithm (Fisher and Jaikumar, 1981), are

generally grouped as two-phase methods (Chen, 2018). These methods de-

compose the VRP solution process into clustering and routing, thus can

be further categorised into two groups depending on whether clustering

first or routing first. Cluster-first algorithms, such as the classical sweep

algorithm (Gillett and Miller, 1974) and the cluster-first, route-second algo-

rithm (Fisher and Jaikumar, 1981), first partition customers into different

27

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

clusters and then route customers in each cluster. Route-first algorithms,

such as the route-first cluster-second algorithm proposed in (Beasley, 1983),

construct a giant tour with all customers first, and then split it into many

feasible routes. Extension to two-phase algorithms mainly focuses on im-

proving the clustering and customer selection criteria, such as the use of

the polar-coordinate angle (Gillett and Miller, 1974), (Na et al., 2011) and

distance metrics (Peya et al., 2019).

Improvement heuristics

Improvement heuristics are methods used to improve an initial solution by

making specific modifications to the incumbent solution. The main concept

behind most improvement heuristics is the notion of a neighbourhood (La-

porte et al., 2000), (Funke et al., 2005). The neighbourhood of a solution

s ∈ S in the solution space S is a set of solutions N(s) ⊆ S that can be

generated with a single modification of s. The process of moving from s to

another solution s′ ∈ N(s) is called a neighbourhood move (Funke et al.,

2005). In the context of meta-heuristics, an operator is a recipe to modify

a solution to obtain another solution (Rousseau et al., 2002). An operator

defines a neighbourhood structure N(s) that can be reached by applying

that operator on s. Therefore, the design of an operator is important in

designing effective improvement heuristics.

Local search algorithms are widely used improvement heuristics in the VRP

literature, which apply operators to the current solution to find potentially

better solutions with respect to the objective function (El-Sherbeny, 2010).

The local search algorithm uses operators to conduct modification opera-

tions on VRP solutions, defining the local searching area. The algorithm

searches for candidate solutions in this neighbourhood iteratively. In each

28

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

iteration, the quality of the current solution and that of the candidate so-

lution are compared to determine a new search point. Two common strate-

gies for determining the new search point are the first-improving search and

best-improving methods. The former selects the first improvement found in

the neighbourhood, while the latter identifies the most significant improve-

ment among all neighbour solutions (Funke et al., 2005). Once no better

solution can be found in the neighbourhood, the search process terminates,

indicating that an optimum solution has been achieved which may only be

a local optimum or even a global optimum (El-Sherbeny, 2010). To prevent

exhaustive search, the d-best search is a commonly used method to halt the

search process once d-improving neighbour solutions have been discovered

(Funke et al., 2005).

The local search heuristics for solving VRPs mainly rely on a set of es-

sential operators that apply modification operations on each vehicle route

individually (known as intra-route heuristics), or on multiple routes simul-

taneously (known as inter-route heuristics) (Laporte et al., 2000). The

most commonly used intra-route heuristics are listed as follows:

• λ-opt (Lin, 1965): this operator conducts the edge-exchange opera-

tion within one route, i.e., λ edges are removed from a route and the

λ remaining segments are reconnected in all possible ways. In the

literature, λ has been studied at most 3 in practical problems, i.e.,

2-opt and 3-opt.

• Or-opt: (Or, 1976): this operator can be seen as a special case of λ-

opt. Instead of edge-exchange, Or-opt is a node-exchange operation,

displacing consecutive (no more than three) nodes of one route to

another location within the same route.

29

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

Figure 2.2: Illustration of intra-route heuristics. The nodes are customers and the lines are routes. The
red lines and red nodes are the segments of the routes removed/added by the improvement heuristics.

(a) 2-opt

(b) Or-opt

The operators of the most commonly used inter-route heuristics are sum-

marised as follows:

• Relocate operator (El-Sherbeny, 2010): also known as shift opera-

tor (Pillay et al., 2018a). It moves one customer from one route to

another.

• GENI-exchange (Gendreau et al., 1992): this can be seen as a special

case of the relocate operator. The operation is to move one cus-

tomer from one route to another and the customer will be positioned

between the two customers which are closest to it.

• Swap operator: replace one customer from one route with the cus-

tomer from another route.

• λ-interchange (Osman, 1993): it can be seen as a generalised opera-

tion of the basic swap operator. The operator replaces no more than

λ customer of a route with the customer from another route (not

30

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

more than λ as well) to generate a new solution. The customer from

a route can be either consecutive or non-consecutive.

• CROSS-exchange (Taillard et al., 1997): this operator can be seen

as a different generalisation of the basic swap operator, which swaps

two strings of consecutive customers from different routes.

• 2-opt* (Potvin and Rousseau, 1995): A special case of CROSS-

exchange. It removes two edges from two independent routes and

reconnects the routes with no inversion of the orientation of route

segments. 2-opt* is a subset of the 2-opt neighbourhood for inter-

route operation.

Figure 2.3: Illustration of inter-route heuristics. The nodes are customers and the lines in different
colours are different routes. The red nodes are the customers of the routes changed by the improvement
heuristics.

(a) Relocate

(b) Swap

To illustrate the basic operations in improvement heuristics, Figure 2.2

shows 2-opt and Or-opt operators, and Figure 2.3 describes relocate oper-

ator and swap operator. In the literature, extensions to the commonly

used improvement heuristics mainly focus on modifying the number of

31

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

edges/vertices to exchange/relocate, as well as the selection policies and the

insertion policies of these operations. Some operators, such as λ-opt (Lin,

1965) and λ-interchange (Osman, 1993), can be seen as the parameterised

versions of basic operations. Other operators, such as 2-opt* (Potvin and

Rousseau, 1995), can be seen as special cases of the parameterised opera-

tions that use specific settings. For example, the shift operator in (Schulze

and Fahle, 1999) can be seen as the relocate operator with a specific in-

sertion criterion that evaluates all insertion positions before inserting a

customer.

Remarks

The operations performed by classical VRP heuristics upon routing so-

lutions are usually subject to the constraints in the VRPs (Pillay et al.,

2018a). For solving VRPTW, the operations of constructive and improve-

ment heuristics need to carefully consider the time window constraints

(Bräysy and Gendreau, 2005a), particularly in the selection of edge or

vertice and insertion locations. The study in (Potvin and Rousseau, 1995)

identified that the λ-opt neighbourhood can cause time constraint viola-

tions by reversing the tour orientation. Operations without any inversion

of the tour orientation, such as 2-opt* (Potvin and Rousseau, 1995), have

been shown to improve the efficiency of local search in VRPTW (Chen,

2018).

Many studies have used effective constructive heuristics to provide a good

solution before route improvement. The study in (Van Breedam, 1994)

has shown that a good starting point is essential for designing effective

improvement heuristics. This supports many studies that investigated the

combination of constructive heuristics with improvement heuristics and

32

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

meta-heuristics for solving variants of VRPs.

The improvement heuristics play a crucial role in meta-heuristics for solving

VRPs. These heuristics can be seen as being extended from the most

basic operations to VRP solutions. The specific operators can be seen

as compound operators of the most basic neighbourhood moves and can

explore a limited search space of the basic operators (Meng and Qu, 2021).

The operators used in VRP algorithms can be modelled as a collection

of basic algorithmic components, as demonstrated in (Qu et al., 2020).

Modelling various search algorithms in one model provides a standard for

the design of new heuristic algorithms.

2.2.2 Meta-heuristics

Meta-heuristics is a class of methodologies that use high-level strategies

within a heuristic search framework to navigate the search in the solution

space of optimisation problems (Boussäıd et al., 2013). Due to the com-

plexity of VRPs and their real-life applications, meta-heuristics have been

extensively studied for practical applications (Elshaer and Awad, 2020),

especially for solving VRPTW (Bräysy and Gendreau, 2005b). Several

taxonomic reviews of meta-heuristics in the VRP literature have been con-

ducted in recent years, including those by (Laporte et al., 2000), (Gendreau

et al., 2008), (El-Sherbeny, 2010), (Elshaer and Awad, 2020).

Based on the population management strategy, meta-heuristics are classi-

fied as single solution-based methods and population-based methods (Blum

and Roli, 2003). Single solution-based meta-heuristics tend to focus more

on the exploitation of solution space, while population-based meta-heuristics

tend to emphasise exploration (Boussäıd et al., 2013). This section presents

33

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

an overview of the representative studies of meta-heuristics in the VRP lit-

erature (Elshaer and Awad, 2020), to provide the context for the automated

design of local search-based algorithms in the case study of VRPTW.

Population-based meta-heuristics

Population-based meta-heuristics operate on a population of solutions to

explore the search space. The commonly studied population-based meta-

heuristics generally include two types, i.e., Evolutionary Computation (EC)

and Swarm Intelligence (SI) (Boussäıd et al., 2013). These algorithms are

both inspired by natural phenomena but in different ways (Boussäıd et al.,

2013). EC algorithms are based on the principles of natural selection, while

SI is inspired by the collective behaviour of social organisms (such as ants,

bees, etc) (Boussäıd et al., 2013). Both types of algorithms achieve high

diversification while exploring the search space by evolving a population of

solutions towards better regions of the search space (Beheshti and Sham-

suddin, 2013).

EC algorithms (also known as Evolutionary Algorithms (EAs) (Boussäıd

et al., 2013)) start with an initial population of solutions. Each iteration of

the algorithm represents a generation, where the population of candidate

solutions are modified by mutation and crossover operators to generate new

offspring solutions. These offspring solutions are evaluated and the better

ones have a greater chance of being selected to create the next generation.

This process is repeated until the termination criterion is met.

SI algorithms involve the coordination and cooperation of a group of agents

(or particles) to solve a problem. The group of agents in SI move through

the search space, and their positions and movements are influenced by the

positions of other agents in the swarm. The agents communicate with each

34

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

other and adjust their behaviour based on the information they receive,

leading to emergent behaviour that can help to guide the algorithm towards

better solutions over successive generations.

The widely used population-based meta-heuristics in the VRP literature

(Elshaer and Awad, 2020) are reviewed in this section, including Genetic

Algorithms (GA) and Memetic algorithms (MA) from the EC group, and

Ant Colony algorithms (ACO) and Particle Swarm Optimisation (PSO)

from the SI group.

Genetic Algorithms

Genetic Algorithms (GAs) (Holland, 1975) are the most well-known evolu-

tionary algorithms (Back, 1996). In the original GA (Holland, 1975), a can-

didate solution is represented by a ”chromosome” that consists of ”genes”

(e.g., bits). In each generation, two parent solutions are selected to generate

two offspring by crossover and mutation operations. The crossover opera-

tion (De Jong and Spears, 1991) exchanges a part of the parent solutions,

while the mutation operation applies classic move operators to change some

locations in the chromosome. The new offspring are then evaluated and

compared with the solutions in the population. A replacement strategy

is applied to selectively replace individuals in the current generation with

offspring to produce the next generation.

Applications of GAs have been reported for several applications to VRPs,

including VRPTW (Thangiah et al., 1991), (Blanton Jr and Wainwright,

1993), (Thangiah, 1993), (Potvin and Bengio, 1996), (Chen et al., 2001),

(Baker and Ayechew, 2003), VRP with backhauls (Potvin et al., 1996),

multi-depot VRP (Ho et al., 2008) and dynamic VRP (Prins, 2004). In

variants of GA, solutions may be encoded as different types and combined

with different operators and solution selection mechanisms.

35

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

Classical VRP heuristics, such as the sweep algorithms (Baker and Ayechew,

2003), the saving algorithm (Ho et al., 2008) and λ-interchange (Ghoseiri

and Ghannadpour, 2010), have been used in GAs for generating the ini-

tial solution population. Local search algorithms have been incorporated

into GAs as mutation operators in (Chen et al., 2001) and (Prins, 2004).

GAs show powerful performance in handling multiple complicated objec-

tives, especially for solving multi-objective VRPs (MOVRPs). As one of

the most studied VRP variants, the VRPTW concerns two objectives, i.e.,

minimising the number of vehicles and the total travel distance (Bräysy

and Gendreau, 2001). The study in (Berger et al., 2003) proposed to use

two populations of solutions respectively targeting distinct objectives for

VRPTW in GA. More recently, (Vidal et al., 2013) proposed a new mech-

anism for population management and a new evaluation method of pe-

nalising infeasibility. The proposed GA outperforms the state-of-the-art

algorithms in many VRPTW instances.

(2) Memetic algorithms

Memetic algorithms (MA), also known as Hybrid Evolutionary Algorithms

(Hybrid EAs)(Gendreau et al., 2008), combine local search algorithms with

population-based algorithms to enhance the exploitation of the search space

(Moscato et al., 1989). MAs have been successfully applied to various

problem domains by leveraging the strengths of different search approaches

(Gendreau et al., 2008).

In the VRP literature, MAs usually combine GAs with local search heuris-

tics (Liu et al., 2023), such as the combination of GA and classical im-

provement heuristics in (Cattaruzza et al., 2014), (Mendoza et al., 2010),

and (Nagata et al., 2010). Various MAs have been developed to solve dif-

ferent VRP variants, including CVRP (Ngueveu et al., 2010), VRPTW

36

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

(Cattaruzza et al., 2014), (Qi et al., 2015), VRP with stochastic demands

(Mendoza et al., 2010), and multi-trip VRP(Cattaruzza et al., 2014).

(3) Ant Colony algorithms

Ant Colony Optimisation algorithms (ACO) (Dorigo and Di Caro, 1999)

are inspired by the behaviour of real ant colonies which use pheromone

trails to communicate and navigate for finding food (Blum, 2005). In the

ACO algorithms, an artificial ant is a simple computational agent which

can explore the search space for good solutions. An ACO algorithm starts

with a set of candidate solutions to the optimisation problem and a group

of artificial ants. The ants then construct solutions by selecting one of

the available options at each decision point, guided by the strength of the

pheromone trail left by previous ants. Updating the pheromone trail is

a key element of ACO (Bell and McMullen, 2004). After constructing a

solution, the ants update the pheromone trail based on the quality of the

solution found.

In the VRP literature, various ACO algorithms have been developed for

variants of VRPs, such as CVRP (Bell and McMullen, 2004), (Mazzeo

and Loiseau, 2004), (Doerner et al., 2005), large scale VRP (Reimann

et al., 2004), open VRP (Li and Tian, 2006) and others. These algo-

rithms incorporate different constructive heuristics (such as saving algo-

rithms (Reimann et al., 2004)) and local search heuristics (such as swap, 2-

opt (Bell and McMullen, 2004), (Reimann et al., 2004), interchange heuris-

tics (Mazzeo and Loiseau, 2004)) for route construction and improvement.

To tackle the multiple objectives of VRPTW, the study in (Gambardella

et al., 1999) proposed to use two colonies to search for good solutions with

respect to distinct objectives.

(4) Particle Swarm Optimisation

37

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

Particle Swarm Optimisation (PSO) (Eberhart and Kennedy, 1995) follows

the social behaviour of bird flocking. In PSO, each candidate solution is

represented by a particle in the swarm, associated with a position and a

velocity in the search space. The position of a particle represents the fitness

value of the solution, and its velocity controls the direction and speed of its

movement in the search space (Poli et al., 2007). During the search process,

each particle adjusts its position and velocity based on its own experience

and that of its neighbours in the swarm, including its current fitness value,

the best position it found so far, and the best position the swarm found so

far. Each particle tries to move towards the best solution it found so far

and the best solution found by the swarm (i.e., the global best).

The application of PSO for solving VRPs starts from solving CVRP (Ka-

chitvichyanukul et al., 2007). More PSO algorithms have been proposed by

incorporating different route construction and improvement heuristics for

dealing with different constraints of VRPs, such as the time windows (Zhao

et al., 2004), stochastic demands (Marinakis et al., 2013), and simultane-

ous pickup and delivery (Ai and Kachitvichyanukul, 2009). The study in

(Marinakis et al., 2013) combined local search-based meta-heuristics with

PSO, which produces superior results compared to other EAs for solving

VRPs.

Single Solution-based meta-heuristics

Single solution-based meta-heuristics are also known as local search-based

meta-heuristics (Funke et al., 2005). These algorithms systematically ex-

plore the solution space by starting from an initial solution and moving

at each step from the current solution to another promising solution in its

neighbourhood (Cordeau et al., 2002), following a trajectory in the search

38

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

space (Boussäıd et al., 2013).

Single solution-based meta-heuristics are developed from the classical lo-

cal search algorithms. The effectiveness of single solution-based meta-

heuristics is due to the ”intelligent” modifications of classic local search

which strategically balance exploration and exploitation of the search space.

Two key aspects of local search algorithms are the neighbourhood struc-

tures (i.e., operators) and the search technique for exploring the neighbour-

hood (Funke et al., 2005). In terms of the neighbourhood structure, smaller

neighbourhood regions offer a more limited search and larger neighbour-

hood regions allow the exploration of a wider range of solutions. (Rousseau

et al., 2002). However, larger neighbourhoods require more time to eval-

uate the larger set of solutions thoroughly. Acceptance criteria direct the

search process to escape from local optimum and maintain a certain degree

of exploration within the search space (Liu et al., 2023).

This section provides an overview of the most widely used single solution-

based meta-heuristics in the VRP literature (Elshaer and Awad, 2020).The

neighbourhood structures of those algorithms are mostly from the classic

heuristics for solving VRPs. The major difference among these algorithms

lies in how they guide the search process to jump out of the local optimum.

(1) Tabu search

Tabu Search (TS) (Glover, 1986) utilises a tabu list to forbid or penalise

recently visited solutions. The tabu list acts as a short-term memory,

recording the solutions explored in recent iterations. In each iteration, TS

moves to the non-tabu positions to cycle moves and explore new solutions,

thus moving away from the local optimum. To avoid over-restriction of

the tabu list and potentially missing good solutions, aspiration criteria are

39

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

proposed to accept some tabu solutions under specific conditions. (Glover

and Laguna, 1998).

In the recent VRP literature, TS stands out as the best (Cordeau et al.,

2002) and the most used local search-based meta-heuristics (Elshaer and

Awad, 2020). Various neighbourhood structures have been applied in the

TS search framework, such as 3-opt (Willard, 1989), Or-opt (Garcia et al.,

1994), 2-opt* (Garcia et al., 1994), (Jin et al., 2012), GENI (Gendreau

et al., 1994), λ-exchange (Taillard, 1993) etc. Using multiple basic op-

erators in TS show great effectiveness for solving variants of VRPs, such

as CVRP (Jin et al., 2012), (Xu and Kelly, 1996), VRPTW (Rochat and

Taillard, 1995), (Badeau et al., 1997) and VRPTW with split delivery con-

straints (Ho and Haugland, 2004) etc.

To solve VRPs, the tabu list can store objects such as nodes, edges (sub-

routes) or routes of the recently visited or best-visited solutions. Most of

the proposed TS use specialised diversification and intensification strate-

gies to guide the search (Bräysy and Gendreau, 2005b). The Taburoute

scheme, proposed in (Gendreau et al., 1994), forbids a vertex to be rein-

serted into its original route in a random number of iterations. Adaptive

memory, which allows random tabu duration, has been used to enhance

TS for solving VRPs (Taillard, 1993), (Rochat and Taillard, 1995), (Tail-

lard et al., 1997). Another frequently used strategy is to implement TS

in parallel (Bräysy and Gendreau, 2005b), such as the implementation in

CVRP (Jin et al., 2012) and VRPTW (Garcia et al., 1994), (Badeau et al.,

1997). More variants of tabu search for solving VRP are developed by in-

troducing different meta-heuristics, such as simulated annealing (Osman,

1993), (Küçükoğlu and Öztürk, 2015) and variable neighbourhood search

(Polacek et al., 2004), (Paraskevopoulos et al., 2008).

40

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

(2) Variable neighborhood search

Variable Neighborhood Search (VNS) (Hansen and Mladenović, 1999) sys-

tematically changes neighbourhood structures to escape from the local op-

timum (Blum and Roli, 2003). The main idea behind VNS is that different

neighbourhood structures can lead to different local optimums, many of

which may be close to each other. Furthermore, the global optimum is a

local optimum for all possible neighbourhood structures. Generally, VNS

contains a Local Search phase to find the local optimum in the neighbour-

hood of the current solution, and a Shaking phase to jump out of the local

optimum. The combination of the two steps enhances the intensification

and diversification of the search process (Hansen and Mladenović, 2003).

Variable Neighbourhood Descent (VND) is the simplest and an effective

variant in the family of VNS (Hansen et al., 2019). It changes the neigh-

bourhood in a deterministic way (Hansen et al., 2010) and moves through

several neighbourhood structures following a sequential order (usually man-

ually specified from smaller to larger ones). Reduced VNS (RVNS) is an-

other simple variant that randomly selects the neighbourhood structure

rather than in a deterministic way. Basic VNS (BVNS) involves both types

of changing mechanisms during the search process (Mladenović and Hansen,

1997). Several other variants of BVNS include the General VNS (GVNS)

which applies VND in the Local Search step and the Skewed VNS (SVNS)

which enhances the exploration of the region far from the incumbent solu-

tion (Hansen et al., 2010).

The main strength of VNS is its ability to adopt different classic improve-

ment heuristics as neighbourhood structures for solving variants of VRPs,

such as those used in VRPTW (Bräysy, 2003), multi-depot VRPTW (Po-

lacek et al., 2004), Open VRP (Fleszar et al., 2009), and other variants. In-

41

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

stead of using classic operators, the study in (Chen et al., 2016) reviews the

widely used neighbourhood operators and proposes the compound neigh-

bourhood operators by composing several independent neighbourhood op-

erators in VNS for VRPTW, resulting in a more effective exploration of

the search space.

To balance exploration and exploitation during the search process, some

algorithms combine VNS with other search strategies. For instance, the

study in (Paraskevopoulos et al., 2008) incorporated TS into the Local

Search phase of VNS and applies a solution reformation mechanism in the

Shaking step for solving a realistic VRP. In another study (Goksal et al.,

2013), VNS is combined with PSO to preserve the swarm diversity and

make exploitation in the search space.

(3) LNS

Large Neighborhood Search (LNS) (Shaw, 1997) explores a larger neigh-

bourhood to avoid getting trapped in a local optimum. It ruins the current

solution by removing parts of the solution with a heuristic algorithm and

then recreating it with another heuristic algorithm. The key components

of LNS are the heuristics for ruining and recreating the solution.

In the context of VRPs, the criteria for selecting customers to remove and

the locations of routes to insert are important in LNS. For solving VRPs

(Shaw, 1997), (Shaw, 1998), side constraints have been efficiently incor-

porated into the search process. The LNS in (Shaw, 1998) for solving

VRPTW concerns the relevance of customer visits using criteria like geo-

graphical metrics and time windows when selecting customers. Adaptive

LNS (ALNS) (Ropke and Pisinger, 2006) is an extension of LNS that dy-

namically changes the neighbourhood structures during the search. It has

42

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

been tested on CVRP, VRPTW, the multi-depot VRP, and many other

variants (Pisinger and Ropke, 2007), (Chen et al., 2021). A ruin-recreate

operator is extracted from LNS as a basic operator for solving VRPs (Qu

et al., 2020).

(4) Simulated annealing

Simulated annealing (SA) (Kirkpatrick et al., 1983) escapes from the local

optimum by adaptively accepting a worse move. It accepts every better

position during the search process and accepts a worse move based on

a dynamically decreased probability, which mimics the physical anneal-

ing process of the temperature changes. The probability is determined

by the metropolis criterion (Metropolis et al., 1953), i.e., e−δ/T , where

δ =| f(s′) − f(s) | represents the absolute value of the difference of the

objective function values between the current solution s and candidate so-

lution s′, and T denotes the system temperature which decreases following

a cooling scheme. Various cooling schedules have been developed (Ben-

Ameur, 2004), such as linear cooling, geometric cooling, and Ludy and

Mees cooling (Lundy and Mees, 1986). The traditional annealing process

is extended in (Connolly, 1992) with a reheating mechanism to periodically

increase the temperature.

SA was first used for solving VRP combining with the classic 3-opt heuristic

in (Alfa et al., 1991). Later studies involve more neighbourhood operators

to reach further search space. Various inter-route heuristics have been used

in SA for solving VRPTW (Chiang and Russell, 1996), (Van Breedam,

1995). Parallel SA has been investigated for VRPs. The study for solving

VRPTW in (Czech and Czarnas, 2002) adopts a set of processors each with

its annealing process to search for the local optimum. A central processor

determines whether to update the global optimum based on the best local

43

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

optimum from all processors.

Variants of SA share the same objective, which is to accept worse moves

based on a decreasing probability. This probabilistic acceptance scheme

can be seen as a relaxation mechanism based on a dynamic threshold. The

similar mechanisms which accept worse moves based on a threshold value

also include the Threshold Acceptance with a static threshold and the Great

Deluge with an increasing probability as a threshold (Dueck, 1993). The

study in (Han and Cho, 2002) combines Threshold Accepting with Great

Deluge for VRP, leading to encouraging results.

(5) Iterated Local Search

Iterated Local Search (ILS) (Lourenço et al., 2003) escapes from local op-

timum by perturbing a current solution and restarting local search from

the resulting solution (Blum and Roli, 2003). Variants of ILS differ in four

aspects, i.e., the initial solution generation, perturbation, local search and

acceptance criterion. The perturbation in ILS is important as it should

be strong enough to escape from the local optimum but not like a random

restart. The acceptance criterion determines whether to accept the per-

turbed solution and start the next iteration or reject it and keep searching

from the current solution (Blum and Roli, 2003).

In the VRP literature, ILS has been applied by using multiple perturbative

and local search heuristics. For example, in (Walker et al., 2012), multiple

perturbative and local search heuristics were used to solve the VRPTW. ILS

is a more general framework than other meta-heuristics, such as VNS (Blum

and Roli, 2003), and thus can be easily extended by using other meta-

heuristics as sub-components. For instance, the study in (Penna et al.,

2013) incorporates ILS with a random neighbourhood ordering VND for

solving Heterogeneous Fleet VRP. Another extension to ILS is by using

44

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

the history of the search with memory (Blum and Roli, 2003). The study

in (Cuervo et al., 2014) developed the oscillating local search heuristic

which can both explore a broad neighbourhood and store information on

the neighbour solutions with a data structure.

(6) Greedy Randomised Adaptive Search Procedure

Greedy Randomised Adaptive Search Procedure (GRASP) (Feo and Re-

sende, 1995) avoids getting stuck in a local optimum by using a multi-start

strategy. Each iteration of GRASP consists of two steps, i.e., construction

and local search (Boussäıd et al., 2013): in the first step, a feasible solution

is generated with constructive heuristics; the built solution is then used as

the starting point for local search in the second step. GRASP conducts

these two steps iteratively, until reaching a specific number of iterations.

Therefore, the search process uses multiple initial solutions to diversify the

search (Blum and Roli, 2003).

GRASP has been applied for solving variants of VRPs, such as CVRP

(Layeb et al., 2013), (Marinakis, 2012), and VRPTW (Kontoravdis and

Bard, 1995), (Chaovalitwongse et al., 2003), (Layeb et al., 2013). Usually,

the construction phase generates a feasible solution by a random greedy

method which iteratively selects the best solution component from a set of

randomised choices. Therefore, the local search phase could start with a

solution likely to be close to the optimal solution and potentially reduce the

time in the local search phase (Chaovalitwongse et al., 2003). To improve

the effectiveness of the local search procedure, GRASP has been developed

with multiple operators (Chaovalitwongse et al., 2003) and meta-heuristics

(Marinakis, 2012), (Layeb et al., 2013).

45

2.2. SEARCH ALGORITHMS FOR VEHICLE ROUTING PROBLEMS

2.2.3 Discussions

In summary, classical heuristics are problem-specific and consider the con-

straints of the problem domain. In contrast, meta-heuristics are more

general-purpose as they use probabilistic and adaptive search strategies

to explore a broader search space with multiple heuristics, and thus can be

applied to a wide range of problems. However, both classical heuristics and

meta-heuristics are problem-specific because the search space of both lines

of algorithms concerns the direct solutions of the optimisation problem.

Hyper-heuristics (Cowling et al., 2000) are a class of search methodologies

with a two-level framework to solve a wide range of optimisation problems.

This class of algorithms is more general-purpose than classical heuristics

and meta-heuristics, as they determine “at a higher abstraction level which

low-level heuristics to apply” (Cowling et al., 2000). The low-level heuris-

tics, e.g. algorithms or operators, are called to generate heuristic algorithms

on the fly. The search space of hyper-heuristics is the space of low-level

heuristics, while low-level heuristics operate in a space of problem solu-

tions. One type of hyper-heuristics, selection hyper-heuristics, automati-

cally combines low-level heuristics by iterative selection. Nowadays, more

and more selection hyper-heuristics are developed for solving VRPs (Chen,

2018). Low-level heuristics are mostly the widely used classic heuristics

and meta-heuristics.

Hyper-heuristics (Pillay and Qu, 2018) can be seen as one of the main

streams in automated algorithm design (Qu et al., 2020), (Meng and Qu,

2021). The recent advances in hyper-heuristics (Drake et al., 2020) indi-

cate the need for automated algorithm design for solving complex opti-

misation problems. It also aligns with the development direction of hy-

bridisation for developing effective search algorithms. High-performance

46

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

algorithms can often benefit from combining the ideas of different method-

ologies (Chen, 2018), (Talbi, 2009). Combining multiple heuristics and

different search frameworks could combine their strengths and allow the

flexible exploration and exploitation of many neighbourhood structures. In-

telligent strategies are required to control this hybridisation and efficiently

switch between different neighbourhood structures. A more detailed re-

view of hyper-heuristics is presented in the next section, i.e., a review of

automated algorithm design.

In terms of different search frameworks in meta-heuristics, single solution-

based meta-heuristics focus more on improving the quality of a single solu-

tion iteratively, while population-based meta-heuristics explore the search

space by evolving a diverse set of candidate solutions and exploiting the

best ones. Population-based meta-heuristics generally achieve higher di-

versification by maintaining many solutions, however, may require longer

computation time to converge. Single solution-based meta-heuristics tend

to converge faster to a single optimal solution due to their focused search.

However, the meta-heuristics of each type of algorithm follow similar search

frameworks, thus common procedures can be extracted to model more gen-

eralised search frameworks.

2.3 A review of learning in automated de-

sign of search algorithms

The design of effective algorithms for solving complex COPs involves mak-

ing a large number of decisions, thus is a challenge for algorithm designers

(Pillay et al., 2018b). The performance of manually designed algorithms

highly depends on the expertise and effort of human experts, who may only

47

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

consider limited designs, leaving a large number of potential algorithms un-

explored (Hoos, 2008). Automated algorithm design aims to make decisions

in the algorithm design process with less or no human involvement (Qu,

2021a). Automated algorithm design can remove the burden of human ex-

perts from the tedious design process and enable the exploration of a larger

scope of candidate algorithms, some of which may never be considered by

manual designs (Meng and Qu, 2021).

Recent advances in artificial intelligence, especially evolutionary compu-

tation and machine learning, have led to a rapid development in the au-

tomated design of search algorithms (Qu, 2021b). However, the search

process generates a considerable volume of data (Karimi-Mamaghan et al.,

2022), which has been discarded in most meta-heuristic literature. From

the perspective of machine learning, the data contains useful knowledge

that can be used to automate the algorithm design process. Machine learn-

ing can be used to automate the design process of search algorithms mainly

by building effective models to make decisions automatically. A variety of

learning methods, ranging from regression to reinforcement learning, have

been applied to utilise the information gathered during problem-solving.

Given recent progress and interest in automated algorithm design, it is cru-

cial to gain a better understanding of how machine learning can be used

in automated algorithm design based on the main findings in recent years.

This section presents a review of the use of machine learning in the au-

tomated design of search algorithms for solving various COPs, including

VRPs (i.e., the case study of the thesis). The representative studies in au-

tomated algorithm design are categorised based on an extended taxonomy.

Each line of research is reviewed with a focus on how machine learning

can be applied to automated algorithm design. The issues and research

opportunities in each line of research are discussed, supporting the main

48

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

works and contributions of this thesis.

Section 2.3.1 presents the taxonomy extended by an existing taxonomy in

(Qu et al., 2020) that guides the review process. The following sections,

Section 2.3.2, Section 2.3.3, Section 2.3.4 and Section 2.3.5, provide a de-

tailed review of the methodologies and recent progress in each area. Finally,

Section 2.3.6 concludes the review and discusses future research directions.

2.3.1 An extended taxonomy of automated design of

search algorithms

An existing taxonomy

With the increasing attention to automated algorithm design, fundamen-

tal issues on models and standards have been addressed. A taxonomy of

automated algorithm design is proposed in (Qu et al., 2020), categorising

three lines of research on automated algorithm design based on the search

space under consideration, explained as follows.

• Automated algorithm configuration: aims at automating the param-

eter control of target algorithms.

• Automated algorithm selection: aims at automatically choosing the

most appropriate algorithm(s) from a portfolio of algorithms with

their associated parameters.

• Automated algorithm composition: aims at automating the compo-

sition of basic components of arbitrary algorithms.

Automated algorithm configuration as one theme of automated algorithm

design aims at automating parameter settings or configurations of specific

49

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

target algorithm(s) for solving a collection of problem instances (Hutter

et al., 2007). It searches in a space of parameter configurations of the target

algorithms with fixed templates (Qu et al., 2020). The idea of using spe-

cialised methods for algorithm configuration can be traced back to several

“configurable systems”, consider for instance the DITOPS transportation

scheduling system (Smith et al., 1996). This field of research has received a

lot of attention, investigating various search algorithms, such as simulated

annealing (Hutter et al., 2010a), tabu search (Battiti and Tecchiolli, 1994),

(Nanry and Barnes, 2000), stochastic local search (KhudaBukhsh, 2009),

evolutionary algorithms (Goldman and Tauritz, 2011), (Araya and Riff,

2014), (Liefooghe et al., 2011) and ant colony algorithms (Lopez-Ibanez and

Stutzle, 2012). Great progress has been made in automated configuration,

leading to the development of the widely adopted automated configuration

frameworks F-Race (Birattari et al., 2010), ParamILS (Hutter et al., 2009),

GGA (Ansótegui et al., 2009) and ISAC (Kadioglu et al., 2010).

Automated algorithm selection aims to automatically select the most ap-

propriate algorithm(s) from a portfolio of candidate algorithms for solving

a set of problem instances, concerning a search space of algorithms or al-

gorithm portfolios (Qu et al., 2020). It has achieved remarkable results in

several research areas (Kerschke et al., 2019), especially in the automated

selection of SAT solvers (Xu et al., 2008) and evolutionary algorithms (Peng

et al., 2010), (Tang et al., 2014), leading to several useful frameworks such

as Aslib (Bischl et al., 2016) and Alors (Mısır and Sebag, 2017).

Automated composition aims to automatically compose or combine heuris-

tics or components of arbitrary algorithms to solve the problem at hand

online, producing new and generic algorithms (Qu et al., 2020). A main

line of research in automated algorithm composition is that of hyper-

heuristics (Qu et al., 2020), where a set of low-level heuristics as algo-

50

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

rithmic components are combined for problem-solving. Within a two-

level framework, hyper-heuristics determine “at a higher abstraction level

which low-level heuristics to apply” (Cowling et al., 2000). The low-level

heuristics, e.g. algorithmic operators, are integrated or composed to de-

sign heuristic algorithms automatically. Different frameworks, including

HyFlex (Ochoa et al., 2012), Hyperion (Swan et al., 2011), and EvoHyp

(Pillay and Beckedahl, 2017), are developed to support the automated com-

position within the hyper-heuristic framework.

These three lines of research are fundamentally different in terms of the

decision spaces. In the theme of research in automated composition, the

algorithm design process is automated by composing algorithmic compo-

nents. It takes a bottom-top method to compose flexibly a set of algorith-

mic components, thus generating new algorithms (Qu et al., 2020). The

other two themes of research in automated configuration and selection take

a top-down method, to consider parameters and algorithms themselves in

the decision space.

In recent work by (Qu et al., 2020), the problem of algorithm design has

been defined as a COP, namely the General Combinatorial Optimisation

Problem (GCOP), which aims to search for the composition of algorithmic

components for solving a given problem (Qu et al., 2020). Solving the

GCOP is thus equivalent to automatically designing the best algorithms for

optimisation problems. The GCOP model provides a standard of algorithm

design by treating various algorithms as compositions of basic components,

thus underpinning automated algorithm design.

51

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

Learning heuristics: an emerging topic in automated algorithm

design

The current taxonomy of automated algorithm design mainly focuses on

studies that concern a given set of decision choices, including existing al-

gorithms, and existing algorithmic components, each with their associated

heuristic and parametric settings. These decision choices are manually de-

fined, thus the algorithm design process still needs explicit knowledge from

experts.

Learning heuristics is emerging in solving many complex COPs, such as

travelling salesman problems (TSPs) and VRPs (Li et al., 2022). These

studies build learning models to act as important components of traditional

heuristic algorithms, ranging from classic heuristics to meta-heuristics. The

resulting heuristics are known as ”learning heuristics”. One example of

learning heuristics is the work in (Wu et al., 2021), where the node selec-

tion policy of the classic 2-opt algorithm is replaced by a reinforcement

learning model. The learning model is trained to learn the node selection

process and propose a node pair to be selected for the 2-opt operation,

given a solution to the optimisation problem. It’s important to note that

the learned node selection policy is embedded within the learning model

and not explicitly defined as a handcrafted selection policy. However, the

learned selection policy exists within the space of all possible policies that

the learning model can learn.

From the perspective of reducing human involvement in the algorithm de-

sign process, learning heuristics fall within the scope of automated algo-

rithm design by using learning models as automatically designed algorith-

mic components to replace manually designed algorithmic components. In

other words, learning heuristics can be seen as heuristics incorporating

52

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

automatically designed algorithmic components. Using automatically de-

signed algorithmic components can reduce the reliance on manually de-

signed algorithmic components in automated algorithm design.

However, the existing taxonomy of automated algorithm design does not

adequately include learning heuristics. Therefore, it is important to update

the taxonomy to account for the recent advancements in learning heuristics

and gain insights into different tasks and methodologies within automated

algorithm design.

The proposed extended taxonomy

In this review, we distinguish the decisions involved in algorithm design

into two levels, i.e., algorithm level and problem level, as illustrated in

Figure 2.4. The problem-level decisions refer to the common and basic de-

cisions of the problem domain for designing heuristics. The algorithm-level

decisions, on the other hand, include the elements that are independent

of the optimisation problem. This novel distinction between the two lev-

els is important for distinguishing different research themes in automated

algorithm design and their underlying decision spaces.

Figure 2.5 provides an overview of the general scheme of automated al-

gorithm design methods. The current studies mainly focus on making

algorithm-level decisions. Each automated algorithm design task utilises

automation methods that operate within a specific decision space, while the

resulting algorithms operate within the solution space of the optimisation

problem being addressed. Feedback can be obtained from the algorithm

design process and the problem-solving process associated with the opti-

misation problem.

53

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

Figure 2.4: A categorisation of the algorithm design decisions.

Decisions in algorithm design

Algorithm-level decisions

Existing algorithms

Existing algorithmic
components

Parameters and heuristics of
algorithmic components

Problem-level decisions

Representation

Objective function

Constraint handling

Figure 2.5: General scheme of how automated algorithm design works.

Algorithms

Algorithmic
components

Parametric settings
or sub-components

of algorithmic
components

Problem solutions

Operate upon

Automated algorithm design methods

Operate upon

Automated selection

Automated composition

Automated configuration

Automated generation

Feedback

54

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

Based on the decision choices, this review extends the taxonomy of au-

tomated algorithm design in (Qu et al., 2020) into four lines as shown in

Figure 2.6. The newly defined automated generation aims to automatically

generate algorithmic components or heuristics of the target algorithm, such

as the selection policy of 2-opt heuristics in (Wu et al., 2021). The designed

algorithmic components are mostly embedded in learning models and thus

are not as explicit as manually designed ones. This automated design pro-

cess can lead to the creation of variant algorithmic components or heuristics

that may have remained unexplored by human experts.

Figure 2.6: An extended classification of automated algorithm design.

Online
learning

Offline
learning

No learning

Feedback Tasks Decision choices Algorithm design space

Automated
Algorithm

Design

Automated
Configuration

Parameters within a
template of target
algorithm(s)

Variants of the
target algorithms

Automated
Selection

A family of given target
algorithms

A family of given
target algorithms

Automated
Composition

Algorithmic components
or heuristics

Algorithmic
compositions

Automated
Generation

Algorithmic components
or heuristics of target
algorithm(s)

Variants of target
algorithmic
components or
heuristics

While the other three lines of research require explicitly specifying the pos-

sible range of decision choices, automated generation can automatically

produce algorithmic components without explicitly specifying the decision

choices. Moreover, automated generation focuses on creating algorithmic

components within target algorithms, instead of directly generating com-

plete algorithms.

Based on whether the methods learn from the feedback of algorithm de-

sign and problem-solving, the methods of automated algorithm design can

be categorised into learning-based and non-learning-based. Non-learning-

based methods, such as random methods and search methods (Adenso-

Diaz and Laguna, 2006), do not explicitly learn from feedback for decision-

55

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

making. On the other hand, learning-based methods acquire knowledge

from the data for automated algorithm design. The learning-based meth-

ods can be further classified into online learning and offline learning: online

learning occurs during the algorithm design process, while offline learning

takes place prior to the algorithm design process.

The extended taxonomy in the thesis captures the recent advances in au-

tomated algorithm design. It provides a more comprehensive structure

for discussing the findings of each line of research in automated algorithm

design.

An overview of machine learning into automated algorithm design

In the research of automated algorithm design, machine learning plays an

important role in the automated design process. The underlying rationale

comes from two aspects. Firstly, a class of effective algorithms may share

similar structures and contain useful knowledge. Secondly, machine learn-

ing models can discover the underlying knowledge of the data generated

during problem-solving, which could be used to make decisions and gener-

ate alternative algorithms automatically. Effective learning in automated

algorithm design can improve search effectiveness and establish intelligence

from a larger scope of candidate designs which may not be explored in man-

ual designs.

Various learning methods, ranging from regression to reinforcement learn-

ing, have been applied to make use of the information from problem-solving,

thus automating the algorithm design tasks. With such recent progress and

interest in automated algorithm design, it is crucial to gain a better under-

standing of how learning has been conducted in the decision-making of the

algorithm design process. This review focuses on machine learning in the

56

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

four lines of research in the automated design of search algorithms, review-

ing the recent developments, overviewing the widely investigated learning

techniques and highlighting issues and research opportunities.

2.3.2 Learning in automated algorithm configuration

Automated configuration refers to the process of automatically determining

the values of algorithmic parameters for a given target algorithm or set of

algorithms (Qu et al., 2020). The research in algorithm configuration has

been divided into two main categories (Karimi-Mamaghan et al., 2022):

• Parameter control, which involves adjusting the parameter settings

of an algorithm during problem-solving.

• Parameter tuning, which involves identifying appropriate parameter

settings before employing the algorithm. Once the parameters have

been fine-tuned, they remain unchanged during problem-solving.

The application of machine learning techniques in automated configuration

research has been explored in both the online and offline categories (Karimi-

Mamaghan et al., 2022). In this review, we will focus on how feedback

from the search process is utilised and categorise studies accordingly into

online learning and offline learning approaches. Specifically, online learn-

ing corresponds to parameter control, while offline learning corresponds to

parameter tuning in automated configuration.

Online learning

Considering the dynamic behaviour of the optimisation process, different

parameter settings may be optimal at different stages of the optimisation

57

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

process (Goldman and Tauritz, 2011), (Aleti and Moser, 2016). The online

learning methods for automated configuration are mainly based on the idea

of reinforcement learning by trial and error (dos Santos et al., 2014). The

candidate configurations are ranked or assigned with credits based on the

historical performance online, thus a learning mechanism can learn to make

appropriate decisions on parameter settings based on the feedback from the

problem-solving process.

The online learning mechanisms are utilised to control critical parameters

in various meta-heuristics, such as the crossover and mutation ratios of

Genetic Algorithms for Knapsack Problems (Hong et al., 2002), prohibi-

tion parameters in Tabu Search for the MAX-SAT problem (Battiti and

Protasi, 1997), the Maximum Clique problem (Battiti and Protasi, 2001),

and the vehicle routing problem (Nanry and Barnes, 2000), (Osman and

Wassan, 2002), (Wassan et al., 2008), (Battiti and Campigotto, 2011), and

the ordering of neighbourhoods in Variable Neighbourhood Search for the

network design problem (Hu and Raidl, 2006) and the TSP (dos Santos

et al., 2014). Most research applies reinforcement signals in the search

algorithms to adapt parameter settings.

In addition to the algorithmic parameters, online learning methods can also

be applied to adapt the parameters of the objective functions. Due to a lack

of complete knowledge of the problem, the objective function may not be

fully defined and needs to be refined during the search for a satisfying solu-

tion (Battiti and Brunato, 2010), especially in multi-objective optimisation

problems. An online learning mechanism has been developed in (Battiti

and Brunato, 2010) to learn a weighted aggregation of objectives.

58

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

Offline learning

Offline learning for automated configuration is usually upon a set of training

instances, aiming to train a learning model to configure target algorithms

for solving unseen similar instances. Most studies aim to learn the map-

pings from instance features to the performance of target algorithms with

specific parameter configurations. Based on a set of representative problem

instances, an automatic configurator tunes the algorithm by selecting the

parameters that yield the best performance (Kadioglu et al., 2010).

One promising approach in the automated configuration is using regression

models to predict continuous parameters (Hutter et al., 2010b). Various

regression models are employed to learn the relationship between the target

algorithm performance and parameter settings (Hutter et al., 2010b), con-

sidering for instance the use of linear regression (Coy et al., 2001), (Hutter

et al., 2006) and logistic regression (Ramos et al., 2005). These appli-

cations of regression models are based on domain-dependent features to

approximate the performance of parametric settings.

Some research in hyper-heuristics applies regression models to determine

the parameters of low-level heuristics (Asta and Özcan, 2014), (Tyasnu-

rita et al., 2015). Instead of instance features, these studies use problem-

independent features to represent the current search states, raising the

generality of the automated configuration methods to the applications of

different domains. A major limitation of using regression models is the

limited number of parameters that can be dealt with.

Clustering shows to be effective for parameter tuning (Kadioglu et al.,

2010) by improving the prediction of the learning models, particularly in

the choice of instance features (Malitsky and Sellmann, 2010). ISAC (Ka-

59

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

dioglu et al., 2010) uses k-means clustering to cluster instances based on

the feature vectors, thus, choosing the best parameter settings for each

cluster of instances.

Racing algorithms have been widely applied in automated configuration

(Birattari et al., 2010) by iteratively evaluating the algorithm configura-

tions on a collection of benchmark instances and using statistical hypoth-

esis tests to drop the worse-performing candidates (Hoos, 2011). F-Race

algorithm (Birattari et al., 2002) is developed based on the racing mech-

anism to automate the configuration of ant colony algorithms for solving

travelling salesman problems (TSP). Later in (Balaprakash et al., 2007),

sampling F-Race and iterative F-Race are developed to effectively handle

a larger configuration space. F-Race has been applied to various appli-

cations (Birattari et al., 2010), including ant colony algorithms (Birattari

et al., 2002) and estimation-based local search algorithms (Balaprakash

et al., 2010) for TSP, simulated annealing algorithms for vehicle routing

problems (Pellegrini and Birattari, 2006), and metaheuristics for univer-

sity timetabling problems (Rossi-Doria et al., 2002). In a recent study in

(Gümüş et al., 2023), the F-Race algorithm shows significant performance

in the automated configuration of Memetic Algorithms for cross-domain

optimisation.

2.3.3 Learning in automated algorithm selection

Automated algorithm selection concerns selecting suitable algorithms or

algorithm portfolios from a given set of algorithms for solving problems.

A class of studies in automated selection use reinforcement learning tech-

niques to learn suitable algorithms and the runtime allocation for iteratively

constructing the algorithm portfolios during problem-solving. Another line

60

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

of research uses learning models built offline by learning from collected per-

formance data to predict the performance and runtime of an algorithm for

automated algorithm selection.

Meta-learning is a type of method originally proposed to support algo-

rithm selection for classification and regression problems (Cruz-Reyes et al.,

2012). In meta-learning, machine learning algorithms are introduced to ac-

quire meta-knowledge that can be used to guide machine learning tasks.

While machine learning algorithms are still the most studied task in meta-

learning (Pappa et al., 2014), different domains of application have been

explored using meta-learning (Cruz-Reyes et al., 2012). Most meta-learning

studies for the design of meta-heuristics can be seen in the line of research

in automated algorithm selection (Karimi-Mamaghan et al., 2022).

Online learning

The online learning methods in automated algorithm selection mainly em-

ploy the idea of reinforcement learning in automatically constructing al-

gorithm portfolios. The main concept is to allocate more runtime to the

algorithm with a better performance in a portfolio. Different application

domains include job shop scheduling (Carchrae and Beck, 2005), SAT (Bat-

titi and Protasi, 1997), (Gagliolo and Schmidhuber, 2006), ONE-MAX and

TSP (Gagliolo et al., 2004).

Some studies combine online learning and offline learning techniques in au-

tomated selection. The study in (Carchrae and Beck, 2005) developed re-

inforcement learning formulas to learn the algorithm improvement per sec-

ond for allocating more runtime to algorithms that perform well, combined

with an offline trained Bayesian classifier predicting the best algorithm on

new problem instances. In (Gagliolo et al., 2004), a general framework is

61

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

proposed for the automated portfolio of Genetic Algorithms with different

settings of population size. A probability update scheme learns perfor-

mance improvement of the variants of the algorithms to allocate runtime.

A simple linear best-fit model is trained to predict useful pairs of algo-

rithms and corresponding time allocations. In (Gagliolo and Schmidhuber,

2006), a bandit learning scheme is adopted for the runtime distributions of

algorithms by learning their performance improvement.

Instead of predicting a suitable runtime for the algorithms, some studies in

automated selection learn to reward the algorithm with better performance

and select the algorithm with more credits, thus iteratively constructing

the best portfolio, such as the application in planning systems (Roberts

and Howe, 2006) and the development of Hydra (Xu et al., 2010). Q-

learning algorithm is adapted in (Lagoudakis and Littman, 2000) to select

algorithms for each instance based on the instance features.

Offline learning

Offline learning in automated algorithm selection mainly concerns predict-

ing the performance of an algorithm and predicting the runtime of an al-

gorithm for automated selection. Mainly four classes of machine learning

approaches have been used in automated algorithm selection to conduct

offline learning, including case-based reasoning (Pomerol, 1997), classifica-

tion, regression, and statistic relational learning (Kotthoff et al., 2011).

Case-based reasoning (CBR) uses experience from solving similar training

instances to solve new and unseen cases. The training instances and their

solutions are stored in a case base, representing the knowledge or experi-

ence. CBR first identifies the similarity of the stored training instances to

the new instance. The solution stored for the most similar case is used.

62

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

If no cases of enough similarity are available, the new case may either be

solved from scratch (Schirmer, 2000) or by modifying the solutions of the

most similar cases (Pomerol, 1997). Retaining the newly solved cases in the

case base provides a learning mechanism to extend and refine the knowl-

edge. Cases in the CBR system are usually represented by instance features

against the best corresponding algorithm. CBR has been applied to solve

project scheduling problems (Schirmer, 2000), and constraint solving prob-

lems (O’Mahony et al., 2008).

Classification is another widely applied method in automated algorithm

selection based on instance features. Bayesian classification is applied in

(Horvitz et al., 2001) to predict the runtime of an algorithm for a target

instance on whether the runtime is short or long for solving the CSP and

SAT problems. In addition, classification approaches have been applied

more to predict the performance of an algorithm based on the features of

specific instances. Some classifiers in automated selection include Decision

Tree for solving bid evaluation problem (Guerri and Milano, 2004), Associ-

ation Classification on adaptive planning system (Vrakas et al., 2003), and

the K-Nearest Neighbour on SAT (Lindauer et al., 2015), (Malitsky et al.,

2011) and black-box optimisation problem (Yuen et al., 2019).

Regression models in automated algorithm selection have also been used

mainly to estimate an algorithm’s runtime based on instance features. This

has been mostly applied to SAT, including the use of ridge regression in the

SATzilla system (Xu et al., 2007) and linear regression (Haim and Walsh,

2009), (Hutter et al., 2006). In (Hutter et al., 2014), the performance of

random forests of regression trees has been evaluated to predict the al-

gorithm runtime in automated algorithm selection for solving SAT, TSP

and MIP. In addition, regression models can be used to predict the perfor-

mance of an algorithm rather than the runtime based on instance features.

63

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

In (Messelis and De Causmaecker, 2014), M5-based regression models are

applied to predict the performance scores of a set of algorithms based on

instance features for solving project scheduling problems. Support vector

machine is also used to assign labels to objects (Noble, 2006) by training

a set of instances and the algorithm performance, thus learning to rank

the algorithms. The application of a support vector machine in automated

selection involves the black-box optimisation problem (He et al., 2019) and

SAT problems (Kotthoff et al., 2011).

The offline learning methods in automated selection depend on the instance

features to make accurate predictions not only on runtime but also on the

algorithm performance. Thus, reasonable and accurate instance features

present be the key issue for training the model. Some studies investigate

feature engineering for identifying the key instance features by using feature

selection (Xu et al., 2007), and feature transformation (Pihera and Musliu,

2014).

2.3.4 Learning in automated algorithm composition

In the theme of research on automated composition, the algorithm design

process is automated by composing a set of algorithmic components to

generate new algorithms. Hyper-heuristics is a class of methodologies for

selecting or generating heuristics to solve optimisation problems (Burke

et al., 2013). A line of research in hyper-heuristics, i.e., selection hyper-

heuristics, falls into the line of research in automated composition (Qu

et al., 2020). The automated composition in selection hyper-heuristics is

conducted within a two-level hyper-heuristic framework, where a set of low-

level heuristics which can be seen as algorithmic components, are integrated

or composed to design heuristic algorithms automatically.

64

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

The performance of a hyper-heuristic highly depends on not only the de-

sign of the low-level heuristics but also the way they are composed for

problem-solving. A line of research in selection hyper-heuristics focuses on

focuses on determining an elite set of algorithmic components (i.e., low-

level heuristics) for composition. This task is typically accomplished using

various online and offline learning methods. However, more attention has

been given to using learning methods to automatically compose algorithmic

components for problem-solving.

This section reviews the learning techniques used in automated composi-

tion, particularly based on the hyper-heuristic framework. Section 2.3.4

focuses on automatically determining the set of algorithmic components,

while Section 2.3.4 discusses automatically composing algorithmic compo-

nents.

Learning to determine the algorithmic components

Several studies in selection hyper-heuristics investigate how the choice of

different sets of low-level heuristics impacts the effectiveness of hyper-

heuristics in personnel scheduling problem (Cowling and Chakhlevitch,

2003) (Chakhlevitch and Cowling, 2005), nurse rostering and home care

scheduling problems (Mısır et al., 2013), workforce scheduling problems

(Remde et al., 2012) and course timetabling and VRPs (Soria-Alcaraz et al.,

2017). There is evidence suggesting the importance of selecting an appro-

priate and compact set of low-level heuristics in hyper-heuristics, as an

unnecessarily large number of low-level heuristics can impair their perfor-

mance (Soria-Alcaraz et al., 2017); while using a smaller subset could ob-

tain similar performance within a shorter time (Chakhlevitch and Cowling,

2005). Some of the low-level heuristics do not make valuable contributions

65

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

to the search but only slow down the search, while some are more suitable

for specific instances than others (Mısır et al., 2013). Therefore, determin-

ing an appropriate set of components with effective learning is essential to

achieve high performance of the automatically composed algorithms.

In the research of automatically determining a set of low-level heuristics

for composition, online learning methods evaluate the performance of the

components and exclude the worst one iteratively (Misir et al., 2010). Two

learning strategies are investigated in (Chakhlevitch and Cowling, 2005)

for determining an elite subset of low-level heuristics to effectively solve

the trainer scheduling problem, namely the warming up approach which

learns only in the early iterations, and a step-by-step reduction approach

which continues to learn until a satisfying size of the elite set is reached.

A simple learning mechanism is applied in (Misir et al., 2010) to maintain

a subset of elite heuristics for different phases of the search by excluding

some heuristics for a given number of phases. To evaluate each heuristic, a

snapshot performance during a phase (i.e., several iterations), rather than

the accumulated performance during the search, is considered. In (Remde

et al., 2012), the step-by-step reduction learning approach in (Chakhlevitch

and Cowling, 2005) shows limited generality across different domains. Some

low-level heuristics which are discarded early seem to be important later

in the search, leading to poor overall performance.

The offline learning methods determine the elite set of low-level heuristics

for automated composition mainly based on the evaluation of the collected

search data (Soria-Alcaraz et al., 2017). In (Soria-Alcaraz et al., 2017), the

performance of each individual low-level heuristic is evaluated offline by

using statistical tests to determine an elite subset. Two fitness landscape

probing techniques, i.e., evolvability and landmarking, are used. Land-

marking is more informative than evolvability in the evaluation. Evolv-

66

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

ability seems to be more reliable in quickly distinguishing good from bad

heuristics.

Several issues should be considered while learning to determine an elite set:

• Size of the set. A small number of low-level heuristics may obtain

similar performance within a shorter computation time; while many

low-level heuristics will require more time to explore the larger search

space and obtain similar performance without intelligent decision-

making with learning.

• Evaluation metrics. Suitable evaluation metrics need to be chosen

for short-term and long-term learning during the search, as each low-

level heuristic may be effective at different stages of the whole search

process (Cowling et al., 2002).

• Learning fashion. The behaviour of low-level heuristics is different for

different problems (Kendall et al., 2002). The most effective heuristics

may be different for different scenarios (Cowling et al., 2002). Online

learning is therefore applied more often than offline learning in the

literature.

Learning to compose algorithmic components

In the line of research in automated composition, some studies focus on

combining algorithmic components of specific types of algorithms or tar-

get algorithms. The most studied algorithms include SAT solver (Khud-

aBukhsh, 2009), SAs (Franzin and Stützle, 2019), ILS (Mascia et al., 2013),

and MOEAs (Bezerra et al., 2015), (Lopez-Ibanez and Stutzle, 2012).

Selection hyper-heuristics can be seen as a main line of research in auto-

67

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

mated composition. In selection hyper-heuristics, the automated composi-

tion task is to determine the most suitable low-level heuristics to compose

for the design of heuristic algorithms for solving the optimisation problem

at hand. Some studies also concern the decision-making of suitable accep-

tance criteria in automated composition. The online learning models use

the information gathered during problem-solving to combine algorithmic

components, while offline learning often learns from effective algorithmic

compositions on a set of training instances to generalise the decision-making

on new instances.

(1) Online learning

In selection hyper-heuristics, the online learning methods for automated

composition mainly follow the concept of reinforcement learning. Learn-

ing models are built to estimate the future performance of an algorithmic

component given feedback during problem-solving, thus making predictions

on the suitable heuristics or components to be combined next (Khamassi,

2011), (Di Gaspero and Urli, 2011), (Mısır et al., 2012), (Turky et al.,

2020). The learning methods can focus on the individual performance of

each low-level heuristic and the transition performance between pairs and

sequences of low-level heuristics, such as the studies in (McClymont and

Keedwell, 2011a) with Markov chain (Kemeny and Snell, 1976) and (Kheiri

and Keedwell, 2015) with Hidden Markov Model (Baum and Petrie, 1966).

The choice function proposed in (Cowling et al., 2000) can be seen as

learning from both individual performance and the transition performance

of heuristics.

The learning process can be sensitive to memory length. A few studies

investigate the length of the learning period for example on the Pseudo-

boolean optimisation (Lissovoi et al., 2017), LeadingOnes (Doerr et al.,

68

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

2018), (Lissovoi et al., 2020b), and OneMax problems (Lissovoi et al.,

2020a). The learning uses a random gradient method which continues to

exploit the currently selected heuristic as long as it is successful. It can be

seen as embedded with a reinforcement learning mechanism with the short-

est possible memory (Lissovoi et al., 2020b). This simple learning method

shows to learn to select the optimal low-level heuristics for standard bench-

mark functions, leading to optimal asymptotic runtimes for LeadingOnes

(Lissovoi et al., 2020b) and OneMax (Lissovoi et al., 2020a). However,

the best choices for memory length can be different in various situations

(Lissovoi et al., 2020b).

(2) Offline learning

In the research of offline learning in selection hyper-heuristics, various clas-

sification methods are explored to learn a mapping between certain search

states and the suitable low-level heuristics (Burke et al., 2013), thus pre-

dicting the suitable low-level heuristics to compose. The predictive power

of the learning models greatly depends on the features describing a search

state (Guyon and Elisseeff, 2003). Some problem-dependent and solution

features have been identified to characterise search states. A few studies

investigate problem-independent information, such as the performance of

the applied algorithmic components and search stage information (Asta

and Özcan, 2014), (Meng and Qu, 2021), (Yi et al., 2022).

Learning classifier systems are rule-based systems driven by genetic algo-

rithms and reinforcement learning to learn appropriate actions subject to

certain conditions (Urbanowicz and Moore, 2009). This class of method-

ologies shows to be effective for automatically composing algorithms by

learning “a solution process”. This process transforms the problem from

the initial state to a solved goal state by iteratively choosing one of the var-

69

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

ious heuristics at each state (Ross et al., 2002). Some of the investigated

optimisation problems include the constraint satisfaction problems (Ortiz-

Bayliss et al., 2013b), modularized fleet mix problem (Shafi et al., 2012),

bin packing problem (Ross et al., 2002), (Maŕın-Blázquez and Schulenburg,

2003), (Maŕın-Blázquez and Schulenburg, 2006), and cutting stock prob-

lem (Terashima-Maŕın et al., 2005). The search states in these problems

are represented by problem-specific features, such as the constraint density

and constraint tightness for constraint satisfaction problems (Ortiz-Bayliss

et al., 2013a), and the number of remaining unpacked items for the bin

packing problems (Maŕın-Blázquez and Schulenburg, 2003).

Classification techniques, such as logistic regression (Ortiz-Bayliss et al.,

2013a) and neural networks (Ortiz-Bayliss et al., 2011), have been used to

compose low-level heuristics in hyper-heuristics by learning a mapping be-

tween problem states and heuristics for solving constraint satisfaction prob-

lems. Apprenticeship learning learns from the observations while an expert

is in action (Abbeel and Ng, 2004). It has been employed by combining

with classification techniques in selection hyper-heuristics for solving bin

packing problems (Asta et al., 2013) and VRPs (Asta and Özcan, 2014),

(Tyasnurita et al., 2015), (Tyasnurita et al., 2017). The data generated

by an expert hyper-heuristic is used to train the classifier for predicting

the low-level heuristics and acceptance criteria for solving new instances.

Various classification or regression methods are investigated, such as linear

regression (Asta and Özcan, 2014), decision tree (Asta and Özcan, 2014), k-

means classification (Asta et al., 2013), neural networks (Tyasnurita et al.,

2015), (Tyasnurita et al., 2017), (Yates and Keedwell, 2017), associative

classification (Thabtah and Cowling, 2008).

The apprenticeship learning-based approaches show to be able to gener-

alise the knowledge extracted from small to larger problem instances (Asta

70

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

et al., 2013), from one type to different types of instances (Tyasnurita

et al., 2017), and achieving better performance than the manually de-

signed algorithm which is seen as an expert to be learned. Particularly,

using problem-independent features to represent search states can lead to

promising performance with a higher level of generality of the extracted

knowledge (Asta and Özcan, 2014). Additional distance metrics used in

(Tyasnurita et al., 2017) for representing search states contribute to bet-

ter learning, indicating that enriching the information with appropriate key

features in the learning environment can potentially lead to highly effective

problem-solving.

2.3.5 Learning in automated algorithm generation

In the theme of research on automated generation, the automation in the

algorithm design process lies in the automated design of algorithmic com-

ponents within target algorithms. Instead of using manually designed al-

gorithmic components, automated generation uses machine learning tech-

niques to conduct the operation of algorithmic components within the tar-

get algorithms. The automatically designed algorithmic components are

embedded in the learning techniques.

Learning heuristics fall into this line of research. Learning heuristics are

the methods that utilise machine learning techniques within heuristic algo-

rithms to perform specific operations of algorithmic components (Wu et al.,

2021). The ability of autonomous and offline learning results in learning

heuristics not requiring any explicit operation rules and performing the

desired operation to replace specific algorithmic components.

Table 2.1 overviews some representative studies in learning heuristics, cate-

71

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

Table 2.1: Classification of papers studying automated algorithm generation.

Reinforcement learning: algorithm design task modelled as reinforcement learning task

Literature
Target
algorithms

Algorithmic
components

Optimisation
problems

Learning
techniques

(Liu and Zeng, 2009) Genetic algorithm Mutation operator TSP Q-learning
(Khalil et al., 2017) Greedy algorithm Node selection TSP Q-learning
(d O Costa et al., 2020) 2-opt Node pair selection TSP Policy gradient
(Wu et al., 2021) 2-opt, node swap, and

relocation
Search policy TSP, CVRP Reinforcement

Learning with self-
attention-based policy
network

(Zheng et al., 2021) Lin-Kernighan-
Helsgaun

Edge selection policy TSP Q-learning, Sarsa and
Monte Carlo

Supervised learning: algorithm design task modelled as sequence-to-sequence task

Literature
Target
algorithms

Algorithmic
components

Optimisation
problems

Learning
techniques

(Hottung and Tierney,
2019)

Large Neighbourhood
Search

Repair operator CVRP, SDVRP Attention-based Deep
Neural Networks

(Gao et al., 2020) Large Neighbourhood
Search

Reinsertion operator CVRP, VRPTW Recurrent Neural Net-
work

(Sui et al., 2021) 3-opt Link selection and
reinsertion location

TSP Pointer network and
feature-wise linear
modulation network

(Zhou et al., 2023) Large Neighbourhood
Search

Decision variable to
remove

Real world VRP in
Airport

Graph Convolutional
Network

gorised based on the machine learning tasks. The heuristics with automat-

ically generated algorithmic components (embedded in learning models)

have demonstrated superior performance compared to the classic heuristics

with the handcrafted algorithmic components on new instances (Deudon

et al., 2018). Various machine learning techniques, including reinforcement

learning and sequence-to-sequence learning, have been applied as auto-

matically designed selection policies or operators of heuristics. In terms

of the target algorithms, classic heuristics have been the main algorithm

frameworks of interest, while other studies explore the application in meta-

heuristics. Specifically, Large Neighbourhood Search has attracted more

research interest in these studies.

End-to-end approaches are an emerging and promising area of research

that apply machine learning techniques for solving complex COPs, such

as TSP and VRPs (Vesselinova et al., 2020). These learning techniques

learn the mapping between the optimisation problem and its solution (Li

et al., 2022), enabling the learning techniques to solve COPs from the

beginning until the final solution (Bogyrbayeva et al., 2022). By using

72

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

machine learning techniques, end-to-end approaches automate the process

of solving COPs without relying on manually designed search algorithms.

In terms of the main strategy for solving COPs, end-to-end approaches

fundamentally differ from traditional search algorithms. Specifically, search

algorithms solve COPs by systematically exploring the space of possible

solutions step-by-step, whereas end-to-end approaches learn to solve COPs

automatically without handcrafted search techniques. A number of studies

have systematically reviewed end-to-end approaches for solving COPs, such

as (Vesselinova et al., 2020), (Kotary et al., 2021), as well as the review in

the VRP literature (Bogyrbayeva et al., 2022).

Learning heuristics can be seen as incorporating the principles of end-to-

end learning within the step-by-step problem-solving process of search al-

gorithms. The effectiveness of learning heuristics indicates the benefits of

leveraging the power of machine learning to capture the underlying patterns

of the problem and solutions and incorporate them into search algorithms.

Incorporating end-to-end approaches with other search frameworks such as

hyper-heuristics might enable the learning of more complex search policies

for advanced search schemes (Wu et al., 2021), which is an important future

direction in the line of automated generation.

2.3.6 Summary

This review provides an overview of the machine learning techniques ap-

plied to the automated design of search algorithms for solving combina-

torial optimisation problems. We discuss the role of machine learning in

automated algorithm design, based on a new taxonomy that categorises

related research into different lines of study, providing insights and guid-

ance on how machine learning can be implemented for different automated

73

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

algorithm design tasks.

This review aims to promote the collaboration between machine learning

and optimisation research and attract more attention to the automated

design of search algorithms. By automating the design process, algorithm

designers can focus on solving more complex optimisation scenarios with

less human involvement. Meanwhile, evidence suggests that automatically

designed search algorithms with effective learning models can outperform

manually designed algorithms. Therefore, we believe that further research

in this area has the potential to lead to significant advances in optimisation

and machine learning.

Despite recent advances in applying machine learning in automated algo-

rithm design, several challenges remain that require attention from multiple

disciplines. Addressing these challenges could open up new research direc-

tions in the field of automated algorithm design.

One major challenge is the need to establish standard algorithm design

frameworks. The recently developed GCOP model (Qu et al., 2020) pro-

vides a new standard for algorithm design. However, current frameworks in

automated composition only cover a subset of algorithmic components in

GCOP, and therefore do not provide adequate support for automated algo-

rithm design based on GCOP. Hyper-heuristics, for instance, only consider

a limited search space consisting of problem-specific low-level heuristics,

rather than elementary algorithmic components. In principle, larger de-

sign spaces can be expected to include better solutions (better algorithm

designs in this case) (Hoos, 2008). To design more effective algorithms,

it is essential to assess the performance of elementary algorithmic compo-

nents and explore insights into designing effective algorithm compositions

with these components. Therefore, the newly established GCOP model

74

2.3. A REVIEW OF LEARNING IN AUTOMATED DESIGN OF
SEARCH ALGORITHMS

requires coherent frameworks to assess the performance of the elementary

algorithmic components and explore insights on designing effective algo-

rithm compositions with these components.

Another challenge is to systematically compare different learning approaches.

With an increasing number of learning models developed for automated al-

gorithm design, especially in automated composition (Thabtah and Cowl-

ing, 2008) and selection (Kotthoff et al., 2011), (Pihera and Musliu, 2014),

there is a need to understand how to choose suitable learning models for

specific algorithm design scenarios. The choice of learning models matters

to the algorithm performance (Kotthoff et al., 2012), (Hutter et al., 2014)

and depends on the specific automation tasks. Conducting a systematic

comparison of learning models based on commonly adapted frameworks

would provide guidance and ensure consistency in the literature.

Furthermore, there is potential for more advanced learning models to im-

prove different aspects of effective algorithm design, including Conditional

Random Fields (Lafferty et al., 2001), Sequential Pattern Mining (Fournier-

Viger et al., 2017), and Deep Reinforcement Learning (Mnih et al., 2013).

These techniques possess specific properties that could be beneficial for

automating algorithm design.

Last but not least, interpreting learning models can be challenging. Al-

though more machine learning models have been proposed for automated

algorithm design, the rich knowledge generated during the search is often

implicit and difficult to interpret. The hidden knowledge in machine learn-

ing models is rarely investigated in the literature. There is evidence that

online learning models along with classical mining techniques could reveal

interesting patterns, reaching a new level of generality as well as effective-

ness (Carchrae and Beck, 2005), (Asta and Özcan, 2014), (Tyasnurita et al.,

75

2.4. MACHINE LEARNING

2015). Using data mining techniques to gain insightful and interpretable

knowledge from effective algorithm designs could also aid in understanding

the performance of algorithmic components.

The current studies in the field focus on algorithm-level decisions. However,

future investigations could concentrate on automating decision-making pro-

cesses at the problem level, further advancing the capabilities of automated

algorithm design.

2.4 Machine learning

Machine learning is a subfield of artificial intelligence that allow machines

to learn from data without explicitly programmed (Bishop and Nasrabadi,

2006), (Alpaydin, 2020). Machine learning tasks can be generally classi-

fied into supervised, unsupervised and reinforcement learning (Bishop and

Nasrabadi, 2006), explained as follow:

• Supervised learning: this type of machine learning technique is trained

on a labelled dataset where each input example in the training dataset

is associated with a known output or target variable. It aims to learn

a mapping from the input to the output based on the labelled exam-

ples, thus the model can generalise to new and unseen examples and

predict the output for those examples. Classific supervised learning

tasks include classification and regression. Some widely used algo-

rithms for supervised learning include decision trees, random forests,

and neural networks.

• Unsupervised learning: this type of technique is trained on an unla-

beled dataset. The aim of unsupervised learning is to extract the un-

76

2.4. MACHINE LEARNING

derlying structure or patterns in the data without any explicit labels.

Some popular unsupervised learning tasks are clustering, dimension-

ality reduction, and anomaly detection. Another great interest in

unsupervised learning is unsupervised pattern mining, i.e., finding

interesting associations (relationships, dependencies) in large sets of

data items without any prior knowledge of the group labels or target

variable (Hastie et al., 2009).

• Reinforcement learning: it aims to make the most suitable action

at a specific state by interacting with and getting feedback from an

environment, thus maximising the cumulative reward over time.

Different machine learning models are designed to model different types of

data. It is important to choose the right model for the specific problem at

hand. Some common types of data that machine learning models are de-

signed to handle include numerical data, categorical data, text data, image

data and sequential data. In many real-life applications, such as in bioinfor-

matics (Wang et al., 2007), webpage click-stream analysis (Fournier-Viger

et al., 2012b) and market basket analysis (Srikant and Agrawal, 1996), the

studies are interested in valuable patterns in sequential data. Sequential

data consists of sequences of items that are associated with time-related

attributes (Zhao and Bhowmick, 2003), thus having high complexity. Ma-

chine learning techniques used for modelling sequential data are designed

to take into account the temporal or spatial dependencies between data

points (Dietterich, 2002).

This thesis aims to utilise machine learning to learn from the effective algo-

rithm compositions of elementary algorithmic components to support au-

tomated algorithm design. The investigations of the thesis are based on the

hypothesis that algorithmic compositions might exhibit time-series charac-

77

2.4. MACHINE LEARNING

teristics and dependencies among the algorithmic components. Therefore,

the data can be seen as sequential data, presenting an opportunity to ex-

plore sequential modelling techniques in machine learning. In what follows,

a description of machine learning methods used in this thesis is provided.

These techniques have been widely used in modelling sequential data (Di-

etterich, 2002).

2.4.1 Markov chain

Markov chain is one of the most important and fundamental algorithms in

machine learning (Tian et al., 2018). Markov chain is a widely used model

for modelling sequential data. It has been widely applied for modelling

queueing systems, remanufacturing systems, inventory systems, financial

risk management, natural language processing (Manning and Schutze, 1999)

and many other practical systems (Ching and Ng, 2006).

A Markov chain is a statistical model describing a sequence of states with

certain probabilities to transfer between each other (Kemeny and Snell,

1976). It describes a stochastic process based on the Markov assumption,

i.e., the probability of transitioning from one state to another depends only

on the current state and not on the previous states (Ching and Ng, 2006).

A Markov chain can be represented as a directed graph, where each state

is a node in the graph, and each transition from one state to another is

represented by a directed edge. The probabilities associated with each

edge represent the likelihood of transitioning from one state to another. A

transition probability matrix describes the transition probabilities between

states.

In the context of algorithm design, Markov chains provide a way to model

78

2.4. MACHINE LEARNING

the composition of algorithmic components as stochastic transitions be-

tween states. In selection hyper-heuristics (McClymont and Keedwell,

2011b), the Markov chain has been combined with reinforcement learning

to model and support decision-making in the heuristic selection strategy.

The states refer to low-level heuristics. The transition probability between

each pair of low-level heuristics is learned according to the optimisation

performance during problem-solving. Low-level heuristics with better per-

formance are more likely to be chosen.

2.4.2 Neural networks

Neural networks are highly effective learning models for a wide range of

machine learning tasks. In learning sequential data, recurrent neural net-

works (RNNs) (Goodfellow et al., 2016) show great promise by considering

the context information of sequences (Rao et al., 2018). The most well-

known model in recurrent networks is Long Short Term Memory (LSTM)

(Hochreiter and Schmidhuber, 1997) which can capture the long and short-

term dependencies or temporal differences in a sequence.

Transformer networks, the attention-based models, have received great at-

tention and outperformed LSTMs in various applications of Natual Lan-

guage Processing (NLP) (Zeyer et al., 2019). Transformer networks are

fundamentally different from LSTMs in the way of processing sequences.

In NLP, LSTMs have also been a target of criticism for their limited per-

formance in handling lengthy sentences (Giuliari et al., 2021). When pro-

cessing a lengthy sentence, if the output depends on a specific input word,

the last LSTM unit may not be able to capture the total essence of the sen-

tence. Transformer networks can give proper attention to it, thus better

79

2.4. MACHINE LEARNING

at long sequence-to-sequence prediction. Even though Transformer out-

performs LSTM in many applications of NLP, it also seems to have more

problems with generalisation in some domains (Zeyer et al., 2019).

LSTM

Recurrent neural networks (RNNs) (Mandic and Chambers, 2001) are a

class of sequence-based neural networks in modelling sequence learning

tasks (Nammous and Saeed, 2019). The structure of an RNN is similar

to a standard multi-layer network, with additional hidden units associated

with the time when connected (Jurgovsky et al., 2018). Such connection

between hidden units allows information from one step to be passed to the

next, thus discovering temporal correlations in a sequence of inputs. A

major issue with RNNs is that long-time lags are inaccessible in backprop-

agation, so it is hard to handle long-term dependencies in sequences (Wan

et al., 2020).

LSTM (Hochreiter and Schmidhuber, 1997) is a variant of RNNs, which

integrates a gating mechanism to resolve the long-term dependency issue,

as shown in Figure 2.7. Each LSTM cell retains an internal cell state to

store the memory of the last input, and a hidden state which stores the

information of the last output. Three gate units, i.e., input gate, output

gate and forget gate are introduced in LSTM to optionally let information

through, the amount of which is decided by the employed sigmoid activation

function (output between 0 and 1). The processed new information, i.e.,

cell state and hidden state, is then carried over to the next time step.

With this sequence specialisation, RNNs (including LSTM) interpret the

input data as a data cube with three dimensions as shown in Figure 2.8.

This representation is different from conventional classifiers which take a

80

2.4. MACHINE LEARNING

Figure 2.7: The structure of a basic LSTM cell (Smagulova and James, 2020). At each time step t, Xt

is an input vector, Ct denotes the cell state vector, and ht is the hidden state vector calculated based
on Ct. Three gating units, i.e., input gate, forget gate and output gate, return vectors denoted as it,
ft and Ot, respectively.

2-dimensional matrix as the input, each row consisting of features of each

sequence.

Transformer

Transformer networks are the state-of-the-art NLP algorithms since pro-

posed by (Vaswani et al., 2017). Instead of sequential processing mech-

anisms in RNNs, They are solely based on attention mechanisms which

enhance some parts of the input data to focus on the small, but important,

parts of the data (Vaswani et al., 2017). Utilising the attention mecha-

nisms, Transformers estimate which part of the input sentence to focus on

when modelling sequences, thus better at capturing the key component and

logic of sentences for understanding the semantics of a whole document.

The original transformer networks utilise an encoder-decoder structure, as

shown in Figure 2.9 (Vaswani et al., 2017), for sequence-to-sequence learn-

ing. The encoder structure (on the left half of Figure 2.9) takes the input

sequence in the symbol representations to the Input Embedding layer for

learning the continuous representations of the sequence. To make use of

81

2.4. MACHINE LEARNING

Figure 2.8: Input data representation in RNNs (including LSTM) (Skydt et al., 2021).

the order of the sequence, the transformer networks utilize the Position

Encoding layer to use positional encoding vectors to inject the positional

information of elements in the sequence. The sequence in vector repre-

sentation is then fed into the Transformer block. The Transformer block

consists of N identical layers, each consisting of two sub-layers. The first

layer implements the multi-head self-attention mechanism. The second

layer is composed of position-wise fully connected feed-forward networks.

Each of the two sub-layers is linked with a residual connection, followed by

layer normalisation.

The decoder structure (on the right half of Figure 2.9) receives the output

of the encoder and combines it with the decoder output at the previous

time step to generate the next. It is also composed of N identical layers.

For the decoder, there is an additional sub-layer to perform multi-head

attention on the output of the encoder.

82

2.4. MACHINE LEARNING

Figure 2.9: The structure of the original Transformer network for sequence-to-sequence learning
(Vaswani et al., 2017).

Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Input
Embedding

Inputs

Position
Encoding

N×

Masked
Multi-Head
Attention

Add & Norm

Feed Forward

Add & Norm

Output
Embedding

Outputs
(shifted right)

Position
Encoding

N× Multi-Head
Attention

Add & Norm

Linear

Softmax

Output
Probabilities

2.4.3 Sequential rule mining

Temporal or time-series data consists of sequences of items that are as-

sociated with time-related attributes (Zhao and Bhowmick, 2003), thus

are of high complexity. A sequential database is a special case of a time-

series database that consists of sequences of ordered events with or without

the concrete notion of time (Zhao and Bhowmick, 2003). In the sequen-

tial database, a sequence is an ordered list of symbols or nominal values

(Fournier-Viger et al., 2017).

Exploring the specific order of the occurrences of the events is a signif-

icant research direction in the research of sequential database (Zhao and

Bhowmick, 2003). Initiated by (Agrawal and Srikant, 1995), sequential pat-

tern mining is proposed as the problem of mining interesting sub-sequences

in a set of sequences (Fournier-Viger et al., 2017). Numerous sequential

pattern mining algorithms have been developed to search for sequential

patterns efficiently with different strategies and data structures (Fournier-

83

2.4. MACHINE LEARNING

Viger et al., 2017).

For sequential patterns, although a sub-sequence occurs frequently (e.g., {a,

b}), one of the items ({a}) might not have a high possibility to be followed

by the other items ({b}) among all the sequences. Therefore, one of the im-

portant limitations of sequential pattern mining is that sequential patterns

might be worthless for decision-making or prediction (Fournier-Viger et al.,

2017). Sequential rule mining is a variation of sequential pattern mining

to address the above-mentioned limitation with more accurate sequence

prediction.

As defined in (Fournier-Viger et al., 2011), a sequence database is a set of se-

quences S = {s1, s2, . . . , sx} with a set of items I = {i1, i2, . . . , iy} occurring

in S. Each sequence is an ordered list of itemsets, i.e., s =< I1, I2, . . . , Iz >.

An example sequence database is shown in Figure 2.10 (left). It contains

four sequences identified by IDs 1, 2, 3 and 4, each composed of itemsets

derived from the items within the set I = {a, b, c, d, e, f, g}. The first se-

quence < {a, b}, {c}, {f}, {g}, {e} > contains five itemsets, indicating that

items a and b appeared simultaneously, followed by c, then f , subsequently

by g and lastly e.

Figure 2.10: A sequence database (left) and some sequential rules found (right) (Fournier-Viger et al.,
2011).

ID Sequences

seq1 <{a, b}, {c}, {f}, {g}, {e}>

seq2 <{a, d}, {c}, {b}, {a, b, e, f}>

seq3 <{a}, {b}, {f}, {e}>

seq4 <{b}, {f, g, h}>

ID Rules sup conf

r1 {a, b, c}=>{e} 0.5 1.0

r2 {a}=>{c, e, f} 0.5 0.66

r3 {b}=>{e, f} 0.75 0.75

r4 {c}=>{f} 0.5 1.0

A sequential rule X → Y is a relationship between two itemsets X, Y ⊆ I,

suggesting if items in X occur in a sequence, the items in Y are likely to

occur afterwards in the same sequence (at any position after X) (Fournier-

84

2.4. MACHINE LEARNING

Viger et al., 2011). Figure 2.10 (right) shows four rules found in the

database as an example. The first sequential rule {a, b, c} → {e} can

be interpreted as if the items in {a, b, c} are contained in a sequence, the

item of {e} are likely to occur afterwards in the same sequence. In the

example sequence database, the rule {a, b, c} → {e} occurs in the sequence

< {a, b}, {c}, {f}, {g}, {e} >, whereas the rule {a, b, f} → {c} does not,

because item c does not occur after f .

Two measures have been defined for a sequential rule (Fournier-Viger et al.,

2011) as follows:

• Support of a rule X → Y : sup(X → Y) = sup(X■Y)/|S|. sup(X■Y)

represents the number of sequences where all the items of X appear

before all the items of Y .

• Confidence of a rule X → Y : conf(X → Y) = sup(X■Y)/sup(X).

sup(X) denotes the number of sequences that contains the items of

X.

The sequential rule mining problem is given certain user-defined thresholds

minSup and minConf as the lower bounds of the support and confidence

of all sequential rules from a sequence database.

The studies of sequential rule mining generally include two lines, i.e., dis-

covering sequential rules in a single sequence or common to several se-

quences (Fournier-Viger and Tseng, 2013). This study is interested in the

latter. There are a variety of algorithms that have been proposed to per-

form sequential rule mining in a dataset of many sequences, including the

apriori-based algorithm CMRules (Fournier-Viger et al., 2010), rule growth-

based algorithm RuleGrowth (Fournier-Viger et al., 2011), and equivalence

class-based algorithm ERMiner (Fournier-Viger et al., 2014), etc. Some al-

85

2.5. SUMMARY

gorithms proposed to deal with different constraints in sequential rule min-

ing, such as TRuleGrowth (Fournier-Viger et al., 2012c), (Fournier-Viger

et al., 2015) for the window size constraints. Considering the efforts of tun-

ing the parameters for rule mining, there is an interest in discovering a cer-

tain amount of sequential rules, such as TopSeqRules (Fournier-Viger and

Tseng, 2011) for mining the top-k sequential rules and TNS (Fournier-Viger

and Tseng, 2013) for mining the non-redundant top-k sequential rules.

All these sequential rule mining algorithms take as input a sequence database

and the user-defined thresholds and output the set of frequent sequential

rules. Since they utilise different strategies and data structures to search

for the sequential rules efficiently, some algorithms are more efficient than

others (Fournier-Viger and Tseng, 2011).

2.5 Summary

This chapter presents the overview of the representative studies related

to the automated design of search algorithms for COPs, especially on the

VRPTW. The aim is to provide the necessary context for understanding

the main works in this thesis for the automated design of search algorithms.

Firstly, an introduction to the basic definitions of VRPs and the model of

the classic VRPTW is given. The existing heuristic methods for solving

VRPs are reviewed, with a particular emphasis on single solution-based

(local search-based) meta-heuristics. While significant advances have been

made in search methodologies for solving VRPs, developing high-quality

heuristics for VRPs remains a challenging task. A review of automated

algorithm design is provided, with a focus on the role of learning in different

automation tasks. Finally, the machine learning techniques that have been

86

2.5. SUMMARY

used in this thesis are summarised.

The literature review of automated algorithm design highlights a series

of research gaps that are worth investigating for gaining valuable insights

into automated algorithm design with machine learning. The thesis mainly

focuses on the automated composition within the line of research in auto-

mated algorithm design. The main research gaps (RGs) in automated

composition are summarised as follows, supporting the research questions

(RQs) of the thesis as identified in Chapter 1.2:

• RG1: the automated algorithm design with elementary algorithmic

components in GCOP lacks the support of standardised algorithm

design frameworks. Such frameworks can lay the foundation for au-

tomated algorithm design by enabling the flexible composition of dif-

ferent algorithmic components. Addressing RG1 is directly linked to

RQ1.

• RG2: the limited research in modelling algorithm composition as

machine learning tasks presents a research gap in the field of auto-

mated algorithm design. Investigating this gap can offer valuable in-

sights into identifying appropriate machine learning techniques in au-

tomated algorithm design. RG2 aligns with RQ2, specifically RQ2.b.

• RG3: the insufficient investigation and interpretation of the hidden

knowledge captured by machine learning techniques create a research

gap in automated algorithm design. Addressing this gap is crucial

for gaining a deeper understanding of the decision-making processes

involved in algorithm design. RG3 aligns with RQ2.a.

This thesis aims to fill the identified research gaps and answer the proposed

RQs through a series of studies and investigations into the use of machine

87

2.5. SUMMARY

learning in automated algorithm design. Inspired by the first research gap

and RQ1 in Chapter 1.2, a general algorithm framework for the automated

design of local search-based algorithms is proposed in Chapter 3, which

provides a solid foundation for the automated design of local search algo-

rithms by enabling the composition of different algorithmic components.

This framework serves as a basis for subsequent investigations in Chapters

4, 5, and 6, where the algorithm design task is modelled as different ma-

chine learning tasks to explore various learning approaches in automated

algorithm composition based on other research gaps.

88

Chapter 3

AutoGCOP: A General

Framework for Automated

Design of Local Search

Algorithms

Contents

3.1 Introduction . 91

3.2 The AutoGCOP framework with extended GCOP model 92

3.2.1 An Overview of the Extended GCOP Model . . 92

3.2.2 The AutoGCOP Framework with Extended GCOP

Model . 94

3.2.3 Differences between AutoGCOP and existing

frameworks . 97

3.3 Effectiveness of algorithmic components on VRPTW . 99

3.3.1 Performance evaluation on composing algorith-

mic components 101

89

3.3.2 Performance evaluation on solution quality . . . 104

3.3.3 Performance evaluation on algorithm convergence104

3.3.4 Discussions . 105

3.4 Conclusions . 107

90

3.1. INTRODUCTION

3.1 Introduction

The newly established GCOP model (Qu et al., 2020) requires coherent

frameworks to assess the performance of the elementary algorithmic com-

ponents and explore insights on designing effective algorithm compositions

with these components. Existing frameworks in the automated composition

concern only different subsets and combinations of the algorithmic compo-

nents in GCOP, and thus cannot provide sufficient support for automated

algorithm design based on GCOP.

Based on the GCOP model, this chapter presents a new general AutoG-

COP framework to automatically compose elementary algorithmic compo-

nents, thus supporting the automated design of local search algorithms and

systematic investigations on automated composition. Various algorithmic

procedures in the literature can be modelled and encapsulated as general

procedures within AutoGCOP. These general algorithmic procedures oper-

ate flexibly upon the elementary algorithmic components in GCOP, leading

to novel local search algorithms which may not be designed manually. In

other words, various local search algorithms can be automatically composed

with basic components within the general AutoGCOP framework.

Within the consistent AutoGCOP framework, this chapter investigates the

performance of these elementary algorithmic components for automated

composition, using the VRPTW as the domain application. This is a base

to conduct further investigations on effective algorithm compositions. With

the elementary components in the GCOP model, it can be observed that

the performance of the composed new algorithms is satisfying, confirming

the effectiveness of the most basic components in local search algorithms.

In this chapter, Section 3.2 presents the proposed AutoGCOP framework

91

3.2. THE AUTOGCOP FRAMEWORK WITH EXTENDED GCOP
MODEL

with the extended GCOP model. Section 3.3 shows the assessment of the

basic algorithmic components based on AutoGCOP. Section 3.4 concludes

the research in this chapter. This chapter provides the baseline for the

following chapters in the thesis which focuses on learning in automated

composition within the general AutoGCOP framework.

3.2 The AutoGCOP framework with extended

GCOP model

AutoGCOP is a new general framework to support the automatic compo-

sition of elementary algorithmic components based on the extended GCOP

model, thus supporting the automated design of local search algorithms.

Within AutoGCOP, algorithmic procedures are encapsulated as general

procedures, allowing various local search algorithms in the literature to be

instantiated and novel search algorithms composed automatically.

Section 3.2.1 describes the extended GCOP model. Section 3.2.2 presents

the AutoGCOP framework and the instantiation of local search algorithms

with AutoGCOP. The differences between AutoGCOP and existing frame-

works in the automated composition are discussed in Section 3.2.3.

3.2.1 An Overview of the Extended GCOP Model

In the novel GCOP model defined in (Qu et al., 2020), various search algo-

rithms are broken into a finite set A of elementary algorithmic components

a ∈ A. These a serve as the domain of decision variables in GCOP, defining

algorithm design itself as a COP.

92

3.2. THE AUTOGCOP FRAMEWORK WITH EXTENDED GCOP
MODEL

The solution space of GCOP consists of algorithmic composition c, each of

them is a composition of algorithmic components a. Each c represents a

new algorithm which can be used to solve optimisation problems p. The

objective function of GCOP measures the performance of c when applied to

solve the optimisation problem at hand p. This evaluation can be extended

to evaluate how well c performs in several runs for solving one or multiple

p, as well as the computation time of c for addressing p.

The solution space S of p consists of the direct solutions s ∈ S. The solution

s to the optimisation problem p can obtained by the corresponding c, i.e.

c → s, denoting each algorithm composition c for the GCOP maps to

solutions s for the optimisation problem. The objective of GCOP is to

search for the optimal c∗ which produces the optimal s∗ for p, so that the

objective function of GCOP is optimised. With the optimisation process

for solving GCOP, the search algorithms for solving p can be automatically

designed.

In GCOP, there are two categories of algorithmic components a ∈ A1.0,

i.e. operators oi ∈ A1.0 o, and acceptance criteria aj ∈ A1.0 a, each with

their associated heuristic and parametric settings (Qu et al., 2020). The

operators oi modify values of the decision variables in a solution s1 to gen-

erate a new solution s2 in the search space of p. The acceptance criteria aj

determine if s2 is accepted in the search. In recent studies (Yi et al., 2022),

algorithmic components in A1.0 are extended by including the algorithmic

components of evolutionary algorithms, such as crossover operators and

selection strategies.

In building the AutoGCOP framework in Section 3.2.2, this study extends

the elementary algorithmic components a ∈ A1.0 in the GCOP model with

termination criteria in local search algorithms. Based on the widely in-

93

3.2. THE AUTOGCOP FRAMEWORK WITH EXTENDED GCOP
MODEL

vestigated meta-heuristics (Blum and Roli, 2003) in the literature, various

termination criteria have been modelled and added as basic procedure al-

gorithmic components in the extended GCOP model, i.e. tk ∈ At as shown

in Table 3.1.

Table 3.1: The algorithmic components tk ∈ At in the extended GCOP model.

At
tk with parameters h, n. h: measure of convergence;
n: number of iterations, CPU time or threshold.

tconstruct Terminate when a complete solution is constructed
tconverge(h) Terminate upon the convergence h
titeration(n) Terminate as the number of iterations reaches n
ttime(n) Terminate when the elapsed CPU time reaches n
tthreshold(r, q, n) Terminate when r increased by q reaches the threshold n

With the extended algorithmic component set in the GCOP model, the

AutoGCOP general framework is built in Section 3.2.2 to support auto-

mated algorithm composition. Note that both the acceptance criteria aj

and termination criteria tk have been built to model elements across dif-

ferent search algorithms into general algorithmic components, and can be

used in designing any local search algorithms for any problem p.

3.2.2 The AutoGCOP Framework with Extended GCOP

Model

Based on the extended GCOP model, the AutoGCOP framework as shown

in Algorithm 1 is proposed to automatically design local search algorithms

by composing the basic algorithmic components oi ∈ A1.0 o, aj ∈ A1.0 a and

tk ∈ At. The underlying idea in building the AutoGCOP framework is to

model various local search meta-heuristics by encapsulating their common

procedures (operations upon solutions s) as the most basic processes in

search algorithms. In particular, the following three most basic processes

have been modelled in local search algorithms.

94

3.2. THE AUTOGCOP FRAMEWORK WITH EXTENDED GCOP
MODEL

• Select(A): select a basic component oi ∈ A1.0 o, aj ∈ A1.0 a or tk ∈ At.

• ApplyOperator(oi, s): return a new solution by applying an operator

oi to solution s.

• ApplyAcceptance(aj, snew, s): return solution snew if it is accepted by

an acceptance criterion aj; otherwise, return solution s.

As shown in Algorithm 1, AutoGCOP consists of the Construction proce-

dure and the Improvement procedure. These basic procedures compose the

corresponding elementary algorithmic components in the extended GCOP

model, i.e. decision variables in GCOP. The Construction procedure con-

structs a complete solution s for the optimisation problem p by compos-

ing the corresponding component sets tk ∈ Atconstruct and oi ∈ Aoconstruct .

Usually Atconstruct includes tconstruct in Table 3.1 in the Construction pro-

cedure, thus the construction procedure terminates when a complete solu-

tion is constructed. The Improvement procedure improves s as an initial

solution searching for the best possible solution sbest, thus automates the

composition of the corresponding component sets tk ∈ Atimprove
∪ Atinner

,

oi ∈ Aoimprove
and aj ∈ Aa.

With the general AutoGCOP framework, various local search algorithms in

the literature (Blum and Roli, 2003) can be defined in a unified template by

composing specific algorithmic components in the Improvement procedure

as shown in Table 3.2. In other words, these meta-heuristics can be seen

as specific GCOP solutions composed manually by selecting the specific

algorithmic components within AutoGCOP.

With the general AutoGCOP framework, a large number of new and unseen

local search algorithms can be designed automatically by searching for

solutions for GCOP, i.e. compositions c of oi ∈ A1.0 o, aj ∈ A1.0 a and

95

3.2. THE AUTOGCOP FRAMEWORK WITH EXTENDED GCOP
MODEL

tk ∈ At. Different techniques and algorithms can be developed within this

general framework to compose algorithmic components from the respective

sets in the GCOP model. This can be seen as to automate the process

of human experts hand-picking algorithmic components during algorithm

design.

Algorithm 1 : The general AutoGCOP framework
Input: p: an optimisation problem,

At: a set of termination criteria tk, including a subset for Construction
procedure Atconstruct

, a subset for Improvement procedure Atimprove
and a subset

for inner loops of the Improvement procedure Atinner
,

Ao: a set of operators oi, including a subset for the Construction procedure
Aoconstruct and a subset for the Improvement procedure Aoimprove ,
Aa: a set of acceptance criteria aj ,

Output: sbest: the best-recorded solution,
1: procedure Construction
2: s← An empty solution for p;
3: tkcon

← Select(Atconstruct
);

4: while tkcon is not met do
5: oi ← Select(Aoconstruct);
6: s← ApplyOperator(oi, s);
7: end while
8: end procedure
9:
10: procedure Improvement
11: tkmain ← Select(Atimprove);
12: while tkmain

is not met do
13: tkinner

← Select(Atinner
);

14: while tkinner
is not met do

15: oi ← Select(Aoimprove);
16: aj ← Select(Aa);
17: snew ← ApplyOperator(oi, s);
18: s← ApplyAcceptance(aj , snew, s);
19: sbest ← Update the best-recorded solution;
20: end while
21: end while
22: end procedure

96

3.2. THE AUTOGCOP FRAMEWORK WITH EXTENDED GCOP
MODEL

Table 3.2: Instantiation of widely used local search metaheuristics in the literature using different ele-
mentary algorithmic components in the Improvement procedure within the unified AutoGCOP frame-
work.

Local search
algorithms

Termination criteria, operators and acceptance criteria used in Algorithm 1
(x← y denotes use y as x)

Tabu search

tkmain
← tconverge(h) in line 11,

tkinner
← titeration(1) in line 13,

oi ←Specific oi from Aoimprove
in line 15,

aj ← atabu in line 17.

Simulated
annealing

tkmain
← tconverge(h) in line 11,

tkinner
← titeration(1) in line 13,

oi ←Specific oi from Aoimprove
in line 15,

aj ← asa in line 17.

Iterated local
search

tkmain
← tconverge(h) in line 11,

line 13-20 repeat with different tkinner
, oi and aj as follows:

firstly, tkinner
← titeration(1) in line 13,

oi ←Specific oi from Aoimprove
in line 15,

aj ← none in line 17;
secondly, tkinner

← tconverge(h) in line 13,
oi ←Specific oi from Aoimprove

in line 15,
aj ← aoi in line 17;

thirdly, tkinner
← titeration(1) in line 13,

oi ← none in line 15,
aj ← aoi in line 17.

Variable
neighborhood
search

tkmain
← tconverge(h) in line 11,

line 13-20 repeat with different tkinner
, oi and aj as follows:

firstly, tkinner
← titeration(1) in line 13,

oi ←Specific oi from Aoimprove
based on a certain order in line 15,

aj ← none in line 17;
secondly, tkinner

← tconverge(h) in line 13,
oi ←Specific oi from Aoimprove

based on a certain order in line 15,
aj ← aoi in line 17;

thirdly, tkinner
← titeration(1) in line 13,

oi ← none in line 15,
aj ← aoi in line 17.

3.2.3 Differences between AutoGCOP and existing

frameworks

Generally, the AutoGCOP framework is built on the extended GCOP

model, supporting flexible exploration in algorithmic compositions of el-

ementary algorithmic components. Existing frameworks in the automated

composition concern only a subset of algorithmic components in GCOP,

providing limited scope for automated algorithm design.

The framework that most closely resembles the AutoGCOP framework is

the selection hyper-heuristics (SHHs) (Pillay and Qu, 2018), which can be

97

3.2. THE AUTOGCOP FRAMEWORK WITH EXTENDED GCOP
MODEL

seen as automatically design of search algorithms by freely composing a set

of low-level heuristics chosen by human experts. However, the generality

of SHH is limited when compared to AutoGCOP in terms of two aspects

as follows:

• The algorithmic components. The SHH selects pre-defined problem-

specific low-level heuristics rather than elementary algorithmic com-

ponents (i.e. basic operators, acceptance criteria and termination

criteria). The low-level heuristics can be seen as compound compo-

nents combining and accumulating the basic components in GCOP.

The resulting algorithms of SHH are therefore only a subset of al-

gorithms which can be composed of basic algorithmic components

within AutoGCOP.

• The components to manage algorithmic components. The SHH frame-

work usually applies a selection strategy to manage low-level heuris-

tics (Özcan et al., 2008) and uses a pre-defined acceptance crite-

ria. Therefore, the SHH framework is insufficient to manage different

types of basic components in GCOP, i.e. basic operators, acceptance

criteria and termination criteria.

These above issues not only limit the number of local search algorithms

that can be composed with SHH but also involve more human decisions

while selecting and configuring the low-level heuristics.

98

3.3. EFFECTIVENESS OF ALGORITHMIC COMPONENTS ON
VRPTW

3.3 Effectiveness of algorithmic components

on VRPTW

To explore the insights on designing effective algorithm compositions with

elementary algorithmic components, this section investigates a subset of

the most basic components operators oi ∈ A1.0 o and acceptance criteria

aj ∈ A1.0 a in the GCOP model (Qu et al., 2020) and a subset of termination

criteria tk ∈ At in Table 3.1, as shown in Table 3.3, within the AutoGCOP

framework. The focus is on the behaviour of operators oi ∈ Aoimprove
(line

15, Algorithm 1), with specific components fixed in other procedures.

Table 3.3: The component sets considered in the AutoGCOP framework, i.e. termination criteria
tk ∈ At, operators oi ∈ Ao, and acceptance criteria aj ∈ Aa.

Component set At Termination criteria tk in At

Atconstruct tconstruct: terminate when a complete candidate solution is constructed.

Atimprove

titeration(n): terminate as the number of iterations reaches n.
ttime(n): terminate when the elapsed CPU time reaches n.

Atinner
titeration(1): terminate after conducting one iteration.

Component set Ao

Operators oi in Ao with parameters as defined in GCOP (Qu et al.,
2020)
h1: heuristics to choose the customer with the highest proximity to the
most recently inserted customer based on distance and time (Walker
et al., 2012).
h2: heuristics to choose the next position of the most recently inserted
customer (Walker et al., 2012).
h3: random strategy.

Aoconstruct oins(1, h1, h2): insert one customer chosen by h1 to the position se-
lected by h2.

Aoimprove

oinxchg(1, 1, h3): swap two customers chosen by h3. Selected customers
are within one route.
obwxchg(1, 1, h3): swap two customers chosen by h3. Selected customers
are from different routes.
oinins(1, h3, h3): insert one customer chosen by h3 to other position se-
lected by h3 within the same route.
obwins(1, h3, h3): insert one customer chosen by h3 to other position se-
lected by h3 in a different route.
orr(10, h3, h3): remove 10% customers chosen by h3, and re-assign
them using h3.
2-opt∗: swap the end sections of two routes to generate two new routes
(Burke et al., 2010).

Component set Aa Acceptance criteria aj in Aa

Aa anaive: accept all improvements; worse solutions are accepted with a
probability of 0.5 (Burke et al., 2010).

99

3.3. EFFECTIVENESS OF ALGORITHMIC COMPONENTS ON
VRPTW

Among the most basic oi ∈ Aoimprove
adopted in the Improvement pro-

cedure, 2-opt∗ is a problem-specific compound operator designed manu-

ally in the literature, which showed to be especially effective for VRPTW

(Potvin and Rousseau, 1995). We therefore investigate the performance of

oi grouped into two sets as follows in the experiments:

• Obasic = {oinxchg, obwxchg, oinins, obwins, orr};

• Ovrp−basic = Obasic ∪ {2-opt∗}.

To assess the performance of composing the basic algorithmic components

oi in the AutoGCOP framework, the algorithm performance of each oi in

Ovrp−basic ⊆ Aoimprove
is compared with a random GCOP method (i.e. RN-

GCOP) with Ovrp−basic in Section 3.3.1. The same number of evaluations

is set as the stopping condition, i.e. titeration(n) is adopted as tkmain
in

Algorithm 1, for all methods.

The performance of the elementary algorithmic components Obasic ⊆ Aoimprove

is then compared against the basic problem-specific compound algorithmic

components Ovrp−basic ⊆ Aoimprove
. The performance of RN-GCOP with

Obasic is compared against the same method with Ovrp−basic, which includes

a compound operator 2-opt∗ based on the solution quality in Section 3.3.2

and the algorithm convergence in Section 3.3.3. The same time is set as

the stopping condition, i.e., ttime(n) is adopted as tkmain
in Algorithm 1 for

all methods.

The VRPTW concerned in this work considers the dual objectives of min-

imising the number of vehicles (NV) and minimising the total travel dis-

tance (TD). A weighted sum objective function is adopted from the litera-

ture to evaluate VRPTW solutions s as shown in Equation (5.2), where c

100

3.3. EFFECTIVENESS OF ALGORITHMIC COMPONENTS ON
VRPTW

is set to 1000 empirically (Walker et al., 2012).

f(s) = c×NV + TD (3.1)

The investigations are conducted on two sets of the widely studied bench-

mark VRPTW, i.e. the Solomon 100 customers set (Solomon, 1987) and

the Homberger 1000 customer set (Gehring and Homberger, 1999) as shown

in Table 4.2, covering different instance characteristics. In particular, cus-

tomers in type-R instances are randomly distributed geographically. In

type-C instances, customers are distributed in clusters. Type-RC instances

are a mix of them.

Table 3.4: Characteristics of the benchmark VRPTW instances.

Benchmark Name Size Vehicle Capacity Type
Solomon R101 100 25 200 R
Solomon R201 100 25 1000 R
Solomon C101 100 25 200 C
Solomon C206 100 25 700 C
Solomon RC103 100 25 200 RC
Solomon RC207 100 25 1000 RC
Homberger R1-10-1 1000 250 200 R
Homberger R2-10-6 1000 250 1000 R
Homberger C1-10-8 1000 250 200 C
Homberger C2-10-1 1000 250 700 C
Homberger RC1-10-5 1000 250 200 RC
Homberger RC2-10-1 1000 250 1000 RC

3.3.1 Performance evaluation on composing algorith-

mic components

Figure 3.1 and Figure 3.2 show the difference in solution value of each oper-

ator in the operator set Ovrp−basic against the random RN-GCOP method

with Ovrp−basic for instances with 100 and 1000 customers, respectively.

Comparing the algorithm performance with each of the operators, RN-

GCOP achieves better overall performance. Only for instance RC103 and

101

3.3. EFFECTIVENESS OF ALGORITHMIC COMPONENTS ON
VRPTW

C1-10-8, obwins obtains better results than other methods. The problem-

specific compound operator 2-opt∗ achieves better performance for instance

C2-10-1. The algorithm performance of different operators varies according

to problem instances. Among the operators in Ovrp−basic, the performance

of obwins, orr and the 2-opt∗ (denoted as o3, o4 and o5, respectively) are

relatively better than others.

Figure 3.1: Comparison in the average solution objective value (out of ten runs) between each opera-
tor in Ovrp−basic against RN-GCOP with Ovrp−basic on the 100-customer instances, with error bars

representing the standard deviation. o0: oinxchg . o1: obwxchg . o2: oinins. o3: obwins. o4: orr. o5: 2-opt∗.

0

10000

20000

30000

40000

50000

R101 R201 C101 C206 RC103 RC207

So
lu

tio
n

ob
je

ct
iv

e
va

lu
e

o0 o1 o2 o3 o4 o5 RN-GCOP

Figure 3.2: Comparison in the average solution objective value (out of ten runs) between each operator
in Ovrp−basic on the 1000-customer instances, with error bars representing the standard deviation. o0:

oinxchg . o1: obwxchg . o2: oinins. o3: obwins. o4: orr. o5: 2-opt∗.

0
50000

100000
150000
200000
250000
300000
350000
400000
450000
500000

R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1

So
lu

tio
n

ob
je

ct
iv

e
va

lu
e

o0 o1 o2 o3 o4 o5 RN-GCOP

In a rigorous analysis on selection hyper-heuristics for function optimisation

(Lissovoi et al., 2020b), it is also evidenced that multiple low-level heuris-

tics, which can be seen as compound and specific operators in GCOP, are

102

3.3. EFFECTIVENESS OF ALGORITHMIC COMPONENTS ON
VRPTW

necessary to achieve optimal performance. This provides further support

for the multiple elementary operators in the AutoGCOP framework.

To further investigate whether the worse-performing operators oinxchg, o
bw
xchg

and oinins (denoted by o0, o1 and o2) are useful for all problem instances, the

performance of RN-GCOP with Ovrp−basic is compared against the same

method with a subset of Ovrp−basic which excludes the worse-performing

operators. The same number of evaluations is set as the stopping condition

for each method.

Table 3.5 shows the comparison in solution objective value between RN-

GCOP with different operator sets. The results support the observations

in Figure 3.1 and Figure 3.2 that the performance of different operators

can be relatively different according to problem instances. RN-GCOP with

the six operators Ovrp−basic (denoted as RN6) achieves better results for

instance R2-10-6, C2-10-1 and RC2-10-1. This supports that the three

worse-performing operators are also useful in some cases.

Table 3.5: Performance comparison of RN-GCOP with different operator sets. Average of objective
function values out of 10 runs are presented. The best results are in bold. The results are highlighted
with ∗ if one method is significantly better than the other method based on Mann–Whitney–Wilcoxon
test at a 95% confidence level. RN3: RN-GCOP with a subset of Ovrp−basic (which excludes three
worse-performing operators). RN6: RN-GCOP with six operators in Ovrp−basic.

Instance R101 R201 C101 C206 RC103 RC207
RN3 21750.22* 5533.27* 11978.00* 3690.10* 14192.18* 5300.13*
RN6 23047.82 5631.21 13103.39 3752.15 14675.39 5432.32

Instance R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1
RN3 214630.66* 85006.18 245291.17* 106239.80 185248.76* 90826.98
RN6 218268.34 81627.15* 249231.61 95457.94* 188173.73 85106.16*

In general, it is better to combine operators during the search than to

use one operator in all cases. This confirms the effectiveness of the idea of

GCOP which utilises algorithmic components with complementary strengths.

The difference in the performance of operators requires effective GCOP

methods, such as learning, to adapt to different problem instances in the

automated composition process.

103

3.3. EFFECTIVENESS OF ALGORITHMIC COMPONENTS ON
VRPTW

3.3.2 Performance evaluation on solution quality

Table 3.6 presents the results of the random RN-GCOP method with dif-

ferent operator sets Ovrp−basic and Obasic. It is obvious that RN-GCOP with

Ovrp−basic outperforms that with Obasic in all instances.

Table 3.6: Solution quality of RN-GCOP with different operator sets Ovrp−basic and Obasic using the
same computational time. RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with Ovrp−basic.
Average of objective function values out of 10 runs are presented.

Instance R101 R201 C101 C206 RC103 RC207
RN basic 23451.70 5569.99 15080.49 3698.41 14029.68 5352.06
RN vrp 20975.12 5507.85 11728.95 3664.95 13532.13 5274.04

Instance R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1
RN basic 277990.26 101657.86 341597.41 191577.04 201094.10 101420.24
RN vrp 224601.66 84549.46 264271.42 103884.28 183797.42 82266.58

Figure 3.3 shows the improvement from Ovrp−basic in RN-GCOP against

Obasic. Although improvements vary among instances, RN-GCOP with

Ovrp−basic is better on solving larger instances of 1000 customers. Among

the different types of customer distributions, the performance of Ovrp−basic

is relatively better for solving instances of type-C compared to Obasic, al-

though the improvements vary between type-C and type-R. Improvements

on type-RC of mixed customer distributions are smaller with Ovrp−basic, i.e.

with the 2-opt∗ operator.

3.3.3 Performance evaluation on algorithm conver-

gence

Figure 3.4 and Figure 3.5 present further detailed convergence of RN-

GCOP with different operator sets for different types of instances, mapping

the final results of type-C, type-R and type-RC instances in Figure 3.3.

It is shown in Figure 3.5 that in general, for type-C instances, the gaps

are bigger, followed by type-R instances as reflected in both Figure 3.3

104

3.3. EFFECTIVENESS OF ALGORITHMIC COMPONENTS ON
VRPTW

Figure 3.3: The improvement of the random GCOP method with Ovrp−basic (denoted as RN vrp)
compared to the same method with Obasic (denoted as RN basic). The amount of Improvements =
(RN basic−RN vrp)/RN basic.

10.56%

1.12%

22.22%

0.90%
3.55%

1.46%

19.21%
16.83%

22.64%

45.77%

8.60%

18.89%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

Im
p
ro
ve
m
e
n
t

Instance

and Figure 3.5. For type-RC instances, the gaps are much smaller. RN-

GCOP with Ovrp−basic converges faster and outperforms RN-GCOP with

Obasic throughout the search for all types of instances.

However, RN vrp is not always better than RN basic, e.g. Figure 3.4 (b)

and (f) suggest RN basic may reach satisfactory performance with the el-

ementary algorithmic components oi. As reflected in both Figure 3.3 and

Figure 3.4 (b) and (f), the gaps when the algorithms converge are relatively

small.

3.3.4 Discussions

In summary, with the most basic algorithmic components, GCOP methods

can obtain satisfying performance, reaching performance as good as using

human-designed problem-specific compound components on some bench-

mark instances. Larger instances may require a longer time for the most

basic components to reach better results compared to those obtained using

specifically designed components by human experts.

105

3.3. EFFECTIVENESS OF ALGORITHMIC COMPONENTS ON
VRPTW

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

2

2.5

3

3.5

4

4.5

5

5.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance0)

RN_basic

RN_vrp

(a) Instance R101

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance1)

RN_basic

RN_vrp

(b) Instance R201

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

1

1.5

2

2.5

3

3.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance2)

RN_basic

RN_vrp

(c) Instance C101

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

2000

4000

6000

8000

10000

12000

14000

16000

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

Convergence Curve (Instance3)

RN_basic

RN_vrp

(d) Instance C206

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

3.4

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance4)

RN_basic

RN_vrp

(e) Instance RC103

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Index of iteration

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
4 Convergence Curve (Instance5)

RN_basic

RN_vrp

(f) Instance RC207

Figure 3.4: Convergence curves of RN-GCOP with different operator sets on the 100 customer instances
given the same time. RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with Ovrp−basic.

The algorithm performance of each operator is different according to prob-

lem instances. For type-RC instances, the improvements in solution qual-

ity from problem-specific compound components are relatively small. The

most basic components should be given a longer computation time to reach

comparable solution quality for type-R instances. For type-C instances,

particularly for larger instances, the improvement in solution quality and

computation time from problem-specific components are relatively signifi-

cant.

The problem-specific compound component 2-opt∗ swaps the end sections

of two routes thus can more likely retain better sections in the solution,

moving the search towards promising areas in the solution space. The

106

3.4. CONCLUSIONS

10
0

10
1

10
2

10
3

10
4

Index of iteration

2

2.5

3

3.5

4

4.5

5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance6)

RN_basic

RN_vrp

(a) Instance R1-10-1

10
0

10
1

10
2

10
3

10
4

Index of iteration

0.5

1

1.5

2

2.5

3

3.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance7)

RN_basic

RN_vrp

(b) Instance R2-10-6

10
0

10
1

10
2

10
3

10
4

Index of iteration

2.5

3

3.5

4

4.5

5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance8)

RN_basic

RN_vrp

(c) Instance C1-10-8

10
0

10
1

10
2

10
3

10
4

Index of iteration

1

1.5

2

2.5

3

3.5

4

4.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance9)

RN_basic

RN_vrp

(d) Instance C2-10-1

10
0

10
1

10
2

10
3

10
4

Index of iteration

1.5

2

2.5

3

3.5

4

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance10)

RN_basic

RN_vrp

(e) Instance RC1-10-5

10
0

10
1

10
2

10
3

10
4

Index of iteration

0.5

1

1.5

2

2.5

3

3.5

O
b

je
c
ti
v
e

 v
a

lu
e

 o
f

th
e

 b
e

s
t-

re
c
o

rd
e

d
 s

o
lu

ti
o

n

10
5 Convergence Curve (Instance11)

RN_basic

RN_vrp

(f) Instance RC2-10-1

Figure 3.5: Convergence curves of RN-GCOP with different operator sets on the 1000 customer instances
given the same time. RN basic: RN-GCOP with Obasic; RN vrp: RN-GCOP with Ovrp−basic.

improvements are due to the domain knowledge used to devise 2-opt∗. The

most elementary components make only the most basic moves in the search

space, and are applicable to different problems. Their generality needs to

be compensated by more computational time to reach solutions obtained

by 2-opt∗. In the following performance analysis, Ovrp−basic is employed to

assess the learning models.

3.4 Conclusions

Based on the GCOP model which defines the problem of algorithm design

as a COP, new algorithms can be designed automatically by searching

107

3.4. CONCLUSIONS

in a space of compositions of elementary algorithmic components. In this

chapter, a general AutoGCOP framework is built to support the automatic

composition of elementary algorithmic components based on the general

GCOP model, thus designing local search algorithms automatically.

With the encapsulated common processes in local search algorithms, Au-

toGCOP allows instantiations of existing algorithms designed by manually

determining algorithmic components. That is, a large number of existing

local search algorithms can be seen as specific solutions of GCOP imple-

mented in AutoGCOP. Furthermore, the AutoGCOP framework under-

pins the automated design of new and unseen algorithms by using different

GCOP methods which compose the algorithmic components automatically.

Based on the AutoGCOP framework, this chapter analyses the performance

of the most basic algorithmic components and justifies their effectiveness

in designing search algorithms capable of solving complex COPs.

The basic elementary algorithmic components present a satisfying perfor-

mance given enough computational time, which confirms their effectiveness

in automatically designing search algorithms to solve VRPTW instances.

In addition, including problem-specific algorithmic components in the basic

component set can greatly improve the efficiency of search, reaching a simi-

lar solution quality with less computation time, especially for solving larger

instances with specific problem structures. This efficiency is gained by the

domain expert knowledge used to devise problem-specific algorithmic com-

ponents, which may not be available in practice. The general AutoGCOP

with elementary algorithmic components presents a promising framework

across different problems and may be employed by developers of different

expertise.

The research presented in this chapter sets the base for future research

108

3.4. CONCLUSIONS

directions in the automated design of search algorithms with basic algo-

rithmic components. With the GCOP model which defines a vast design

space of algorithms, useful knowledge from different algorithmic composi-

tions may be discovered within AutoGCOP using machine learning. Such

new knowledge can be extracted offline from the design space of algorithms

and applied to support the design new effective algorithms.

109

Chapter 4

Online learning to predict

algorithmic components for

automated algorithm

composition

110

Contents

4.1 Introduction . 112

4.2 Learning models . 113

4.2.1 IP-GCOP: learning the individual performance

of components 114

4.2.2 TP-GCOP: learning the transition performance

of components 115

4.2.3 Update mechanisms for learning models 117

4.2.4 An illustrative example 117

4.3 Effectiveness of the learning models on VRPTW . . . 119

4.3.1 Comparisons with random GCOP methods . . . 120

4.3.2 Influence of different update methods to the

learning models 122

4.3.3 Comparisons with the best-known approaches . 124

4.4 Concluisons . 126

111

4.1. INTRODUCTION

4.1 Introduction

With the proposed new AutoGCOP framework, different GCOP methods

can be developed to optimise the compositions of elementary algorithmic

components in the GCOP model to automatically design new algorithms.

The AutoGCOP framework underpins the automated design of new and

unseen algorithms by using different GCOP methods which compose the

algorithmic components automatically.

This chapter investigates the online learning of effective composition of

the basic algorithmic components for automated algorithm design based

on AutoGCOP. Within AutoGCOP, two learning models, namely Individ-

ual Performance (IP) learning and Transition Performance (TP) learning

in Section 4.2, have been investigated. Based on probabilistic reasoning,

they learn to compose operators oi ∈ Aoimprove
intelligently, i.e. learning-

based methods Select(Aoimprove
) (line 15, Algorithm 1). The widely studied

VRPTW is tested to demonstrate the effectiveness of the GCOP methods.

IP learning focuses on the performance of each oi using a simple probability

matrix based on the concept of reinforcement learning. TP learning focuses

on the transition between pairs of components. It is based on Markov

chain which applies a transition probability matrix, where each oi is a

state. The difference between IP and TP is that TP conducts more detailed

learning, where the performance of a specific component can be seen as the

sum of the performance of other possible components transferred to this

component. The main research aim in this chapter is not to beat the state-

of-the-art learning methods and the tailor-made heuristic algorithms by yet

another algorithm but to investigate the learning in automatic design of

new algorithms by comparing two different learning perspectives based on

the general AutoGCOP framework.

112

4.2. LEARNING MODELS

In comparison, two simple strategies with Select(Aoimprove
) are tested as

the baseline GCOP methods to demonstrate the effectiveness of the learn-

ing models, including a random strategy (RN) which chooses oi with equal

probability and a random gradient strategy (RG) which chooses a random

oi and continues to apply it as long as it is successful. More specifically,

the simple random strategy does not attempt to learn from the behaviour

of oi, while the random gradient strategy can be considered as using a re-

inforcement learning mechanism with the shortest memory length possible

to exploit the currently selected oi as long as it is successful (Lissovoi et al.,

2020b).

In the rest of the chapter, Section 4.2 describes the proposed GCOP meth-

ods with learning models within AutoGCOP. Section 4.3 presents the ex-

perimental studies addressing the concerned research issues, followed by

conclusions in Section 4.4.

4.2 Learning models

The GCOP methods with the proposed learning models in Select(Aoimprove
)

are named as the IP-GCOP method learning individual oi ∈ Aoimprove
, and

the TP-GCOP method learning the transition between oi. The purpose of

the learning models is to observe the behaviour of oi ∈ Aoimprove
in Table

3.3, thus to predict their performance and choose the most appropriate

without human involvement to solve the problem adaptively.

Based on the general AutoGCOP framework in Algorithm 1, the GCOP

methods only add the learning model M for selecting oi ∈ Aoimprove
(line

15, Algorithm 1) and the method to update the learning model Update()

after updating sbest (line 19, Algorithm 1).

113

4.2. LEARNING MODELS

4.2.1 IP-GCOP: learning the individual performance

of components

A reinforcement learning method interacts with the environment by trial

and error and takes actions given a state based on a policy, aiming to ac-

cumulate reward relating to its goal (Sutton et al., 1998). The IP-GCOP

method follows a simple reinforcement learning scheme, i.e., a simple re-

ward and penalty scheme, to learn the individual performance of elementary

algorithmic components by updating the reward and penalty of each com-

ponent through sequences of actions (i.e., selection of operators) to adapt

to the scenarios of the search environment. A probability matrix is used as

a fundamental model to record the individual performance (i.e., the reward

and penalty) of elementary algorithmic components, supporting a reinforce-

ment scheme to update the reward and penalty of each component based

on its performance during the search. The promising algorithmic compo-

nents can be selected and applied based on the probability matrix during

the search.

The IP-GCOP method uses a simple 2 × n probability matrix MIP , to

record the accumulated performance of each individual oi (i = 1, ..., n, n =

|Aoimprove
|) when a better solution than the current best is found. The two

rows record the reward and penalty of each oi, respectively.

At each iteration of the Improvement procedure, an oi ∈ Aoimprove
is selected

using MIP . With the learning models, oi with better-accumulated perfor-

mance in M are chosen for the next iteration using the roulette wheel

selection in the proposed GCOP methods. The accumulated individual

performance of each oi is calculated based on the likelihood (L) of each oi

114

4.2. LEARNING MODELS

achieving improvement in the next iteration, as shown in Equation (4.1):

Li =
MIP [1, i]

MIP [1, i] + MIP [2, i]
(4.1)

The IP-GCOP method uses a roulette wheel selection strategy to select

the next ol with a probability PIP (l) in proportion to L(i), as shown in

Equation (4.2):

PIP (l) =
Ll∑n
k=1 Lk

(4.2)

At the end of each iteration, the learning model MIP is updated using

Update() based on the performance of the selected oi ∈ Aoimprove
depending

on if oi leads to a new best solution sbest during the search. In MIP , oi is

rewarded by increasing its corresponding value in the first row, i.e. MIP [1,

i]. Otherwise, oi is punished by increasing its corresponding value in the

second row, i.e. MIP [2, i].

4.2.2 TP-GCOP: learning the transition performance

of components

As introduced in Section 2.4.1, a Markov chain models a sequence of states

with certain probabilities to transfer between each other (Kemeny and

Snell, 1976). A transition probability matrix describes the transition prob-

abilities between states.

The TP-GCOP method is based on a Markov chain model combined with a

simple reinforcement scheme. The TP-GCOP method uses a Markov chain

model to represent transitions between the elementary algorithmic compo-

nents and a transition matrix to record the transition probabilities of pairs

of algorithmic components statistically. The transition matrix as a fun-

115

4.2. LEARNING MODELS

damental model supports the reinforcement scheme to learn the transition

performance between algorithmic components and update the transition

probabilities of states (i.e., elementary algorithmic components), thus sup-

porting the selection of the promising algorithmic components during the

search.

In the TP-GCOP method, a n×n transition probability matrix MTP is built

based on the concept of Markov chain (Kemeny and Snell, 1976), regarding

each oi ∈ Aoimprove
as a state. The values in MTP record the performance of

one oi transferring to another, learning the transition performance of pairs

of oi and ol which contributes to a new best solution. Given the current

oi, TP-GCOP uses a roulette wheel selection strategy to select the next ol

with a probability PTP (l) in proportion to MTP [i, l], as shown in Equation

(4.3):

PTP (l) =
MTP [i, l]∑n

k=1MTP [i, k]
(4.3)

In MTP , at the end of each iteration, a transition from oi to ol which leads

to a new better sbest is rewarded by increasing the corresponding value of

MTP [i, l].

In the proposed IP-GCOP and TP-GCOP, it is important to note that

the roulette wheel selection is mainly based on probability. The higher the

score, the higher the probability of selection. A variant selection method is

to use the ranks of each basic operator, i.e., assign ranks to each operator

based on their scores. The higher the ranking, the higher the probability

of selection. The rank-based selection is based on relative rankings rather

than the absolute magnitude of scores, thus can be more robust to extreme

scores. However, it may lose information about the actual magnitude of

differences in scores. This study applies the probability-based selection to

reflect the actual solution quality differences of basic operators.

116

4.2. LEARNING MODELS

4.2.3 Update mechanisms for learning models

The update strategy on M is shown to be an important factor in learning

algorithm design in the proposed GCOP methods. In this work, a set of

Update() methods as shown in Table 4.1 is tested to analyse their influence

on the performance of oi during the search.

Table 4.1: A set of update strategies in the proposed GCOP methods, i.e. Update() for updating the
learning models M .

Update() Strategies to update the corresponding value in M
Simple() By 1
Linear() By the index of the current iteration
Improve() By the amount of improvement/deterioration in the cur-

rent iteration
NoImprove() By the number of iterations since sbest has not been up-

dated
NoCall() For each oi, by the number of iterations since oi has been

last called

4.2.4 An illustrative example

Given three operators (denoted by o1, o2, o3), assume a search process

with six iterations has been conducted within the AutoGCOP framework

in Algorithm 1. Each oi is determined by Select(Aoimprove
) in Algorithm

1 with M . Simple() in Table 4.1 is adopted in Update() to update M .

Initially, the values in M are all set to 1, thus each oi is chosen with an

equal probability.

With MIP , assume o2 in the first iteration generates a better solution s1,

thus MIP [1, 2] for o2 is increased by 1. In the next iteration, o2 is more

likely to be selected by applying the roulette wheel on MIP . Assume o1

is selected, generating a non-improving solution s2, so MIP [2, 1] for o1

is increased. This is repeated in the following iterations, where oi with

better-accumulated performance as recorded in MIP for finding new best

117

4.2. LEARNING MODELS

solutions is more likely to be selected. Other operators, however, have

the potential to be selected as well but with a smaller probability. Figure

4.1 presents how MIP is updated during six iterations. With MIP , in the

seventh iteration, o2 with a higher probability in MIP is more likely to be

selected.

With MTP , the learning starts from the second iteration. After o2, assume

o1 is selected using MTP , generating a non-improving solution s2, so there

is no reward to update MTP [2, 1], i.e. the transition from o2 to o1. Using

the roulette wheel, each oi has the same probability to be chosen after o1.

Assume o3 is selected leading to a better solution s3. MTP [1, 3] is thus

increased by 1 to reward the transition from o1 to o3. In the following

iterations, assume MTP [3, 2] and MTP [3, 1] are updated to reward the

transitions from o3 to o2 and o3 to o1 after selecting o2, o3 and o1. Figure 4.2

presents how MTP is updated during six iterations. Checking the element

MTP [1, 3] suggests o3 has a higher probability to be selected in the next

iteration.

Figure 4.1: The MIP updated during six iterations

Figure 4.2: The MTP updated during six iterations

!! !" !#
!! 1 1 1
!" 1 1 1
!# 1 1 1

!! → !" selected
!! !" !#

!! 1 1 1
!" 1 1 1
!# 1 1 1

!! !" !#
!! 1 1 2
!" 1 1 1
!# 1 1 1

Initial "$%

#! is not better
than ##$%&

!" → !' selected

#' is better than
##$%&

"$% after the
2&' iteration

"$% after the
3(' iteration

…
…

!! !" !#
!! 1 1 2
!" 1 1 1
!# 2 2 1

"$% after six
iterations

118

4.3. EFFECTIVENESS OF THE LEARNING MODELS ON VRPTW

4.3 Effectiveness of the learning models on

VRPTW

The experimental investigations aim to address the research issue, i.e.,

analysing the automated composition of oi in the proposed GCOP meth-

ods using the learning models. In Section 4.3.1, the proposed learning-

based GCOP methods are compared against the random GCOP methods

to demonstrate the effectiveness of the learning models. In evaluating the

proposed learning models, the influence of different Update() methods is

also analysed in Section 4.3.2. Section 4.3.3 compares the results of the

proposed GCOP methods with the published best results by the state-of-

the-art methods.

The VRPTW concerned in this work considers the dual objectives of min-

imising the number of vehicles (NV) and minimising the total travel dis-

tance (TD). A weighted sum objective function is adopted from the litera-

ture to evaluate VRPTW solutions s as shown in Equation (4.4), where c

is set to 1000 empirically (Walker et al., 2012).

f(s) = c×NV + TD (4.4)

The investigations are conducted on two sets of the widely studied bench-

mark VRPTW, i.e. the Solomon 100 customers set (Solomon, 1987) and

the Homberger 1000 customer set (Gehring and Homberger, 1999) as shown

in Table 4.2, covering different instance characteristics. In particular, cus-

tomers in type-R instances are randomly distributed geographically. In

type-C instances, customers are distributed in clusters. RC type instances

are a mix of them.

119

4.3. EFFECTIVENESS OF THE LEARNING MODELS ON VRPTW

Table 4.2: Characteristics of the benchmark VRPTW instances.

Benchmark Name Size Vehicle Capacity Type
Solomon R101 100 25 200 R
Solomon R201 100 25 1000 R
Solomon C101 100 25 200 C
Solomon C206 100 25 700 C
Solomon RC103 100 25 200 RC
Solomon RC207 100 25 1000 RC
Homberger R1-10-1 1000 250 200 R
Homberger R2-10-6 1000 250 1000 R
Homberger C1-10-8 1000 250 200 C
Homberger C2-10-1 1000 250 700 C
Homberger RC1-10-5 1000 250 200 RC
Homberger RC2-10-1 1000 250 1000 RC

4.3.1 Comparisons with random GCOP methods

The best and average results obtained from IP-GCOP and TP-GCOP are

compared with those from RN-GCOP and RG-GCOP in Table 4.3. Both

learning models are embedded with Simple() update methods. The same

number of evaluations is set as the stopping condition, i.e. titeration(n) is

adopted as tkmain
in Algorithm 1, for all GCOP methods. Similar computa-

tional time is observed for these approaches. Overall, TP-GCOP performs

better than IP-GCOP, which is better than RN-GCOP and RG-GCOP in

most instances. Only for one small instance, RG-GCOP obtains better

results than other methods.

To analyse whether the differences observed between IP-GCOP and TP-

GCOP are statistically significant, the Lilliefors test is used, showing that

they do not always follow a normal distribution. The Mann–Whitney–Wilcoxon

test is therefore performed with a 95% confidence level to conduct the pair-

wise comparisons between the two GCOP methods. Table 4.4 shows that

TP-GCOP has a better overall performance compared to IP-GCOP, espe-

cially for solving large instances.

The proportion each operator oi is called in the best algorithm compositions

120

4.3. EFFECTIVENESS OF THE LEARNING MODELS ON VRPTW

Table 4.3: Comparison between GCOP methods with different learning (IP-GCOP and TP-GCOP)
against the random RN-GCOP and RG-GCOP methods. The best, average (AVG) and standard
deviation (SD) of objective function values out of 31 runs are presented.

Instance R101 R201 C101 C206 RC103 RC207

RN

Best 22941.88 5569.55 12027.70 3709.01 14609.87 5355.37
AVG 23055.69 5637.15 13030.92 3752.32 14684.06 5437.76
AVG Time(s) 176 436 175 316 169 452
SD 184.22 27.50 389.22 21.70 33.31 30.71

RG

Best 21914.76 5584.46 12158.35 3704.71 14622.91 5385.61
AVG 22946.41 5630.69 12802.19 3756.83 14687.69 5444.48
AVG Time(s) 175 436 176 317 169 452
SD 413.39 24.46 475.67 23.81 36.05 22.99

IP

Best 21792.20 5481.94 10828.94 3707.82 14545.99 5325.75
AVG 22027.43 5592.05 11823.04 3737.37 14618.26 5384.51
AVG Time(s) 225 818 261 579 223 809
SD 369.44 36.86 378.16 15.71 35.67 27.02

TP

Best 20683.49 5476.38 10828.94 3708.99 13523.36 5302.97
AVG 21599.58 5600.57 11072.53 3738.01 14538.34 5368.54
AVG Time(s) 234 1069 284 598 234 970
SD 686.53 146.18 454.18 14.87 257.26 35.24

Instance R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1

RN

Best 214494.95 80507.45 238474.41 92016.80 185565.28 81506.01
AVG 218091.44 81341.35 248982.83 94935.60 188031.34 84957.79
AVG Time(s) 225 1044 280 509 2142 799
SD 1386.09 510.60 4126.22 1710.45 840.41 1260.17

RG

Best 192876.50 72191.55 216253.93 79846.80 176046.18 73084.74
AVG 206357.04 78072.89 235120.04 89442.99 183384.09 79385.30
AVG Time(s) 224 1026 281 500 210 802
SD 7543.64 2619.88 7873.45 4407.01 3141.50 3027.83

IP

Best 187732.06 71466.97 184622.87 63594.81 175301.01 71337.83
AVG 198588.32 74280.80 213053.01 70601.03 179682.39 74856.27
AVG Time(s) 257 1578 277 610 235 918
SD 4091.59 1174.01 9732.88 3164.21 2092.27 1699.35

TP

Best 160065.59 62520.70 155129.10 50841.53 152887.15 61935.10
AVG 164202.91 63939.58 173015.06 52943.00 162072.30 63673.53
AVG Time(s) 221 1785 231 794 225 1133
SD 3526.15 1377.38 15841.72 1090.93 7183.38 1215.29

Table 4.4: Performance comparison between IP-GCOP and TP-GCOP using the
Mann–Whitney–Wilcoxon test. The comparison between TP ↔ IP is shown as +, -, or ∼
when TP-GCOP is significantly better than, worse than, or statistically equivalent to IP-GCOP,
respectively.

Instance R101 R201 C101 C206 RC103 RC207
TP ↔ IP ∼ + ∼ + + +

Instance R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1
TP ↔ IP + + + + + +

by different GCOP methods are compared on two example instances C101

and C206, in Figure 4.3 and Figure 4.4, respectively. The oi selected in

IP-GCOP and TP-GCOP are highly different, indicating the algorithm

compositions, i.e. new algorithms automatically designed with the two

learning models, are highly different. Both learning models identify 2-opt∗

121

4.3. EFFECTIVENESS OF THE LEARNING MODELS ON VRPTW

(denoted as o5) as the most selected component in the best algorithms,

although it is automatically selected more often by TP-GCOP compared

to IP-GCOP.

Figure 4.3: Proportion of each operator called in the best algorithm compositions obtained by IP-GCOP
and TP-GCOP, compared with RN-GCOP and RG-GCOP, for solving instance C101.

o0
16%

o1
17%

o2
17%

o3
16%

o4
17%

o5
17%

(a) RN

o0
16%

o1
16%

o2
17%

o3
17%

o4
17%

o5
17%

(b) RG

o0
5%

o1
20%

o2
5%

o3
20%

o4
10%

o5
40%

(c) IP

o0
3%

o1
5%

o2
3%

o3
13%

o4
6%

o5
70%

(d) TP

Figure 4.4: Proportion of each operator called in the best algorithm compositions obtained by IP-GCOP
and TP-GCOP, compared with RN-GCOP and RG-GCOP, for solving instance C206.

o0
16%

o1
17%

o2
17%

o3
16%

o4
17%

o5
17%

(a) RN

o0
16%

o1
17%

o2
17%

o3
16%

o4
17%

o5
17%

(b) RG

o0
7%

o1
19%

o2
11%

o3
20%

o4
15%

o5
28%

(c) IP

o0
5%

o1
24%

o2
5%

o3
8%

o4
25%

o5
33%

(d) TP

4.3.2 Influence of different update methods to the

learning models

The influence of different Update() methods as specified in Table 4.1 is

examined to identify the best intra-domain general method (of the perfor-

mance across multiple instances from the same domain) for updating the

learning model in IP-GCOP and TP-GCOP, respectively. All methods are

evaluated for the same number of times, to compare the results out of ten

runs.

The results across different instances differ by a large scale and are therefore

normalised into a range [0, 1]. The normalisation scheme in (Di Gaspero

122

4.3. EFFECTIVENESS OF THE LEARNING MODELS ON VRPTW

and Urli, 2012), as shown in Equation (4.5), is used, where x(i) represent

the objective function values calculated using Equation (4.4), and xbest and

xworst is the best and worst results obtained, respectively. An intra-domain

performance score is then calculated as the sum of normalised results over

all instances. The normalised scores of the learning models with different

update strategies in Table 4.5 show that TP-GCOP with Simple() obtained

the best intra-domain performance. For IP-GCOP, the most suitable up-

date method is Linear().

xnorm(i) =
x(i)− xbest

xworst − xbest

. (4.5)

Table 4.5: The intra-domain scores for IP-GCOP and TP-GCOP with different update methods. The
best results (smallest values) for each method are in bold.

Update() IP-GCOP TP-GCOP
Simple() 28.34 15.52
Improve() 20.98 52.31
NoCall() 23.79 23.31
Linear() 16.14 43.64
NoImprove() 21.68 21.51

Further analysis on the intra-domain performance scores of the update

strategies using the Lilliefors test showed that they do not always follow a

normal distribution. The Mann–Whitney–Wilcoxon test is therefore per-

formed with a 95% confidence level to conduct the pairwise comparisons

between the two GCOP methods with different update strategies statisti-

cally.

Table 4.6 shows that IP-GCOP with Linear() has a better overall per-

formance compared to other update methods, especially for solving large

instances. For TP-GCOP in Table 4.7, Simple() led to better overall per-

formance, especially for solving small instances.

123

4.3. EFFECTIVENESS OF THE LEARNING MODELS ON VRPTW

Table 4.6: Pairwise performance comparison between different Update() methods with IP-GCOP using
the Mann–Whitney–Wilcoxon test. The comparison between A ↔ B is shown as +, -, or ∼ when A is
significantly better than, worse than, or statistically equivalent to B, respectively.

Update() Instance
A ↔ B R101 R201 C101 C206 RC103 RC207
Linear ↔ Simple ∼ ∼ + ∼ + ∼
Linear ↔ Improve ∼ ∼ ∼ − ∼ ∼
Linear ↔ NoCall ∼ ∼ + ∼ + ∼
Linear ↔ NoImprove ∼ ∼ ∼ ∼ ∼ ∼
Update() Instance
A ↔ B R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1
Linear ↔ Simple + + + + + +
Linear ↔ Improve + + + + + +
Linear ↔ NoCall + + + + + +
Linear ↔ NoImprove ∼ ∼ ∼ + ∼ ∼

Table 4.7: Pairwise performance comparison for the TP-GCOP with different Update() methods using
the Mann–Whitney–Wilcoxon test.

Update() Instance
A ↔ B R101 R201 C101 C206 RC103 RC207
Simple ↔ Improve + + ∼ ∼ ∼ ∼
Simple ↔ NoCall + ∼ + ∼ ∼ ∼
Simple ↔ Linear + + ∼ ∼ ∼ ∼
Simple ↔ NoImprove ∼ ∼ ∼ ∼ ∼ +

Update() Instance
A ↔ B R1-10-1 R2-10-6 C1-10-8 C2-10-1 RC1-10-5 RC2-10-1
Simple ↔ Improve + − ∼ + ∼ +
Simple ↔ NoCall ∼ ∼ ∼ ∼ ∼ ∼
Simple ↔ Linear + ∼ + + ∼ −
Simple ↔ NoImprove ∼ − ∼ − − −

4.3.3 Comparisons with the best-known approaches

The best solutions from TP-GCOP with Simple() and IP-GCOP with

Linear() are compared with the published best results produced by var-

ious state-of-the-art methods. In the VRP literature, the results of the

best-known solutions for VRPTW are usually ranked using a hierarchical

objective function, considering the number of vehicles NV as the primary

objective and the total travel distance TD as the second objective (Bräysy

and Gendreau, 2005b). In this study, a solution with lower NV is consid-

ered better than the others with higher NV. For those solutions with the

same NV, the lower TD the better.

124

4.3. EFFECTIVENESS OF THE LEARNING MODELS ON VRPTW

Table 4.8 shows the results of the proposed GCOP methods compared to

the best results reported in the literature by different approaches. It can

be seen that the proposed GCOP methods can obtain competitive results

in the number of vehicles (i.e. NV) in most small instances, especially

on instance C101, where both of the proposed methods obtained the best

solution in the literature.

It should be noted that the results from the proposed GCOP methods are

obtained by automatically designed new algorithms without any human

involvement, while the best results in the literature are obtained by different

methods specifically designed for VRPTW. The main research objective in

this study is not to beat the tailor-made state-of-the-art approaches by yet

another algorithm, but to investigate the learning in automatic design of

new algorithms by composing only the most basic algorithmic components

within the general AutoGCOP framework.

Table 4.8: Comparison of solution quality between the published best-known results and the best
solutions from IP-GCOP and TP-GCOP out of ten runs. NV denotes the number of vehicles. TD
denotes the total travel distance. Results that are better than or the same as the best known are in
bold.

Instance
Best-known results IP-GCOP TP-GCOP
NV TD Ref. NV TD NV TD

R101 19 1650.80 (SINTEF, a) 19 1653.76 19 1654.07
R201 4 1252.37 (SINTEF, a) 4 1624.12 4 1443.91
C101 10 828.94 (SINTEF, a) 10 828.94 10 828.94
C206 3 588.49 (SINTEF, a) 3 754.75 3 671.54
RC103 11 1261.67 (SINTEF, a) 12 1401.44 12 1399.13
RC207 3 1061.14 (SINTEF, a) 4 1297.91 4 1258.75
R1-10-1 100 53412.11 (SINTEF, b) 101 58815.26 100 62024.51
R2-10-6 19 29978.02 (SINTEF, b) 21 41170.48 21 40851.73
C1-10-8 92 42629.91 (SINTEF, b) 103 44867.96 106 47013.85
C2-10-1 30 16879.24 (SINTEF, b) 32 18141.82 33 18149.23
RC1-10-5 90 45069.37 (SINTEF, b) 95 53594.62 97 54482.19
RC2-10-1 20 30276.27 (SINTEF, b) 29 33446.19 28 32627.48

125

4.4. CONCLUISONS

4.4 Concluisons

Based on the AutoGCOP framework in Chapter 3, this chapter investigates

online learning in the automated composition of elementary algorithmic

components. Two learning models have been studied based on probabilistic

reasoning on the behaviour of algorithmic components during the search,

comparing the effectiveness of two different learning perspectives.

The proposed GCOP methods based on the AutoGCOP framework have

been investigated with effective learning ability to observe the behaviour

of algorithmic components. Particularly, compared to the learning model

which records and learns from the performance of individual components,

the Markov chain-based learning model which adaptively records the transi-

tion performance between pairs of basic components shows superior overall

performance for problems of different sizes and structures.

As mentioned in Chapter 3, AutoGCOP provides a unified common tem-

plate to support the investigations on the learning in automated algorithm

design. Effective patterns can be potentially extracted from the design

space of algorithms, and thus be applied offline to design new effective al-

gorithms. The GCOP methods investigated in this chapter can produce

numerous different algorithmic compositions for further investigations in

the following chapters.

126

Chapter 5

Offline learning to predict

algorithmic components for

automated algorithm

composition

Contents

5.1 Introduction . 129

5.2 The new machine learning task on algorithm composition131

5.3 Data collection and process for machine learning . . . 132

5.3.1 The VRPTW problem 132

5.3.2 Collection of operator sequences with GCOP

methods . 134

5.3.3 Data imbalance in the operator sequence data

set . 135

5.4 Learning from algorithmic components 137

5.4.1 Learning operator sequences with LSTM 137

127

5.4.2 Learning operator sequences with Transformer . 138

5.5 Findings of classification methods on automated algo-

rithm composition . 140

5.5.1 Performance assessment for LSTM 141

5.5.2 Effects of re-sampling methods 143

5.5.3 Performance assessment for Transformer 146

5.5.4 Investigations on features of operator sequences 147

5.6 Conclusions and discussions 152

5.6.1 Conclusions . 152

5.6.2 Discussions on the application for practical sce-

narios . 154

128

5.1. INTRODUCTION

5.1 Introduction

From the aspect of machine learning, the search process of meta-heuristics

generates a considerable amount of data, potentially carrying useful knowl-

edge (Karimi-Mamaghan et al., 2022). Some recent selection hyper-heuristics

explore the historical data with conventional machine learning techniques

for predicting low-level heuristics to use, such as Association Classifier

(Thabtah and Cowling, 2008), K-means Classifier (Asta et al., 2013), Deci-

sion Trees (Asta and Özcan, 2014), and Neural Networks (Tyasnurita et al.,

2015) and (Tyasnurita et al., 2017). These studies support the hypothesis

that useful knowledge can be extracted from the historical data of hyper-

heuristics, and such knowledge can support the automated composition of

low-level heuristics for optimisation.

Algorithmic compositions, however, are sequential data with a sequential

correlation between the components. This presents challenges to conven-

tional learning models in learning to predict algorithmic components in the

search.

In recent breakthroughs analysing sequential data and text prediction, deep

recurrent networks and attention-based neural networks are widely investi-

gated (Wan et al., 2020). Elman network, a variant of recurrent networks,

has been used to predict the types of low-level heuristics (Yates and Keed-

well, 2017). Aside from (Yates and Keedwell, 2017), sequence classification

seems to be an under-explored terrain in the automated design of search

algorithms.

The proposed AutoGCOP framework supports more flexible exploration

on a larger space of new unseen local search algorithms. With the new Au-

toGCOP framework, a large amount of data on effective compositions of

129

5.1. INTRODUCTION

basic algorithmic components can be collected consistently, supporting sys-

tematic analysis to identify new knowledge towards automated algorithm

design.

In this chapter, the automated composition is modelled as a sequence classi-

fication task upon standard basic algorithmic components. A large amount

of data on effective algorithmic compositions of the basic components are

collected within the AutoGCOP framework. For the defined task, an LSTM

network and a Transformer network are proposed to learn the knowledge

hidden in the algorithmic compositions for forecasting the selection of al-

gorithmic components. The proposed LSTM and Transformer models are

investigated against a set of commonly used conventional classifiers, to

demonstrate their effectiveness on the defined prediction task. The anal-

ysis presents insights into different learning models for learning effective

algorithmic compositions.

The contributions of this chapter are threefold as follows:

• Firstly, the prediction of algorithmic components in automated algo-

rithm compositions is formally defined as a sequence prediction task

for machine learning, supported by the underlying GCOP model the-

oretically. With the collected data upon the basic GCOP components

as benchmark data, the newly defined machine learning task brings

new challenges to the machine learning community and encourages

cross-disciplinary collaborations between evolutionary computation

and machine learning.

• Secondly, this study confirms the superior performance of LSTM and

Transformer in the defined new machine learning task on automated

algorithm design. Particularly, this study identifies the superior per-

formance of the LSTM in capturing the knowledge hidden in operator

130

5.2. THE NEW MACHINE LEARNING TASK ON ALGORITHM
COMPOSITION

sequences and supports Transformer in learning to forecast long oper-

ator sequences. To the best of our knowledge, it is the first attempt

to propose an LSTM model and a Transformer model in learning

from the automated compositions for the automated design of search

algorithms.

• Thirdly, the analysis of different types of information confirms the

effectiveness of problem instance features and search stage in algo-

rithmic compositions. These identified two types of features offer

new insights and inform further effective algorithm design.

5.2 The new machine learning task on algo-

rithm composition

Within AutoGCOP, the most effective compositions which produce the best

solutions at the end of the search have been collected. Among these effective

compositions, the sequences of operators oi that lead to improvement in

solution quality are of the most interest in this research.

We denote a sequence q ∈ Q of length l as an ordered list of operators oi

applied in the last l iterations, denoted by Equation (5.1).

q = {oi−l, . . . , oi−2, oi−1}, l = |q|. (5.1)

At each search step, the information of each applied oi is stored in a vector.

Sequence classification is the task of classifying sequences into existing cat-

egories (Xing et al., 2010). Given a finite set of operators Ao as a set of

class labels, the task of sequence classification is to build a sequence classi-

131

5.3. DATA COLLECTION AND PROCESS FOR MACHINE
LEARNING

fier F , which maps an operator sequence q to a class label oi ∈ Ao, written

as F : q → oi, oi ∈ Ao.

The defined task aims to explore the hidden sequential relations between

the operators within operator compositions. It can be treated as a con-

ventional multi-class classification problem (Crammer and Singer, 2002)

by transforming the sequence into a feature vector, solved by conventional

classifiers (such as decision trees and neural networks) (Xing et al., 2010).

The conventional classification problem, however, treats each oi in q as

an independent feature and analyses them in isolation. The temporal de-

pendencies between operators oi within the sequences are thus lost in this

transformation (Xing et al., 2010). The transformation also increases the

dimensions of the input data, leading to more challenges to conventional

models.

5.3 Data collection and process for machine

learning

To investigate the new sequence classification problem on algorithm com-

position, the widely studied VRPTW is used as the domain problem. It

has been observed that the data collected is extremely imbalanced, thus

in-depth analysis has been conducted using re-sampling methods.

5.3.1 The VRPTW problem

The VRPTW concerned in this work considers the dual objectives of min-

imising the number of vehicles (NV) and minimising the total travel dis-

tance (TD), as shown in Equation (5.2), where c is set to 1000 empirically

132

5.3. DATA COLLECTION AND PROCESS FOR MACHINE
LEARNING

and widely used in the literature (Walker et al., 2012).

c×NV + TD (5.2)

The investigations have been conducted on the benchmark Solomon 100 set

(Solomon, 1987) as shown in Table 5.1, covering different instance features.

Table 5.1: Features of the benchmark VRPTW instances, including vehicle capacity (VC), scheduling
horizon (SH), customer distribution type (DT), service time (ST), time window density (TWD) and
width (TWW).

Name VC SH DT ST TWD TWW
C102 200 Short C 90 75% 61.27
C103 200 Short C 90 50% 59.90
C104 200 Short C 90 25% 60.64
C105 200 Short C 90 100% 121.61
C202 700 Long C 90 75% 160.00
C203 700 Long C 90 50% 160.00
C204 700 Long C 90 25% 160.00
C205 700 Long C 90 100% 320.00
R102 200 Short R 10 75% 10.00
R107 200 Short R 10 50% 30.00
R108 200 Short R 10 25% 30.00
R109 200 Short R 10 100% 58.89
R202 1000 Long R 10 75% 115.23
R203 1000 Long R 10 50% 117.34
F208 1000 Long R 10 100% 349.50
R209 1000 Long R 10 100% 383.27
RC102 200 Short RC 10 75% 30.00
RC103 200 Short RC 10 50% 30.00
RC104 200 Short RC 10 25% 30.00
RC105 200 Short RC 10 100% 54.33
RC202 1000 Long RC 10 75% 120.00
RC203 1000 Long RC 10 50% 120.00
RC204 1000 Long RC 10 25% 120.00
RC205 1000 Long RC 10 100% 223.06

133

5.3. DATA COLLECTION AND PROCESS FOR MACHINE
LEARNING

5.3.2 Collection of operator sequences with GCOP

methods

To explore insights on effective algorithm compositions, the basic operators

oi as shown in Table 5.2 (including the most basic operators and a problem-

specific operator 2-opt∗) have been investigated within AutoGCOP. This

set of basic operators presents different characteristics for solving VRPTW

(Meng and Qu, 2021).

Table 5.2: Features of the operators in operator sequences, including relative neighbourhood size (NS),
involved routes of operation (IR) and operation type (OT).

Operator NS IR OT
oinxchg Small 1-route Exchange
obwxchg Small 2-route Exchange
oinins Small 1-route Insert
obwins Small 2-route Insert
orr Large n-route Ruin-recreate
2-opt∗ Medium 2-route Exchange

Within AutoGCOP, a Markov Chain-based GCOP method (MC-GCOP),

which adaptively learns the transition performance between pairs of basic

oi, presents superior overall performance for composing algorithmic com-

ponents to solve VRPTW problem instances (Meng and Qu, 2021). The

MC-GCOP method is applied to the problem instances in Table 5.1 to pro-

duce a collection of effective algorithmic compositions of oi in Table 5.2.

The information in each search iteration recorded includes the current in-

dex of iteration, index of the applied oi, and the objective function value of

the current solution, new solution and the best-found solution after using

oi (denoted by f(scurrent), f(snew) and f(sbest), respectively).

The best 10% algorithm compositions according to the solution quality in

the current iteration are first collected for each problem instance. The in-

formation of the iterations within these elite algorithm compositions which

lead to f(sbest) improvements is then retained in a collection of operator

134

5.3. DATA COLLECTION AND PROCESS FOR MACHINE
LEARNING

sequences.

Each operator sequence consists of three types of features as follows:

• Search stage feature: information of the current iteration, stored by

the index of iteration of the search (Iter).

• Operator features: each operator in the operator sequence is de-

scribed by its index and features shown in Table 5.2 and whether

the solution quality is improved after it has been applied (SC).

• Instance features: problem instance features in Table 5.1.

Let q = {oinxchg, oinins, orr} be an operator sequence labeled with obwxchg to be

applied at the tth iteration for instance C102. Let {ft−3, ft−2, ft−1} be the

solution quality change after using oi ∈ q. Features of this sequence q → oi

can be presented as shown in Figure 5.1.

Figure 5.1: An example operator sequence represented by features, including features of the sequence
and the corresponding label.

!! = {o"#$%&' }

Iter Operator NS IR OT SC SH DT ST TWD TWW

t − 3 o!"#$%& Small 1 − route Exchange f%'(Short C 90 75% 61.27

t − 2 o%&)%& Small 1 − route Insert f%'* Short C 90 75% 61.27

t − 1 o++	 Large n − route Ruin
− recreate

f%'- Short C 90 75% 61.27

q =

5.3.3 Data imbalance in the operator sequence data

set

One distinct observation on the collected data is that the labels obwins, orr

and 2-opt∗ dominate the categories of the extracted sequences (as shown

in Table 5.3), which leads to a seriously imbalanced classification problem

(Chawla, 2009). This is due to their larger contributions to better perfor-

mance on VRPTW (Meng and Qu, 2021). The imbalanced samples present

135

5.3. DATA COLLECTION AND PROCESS FOR MACHINE
LEARNING

challenges to learning models where there is a lack of enough data on the

minority classes for the learning (Batista et al., 2004).

Table 5.3: The appearance of each oi in Table 5.2 as the label of the extracted operator sequences.

Operator oinxchg obwxchg oinins obwins orr 2-opt∗

Appearance 3.8% 0.9% 3.8% 14.8% 18.8% 57.8%

Learning on imbalanced data has been widely investigated in recent re-

search (Zhou, 2013), (López et al., 2013), (Haixiang et al., 2017). Re-

sampling techniques, a class of pre-processing methods, showed to be promis-

ing in addressing data balance (Zhou, 2013). Re-sampling techniques can

be categorised into three groups as follows:

• Under-sampling methods, which select a portion of the majority classes

to achieve the distribution balance. The major drawback is that they

can discard potentially useful data.

• Over-sampling methods, which replicate some cases or generate new

cases from existing ones. This may likely lead to over-fitting or require

a clear structure in the imbalanced data to avoid introducing errors.

• Hybrid methods, which combine the above two methods.

This study investigates some of the most representative re-sampling meth-

ods, as shown in Table 5.4, for processing the imbalanced operator se-

quences. The systematic evaluation aims to provide insights for the new

machine learning task on the operator sequence data for automated algo-

rithm design.

136

5.4. LEARNING FROM ALGORITHMIC COMPONENTS

Table 5.4: Representative re-sampling methods.

Category Strategy
Under-sampling Random under-sampling (RU)

NearMiss (NM) (Mani and Zhang, 2003)
One-sided selection (OSS) (Kubat et al., 1997)
Neighborhood Cleaning Rule (NCL) (Laurikkala, 2001)

Over-sampling Random over-sampling (RO)
Synthetic Minority Over-sampling Technique (SMOTE) (Chawla et al., 2002)
Borderline-SMOTE (BSMOTE) (Han et al., 2005)
Adaptive Synthetic Sampling (ADASYN) (He et al., 2008)

Hybrid SMOTEENN (Batista et al., 2004)
SMOTETomek (Batista et al., 2004)

5.4 Learning from algorithmic components

LSTM and Transformers have received great attention in solving sequence

classification problems as introduced in Section 2.4.2 and Section 2.4.2.

This paper investigates LSTM neural networks and Transformer networks

for solving the newly defined sequence classification task. In the context

of the automated composition of operators, these two models interpret

the operator sequences in different ways: the LSTM focuses more on the

sequential relations between operators in sequences, while the transformer

learns to put attention to key information and operators in sequences.

5.4.1 Learning operator sequences with LSTM

For the operator sequence classification task defined in Section 5.2, this

work proposes a four-layer LSTM as shown in Figure 5.2. The input data

are as shown in Figure 2.8, where each slice of the data tube represents

one operator sequence and the batch size is the number of sequences in the

data.

An embedding layer turns integer representations of operators into dense

vectors of fixed size by capturing the underlying structure of the input data

and the relation between operators. In the context of neural networks, em-

137

5.4. LEARNING FROM ALGORITHMIC COMPONENTS

Figure 5.2: The structure of the proposed LSTM.

bedding is a vector representation of discrete variables learned from the

data. It has been widely applied and performs well to represent words

as dense vectors in a variety of NLP tasks (Levy and Goldberg, 2014),

where neural embedding is more manageable with the lower dimensions of

the vectors for high-cardinality variables. The learned vectors with neu-

ral embedding explicitly encode many linguistic patterns (Mikolov et al.,

2013). The embedding layer in the proposed LSTM model aims to learn

vector representations of the operators from the new data on algorithm

composition.

In the LSTM layer, the operator embeddings and other sequence features

are concatenated to feed into the LSTM cells. The output layer is a dense

layer with a SoftMax activation function which outputs the probability of

each class.

5.4.2 Learning operator sequences with Transformer

For the operator sequence classification task defined in Section 5.2, this

work proposes a sequence-to-one Transformer network as shown in Figure

5.3. The proposed Transformer model can be seen as a simplified version

138

5.4. LEARNING FROM ALGORITHMIC COMPONENTS

of the transformer model in Figure 2.9 for sequence-to-sequence learning in

(Vaswani et al., 2017). It is created using the Transformer encoder block,

followed by three layers for classification rather than the decoder structure.

The input data in Figure 5.3 is in the structure as shown in Figure 2.8.

The input operator sequence is fed into an embedding block which includes

the Input Embedding layer and the Positional Encoding layer for operator

embedding and position embedding. The learned vector and other sequence

features are concatenated to feed into the Transformer block. The output

of the Transformer block passes through a global average pooling layer,

a dropout, and a dense layer with a feedforward network. Finally, an

output layer using the softmax function will return the probabilities of the

possibilities of the operator sequence such that the sum of the probabilities

is 1.

The transformer block in Figure 5.3 implements the multi-head attention

mechanism, where the layers are defined following a similar structure in

Figure 2.9. It includes the attention layer, a dropout, the normalisation

layer, the feed-forward network, a dropout, and batch normalisation.

Figure 5.3: The structure of the proposed Transformer network.

Transformer block

Global average pooling layer

Inputs

Embedding layer (Input
embedding & positional encoding)

Dense layer
(Feed forward network)

Output layer
(softmax)

Output Probability
for each class

139

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

5.5 Findings of classification methods on au-

tomated algorithm composition

Intensive analysis has been conducted in the experiments to address three

main research issues, 1) assessing the performance of LSTM on the new

sequence classification task, 2) assessing the performance of the Trans-

former model on the new sequence classification task, and 3) identifying

and analysing the key features of operator sequences.

In Section 5.5.1, the proposed LSTM model is compared with commonly

used conventional classifiers, including Naive Bayes (NB), Logistic Regres-

sion (LR), Multi-layer Perceptron (MLP) and Random Forest (RF). The

conventional classifiers learn from the operator sequences in a different

way. An LSTM model with no embedding layer (denoted as LSTM-basic)

is studied to show the effects of embeddings. This analysis thus presents

insights into different learning models for the newly defined task on effec-

tive algorithmic compositions and reveals knowledge of hidden sequential

relations between operators in designing search algorithms. The influence

of different re-sampling methods is also investigated in Section 5.5.2.

In Section 5.5.3, the length of operator sequences is investigated to assess

the performance of the proposed Transformer network. The Transformer

network is compared against the conventional classifiers and LSTM for

learning from operator sequences with different lengths. The analysis is

to further explore different learning models for the newly defined task on

effective algorithmic compositions, particularly the switch from the sequen-

tial step-by-step processing of LSTMs to the only-attention-based memory

mechanisms of Transformers on processing long operator sequences.

For the third research issue, Section 5.5.4 analyses a set of features describ-

140

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

ing operator sequences with the proposed learning models to identify useful

information to support automated algorithm design.

Traditionally, accuracy is a widely used performance metric in classifica-

tion tasks (López et al., 2013), however, not an appropriate measure when

learning on imbalanced data (Chawla, 2009). Accuracy is the percentage

of the correctly classified examples in all classes. In imbalanced data, the

number of instances in the majority class is greatly larger than those in the

minority classes. Therefore, a model that simply predicts all instances as

the majority class can attain a high accuracy, even if it fails to make any

useful predictions for the minority class. This might give the illusion of a

well-performing model, but, in reality, the model falls short of providing

useful predictions for other classes (Jeni et al., 2013). Area Under Curve

(AUC) (Swets, 1988) measures the ability of learning models to distinguish

between different classes across various probability thresholds, and it is

less influenced by the imbalanced class distribution, especially the size of

the majority class (Chawla, 2009). Therefore, it provides a comprehensive

view of a model’s performance. In this study, AUC is used to evaluate the

performance of the models.

5.5.1 Performance assessment for LSTM

The original data set is split into 70% for training and 30% for testing.

Since the extracted operator sequence data is highly imbalanced, the data

set is processed with re-sampling methods, as shown in Table 5.4, to obtain

balanced training data. In all cases, the aim is to try to obtain balanced

training data. The testing data is used to evaluate the performance of

learning models. Table 5.5 presents the stats of the re-sampled training

data and testing data.

141

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Table 5.5: Data size of re-sampled training data and testing data.

Class Re-sampling methods Training data size
oinxchg obwxchg oinins obwins orr 2-opt∗ Total

Original 12178 2853 12133 47419 60625 181199 316407

Under

RU 2853 2853 2853 2853 2853 2853 17118
NM 2853 2853 2853 2853 2853 2853 17118
OSS 6820 2853 6766 29570 39494 148099 233602
NCL 12178 2853 12133 47419 60625 115757 250965

Over

RO 181199 181199 181199 181199 181199 181199 1087194
SMOTE 95680 33232 179983 151639 159881 179983 800398
BSMOTE 55583 8746 55085 147419 158250 180355 605438
ADASYN 96286 33251 97522 153951 148195 179965 709170

Hybrid
SMOTEENN 93742 32852 92661 132789 126747 14468 493259
SMOTETomek 95498 33190 94327 151520 159161 178720 712416

Testing data size
Original 5021 1153 5138 19567 24542 80181 135602

To avoid potential over-fitting and consider computational efficiency, the

hyper-parameters in the learning models have been tuned to obtain the

best performance in terms of AUC on the training data. Table 5.6 shows

the average AUC of 10 runs of the six classifiers on each data set. To com-

pare the overall performance of these six classifiers, their average ranking

according to their performance is compared. Overall, LSTM achieves the

best performance. RF is worse than LSTM but still superior to other classi-

fiers. Among the other classifiers, LSTM-basic obtain better performance,

followed by MLP, NB and LR, respectively.

To investigate further the LSTM and RF and also the contributions of the

embedding layer in LSTM, the Mann-Whitney-Wilcoxon test is conducted

on the LSTM against LSTM-basic and RF, as shown in Table 5.7. It can

be observed that the LSTM with an embedding layer is statistically better,

and can learn a proper representation of the operators in the sequences to

improve the prediction performance. LSTM also outperforms the conven-

tional classifier, due to its sequence architecture which captures features in

modelling long texts.

142

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Table 5.6: The AUC results of different learning models on data sets processed by different re-sampling
methods.

Models RU NM OSS NCL
NB 0.5714 0.5562 0.6014 0.6012
LR 0.5677 0.5679 0.6002 0.6009
MLP 0.5714 0.5300 0.6318 0.6401
RF 0.6120 0.5573 0.6407 0.6425
LSTM-basic 0.6088 0.5407 0.6479 0.6492
LSTM 0.6230 0.5554 0.6536 0.6552

Models RO SMOTE BSMOTE ADASYN
NB 0.5750 0.5966 0.5973 0.5972
LR 0.5726 0.5939 0.5942 0.5942
MLP 0.5869 0.6214 0.6243 0.6208
RF 0.6179 0.6256 0.6282 0.6251
LSTM-basic 0.5703 0.6308 0.6354 0.6305
LSTM 0.5956 0.6347 0.6393 0.6344

Models SMOTEENN SMOTETomek Original
NB 0.5847 0.5967 0.6009
LR 0.5831 0.5941 0.5994
MLP 0.6123 0.6206 0.6368
RF 0.6225 0.6255 0.6436
LSTM-basic 0.6214 0.6312 0.6510
LSTM 0.6245 0.6360 0.6541

Table 5.7: Pairwise performance comparison on the LSTM with LSTM-basic and RF using the
Mann–Whitney–Wilcoxon test. The +, -, or ∼ indicates if the LSTM is significantly better than,
worse than, or statistically equivalent to LSTM-basic and RF, respectively.

Re-sampling methods RU NM OSS NCL
LSTM↔LSTM-basic + + + +
LSTM↔RF + ∼ + +

Re-sampling methods RO SMOTE BSMOTE ADASYN
LSTM↔LSTM-basic + + + +
LSTM↔RF - + + +

Re-sampling methods SMOTEENN SMOTETomek Original
LSTM↔LSTM-basic + + +
LSTM↔RF + + +

5.5.2 Effects of re-sampling methods

To investigate the impact of re-sampling data on the learning models, Fig-

ure 5.4 presents the comparisons of AUC for RF and LSTM using different

re-sampling methods in each data set. None of the re-sampling methods

shows to improve the performance with using the original data set. How-

ever, LSTM obtains similar performance on the data sets processed by

using OSS and NCL to the original data. Among the selected re-sampling

methods, NCL shows to be the best to process the data set for learning

143

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Figure 5.4: Performance comparison of RF and LSTM on the data sets processed with different re-
sampling methods.

0.50
0.52
0.54
0.56
0.58
0.60
0.62
0.64
0.66
0.68

Or
igi
na
l

RU NM OS
S

NC
L RO

SM
OT
E

BS
MO
TE

AD
AS
YN

SM
OT
EE
NN

SM
OT
ET
om
ek

A
U

C

Re-sampling methods

RF
LSTM

models to obtain the best overall performance. The over-sampling methods

and hybrid re-sampling methods, except RO, have a similar impact on the

operator sequence data.

The over-sampling methods introduce new samples to the data to add

significantly more information to the minority class examples. However,

RO makes exact copies of the minority class cases, thus only introducing

redundant information to the data. The syncretization based over-sampling

methods (e.g., SMOTE (Chawla et al., 2002)) utilise the inter-correlations

rather than temporal inner-correlations of operator sequences. Therefore,

the extracted knowledge by the learning models from the newly introduced

data fails to reveal the real knowledge of algorithmic composition and thus

cannot generalise to the testing data.

Compared with over-sampling methods, under-sampling methods seem more

suitable for processing the imbalanced operator sequence data since they

would not introduce wrong or useless information to the data. However, af-

ter under-sampling methods (or over-sampling), there is a limited amount

of data. With only a limited amount of data observed by learning mod-

144

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Table 5.8: Sample size of the training data re-sampled by RU with different imbalance levels.

Data set Training data size Imbalance level
oinxchg obwxchg oinins obwins orr 2-opt∗ Total 2-opt∗ : obwxchg

RU1 2853 2853 2853 2853 2853 2853 17118 1 : 1
RU2 5706 2853 5706 5706 5706 5706 31383 2 : 1
RU3 8559 2853 8559 8559 8559 8559 45648 3 : 1
RU4 11412 2853 11412 11412 11412 11412 59913 4 : 1
RU5 12178 2853 12133 14265 14265 14265 69959 5 : 1

els, the extracted knowledge has a limited level of generality in testing.

The performance of the NM method is not satisfying, indicating it failed to

identify the underlying structure in the high-dimensional operator sequence

data. OSS and NCL select a subset of data with data cleaning procedures.

However, the resulting data sets are still highly imbalanced, as shown in

Table 5.5. Among these under-sampling methods, RU seems more suitable

for operator sequences, resulting in a balanced data set.

To successfully apply the under-sampling methods, the RU under-sampling

method is further examined on the operator sequence data to strike a bal-

ance in the training data while maintaining a suitable information loss.

Table 5.8 presents the training data with different imbalance levels after

applying RU.

RF and LSTM are then trained with the RU-processed training data, eval-

uations are shown in Figure 5.5. Unsurprisingly, the learning models obtain

better performance on more imbalanced data. It is interesting to observe

in Figure 5.5, that from a balanced data (i.e., RU1) to the data with an

imbalance level of 2:1 (i.e., RU2 of majority: minority ratio), the learning

models obtain significant performance improvement. The improvement of

model performance reduces along with increasing imbalance levels. Con-

sidering the trade-off between the overall prediction performance and data

imbalance level, RU2 is used as a suitable re-sampling method for data

pre-processing in this study.

145

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Figure 5.5: The performance change of RF and LSTM on the data sets processed by RU with different
data imbalance levels. RU1, RU2, RU3, RU4 and RU5 denotes RU with the ratio of majority class to
minority class 1:1, 2:1, 3:1, 4:1 and 5:1, respectively.

0.59
0.60
0.61
0.62
0.63
0.64
0.65

RU1 RU2 RU3 RU4 RU5
A

U
C

RU with different imbalance level

RF LSTM

5.5.3 Performance assessment for Transformer

The proposed Transformer model is investigated for handling operator se-

quences with different length settings (i.e., Y in Figure 2.8) in the range of

{10, 20, 30, 40, 50}. The performance of the Transformer model is com-

pared against the selected conventional classifiers and LSTM to reveal the

impacts of different operator sequence length settings on different learning

mechanisms. The 70% data is processed by RU2 with an imbalance level

of 2:1 as the training data.

Figure 5.6 shows the AUC performance of learning models on the operator

sequence data set with different length settings. Among the seven classifiers

in this study, LSTM achieves the best performance on operator sequences

with different length settings overall. In addition, its performance increases

with the increase of the length. This further justifies the effectiveness of

LSTM.

For short operator sequences, the Transformer model obtains slightly worse

performance than LSTM. However, its performance increases with the in-

crease in length. When the sequences consist of 40 operators, the Trans-

former model obtains a similar performance to LSTM. For longer sequences

146

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Figure 5.6: The comparison of learning models in terms of the AUC performance.

with 50 operators, Transformer obtains the best performance. This con-

firms that the Transformer model is superior at handling long operator

sequences.

The conventional classifiers perform better on the operator sequences of

length 30. This suggests their limited learning ability when the number

of features increases. Among the conventional classifiers, RF achieves the

best performance in different sequence lengths and thus will be used for

further investigations. The operator sequence length is set as 30 in Section

5.5.4 for analysing the impacts of different operator sequence features for

different machine learning models.

5.5.4 Investigations on features of operator sequences

To investigate the impact of various features in operator sequences in Figure

5.1, RF, LSTM and Transformer are evaluated, representing different types

of machine learning models.

147

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Figure 5.7: The AUC performance comparison of learning models on data sets with different features
in Figure 5.1.

0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.71 0.72 0.73

O_index
O_index with Iter
O_index with DT
O_index with SH
O_index with ST

O_index with TWD
O_index with TWW

O_index with SC
O_index with NS
O_index with IR

O_index with OT

AUC

D
at

a
se

ts
 w

ith
 d

iff
er

en
t f

ea
tu

re
s

LSTM Transformer RF

Effects of each feature

To investigate the impact of each feature, RF, LSTM and Transformer

are evaluated on the operator sequences as described in Figure 5.1, com-

pared with the baseline original data (described by the applied operator

O index only), results shown in Figure 5.7. All the models perform better

with additional features. Overall, LSTM achieves the best performance

and Transformer outperforms RF on the same data set. For LSTM and

Transformer, the solution quality change SC improves the performance the

most, followed by search stage Iter. With operator features, the perfor-

mance of LSTM and Transformer is slightly worse than when it is applied

to the original data. RF performs the best on the data with time window

width TWW , followed by the SC.

The Mann–Whitney–Wilcoxon test with a 95% confidence level is con-

ducted in pairwise comparisons between the performance on the original

data (i.e., O index) and data with one more feature. As shown in Ta-

ble 5.9, for RF, the additional features to the original data significantly

improve its prediction performance. For LSTM and Transformer, some

features contribute to their performance improvement, including the solu-

tion quality change after the selected operators and the time window width

148

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Table 5.9: Comparison of model performance on the data with only O index and the data with addi-
tional features, based on the Mann–Whitney–Wilcoxon test. The +, -, or ∼ indicate if O index with
an additional feature is significantly better than, worse than, or statistically equivalent to data with
just O index, respectively.

RF LSTM Transformer
O index with Iter ↔O index + + ∼
O index with DT ↔O index + ∼ +
O index with SH ↔O index + + ∼
O index with ST ↔O index + ∼ +
O index with TWD ↔O index + ∼ ∼
O index with TWW ↔O index + + +
O index with SC ↔O index + + +
O index with NS ↔O index + ∼ ∼
O index with IR ↔O index + ∼ ∼
O index with OT ↔O index + ∼ ∼

of the problem instances. In addition, the search stage and the instance

scheduling horizon are beneficial for improving the prediction of LSTM.

The instance features, such as customer distribution type and service time,

are useful for the Transformer network. The learning models treat the

features differently, supporting the different learning behaviour among the

models.

Importance of the features

Further analysis is conducted to investigate the importance of each feature

for the learning models. Table 5.10 presents the top 10 most important

features identified by RF. The search stage feature Iter is the most impor-

tant feature for RF. Similar to the observation on LSTM and Transformer

in Table 5.9, the fitness change and time window width are also identified

as important features by RF. It is worth noting that RF identifies that the

most recently used operators and operator features are important for the

prediction. This suggests that its better performance compared with the

conventional classifiers may be due to its ability to identify the correlation

between operators in the sequences.

To analyse the remaining features, RF, LSTM and Transformer are evalu-

149

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Table 5.10: The top 10 important features found by RF.

Rank Importance Feature type Feature description
1 0.0765 Search stage feature Index of iteration
2 0.0699 Instance feature Time window width
3 0.0641 Instance feature Scheduling horizon
4 0.0359 Operator index Operator index of the last operator
5 0.0168 Operator feature Neighbourhood size of the last operator
6 0.0167 Operator index Operator index of the second last operator
7 0.0154 Fitness Solution quality change of the last operator
8 0.0133 Operator feature Operation type of the last operator
9 0.0121 Operator index Operator index of the third last operator
10 0.0114 Fitness Solution quality change of the second last operator

Figure 5.8: Comparison of different feature sets using the performance of learning models.

0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.7

0.71
0.72
0.73
0.74

O_index O_index with top10 O_index with all

A
U

C

Data sets with different features

RF
LSTM
Transformer

ated on the data set with all features and compared with their performance

on the same operator sequence set with only the top 10 important features

in Table 5.10. Figure 5.8 shows that the top 10 important features can sig-

nificantly improve the performance of RF, LSTM and Transformer. How-

ever, all models obtain further better performance with all the features.

Particularly, the Transformer model obtains similar performance as LSTM

with all the features.

The Mann–Whitney–Wilcoxon test with a 95% confidence level on differ-

ent feature sets is shown in Table 5.11, confirming the effectiveness of the

important feature set for both models. RF and Transformer on the data

with all features are significantly better than the data with important fea-

150

5.5. FINDINGS OF CLASSIFICATION METHODS ON AUTOMATED
ALGORITHM COMPOSITION

Table 5.11: Comparison of model performance on operator sequence data with different feature sets
using Mann–Whitney–Wilcoxon test. The +, -, or ∼ indicates that O index with important features
is significantly better than, worse than, or statistically equivalent to O index with other features,
respectively.

RF LSTM Transformer
O index with important ↔ O index + + +
O index with important ↔ O index with all - ∼ -

tures. This indicates that the less-important features are also useful for

both models. However, for LSTM, there is no statistical significance in

using all features compared with using only the important features. This

indicates that LSTM is able to learn useful knowledge on the operator

sequences with only a smaller subset of effective features.

Discussions of the features for operator sequences

Search stage information. The search stage feature is identified as the

most important feature by RF. It also contributes to significant improve-

ment for LSTM, as shown in Figure 5.7. This suggests that in different

search stages, the effective composition of algorithmic components may

follow certain different patterns, thus justifying the use of GCOP methods

to adapt to the search stages while flexibly composing algorithmic compo-

nents. In addition, such patterns in operator sequences may be hard to

observe or interpret directly but can be explored by machine learning mod-

els, supporting the use of machine learning models in automated algorithm

composition.

Instance features. In the literature, the studies which generalise offline

learned knowledge to solve unseen VRPTW instances mainly focus on cus-

tomer type and scheduling horizon. Among the instance features involved

in this study, time window widths are identified as more important fea-

tures for RF, LSTM and Transformer. This suggests a potential difference

in the hidden knowledge of algorithmic compositions for problem instances

151

5.6. CONCLUSIONS AND DISCUSSIONS

with distinct time window widths and scheduling horizons. To achieve a

higher level of generality in algorithm design for solving VRPTW these two

important features should be considered.

Operator sequences. Both RF and LSTM perform better with longer

operator sequences, but LSTM is better than RF. However, Transformer is

better than all the selected models for learning from sequences consisting of

more than 40 operators. To be noted, RF identifies that the recent opera-

tors are more important than the previously used operators for prediction.

This confirms again the sequential relations between operators in effective

algorithmic compositions. In the search, the recently visited neighbour-

hoods are more important for determining the next neighbourhood.

Operator features. Of the investigated operator-related features, the

most important is the solution quality change. The other three operator

features, i.e., Neighbourhood Size, Involved Routes and Operation Type,

make no contribution to improving the performance of LSTM and Trans-

former. However, they are useful features for RF. These three features

could be seen as important parameters when designing new operators. In-

vestigations of operators with various settings based on these three features

may reveal new knowledge for algorithm design in our future research.

5.6 Conclusions and discussions

5.6.1 Conclusions

Various learning methods have been used to automate the algorithm de-

sign process in the literature. Within a unified AutoGCOP algorithm de-

sign framework which supports the composition of elementary algorithmic

152

5.6. CONCLUSIONS AND DISCUSSIONS

components, this chapter investigated machine learning techniques for au-

tomated algorithm design. The aim is to gain insightful knowledge from the

effective algorithmic compositions to forecast the behaviour of algorithmic

components, thus supporting algorithm design.

The algorithm design problem of determining algorithmic components to

use has been defined as a new sequence classification problem. Machine

learning methods have been studied to learn a mapping from sub-sequences

of algorithmic compositions to the algorithmic component to be applied.

This newly defined machine learning task thus supports the automated

design of new unseen local search algorithms. With the AutoGCOP frame-

work, a considerable number of new algorithmic compositions can be au-

tomatically generated for further investigations for solving VRPTW and

other optimisation problems.

In predicting components in algorithmic composition, the proposed LSTM

model was compared against commonly used conventional classifiers. LSTM

shows to perform better at capturing the sequential relations in algorithmic

compositions due to its sequence specialisation of the network structure. To

address the issue of highly imbalanced algorithmic composition data, the

learning models have been examined using data sets processed with several

commonly used re-sampling methods. LSTM shows to be the best machine

learning method due to its robust performance on the defined prediction

task in forecasting the behaviour of algorithmic components.

In learning from longer algorithmic compositions, the proposed Trans-

former model is compared to the proposed LSTM model and the commonly

used classifiers. Both LSTM and Transformer have increasing prediction

performance with longer operator sequences. However, Transformer shows

to be more effective at capturing knowledge from longer operator sequences

153

5.6. CONCLUSIONS AND DISCUSSIONS

than LSTM.

Furthermore, various features utilised in automated composition have been

analysed with machine learning models. The results confirm the effective-

ness of the search stage, operator features and instance features in designing

local search algorithms. Certain VRPTW instance features, particularly

the scheduling horizon and time window width, have been identified as

important features for determining suitable algorithmic components. The

search stage, as a general feature, can be a useful indicator when determin-

ing suitable algorithmic components in algorithm design for different prob-

lem domains. Solution quality change, which represents the performance

of the applied algorithmic components, can also be effectively utilised for

automated design.

The study in this chapter provides valuable insights into learning knowl-

edge from the data produced by the search process within AutoGCOP. The

learned knowledge can be useful in determining suitable operators during

automated composition. The findings in this chapter encourage further ex-

ploration of the data with new techniques to gain a deeper understanding of

the hidden knowledge. This research direction serves as the primary focus

of Chapter 6, which conducts a comprehensive analysis of the data gath-

ered with the aim of enhancing the interpretability of learning to support

automated composition.

5.6.2 Discussions on the application for practical sce-

narios

It is important to note that the proposed sequence classification task for

automated composition is not limited to VRPTW alone. The investigations

154

5.6. CONCLUSIONS AND DISCUSSIONS

of algorithmic compositions, built upon the general GCOP model (Qu et al.,

2020), operate in a distinct space from the solution space of the specific

optimisation problem being addressed. Therefore, the methodology applied

to learn from algorithmic compositions can be extended and applied to

other domains, which can be beneficial for industries and businesses that

operate beyond VRPs (Meng and Qu, 2023a). However, the data collection

procedure requires careful planning and design in practical scenarios.

Algorithmic components to use. The basic algorithmic components in

GCOP (Qu et al., 2020) are not tailored to any specific problems but rather

for various problems with minimal development effort. By simply replacing

the problem-specific algorithmic components and keeping the same basic

components, the underlying methodology of this study can be applied to

different problem domains (Meng and Qu, 2023a). Therefore, in real-world

scenarios, algorithm designers can use the basic GCOP components with

minimal development effort to produce a collection of algorithmic compo-

sitions for learning.

Features of algorithmic compositions. The algorithmic composition

dataset mainly consists of problem-independent features (i.e., search stage

feature and operator features) and problem-dependent features (i.e., in-

stance features). In practical applications, it is advisable to retain the

problem-independent features while replacing the problem-dependent fea-

tures with relevant alternatives. Feature engineering process can be useful

in identifying the key features for enhancing the predictive performance of

machine learning models.

GCOP methods for producing algorithmic compositions. In this

study, learning is conducted on the elite algorithmic compositions produced

by the MC-GCOP method which obtains superior performance in auto-

155

5.6. CONCLUSIONS AND DISCUSSIONS

mated composition in Chapter 4. It is important to note that ineffective

algorithmic compositions may not yield valuable knowledge, underscoring

the significance of the GCOP method for data collection. In practical ap-

plications, alternative learning models for automated composition, such

as the multi-armed bandit (Almeida et al., 2020) or deep reinforcement

learning models (Yi et al., 2022), may hold promise for producing superior

algorithmic compositions. To reduce human efforts, algorithm designers

can consider the random GCOP method which can effortlessly generate a

large pool of algorithmic compositions. Learning from the most elite com-

positions can also reveal valuable insights for algorithm design (Meng and

Qu, 2023b).

156

Chapter 6

Sequential rule mining on the

compositions of algorithmic

components

Contents

6.1 Introduction . 159

6.2 Data of algorithm design for data mining 162

6.2.1 The VRPTW problem 162

6.2.2 Collection of operator sequences with GCOP

methods . 163

6.3 Automated algorithm design with sequential rule mining166

6.3.1 Sequential rules mining in algorithmic compo-

sitions . 166

6.3.2 SeqRuleGCOP: automated composition with se-

quential rules 167

6.4 Findings of sequential rules for algorithm design . . . 168

6.4.1 Impact of sequence length for rule mining . . . 169

157

6.4.2 Analysis of the sequential rules for different

types of instances 170

6.5 Performance of sequential rules for automated algo-

rithm composition . 175

6.5.1 Effectiveness of sequential rules in automated

composition . 177

6.5.2 Effectiveness of composing groups of operators . 184

6.6 Conclusions . 188

158

6.1. INTRODUCTION

6.1 Introduction

As stated in Chapter 3, a large amount of data on the search process can

be produced within the AutoGCOP framework in the automated algorithm

composition process. New knowledge in the data can be potentially dis-

covered to support algorithm design (Qu et al., 2020).

Chapter 4 verifies the effectiveness of Markov Chain-based GCOP method

(MC-GCOP) which learns the transitions between algorithmic components

in automated composition. Chapter 5 defines algorithm design as a clas-

sification problem and investigates different classification methods for ac-

quiring the knowledge hidden in the algorithmic compositions. The LSTM

model, which can capture the sequential relations between elements, ob-

tains a better performance for predicting basic operators than conventional

classifiers. These studies indicate that there exist sequential relationships

between basic operators hidden in the algorithmic compositions which se-

quential machine learning models could capture.

However, the knowledge captured and embedded in the learning models is

implicit, thus hard to analyse further and interpret. Having a good un-

derstanding of this hidden knowledge captured in the learning models can

further enhance effective algorithm designs for developing new algorithms.

This chapter aims to acquire knowledge in a more explicit form from al-

gorithmic compositions, thus enhancing the understanding of how it can

assist effective algorithm designs.

Machine learning has been widely used in many real-life scenarios for

finding valuable patterns in sequential datasets, such as in bioinformatics

(Wang et al., 2007), webpage click-stream analysis (Fournier-Viger et al.,

2012b) and market basket analysis (Srikant and Agrawal, 1996). Ignoring

159

6.1. INTRODUCTION

the sequential relationship between events or elements may cause the loss

of important patterns in the data (Fournier-Viger et al., 2017). Sequen-

tial rule mining techniques (Fournier-Viger et al., 2012a) have been widely

investigated for discovering useful subsequences in sequential data, thus

supporting decision-making and prediction (Fournier-Viger et al., 2017).

This chapter investigates the data generated in the search process as a

new machine learning application, aiming to explore the potentially use-

ful knowledge hidden in the algorithmic compositions and interpret the

knowledge to support effective automated algorithm design. In particu-

lar, we employ sequential rule mining to extract sequential rules of basic

operators from effective algorithmic compositions for solving VRPTW. To

obtain insights from the sequential rules, a systematic analysis has been

conducted to reveal the sequential relationships between basic operators

and the influence of the problem instance types.

Given the extracted sequential rules, this chapter evaluates the effective-

ness of using these rules to automate the composition of basic operators.

A novel Sequential Rule-based GCOP method (denoted as SeqRuleGCOP)

is proposed to support the automated composition within the general Au-

toGCOP framework. The extracted sequential rules of basic operators are

evaluated with SeqRuleGCOP for solving VRPTW. In comparison with

other GCOP methods and the Variable Neighbourhood Descent (VND),

SeqRuleGCOP shows superior performance, demonstrating its effectiveness

in designing new algorithms automatically.

In addition, the frequent sequential rules of basic operators indicate a new

attribute of operators, i.e., their impact on optimisation objectives. The

basic operators are categorised into three groups based on their impact. Ex-

perimental results demonstrate the benefits of using the proposed groups of

160

6.1. INTRODUCTION

basic operators in not only the automated composition within AutoGCOP

but also the VND search framework for solving VRPTW.

The contributions of this chapter are threefold as follows:

• Firstly, this study investigated the sequential rules of basic operators

for solving VRPTW. To the best of our knowledge, this is the first

study on sequential rule mining techniques in the investigation of

automated algorithm composition.

• Secondly, this study proposes a new GCOP method to support the

use of sequential rules within AutoGCOP, confirming the satisfying

performance of the extracted sequential rules in automated compo-

sition for solving VRPTW. The comparison between SeqRuleGCOP

and VND also supports the superior performance of automated algo-

rithm design over manual algorithm design.

• Thirdly, the identified attribute of operators provides some new in-

sights into algorithm design in the literature. Firstly, it introduces a

new categorisation of basic operators to the literature. Using this cat-

egorisation of operators in automated composition can improve the

optimisation performance for solving VRPTW. On the other hand,

this categorisation can lead to new algorithm designs in the meta-

heuristics search framework. Experiment results verify that chang-

ing groups of operators with different optimisation impacts in the

VND search framework can achieve better performance for solving

VRPTW.

In the rest of this chapter, Section 6.2 presents the data of algorithmic

compositions for sequential rule mining, followed by Section 6.3 which de-

scribes the sequential rule mining techniques for mining the algorithmic

161

6.2. DATA OF ALGORITHM DESIGN FOR DATA MINING

compositions and the proposed GCOP method. The findings and analysis

of the extracted sequential rules of algorithmic components are presented

in Section 6.4, followed by Section 6.5 presenting the experimental study

on the effectiveness of using the sequential rules and grouping operators

in automated composition. Section 6.6 presents the conclusions of this

chapter.

6.2 Data of algorithm design for data min-

ing

To investigate the sequential rules of effective algorithmic compositions

within AutoGCOP, a simple random GCOP method (RN-GCOP) (Meng

and Qu, 2021) is used to randomly compose the basic algorithmic com-

ponents for solving VRPTW, producing a large database of algorithmic

compositions. An elite set of algorithmic compositions of the basic opera-

tors are retained for rule mining.

6.2.1 The VRPTW problem

The VRPTW concerned in this work is consistent with the studies in Chap-

ter 4 and Chapter 5, i.e., considering the dual objectives of minimising the

number of vehicles (NV) and minimising the total travel distance (TD), to

evaluate VRPTW solutions s as shown in Equation (6.1), where c is set to

1000 empirically (Walker et al., 2012).

f(s) = c×NV + TD (6.1)

162

6.2. DATA OF ALGORITHM DESIGN FOR DATA MINING

The data collection has been conducted on the benchmark Solomon 100

data set as shown in Table 6.1, covering different instance features. The

customer distribution types and scheduling horizons are of the most interest

in many studies, and thus are the main focus of this study. The Solomon

benchmark covers different customer distribution types (i.e., R, C and RC)

and scheduling horizons (i.e., short and long). In Type-C instances, cus-

tomers are located in a number of clusters. Customers of Type-R instances

are randomly distributed geographically, while Type-RC instances are a

mix of them. The scheduling horizons in Type-1 instances are short, and

their vehicle capacities are relatively low (200). Type-2 instances have

longer scheduling horizons with larger vehicle capacities (700 or 1000).

Table 6.1: Features of the benchmark VRPTW instances, including vehicle capacity (VC), scheduling
horizon (SH), customer distribution type (DT), service time (ST), time window density (TWD) and
width (TWW).

Name VC SH DT ST TWD TWW
C102 200 Short C 90 75% 61.27
C202 700 Long C 90 75% 160.00
R102 200 Short R 10 75% 10.00
R202 1000 Long R 10 75% 115.23
RC102 200 Short RC 10 75% 30.00
RC202 1000 Long RC 10 75% 120.00

6.2.2 Collection of operator sequences with GCOP

methods

To explore insights on effective algorithm compositions, this study focuses

on the most basic operators as shown in Table 6.2 within the general Au-

toGCOP framework. These basic operators are different in terms of the

operation, leading to different performances for solving VRPTW (Meng

and Qu, 2021).

To collect algorithmic compositions with AutoGCOP, a GCOP method

163

6.2. DATA OF ALGORITHM DESIGN FOR DATA MINING

Table 6.2: Features of the basic operators for solving VRPTW, including relative neighbourhood size
(NS), involved routes of operation (IR) and operation type (OT).

Operator NS IR OT
oinxchg Small 1-route Exchange
obwxchg Small 2-route Exchange
oinins Small 1-route Insert
obwins Small 2-route Insert
orr Large n-route Ruin-recreate

should be used to compose the basic operators in Table 6.2. In Chapter

5, the Markov Chain-based GCOP method (MC-GCOP) is used for data

collection because of its superior overall performance in automated com-

position for solving VRPTW (Meng and Qu, 2021). MC-GCOP learns the

transition performance between pairs of basic components, however, the se-

quential relations between operators are naturally hidden in the produced

algorithmic compositions.

This study utilises a random GCOP method (i.e. RN-GCOP) for data

collection. Different from MC-GCOP, RN-GCOP randomly selects opera-

tors to apply and compose during optimisation. Based on batch runs on

two randomly selected VRPTW instances, Figure 6.1 presents the perfor-

mance comparison of the RN-GCOP and MC-GCOP in terms of the elite

set of algorithmic compositions. These two GCOP methods present similar

performances. It would be interesting to see whether there are effective se-

quential rules of basic operators that can be acquired by using RN-GCOP

in automated composition.

During the data collection, each run of RN-GCOP is executed for a suffi-

ciently long duration to guarantee convergence, specifically with tkmain
=

3, 000, 000 evaluations. Preliminary experiments indicated that the major-

ity of solution quality improvements are found within the initial 200,000 it-

erations. Therefore, the sequence extraction process is specifically directed

towards capturing the hidden knowledge during this critical early phase.

164

6.2. DATA OF ALGORITHM DESIGN FOR DATA MINING

Figure 6.1: Comparison between RN-GCOP and MC-GCOP according to the AVG results of the best
N runs out of 1000 runs, for solving C102 and C202.

12,000

12,200

12,400

12,600

12,800

13,000

13,200

100% 20% 10% 1%

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

N

RN-GCOP MC-GCOP

(a) C102

3,600

3,650

3,700

3,750

3,800

100% 20% 10% 1%

O
bj

ec
tiv

e
fu

nc
tio

n
va

lu
e

N

RN-GCOP MC-GCOP

(b) C202

The information in each search iteration is recorded, including the current

index of iteration, the index of the applied operators and the best-found

solution after using operators.

The best 1% algorithm compositions according to the best solution’s quality

found at the end of each run are first collected for each problem instance.

The operator sequences within these elite algorithm compositions which

lead to improvements to the best-found solution quality are then retained

in a collection of short operator sequences with the length of l.

The choice of the sequence length (l) for extracting sequential rules should

be guided by the specific objectives of the analysis. However, it can impact

the sequential rules that can be discovered from the data. Longer sequences

allow the exploration in a boarder context, thus can capture long-term or

more complex relationships within the data. However, longer rules might

become complex and difficult to interpret, leading to challenges in deriving

valuable insights from them. Additionally, some patterns might occur mul-

tiple times within a long sequence, but are far from the time step that the

solution quality gets improvement, thus might be irrelevant to the decision-

making process. In contrast, shorter sequences allow for the capture of

short-term relationships between consecutive operators. This allows the

detection of more immediate dependencies within the data, which is the

165

6.3. AUTOMATED ALGORITHM DESIGN WITH SEQUENTIAL
RULE MINING

main focus of this study. To determine an appropriate sequence length,

this study experiments with different relatively short sequence lengths to

compare the resulting patterns.

In the extracted data set, each operator sequence consists of a number of

operators. Each operator in the operator sequence is described by its index.

The operator sequence data sets of each instance are composed for extract-

ing the general sequential rules of operators across different instances. For

instances of the same type, the corresponding operator sequence data sets

are also composed for investigating the impacts of instance types on the

behaviour of operators.

6.3 Automated algorithm design with sequen-

tial rule mining

6.3.1 Sequential rules mining in algorithmic compo-

sitions

Sequential rules describe the likelihood between the occurrence of one set of

events, items, or itemsets followed by another set of events, items, or item-

sets in a sequence of events or transactions (Fournier-Viger et al., 2011). As

introduced in Section 2.4.3, a sequential rule X → Y describes a sequential

relationship between two itemsets X, Y . The interpretation of X → Y is

if items in X occur in a sequence, the items in Y are likely to occur after-

wards in the same sequence (Fournier-Viger et al., 2011). For example, the

rule {a, b, c} → {e} occurs in the sequence < {a, b}, {c}, {f}, {g}, {e} >,

whereas the rule {a, b, f} → {c} does not, because item c does not occur

after f .

166

6.3. AUTOMATED ALGORITHM DESIGN WITH SEQUENTIAL
RULE MINING

Given the processed operator sequences, this study aims to investigate the

sequential rules of common basic operators in elite operator sequences.

This operator sequence data can be seen as a sequence database, where

each operator sequence is an ordered list of operators. A sequential rule

thus describes the relationship between two sets of operators.

For example with a set of operators (denoted by {o1, o2, o3}), assume an op-

erator sequence in the sequence database is < {o2}, {o1}, {o3} >. A sequen-

tial rule {o1, o2} → {o3} is contained in the sequence, whereas {o3} → {o2}

does not, because operator o2 does not occur after o3. The sequential rule

{o1, o2} → {o3} can be interpreted as the occurrence of operators o1 and o2

is likely to be followed by o3. The likelihood of each rule can be measured

by sequential support and confidence values (denoted by #sup and #conf ,

respectively).

The TNS sequential rule mining algorithm (Fournier-Viger and Tseng,

2013) is applied to the operator sequence collection to search for the top-

k non-redundant frequent sequential rules. The implementation of the

TNS algorithm adapted a widely used open-source pattern mining plat-

form SPMF (Fournier-Viger et al., 2016). The extracted sequential rules

are further investigated to explore the behaviour of basic operators and

their effectiveness in algorithm design.

6.3.2 SeqRuleGCOP: automated composition with se-

quential rules

This study proposes a novel Sequential Rule-based GCOP method (de-

noted as SeqRuleGCOP) to support using the extracted sequential rules in

the automated composition of algorithmic components within AutoGCOP.

167

6.4. FINDINGS OF SEQUENTIAL RULES FOR ALGORITHM
DESIGN

SeqRuleGCOP takes an additional input with AutoGCOP, i.e., a set of

sequential rules of basic operators. Each sequential rule is an ordered list

of operator sets, associated with a support value and a confidence value.

Within AutoGCOP (Algorithm 1), various methods can utilise the pro-

cedure Select(Aoimprove
) (line 15, Algorithm 1) to compose oi ∈ Aoimprove

during the search process. The SeqRuleGCOP method first adds a rule

selection procedure in Select(Aoimprove
) to select one of the sequential rules

with the roulette wheel selection strategy according to the confidence value.

Then, the Select(Aoimprove
) procedure takes each operator in the sequential

rule as the output oi.

The proposed SeqRuleGCOP method supports the automated design of

new and unseen algorithms using the sequential rules of basic operators. It

utilises offline learned knowledge in automated algorithm design, allowing

the investigation of the effectiveness of the extracted knowledge in the form

of sequential rules.

6.4 Findings of sequential rules for algorithm

design

This section presents the analysis of the extracted sequential rules of basic

operators. Section 6.4.1 presents the impacts of operator sequence length

settings on the resulting rules. In Section 6.4.2, the systematic analysis

of the extracted sequential rules focuses on the general hidden patterns of

operator sequences and the impact of instance features, i.e., the customer

distribution types and scheduling horizons, on the behaviour of the opera-

tors. The analysis presents the hidden patterns of composing operators for

168

6.4. FINDINGS OF SEQUENTIAL RULES FOR ALGORITHM
DESIGN

coping with different types of instances.

6.4.1 Impact of sequence length for rule mining

Sequential rule mining is applied to the operator sequence datasets with the

length settings of {5, 10, 20, 30}, aiming to observe how the extracted rules

change. Table 6.3 shows that the most frequent sequential rules remain

consistent across data sets with different length settings, except for the

longest sequence data l = 30. This supports that if the sequence is too short

(|l| < 30), long rules might not occur frequently enough to be retrievable. In

addition, a relatively small length setting like l = 5 can ensure an adequate

level of detail captured.

Table 6.3: Top 10 sequential rules with the #sup and #conf values and the proportional values (indi-
cated by prop) on the dataset with different length settings l. Commonly occurred sequential rules in
the four sets are in bold.

l = 5 l = 10
Rules #sup (prop) #conf (prop) Rules #sup (prop) #conf (prop)
obwxchg → orr 1132 (0.11) 0.60 (0.12) oinins → orr 2696 (0.11) 0.81 (0.11)
oinins → orr 1134 (0.11) 0.59 (0.12) obwxchg → orr 2654 (0.10) 0.81 (0.11)
oinxchg → orr 1111 (0.11) 0.57 (0.12) oinxchg → orr 2669 (0.11) 0.81 (0.11)
obwxchg → obwins 1018 (0.10) 0.54 (0.11) obwins → orr 2733 (0.11) 0.78 (0.10)
oinxchg → obwins 1050 (0.10) 0.53 (0.11) oinxchg → obwins 2547 (0.10) 0.77 (0.10)
oinins → obwins 990 (0.10) 0.51 (0.10) obwxchg → obwins 2509 (0.10) 0.77 (0.10)
obwins → orr 1198 (0.12) 0.51 (0.10) oinins → obwins 2530 (0.10) 0.76 (0.10)
orr → obwins 1005 (0.10) 0.41 (0.09) orr → obwins 2530 (0.10) 0.72 (0.10)
obwins → oinxchg 735 (0.07) 0.31 (0.06) obwins → oinxchg 2271 (0.09) 0.65 (0.09)
obwins → oinins 715 (0.07) 0.30 (0.06) obwins → oinins 2260 (0.09) 0.65 (0.09)

l = 20 l = 30
Rules #sup (prop) #conf (prop) Rules #sup (prop) #conf (prop)
obwxchg → orr 3380 (0.10) 0.96 (0.10) oinins → orr 3375 (0.10) 1.00 (0.10)
oinxchg → orr 3386 (0.10) 0.96 (0.10) obwins → orr 3374 (0.10) 1.00 (0.10)
oinins → orr 3400 (0.10) 0.96 (0.10) obwins → oinins 3370 (0.10) 0.99 (0.10)
oinxchg → obwins 3368 (0.10) 0.96 (0.10) obwxchg → obwins 3366 (0.10) 0.99 (0.10)
obwins → orr 3394 (0.10) 0.96 (0.10) oinins → obwins 3368 (0.10) 0.99 (0.10)
obwxchg → obwins 3355 (0.10) 0.96 (0.10) orr → obwins 3366 (0.10) 0.99 (0.10)
oinins → obwins 3370 (0.10) 0.95 (0.10) oinxchg → obwins 3361 (0.10) 0.99 (0.10)
orr → obwins 3346 (0.10) 0.94 (0.10) oinxchg → orr 3361 (0.10) 0.99 (0.10)
obwins → oinins 3336 (0.10) 0.94 (0.10) oinins,o

bw
ins → orr 3362 (0.10) 0.99 (0.10)

obwins → oinxchg 3297 (0.10) 0.93 (0.10) obwxchg → orr 3361 (0.10) 0.99 (0.10)

Although the rules are the same across most data sets, they show different

#sup and #conf values. Specifically, the rules extracted from data sets

169

6.4. FINDINGS OF SEQUENTIAL RULES FOR ALGORITHM
DESIGN

with longer lengths tend to have higher support and confidence. However,

the proportional values of the #sup and #conf values indicate that the

concurrency of these rules within the same dataset tends to be similar

as the sequence length increases. This might be because some rules occur

multiple times within a long sequence. To focus on immediate dependencies

between operators, the study uses l = 5 for the following investigations.

6.4.2 Analysis of the sequential rules for different

types of instances

General sequential rules of basic operators

Table 6.4 presents the top 10 sequential rules of operators in the operator

sequence database of all selected instances. The highlighted sequential rules

are the top 8 rules that frequently occurred in each type of instance. These

commonly occurring frequent sequences can be defined as rules represent-

ing general knowledge extracted by data mining in effective algorithmic

compositions. However, their reusability and generality need to be investi-

gated.

Table 6.4: Top 10 sequential rules for the data sets of all selected instances. Commonly occurred
sequential rules in the three sets are in bold.

Rules #sup #conf
obwxchg → orr 1132 0.60
oinins → orr 1134 0.59
oinxchg → orr 1111 0.57
obwxchg → obwins 1018 0.54
oinxchg → obwins 1050 0.53
oinins → obwins 990 0.51
obwins → orr 1198 0.51
orr → obwins 1005 0.41
obwins → oinxchg 735 0.31
obwins → oinins 715 0.30

170

6.4. FINDINGS OF SEQUENTIAL RULES FOR ALGORITHM
DESIGN

An interesting finding from these extracted rules is that they are in the

form of Xo → Yo, while Xo takes oi ∈ {oinxchg, obwxchg, oinins} and Yo takes

oi ∈ {obwins, orr}. This indicates the different common behaviour of the

group of operators oinxchg, o
bw
xchg, o

in
ins compared with that of obwins and orr.

The investigated basic oi have different operations to the solutions of the

optimisation problem, thus having different impacts on the optimisation

objectives. For example, the operations of oinxchg and oinins are in-route op-

erations, thus making small changes to the value of TD but no impact on

NV. In comparison, the operator orr leads to a relatively bigger impact on

both NV and TD. According to the impact on the VRPTW optimisation

objectives, the basic oi ∈ Ao can be categorised into three sets, as shown

in Table 6.5.

Table 6.5: Categorisation of the basic oi ∈ Ao based on their impact on VRPTW optimisation objec-
tives, i.e., number of vehicles (NV) and total travel distance (TD).

Operator groups Operators Impact on NV Impact on TD
Type-1 A1

o {oinxchg, obwxchg, oinins} No Small
Type-2 A2

o {obwins} Small Small
Type-3 A3

o {orr} Large Large

With the new categorisation of basic oi in Table 6.5, a general sequential

rule of basic oi can be induced, i.e., Xo ⇒ Yo, where Xo takes oi ∈ A1
o

and Yo takes oi ∈ A2
o ∪ A3

o. It can be interpreted as the use of the Type-

1 operators should be followed by the Type-2 or Type-3 operators. To

be more specific, the search in a smaller-impact neighbourhood should be

followed by exploration in a larger-impact neighbourhood.

171

6.4. FINDINGS OF SEQUENTIAL RULES FOR ALGORITHM
DESIGN

Impact of instance features to sequential rules

Problem instance type plays an important role in analysing the knowledge

hidden in the algorithmic compositions as stated in Chapter 5. As described

in Section 2, the data of the search process of RN-GCOP was collected on

the Solomon benchmark covering different customer distribution types (i.e.,

R, C and RC type) and scheduling horizons (i.e., Type-1 and Type-2).

For the instances of the same customer distribution type and the same

scheduling horizon, the corresponding operator sequence collections are

composed for sequential rule mining. Table 6.6 and Table 6.7 present the

top 10 sequential rules of operator sequences with the different customer

distribution types and different scheduling horizon types, respectively. It

can be observed that the top 8 rules occurred commonly for the selected

instances of different types, however, with different #sup and #conf. The

impact of instance features can be observed from the two uncommon se-

quential rules.

As shown in Table 6.6, the uncommon two rules of Type-C instances consist

of Type-1 operators (i.e., oinxchg, obwxchg, and oinins), indicating the frequent

use of the Type-1 operators. For Type-R and Type-RC instances, the

two rules suggest more usage of Type-2 operators (i.e., obwins). Considering

the customer distribution impacts, solving Type-R and Type-RC instances

requires exploration in a farther neighbourhood to achieve an improvement

in solution quality, compared to solving Type-C instances.

In Table 6.7, the remaining two uncommon sequential rules (not in bold)

are also related to the impact of instance scheduling horizon types. It

can be observed that the Type-1 instances (shorter scheduling horizon)

call more rules consisting of Type-1 operators (i.e., oinxchg, o
bw
xchg, and oinins).

172

6.4. FINDINGS OF SEQUENTIAL RULES FOR ALGORITHM
DESIGN

Table 6.6: Top 10 sequential rules for the data sets of different customer distribution types (i.e., Type-C,
Type-R and Type-RC). Commonly occurred sequential rules in the three sets are in bold.

Type-C instances Type-R instances Type-RC instances
Rules #sup #con Rules #sup #con Rules #sup #con
oinins → orr 411 0.66 obwxchg → obwins 333 0.58 obwxchg → orr 416 0.59
obwxchg → orr 395 0.64 obwxchg → orr 321 0.56 oinins → orr 409 0.56
oinxchg → orr 390 0.63 oinxchg → obwins 335 0.55 oinxchg → orr 395 0.54
obwins → orr 413 0.56 oinins → orr 314 0.54 oinxchg → obwins 385 0.53
oinxchg → obwins 330 0.53 oinxchg → orr 326 0.53 obwxchg → obwins 364 0.52
obwxchg → obwins 321 0.52 oinins → obwins 307 0.52 obwins → orr 426 0.50
oinins → obwins 323 0.52 obwins → orr 359 0.48 oinins → obwins 360 0.50
orr → obwins 314 0.39 orr → obwins 311 0.44 orr → obwins 380 0.42
obwxchg → oinxchg 209 0.34 obwins → oinins 241 0.32 obwins → oinxchg 292 0.34
oinxchg → oinsins 209 0.34 obwins → oinxchg 239 0.32 obwins → oinins 265 0.31

For instances of a shorter scheduling horizon, each route consists of fewer

customers than those of a longer scheduling horizon. Thus, for the former

cases, smaller operators can lead to a big solution quality improvement.

For solving Type-2 instances (longer scheduling horizon), larger operations

are needed to improve the solution, thus requiring more Type-2 operators

(i.e., obwins).

Table 6.7: Top 10 sequential rules for the data sets of different scheduling horizon types (i.e., Type-1
and Type-2). Commonly occurred sequential rules in the two sets are in bold.

Type-1 instances Type-2 instances
Rules #sup #con Rules #sup #con
oinxchg → obwins 471 0.63 obwxchg → orr 767 0.67
obwxchg → obwins 466 0.62 oinins → orr 770 0.66
oinins → obwins 473 0.618 oinxchg → orr 756 0.62
orr → obwins 444 0.52 obwins → orr 798 0.59
obwxchg → orr 365 0.49 obwxchg → obwins 552 0.48
oinxchg → orr 355 0.47 oinxchg → obwins 579 0.48
oinins → orr 364 0.47 oinins → obwins 517 0.45
obwins → orr 400 0.40 obwxchg → oinxchg 433 0.38
obwxchg → oinins 272 0.36 orr → obwins 561 0.36
oinxchg → oinins 266 0.35= obwins → oinxchg 443 0.33

173

6.4. FINDINGS OF SEQUENTIAL RULES FOR ALGORITHM
DESIGN

Discussions

To be noted, the #sup and #conf values vary for the sequential rules of

different types of instances. Thus, it is hard to draw a conclusion about

how the customer distribution type and scheduling horizon features impact

the utilisation of a sequence of operators. This indicates that the different

behaviour of operators for different instances can be too sophisticated to be

fully captured by analysing the difference in sequential rules. This supports

the use of more advanced learning techniques to capture the knowledge

hidden in the high-dimensional algorithm compositions, such as the studies

of the advanced machine learning models in Chapter 5.

Interesting findings are gained from the analysis of the commonly occurring

sequential rules. These frequent sequential rules of the operator might

perform generally well for solving different types of instances, however, to

be investigated within AutoGCOP.

It is important to note that the commonly occurring sequential rules re-

veal a new feature of operators, i.e., the impact of optimisation objectives.

When discussing the features of operators, the literature usually focuses on

the neighbourhood size (cardinality) (Hansen et al., 2010) and operation

types, e.g., either they are intensifiers or diversifiers (Meignan et al., 2010),

or the type of mutation, local search or evolutionary operators (Walker

et al., 2012). The common sequential rules identify and highlight the im-

pact of operators on the optimisation objectives as an important feature

of operators in algorithm design and provide new insights into algorithm

design.

Firstly, the identified new attribute of basic operators defines a new way

of ranking the basic operators, which can be incorporated into different

174

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

algorithm frameworks for new algorithm designs. The idea of ranking

the operators has been adopted in some local search algorithms, such as

Variable Neighbourhood Descent (VND) (Hansen et al., 2010). However,

in VND, the neighbourhoods usually are usually manually specified, i.e.,

ranked from the smallest to the largest according to the neighbourhood

cardinality (Hansen et al., 2010). In this study, the ranking of operators

based on their impacts is induced from the knowledge acquired by machine

learning, which derives new designs of neighbourhood ordering in VND and

other local search algorithms.

In addition, the new attribute of operators provides a new categorisation of

operators. The new categorisation of basic operators can be incorporated

into the automated composition of algorithmic compositions. In automated

composition, composing groups of operators greatly reduce the search space

of algorithm design compared to composing individual operators. In the

literature, the operators and heuristics are usually categorised based on

the operation types (Meignan et al., 2010), (Walker et al., 2012). The pro-

posed new categorisation method highlights the importance of considering

the impact of algorithmic components on the optimisation objectives in au-

tomated composition. How the optimisation performance can be benefits

from the new categorisation method is to be investigated.

6.5 Performance of sequential rules for au-

tomated algorithm composition

Based on the analysis of the general sequential rules in Section 6.4, the ex-

perimental studies in this section aim to address the following two research

issues, i.e., (1) the effectiveness of the frequent sequential rules of the basic

175

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

operators in automated composition, and (2) the effectiveness of categoris-

ing basic operators based on their impact in automated composition.

To address the first research issue, Section 6.5.1 investigates the perfor-

mance of the proposed SeqRuleGCOP method for solving VRPTW. In

comparison, a simple baseline RN-GCOP method and an online learning-

based MC-GCOP method are tested, along with a Variable Neighbourhood

Descent (VND) algorithm. RN-GCOP and VND do not learn from the op-

erator sequences. The comparison aims to show the effectiveness of the

sequential rules acquired from offline learning in the automated composi-

tion of basic operators for problem-solving.

To address the second research issue, Section 6.5.2 compares the perfor-

mance of composing groups of operators against composing individual op-

erators with different GCOP methods and VND. The experiments aim to

demonstrate whether the proposed categorisation of basic operators is use-

ful for improving optimisation effectiveness not only in the AutoGCOP

framework but also in the metaheuristics framework.

The experiment studies use VRPTW instances with different instance char-

acteristics. The Solomon 100 customer data in Table 6.1 is used to vali-

date the effectiveness of the extracted rules, while another collection of the

Solomon 100 customer data in Table 6.8 is used to test their generality for

solving new instances.

This study focuses on the investigations on the basic oi ∈ Aoimprove
in Table

6.2 which shown to be crucial in automated algorithm design, the other

algorithmic components within AutoGCOP are thus fixed.

The investigated methods are compared based on four performance indica-

tors, i.e., the average fitness value (AVG), the standard deviation of fitness

176

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

value (SD), the best fitness value within 10 runs (BEST), and the gap be-

tween BEST and the best-known solution in the literature (GAP). In each

run, the algorithm terminates after the same number of evaluations, i.e.,

titeration(n) is adopted as tkmain
in Algorithm 1, for all methods.

6.5.1 Effectiveness of sequential rules in automated

composition

Comparisons between different GCOP methods

The benchmark RN-GCOP method uses a random selection strategy in

the procedure Select(Aoimprove
) in Improvement within AutoGCOP. It al-

lows a flexible composition of oi ∈ Aoimprove
for problem-solving without

utilising any knowledge or mechanism. The MC-GCOP method utilises

a Markov Chain model with a reinforcement learning scheme for the se-

lection of oi ∈ Aoimprove
, following the implementation in Chapter 4. In

comparison, both the benchmark GCOP methods and SeqRuleGCOP ap-

ply the selected oi for one search iteration and accept all resulting moves,

i.e., aall as aj and titeration(1) as tkinner
in the Improvement procedure within

AutoGCOP (lines 10-22 in Algorithm 1).

Table 6.8 shows the overall better performance of MC-GCOP against Se-

qRuleGCOP and RN-GCOP on the selected validation instances except

in one instance, where SeqRuleGCOP obtains the best BEST results. Se-

qRuleGCOP performs better against RN-GCOP on the selected VRPTW

instances except in two instances, where RN-GCOP achieves better AVG

and BEST values.

To analyse whether the differences observed between SeqRuleGCOP and

177

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

the other two GCOP methods are statistically significant, the Lilliefors

test is used, showing that they do not always follow a normal distribution.

The Mann–Whitney–Wilcoxon test is therefore performed with a 95% con-

fidence level to conduct the pairwise comparisons between SeqRuleGCOP

and RN-GCOP and SeqRuleGCOP and MC-GCOP methods. Statistical

difference in terms of AVG is indicated by * in all the tables of results.

Table 6.8 shows SeqRuleGCOP is statistically better than RN-GCOP in

three instances. This supports the extracted frequent sequential rules

containing useful patterns for automatically designing a search algorithm

within AutoGCOP, particularly for solving Type-R and Type-C instances

with statistical significance. The comparison between the MC-GCOP and

SeqRuleGCOP indicates online learning is more effective than the offline

learned sequential rules at automatically composing the basic operators,

mainly for solving Type-C instances with statistical significance.

Similar observations can be reached regarding the comparison between Se-

qRuleGCOP against RN-GCOP and MC-GCOP on the testing instances

in Table 6.9, i.e., SeqRuleGCOP achieves overall better performance com-

pared to RN-GCOP, however, slightly worse than MC-GCOP. This veri-

fies that the extracted frequent sequential rules contain general and useful

knowledge which can be used to automatically design search algorithms

within AutoGCOP with satisfying optimisation performance.

178

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

T
a
b
le

6
.8
:
C
o
m
p
a
ri
so
n
b
et
w
ee
n
th

e
S
eq

R
u
le
G
C
O
P

m
et
h
o
d
w
it
h
th

e
ex

tr
a
ct
ed

to
p
1
0
fr
eq

u
en

t
se
q
u
en

ti
a
l
ru

le
s
a
g
a
in
st

R
N
-G

C
O
P

a
n
d
M
C
-G

C
O
P

fo
r
eff

ec
ti
v
en

es
s
v
a
li
d
a
ti
o
n
.
T
h
e
b
es
t

a
n
d
se
co

n
d
-b
es
t
re
su

lt
s
a
re

in
b
o
ld

a
n
d
it
a
li
cs
,
re
sp

ec
ti
v
el
y.

In
st

an
ce

s
B

es
t-

k
n

ow
n

so
lu

ti
on

s
R

N
-G

C
O

P
S

eq
R

u
le

G
C

O
P

M
C

-G
C

O
P

in
th

e
li

te
ra

tu
re

A
V

G
S

D
B

E
S

T
G

A
P

A
V

G
S

D
B

E
S

T
G

A
P

A
V

G
S

D
B

E
S

T
G

A
P

C
10

2
10

82
8.

94
(R

o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

13
12

6.
54

26
9.

49
12

87
5.

06
0.

18
9

12
89
9.
69
*

16
5.
65

1
2
5
4
0
.8
8

0
.1
5
8

1
2
8
0
7
.3
2
*

6
8
.7
1

12
70
9.
09

0.
17
4

C
20

2
35

91
.5

6(
R

o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

37
87

.1
2

49
.3

0
37

27
.0

7
0.

03
8

37
45
.9
3*

27
.4
8

37
07
.1
0

0.
03
2

3
7
1
1
.0
8
*

1
7
.6
9

3
6
9
1
.5
5

0
.0
2
8

R
10

2
18

48
6.

12
(R

o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

21
03

3.
67

3
9
.8
0

20
97

6.
51

0.
13

5
20
65
8.
85
*

46
4.
99

20
04
0.
94

0.
08
4

2
0
3
8
1
.0
3

54
9.

04
1
9
8
6
9
.9
3

0
.0
7
5

R
20

2
41

91
.7

(R
ou

ss
ea

u
et

al
.,

20
02

)
55
42
.4
8

28
.2

2
5
5
0
2
.8
8

0
.3
1
3

55
44

.6
4

1
9
.4
8

55
09

.8
0

0.
31

4
5
5
3
1
.0
0

19
.6
9

55
04
.4
4

0.
31
3

R
C

10
2

13
55

4.
75

(T
ai

ll
ar

d
et

al
.,

19
97

)
17

81
0.

05
4
0
1
.2
5

16
92
5.
97

0.
24
9

17
68
8.
55

44
9.
91

17
07

0.
83

0.
25

9
1
7
4
8
7
.7
0

55
0.

34
1
6
8
6
9
.1
0

0
.2
4
5

R
C

20
2

43
65

.6
5(

C
ze

ch
an

d
C

za
rn

as
,

20
02

)
57

54
.5

3
2
2
.4
4

57
23

.5
8

0.
31

1
57
30
.5
0

37
.4

7
56
84
.9
1

0.
30
2

5
7
2
7
.9
4

33
.8
5

5
6
5
4
.0
4

0
.2
9
5

T
a
b
le

6
.9
:
C
o
m
p
a
ri
so
n
b
et
w
ee
n
th

e
S
eq

R
u
le
G
C
O
P

m
et
h
o
d
w
it
h
th

e
ex

tr
a
ct
ed

to
p
1
0
fr
eq

u
en

t
se
q
u
en

ti
a
l
ru

le
s
a
g
a
in
st

R
N
-G

C
O
P

a
n
d
M
C
-G

C
O
P

fo
r
g
en

er
a
li
ty

ev
a
lu
a
ti
o
n
.
T
h
e
b
es
t

a
n
d
se
co

n
d
-b
es
t
re
su

lt
s
a
re

in
b
o
ld

a
n
d
it
a
li
cs
,
re
sp

ec
ti
v
el
y.

In
st

an
ce

s
B

es
t-

k
n

ow
n

so
lu

ti
on

s
R

N
-G

C
O

P
S

eq
R

u
le

G
C

O
P

M
C

-G
C

O
P

in
th

e
li

te
ra

tu
re

A
V

G
S

D
B

E
S

T
G

A
P

A
V

G
S

D
B

E
S

T
G

A
P

A
V

G
S

D
B

E
S

T
G

A
P

C
10

3
10

,8
28

.0
6(

R
o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

12
,3

64
.3

1
41

6.
60

11
,7
38
.5
1

0.
08
4

12
,0
42
.1
2*

22
9.
02

11
,7

45
.8

5
0.

08
5

1
1
8
9
7
.1
1
*

1
2
6
.4
7

1
1
6
0
8
.7
8

0
.0
7
2

C
20

3
3,

59
1.

17
(R

o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

4,
50

2.
51

51
4.

51
3,

88
1.

98
0.

08
1

4,
29
6.
84

51
2.

80
3,
84
9.
52

0.
07
2

3
8
7
8
.7
4
*

4
1
.9
4

3
8
1
9
.5
3

0
.0
6
4

R
10

7
11

,1
04

.6
6(

S
h

aw
,

19
97

)
14

,5
64

.6
9

27
.2
7

14
,5

20
.7

4
0.

30
8

14
,5
44
.9
2

2
3
.5
3

14
,5
18
.6
2

0.
30
7

1
4
4
1
6
.7
6
*

31
0.

58
1
3
5
3
8
.1
3

0
.2
1
9

R
20

8
2,

72
6.

82
(M

es
te

r
et

al
.,

20
07

)
4,

08
7.

51
16
.3
6

4,
05

5.
09

0.
48

7
4,
07
4.
72

21
.8

7
4
,0
1
7
.3
7

0
.4
7
3

4
0
6
9
.4
0

1
7
.7
6

40
44
.9
4

0.
48

3
R

C
10

3
12

,2
61

.6
7(

S
h

aw
,

19
98

)
14
,8
81
.0
8

29
7.
94

14
,6
91
.4
0

0.
19

8
15

,2
16

.3
8

51
9.
09

1
4
,6
6
5
.1
9

0
.1
9
6

1
4
7
6
8
.2
4

35
.2

2
14

69
9.

95
0.

19
9

R
C

20
3

4,
04

9.
62

(C
ze

ch
an

d
C

za
rn

as
,

20
02

)
4,

78
4.

47
35

5.
59

4,
53
9.
13

0.
12
1

4
,5
9
5
.8
1

4
5
.0
8

4
,5
2
3
.0
8

0
.1
1
7

46
20
.3
3

49
.0

0
45

63
.5

8
0.

12
7

179

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

Comparison with VND

To further analyse the effectiveness of the extracted sequential rules for

problem-solving, the proposed SeqRuleGCOP is further compared against

the widely studied VND method. VND is the simplest and effective variant

in the family of Variable Neighborhood Search (VNS) (Hansen et al., 2019).

It is based on the systematic change in a set of neighbourhood structures

during the search process. In VND, the change of neighbourhoods is per-

formed in a deterministic way (usually manually specified from smaller to

larger ones), aiming to escape from local optimum (Hansen et al., 2010).

Different from VND, the SeqRuleGCOP method can be seen as moving

among different neighbourhoods based on sequential rules which are offline

learned knowledge from effective algorithmic compositions.

Within AutoGCOP, various well-known local search meta-heuristics, such

as VNS, can be modelled in a unified template by composing specific

algorithmic components in the Improvement procedure (Meng and Qu,

2021). With the basic oi ∈ Aoimprove
ordered according to their impact as

[oinxchg, o
bw
xchg, o

in
ins, o

bw
ins, orr], the basic VND can be instantiated in the uni-

fied AutoGCOP framework by specifying tk, oi and aj in the Improvement

procedure within AutoGCOP (in Algorithm 1) as follows:

• tkinner
← tconverge(h) in line 13,

• oi ←Specific oi from Aoimprove
based on a certain order in line 15,

• aj ← aoi in line 17;

where← denotes the assignment of a in A in Algorithm 1, tconverge(h) indi-

cates termination upon the convergence h, and aoi denotes the acceptance

180

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

criteria of improvement only.

In VND, the local search procedure is conducted to achieve exploration and

exploitation in the neighbourhood. The SeqRuleGCOP method adopts a

similar mechanism by setting anaive (to accept all improvements; worse

solutions are accepted with a probability of 0.5) for aj in the Improvement

procedure, i.e., to conduct exploration or exploitation randomly. Thus,

the comparison focuses on the analysis of oi ∈ Aoimprove
. In VND, the

oi ∈ Aoimprove
are ordered as [oinxchg, o

bw
xchg, o

in
ins, o

bw
ins, orr], following the impact

of operators on optimisation objectives.

Table 6.10 presents the overall better performance of SeqRuleGCOP against

VND on the validation instances, except for two instances where VND ob-

tains better BEST values. This further validates the effectiveness of the

extracted sequential rules.

Regarding the generality of the extracted sequential rules on new VRPTW

instances, Table 6.11 shows SeqRuleGCOP performs better than VND in

terms of AVG and SD on the testing instances. Particularly for Type-2

instances, SeqRuleGCOP is statistically better than the VND. In terms

of the BEST values, SeqRuleGCOP achieves better results than VND in

two instances and obtains quite similar BEST to the current best-known

results in the literature (i.e., the GAP values are less than 5% in most

instances), which further verifies the effectiveness and generality of the

extracted sequential rules.

181

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

T
a
b
le

6
.1
0
:
C
o
m
p
a
ri
so
n
b
et
w
ee
n
S
eq

R
u
le
G
C
O
P

a
g
a
in
st

V
N
D

fo
r
eff

ec
ti
v
en

es
s
v
a
li
d
a
ti
o
n
.

In
st

an
ce

s
B

es
t-

k
n

ow
n

so
lu

ti
on

s
V

N
D

S
eq

R
u

le
G

C
O

P
in

th
e

li
te

ra
tu

re
A

V
G

S
D

B
E

S
T

G
A

P
A

V
G

S
D

B
E

S
T

G
A

P
C

10
2

10
82

8.
94

(R
o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

12
,6

13
.4

8
47

5.
57

1
2
,1
5
7
.4
2

0
.1
2
3

1
2
,5
5
0
.2
2

6
2
.3
7

12
,4

47
.5

3
0.

14
9

C
20

2
35

91
.5

6(
R

o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

5,
26

9.
61

70
7.

78
4,

65
9.

64
0.

29
7

3
,6
6
9
.1
3
*

9
.1
2

3
,6
5
2
.5
4

0
.0
1
7

R
10

2
18

48
6.

12
(R

o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

20
,7

28
.6

6
1,

01
1.

19
19

,6
63

.6
7

0.
06

4
1
9
,8
3
6
.4
2

2
8
0
.0
7

1
8
,9
9
8
.7
8

0
.0
2
8

R
20

2
41

91
.7

(R
ou

ss
ea

u
et

al
.,

20
02

)
8,

25
7.

50
1,

10
8.

62
6,

33
8.

63
0.

51
2

5
,4
5
9
.8
3
*

1
6
.3
9

5
,4
2
9
.7
8

0
.2
9
5

R
C

10
2

13
55

4.
75

(T
ai

ll
ar

d
et

al
.,

19
97

)
17

,2
77

.4
8

69
2.

83
1
6
,6
3
0
.2
8

0
.2
2
7

1
6
,8
9
2
.9
9

6
0
.1
9

16
,7

96
.0

1
0.

23
9

R
C

20
2

43
65

.6
5(

C
ze

ch
an

d
C

za
rn

as
,

20
02

)
8,

94
4.

58
93

5.
99

7,
54

0.
14

0.
72

7
5
,6
4
5
.0
9
*

3
1
.9
4

5
,5
8
3
.9
9

0
.2
7
9

T
a
b
le

6
.1
1
:
C
o
m
p
a
ri
so
n
b
et
w
ee
n
S
eq

R
u
le
G
C
O
P

a
g
a
in
st

V
N
D

fo
r
g
en

er
a
li
ty

ev
a
lu
a
ti
o
n
.

In
st

an
ce

s
B

es
t-

k
n

ow
n

so
lu

ti
on

s
V

N
D

S
eq

R
u

le
G

C
O

P
in

th
e

li
te

ra
tu

re
A

V
G

S
D

B
E

S
T

G
A

P
A

V
G

S
D

B
E

S
T

G
A

P
C

10
3

10
,8

28
.0

6(
R

o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

12
,2

15
.8

5
74

4.
04

1
1
,0
6
9
.8
6

0
.0
2
2

1
1
,6
0
2
.8
3
*

8
2
.5
8

11
,4

84
.9

2
0.

06
1

C
20

3
3,

59
1.

17
(R

o
ch

at
an

d
T

ai
ll

ar
d

,
19

95
)

5,
41

4.
02

70
9.

79
4,

70
1.

21
0.

30
9

3
,7
3
8
.5
0
*

3
1
.1
0

3
,7
0
8
.6
8

0
.0
3
3

R
10

7
11

,1
04

.6
6(

S
h

aw
,

19
97

)
14

,7
84

.2
5

73
6.

35
1
3
,2
2
3
.3
3

0
.1
9
1

1
4
,3
5
8
.9
6

2
8
9
.6
8

13
,4

88
.7

9
0.

21
5

R
20

8
2,

72
6.

82
(M

es
te

r
et

al
.,

20
07

)
5,

83
4.

27
99

9.
93

3
,8
7
7
.1
3

0
.4
2
2

4
,0
2
2
.6
9
*

1
7
.2
3

3,
99

7.
70

0.
46

6
R

C
10

3
12

,2
61

.6
7(

S
h

aw
,

19
98

)
15

,4
67

.4
1

55
0.

61
1
4
,5
3
0
.6
5

0
.1
8
5

1
4
,6
3
4
.1
4

1
9
.4
2

14
,6

03
.3

9
0.

19
1

R
C

20
3

4,
04

9.
62

(C
ze

ch
an

d
C

za
rn

as
,

20
02

)
7,

38
4.

64
1,

36
9.

62
5,

48
7.

94
0.

35
5

4
,4
9
7
.6
8
*

2
0
.7
2

4
,4
6
5
.2
6

0
.1
0
3

182

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

The better performance of SeqRuleGCOP compared to the instantiated

VND indicates that the automatically designed algorithms are better than

the manually designed meta-heuristics within the unified AutoGCOP frame-

work. This analysis further supports the effectiveness of the knowledge

learned offline by sequential rule mining.

Discussions

In summary, the experiment results confirm the effectiveness of sequen-

tial rules of basic operators for automatically designing algorithms to solve

VRPTW. It is to be noted that compared with an effective online learning

GCOP method, the effectiveness of sequential rules is not significantly bet-

ter but satisfying. These dues to the fact that the operator composition in

MC-GCOP can be seen as utilising a variety of sequential rules, which are

more flexible than the extracted top 10 sequential rules. Therefore, effec-

tive online learning methods can lead to better optimisation performance

compared with the use of sequential rules within AutoGCOP.

In addition, the comparison between SeqRuleGCOP and VND confirms the

automatically acquired knowledge in the form of sequential rules can lead to

a better optimisation performance than manual-specified operator compo-

sition in VND. This comparison tries to solve a fundamental research issue

in automated algorithm design, i.e., whether the automated algorithm de-

signs are better than manual algorithm designs. The experiment result can

be good evidence to support the research in automated algorithm design.

183

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

6.5.2 Effectiveness of composing groups of operators

This section investigates the effectiveness of operator grouping based on the

proposed new categorisation in automated composition. The experiments

aim to compare the optimisation performance of composing groups of op-

erators against composing individual operators without the group setting.

The performance difference is demonstrated in the AutoGCOP framework

and the VND search framework.

Investigation in GCOP methods

Within AutoGCOP, RN-GCOP and MC-GCOP are tested to demonstrate

the performance difference in automated composition between automated

composition with the operator grouping setting and composing basic oi

without the grouping setting. Both GCOP methods add an operator group

selection to the Select(Aoimprove
) procedure within AutoGCOP (line 15 in

Algorithm 1), i.e., select an operator group A′
o ∈ A1

o, A
2
o, A

3
o before select-

ing an operator oi ∈ A′
o. Therefore, with the operator grouping setting,

RN-GCOP and MC-GCOP implement the Select(Aoimprove
) procedure in

different ways as follows:

• RN-GCOP group: it selects A′
o ∈ A1

o, A
2
o, A

3
o randomly, then chooses

a oi ∈ A′
o to compose randomly.

• MC-GCOP group: the learning model M of MC-GCOP in Chapter

4 learns the transitions between A′
o ∈ A1

o, A
2
o, A

3
o instead of oi. With

the selected A′
o ∈ A1

o, A
2
o, A

3
o by M , oi ∈ A′

o is then selected randomly.

Table 6.12 and Table 6.13 present the comparison between automated

composition with operator grouping setting against the same composition

184

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

Table 6.12: Performance comparison between RN-GCOP and RN-GCOP group. The best results are
in bold. The AVG results are highlighted with ∗ if one method is significantly better than the other
method based on Mann–Whitney–Wilcoxon test.

Instances
RN-GCOP RN-GCOP group
AVG BEST STDEV AVG BEST STDEV

C102 13,126.54 12,875.06 269.49 12848.23* 12574.38 152.44
C202 3,787.12 3,727.07 49.30 3737.78* 3706.70 25.97
R102 21,033.67 20,976.51 39.80 20811.86* 20000.25 420.49
R202 5,542.48 5,502.88 28.22 5545.77 5514.24 17.63
RC102 17,810.05 16,925.97 401.25 17908.18 17018.36 312.96
RC202 5,754.53 5,723.58 22.44 5728.76* 5695.29 29.22
C103 12,364.31 11,738.51 416.60 11592.21* 11471.27 78.57
C203 4,502.51 3,881.98 514.51 3727.00* 3687.34 19.49
R107 14,564.69 14,520.74 27.27 14056.63* 13436.47 494.86
R208 4,087.51 4,055.09 16.36 4022.62* 4000.13 15.57
RC103 14,881.08 14,691.40 297.94 14664.40* 14639.33 14.34
RC203 4,784.47 4,539.13 355.59 4499.23* 4451.43 51.23

Table 6.13: Performance comparison between MC-GCOP and MC-GCOP group. The best results are
in bold. The AVG results are highlighted with ∗ if one method is significantly better than the other
method based on Mann–Whitney–Wilcoxon test.

Instances
MC-GCOP MC-GCOP group
AVG BEST STDEV AVG BEST STDEV

C102 12807.32 12709.09 68.71 12744.35* 12491.54 162.04
C202 3711.08 3691.55 17.69 3695.03* 3685.84 7.42
R102 20381.03 19869.93 549.04 20033.91 18893.74 577.82
R202 5531.00 5504.44 19.69 5439.61 4669.65 270.74
RC102 17487.70 16869.10 550.34 17227.43 16965.31 397.58
RC202 5727.94 5654.04 33.85 5719.49 5672.40 36.89
C103 11897.11 11608.78 126.47 11509.54* 11261.04 109.84
C203 3878.74 3819.53 41.94 3725.59* 3701.03 14.36
R107 14416.76 13538.13 310.58 13652.44* 13359.77 415.61
R208 4069.40 4044.94 17.76 4011.46* 3994.07 13.10
RC103 14768.24 14699.95 35.22 14317.22* 13532.17 487.57
RC203 4620.33 4563.58 49.00 4486.06* 4430.24 39.03

method without the grouping setting in RN-GCOP and MC-GCOP, re-

spectively. For both GCOP methods, the automated composition of groups

of operators improves the optimisation performance on most selected in-

stances. Particularly, for the selected Type-C instances, the solution quality

improvement is significant for both RN-GCOP and MC-GCOP.

For both GCOP methods, the performance improvement by composing

groups of operators can be supported by the reduction of the algorithm

design search space. The study in (Meng and Qu, 2021) confirms the better

individual performance of obwins and orr among the basic operators. Since obwins

and orr are the only operators in A2
o and A3

o, randomly composing groups of

185

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

operators actually gives a higher probability for these two operators instead

of the same probabilities for each oi.

Investigation in VND

The effectiveness of grouping operators for algorithm design is tested within

the VND search framework. The implementation of VND follows the in-

stantiation within AutoGCOP. However, rather than ordering oi ∈ Aoimprove
,

a variant of VND (denoted as VND group) is operated on an ordered list of

operator groups [A1
o, A

2
o, A

3
o]. Within a specific operator group A′

o, an op-

erator oi is randomly selected and applied during the search. To be noted,

the ranking of the operator groups follows the attribute of operator impact

to the optimisation objectives, which can be seen as the implementation of

the induced general sequential rules of basic operators.

Table 6.14: Performance comparison between VND and VND group. The best results are in bold. The
AVG results are highlighted with ∗ if one method is significantly better than the other method based
on Mann–Whitney–Wilcoxon test.

Instances
VND VND group
AVG BEST STDEV AVG BEST STDEV

C102 12,613.48* 12,157.42 475.57 13403.46 12253.34 879.32
C202 5,269.61 4,659.64 707.78 5038.49 4792.27 398.54
R102 20,728.66 19,663.67 1,011.19 20132.81 19647.95 557.66
R202 8,257.50 6,338.63 1,108.62 8162.85 6451.09 1033.17
RC102 17,277.48 16,630.28 692.83 16930.72 16673.96 478.34
RC202 8,944.58 7,540.14 935.99 9352.78 7470.38 876.93
C103 12,215.85 11,069.86 744.04 11952.24 11183.68 622.95
C203 5,414.02 4,701.21 709.79 5151.62 4677.52 477.95
R107 14,784.25 13,223.33 736.35 14398.89 13253.74 906.67
R208 5,834.27 3,877.13 999.93 5630.14 3966.11 1243.26
RC103 15,467.41 14,530.65 550.61 15374.45 14479.81 659.94
RC203 7,384.64 5,487.94 1,369.62 7355.15 6290.41 973.56

Table 6.14 presents the comparison between the VND with the basic op-

erators and the VND group which operates on the three groups of opera-

tors. The results show composing the operators with the grouping setting

achieves an improvement in the AVG solution quality within VND, how-

ever, not statistically significant. Particularly, the VND with individual

186

6.5. PERFORMANCE OF SEQUENTIAL RULES FOR AUTOMATED
ALGORITHM COMPOSITION

operators can achieve better BEST results for solving some instances.

Although for the RN-GCOP and MC-GCOP methods, reducing the search

space of algorithm design from five basic operators to three groups of op-

erators is beneficial for improving the optimisation effectiveness, it is not

sufficient to improve the performance of VND. This is possibly due to

the idea of VND which systematically changes the exploration in different

neighbourhood structures and can conduct exploitation in specific neigh-

bourhoods with local search. This guarantees high flexibility during the

search process.

Discussions

The above experimental study confirms that composing operators based on

the groups in automated composition can improve the optimisation perfor-

mance more than composing individual operators. The performance im-

provement supports that the basic operators are categorised in a reasonable

way such that the search space in algorithm design is reduced effectively. In

the frameworks of local search algorithms, such as the VND, the influence

of using the operator grouping setting might not be as significant as in the

AutoGCOP framework.

An effective categorisation of operators is essential for reducing the search

space of algorithm design. There are different ways of categorising op-

erators in the literature. However, some relevant research issues are still

under-explored, such as how the categorisation of operators affects the op-

timisation performance in different problem domains, and how different

algorithm frameworks can benefit from reducing the search space of algo-

rithm design. This experimental study can be seen as the first attempt at

these research issues for the automated algorithm composition within the

187

6.6. CONCLUSIONS

AutoGCOP framework for solving VRPTW.

6.6 Conclusions

Machine learning has been applied to automate the design of search algo-

rithms. The rich and new knowledge generated during the search can be

collected as data and captured in the machine learning models. This hidden

knowledge is, however, implicit to interpret. This chapter investigated the

data of effective algorithm designs with machine learning techniques to gain

insightful and interpretive knowledge from the effective algorithmic com-

positions. The analysis of the knowledge leads to a better understanding

of the behaviour of algorithmic components, thus supporting automated

algorithm design.

With a newly defined problem model GCOP, the algorithm can be seen as

the composition of elementary algorithmic components. This study treats

the algorithmic compositions as sequential data to explore the knowledge

hidden in the effective algorithmic compositions. Within a unified Au-

toGCOP algorithm design framework, a considerable number of effective

algorithmic compositions are collected for solving benchmark VRPTW in-

stances and further processed for investigations.

The elite algorithmic compositions are investigated with sequential rule

mining to extract a set of sequential rules of basic operators. To support

algorithm design, this study utilises the frequent sequential rules in an

explicit way by applying the extracted sequential rules in the automated

composition of basic operators within AutoGCOP. In comparison with dif-

ferent methods, the sequential rules can effectively automate the design of

local search algorithms to solve VRPTW instances.

188

6.6. CONCLUSIONS

In addition, the analysis of the common sequential rules of operators reveals

an important feature of operators, i.e., their impact on optimisation objec-

tives. The basic operators can thus be categorised into different groups

according to their impact. This newly introduced categorisation to the

literature could be adapted as a useful indicator when determining suit-

able algorithmic components in algorithm design, which can be seen as an

implicit way of using the extracted knowledge. Experiment results verify

the effectiveness of automatically composing groups of operators for solving

VRPTW. This supports that grouping operators based on their impact can

effectively reduce the search space of algorithm design.

This chapter highlights the importance of knowledge interpretability in

promoting research in automated algorithm design, which complements

Chapter 5 which focuses on more advanced machine learning models for

learning knowledge. This study is good evidence showing the information

collected over the search run(s) can be useful and that some design prin-

ciples can be identified by offline learning. The exploration of sequential

rule mining in automated algorithm design opens a number of potential

research directions for future research.

Firstly, it calls for the exploration of different knowledge representations

and knowledge discovery techniques which may lead to interesting findings

to support algorithm design. The performance improvement of sequential

rules in the automated composition is limited compared to the MC-GCOP

method in Chapter 4. It could be due to the knowledge hidden in algo-

rithm designs can be too sophisticated to be represented by rules, thus

difficult to be captured by rule mining techniques in complex problem do-

mains. Apparently, the online reinforcement learning scheme in MC-GCOP

in Chapter 4 allows more flexibility in automated composition than offline

learning. The knowledge in the form of sequential rules can be seen as

189

6.6. CONCLUSIONS

a subset of knowledge acquired by an effective online learning model. In

this regard, this work can be extended by investigating the effective al-

gorithm compositions with other rule-mining techniques, such as patterns

(episodes) that appear in a long single algorithm composition, and patterns

that periodically appear in many algorithm compositions.

In addition, in principle, the applied sequential rule mining could be ex-

tended to handle other combinatorial problems. It will be important to

test the proposed SeqRuleGCOP method in real-world applications and

compare it against other learning-based methods to further verify the ef-

fectiveness, re-usability and generality of sequential rules in automated

algorithm design. Moreover, while this study focused on the behaviour

of basic operators, it would be interesting to learn the sequential rules of

operators and acceptance criteria and furthermore, under the evolutionary

search paradigms.

190

Chapter 7

Conclusions and future works

Contents

7.1 Conclusions . 192

7.1.1 A general framework for automated design of

local search algorithms 193

7.1.2 Online learning with Markov Chain and Rein-

forcement Learning 194

7.1.3 Offline learning with LSTM and Transformer . 195

7.1.4 Offline learning with sequential rule mining . . 196

7.1.5 Remarks . 197

7.2 Future research directions 199

7.2.1 Innovative approaches to implementing machine

learning . 200

7.2.2 Knowledge interpretability 201

7.2.3 Learning different types of algorithmic compo-

nents . 201

7.2.4 Other problem domains 202

191

7.1. CONCLUSIONS

7.1 Conclusions

This thesis has studied machine learning in the automated design of lo-

cal search-based algorithms based on a newly defined GCOP model. The

main research aim (RA) is to systematically investigate how to learn useful

knowledge from algorithm designs to automatically compose elementary

algorithmic components in the GCOP model, thus enhancing the under-

standing of algorithm design and introducing new effective algorithms to

the literature.

Through the review of studies in automated algorithm design, the thesis

introduced an extended taxonomy for different automation tasks involved

in the algorithm design process. This extended taxonomy enables a more

systematic classification and review of studies related to each specific au-

tomation task. During the review process, several research gaps (RGs) are

identified in the field of automated composition, highlighting areas that re-

quire further investigation to achieve the RA of the thesis. To address the

RGs and achieve the RA of the thesis, a series of research questions (RQs)

are proposed. Several research objectives (ROs) are identified to effectively

address the RQs. The widely studied VRPTW is used as the case study in

the thesis.

The research starts by proposing a general AutoGCOP framework to sup-

port the automated composition of elementary algorithmic components in

GCOP. Based on AutoGCOP, the thesis investigates the performance of el-

ementary algorithmic components and systematically investigates different

learning techniques in the automated composition of these components for

solving the VRPTW. The main findings and achievements are summarised

below.

192

7.1. CONCLUSIONS

7.1.1 A general framework for automated design of

local search algorithms

Chapter 3 proposes AutoGCOP, a new general framework for the auto-

mated design of local search algorithms based on the GCOP model. With

the encapsulated common processes in local search algorithms, AutoGCOP

defines a general framework to instantiate existing local search algorithms

designed by manually picked algorithmic components and support the au-

tomatic design of new novel algorithms which may be highly different from

those manually designed in the literature.

Within the consistent AutoGCOP framework, various elementary algo-

rithmic components are analysed in Chapter 3 for solving the benchmark

VRPTW. The study confirms the satisfying performance of the elemen-

tary algorithmic components for VRPTW. The problem-specific algorith-

mic components present significant effectiveness when included in the ba-

sic component set, however, such algorithmic components require domain

knowledge for the design which may not be available or consistent in prac-

tice. The general AutoGCOP with elementary algorithmic components

presents a promising framework across different problems and may be em-

ployed by developers of different expertise.

The research presented in this chapter sets the base for future research

directions in the automated design of search algorithms with basic algo-

rithmic components. On the one hand, the AutoGCOP framework under-

pins the automated design of new and unseen algorithms by using different

GCOP methods which compose the algorithmic components automatically.

On the other hand, a considerable number of new algorithmic composi-

tions of the basic GCOP components can be collected within AutoGCOP

as benchmark data, calling for further investigations which could lead to

193

7.1. CONCLUSIONS

new knowledge for designing new effective algorithms.

7.1.2 Online learning with Markov Chain and Rein-

forcement Learning

Chapter 4 investigates the online learning of effective composition of the

basic algorithmic components for automated algorithm design within the

AutoGCOP framework. Two learning models based on Reinforcement

Learning (RL) and Markov chain (MC) are investigated to learn from the

feedback in problem-solving to enhance the compositions of algorithmic

components. These two learning models learn the behaviour of algorithmic

components during the search in different ways and compare the effec-

tiveness of two different learning perspectives. Specifically, the simple RL

scheme learns the individual performance of algorithmic components, while

the MC model enhanced by the RL learns the transition performance of

algorithmic components during the search.

With VRPTW as the testbed, the MC model presents a superior perfor-

mance in learning the compositions of algorithmic components during the

search, demonstrating the effectiveness of learning the transition between

pairs of algorithmic components in composing new algorithms automati-

cally. The result of this research indicates useful knowledge might lie in

the sequential behaviour of algorithmic compositions in designing new al-

gorithms automatically.

194

7.1. CONCLUSIONS

7.1.3 Offline learning with LSTM and Transformer

Chapter 5 investigates the predictive knowledge in effective algorithmic

compositions with machine learning models. The aim is to gain insight-

ful knowledge from the effective algorithmic compositions to forecast the

behaviour of algorithmic components, thus supporting algorithm design.

Firstly, the process of forecasting algorithmic components in the design

of effective local search algorithms is defined as a sequence classification

task. This newly defined machine learning task enables the use of various

machine learning models to predict the algorithmic components to com-

pose, thus supporting the automated design of new unseen local search

algorithms. This new task brings the research communities of both evolu-

tionary computation and machine learning and presents new challenges to

machine learning experts.

Chapter 5 investigated various machine learning models in the new machine

learning task, finding the superior performance of the Long Short-term

Memory (LSTM) neural network. Due to the imbalance problem of the

algorithmic composition data, LSTM is compared against various machine

learning models on the data sets processed with the commonly used re-

sampling methods. Due to its sequence specialisation of the network struc-

ture, LSTM presents robust superior prediction performance compared to

other learning models at extracting the sequential relations in algorithmic

compositions.

To further investigate its performance on learning from longer algorith-

mic compositions, Chapter 5 compared LSTM and other machine learning

models against a Transformer network. Both LSTM and Transformer show

increasing performance at forecasting the behaviour of algorithmic compo-

195

7.1. CONCLUSIONS

nents given longer algorithmic compositions. Furthermore, Transformer

outperforms LSTM in effectively learning knowledge from longer algorith-

mic compositions.

To the best of our knowledge, it is the first attempt to propose an LSTM

model and a Transformer model in learning from the automated compo-

sitions for the automated design of search algorithms. The research in

Chapter 5 confirms the superior performance of LSTM and Transformer in

the defined new machine learning task on automated algorithm design.

Along with the investigations of the learning models, Chapter 5 inves-

tigated various features utilised in the effective algorithmic composition

data. Among different types of information, the search stage, operator

features, solution quality change and instance features show great effec-

tiveness in predicting suitable algorithmic components. Specifically, search

stage and instance features (particularly the scheduling horizon and time

window width) are the key features, which offer new insights in designing

new effective local search algorithms.

7.1.4 Offline learning with sequential rule mining

Chapter 6 investigates explicit knowledge hidden in effective algorithmic

compositions with sequential rule mining techniques towards automated

algorithm design within AutoGCOP. The aim is to interpret the sequen-

tial relations hidden in algorithmic compositions, hoping to gain new in-

sights into designing effective algorithms automatically. To the best of our

knowledge, this is the first study on sequential rule mining techniques in

the investigation of automated algorithm composition.

The extracted sequential rules of algorithmic components are applied within

196

7.1. CONCLUSIONS

AutoGCOP in automated composition to further verify the effectiveness of

the extracted explicit knowledge. A sequential rule-based GCOP method

is developed within AutoGCOP to support the investigation. The offline

learned sequential rules show satisfying performance in the automated com-

position of basic algorithmic components for solving VRPTW, however, are

worse than the MC-based online model in Chapter 4. This indicates that

algorithmic compositions lead to complex behaviours which cannot be fully

captured by rule mining techniques but can be partially captured to some

extent.

In addition, the extracted sequential rules show important attributes of

operators, i.e., operator impact on optimisation objectives, which provides

some new insights into algorithm design in the literature. The results of

the research confirm the effectiveness of categorising the basic operators

not only in automated composition but also in enhancing existing local

search algorithms for solving VRPTW.

7.1.5 Remarks

In summary, the thesis systematically investigated different perspectives of

learning in automated algorithm design to achieve the research aim, i.e.,

how to leverage machine learning to automatically design effective heuristic

algorithms based on the new GCOP standard. The studies in Chapter

3 addresses RQ1 by achieving RO1 and RO2. The general AutoGCOP

framework proposed in Chapter 3 underpins the research in the following

chapters for addressing RQ2.

The main research focus of the following chapters is different according

to the specific ROs. Chapter 4 focuses on RO3, i.e., the behaviour of

197

7.1. CONCLUSIONS

Table 7.1: A summary of the main studies of different learning methods in the thesis.

Chapters
Learning
tasks

Learning
methods

Learning
style

Knowledge
type

Aim of learning

Chapter 4 RL
MC enhanced
with RL

Online Predictive To forecast the next opera-
tor given the current opera-
tor

Chapter 5
Sequence
classification

LSTM,
Transformer

Offline Predictive To forecast the next opera-
tor given the previously ap-
plied operators and other
information

Chapter 6 Rule inference
Sequential rule
mining RL

Offline Descriptive To find frequent sequential
rules between operators

learning in GCOP methods. Chapter 5 and Chapter 6 focus on discovering

useful knowledge in algorithm design towards automated composition (i.e.,

RO4 and RO5, respectively). Table 7.1 overviews the different learning

methods investigated within AutoGCOP in the thesis, showing the different

aspects of learning that have been investigated in the thesis for enhancing

the understanding of learning in automated algorithm design. It is worth

noting that these studies are mainly different in terms of:

• The machine learning task, which is modelled from the decision-

making in algorithm design.

• The way of knowledge discovery, in terms of learning methods and

learning styles (i.e., online or offline).

• The types of knowledge, i.e., predictive (implicit) or descriptive (ex-

plicit).

• The aim of learning, i.e., how the knowledge can be used in decision-

making, either directly determining the action in automated compo-

sition or inducing patterns and rules.

In addition, these studies are different in terms of the efforts on enhancing

the effectiveness of the designed algorithms. Specifically, the online learning

198

7.2. FUTURE RESEARCH DIRECTIONS

method in Chapter 4 considers the final optimisation performance during

learning by the RL scheme which maximises the accumulated immediate

reward during problem-solving. The offline learning methods in Chapter

5 and Chapter 6 consider the final optimisation performance by using the

effective algorithmic compositions as the data for the investigation, thus

the efforts are made before the learning.

These studies share a common focus, i.e., they all focus on learning the se-

quential relations between algorithmic components in the automated com-

position. They are all based on the hypothesis that the algorithmic compo-

sitions are sequential data and the decision-making of the next algorithmic

component is influenced by the previous ones used. The results of the thesis

confirm the effectiveness of the investigated learning methods, which sup-

ports the hypothesis and highlights the need for analysing the behaviour

of the algorithmic components during automated composition.

7.2 Future research directions

The research in the thesis shows that machine learning techniques can

greatly contribute to automated algorithm design from different aspects.

The proposed future research directions build upon the main works and

contributions of this thesis and are centred around four key aspects, i.e.,

the way of learning, the knowledge acquired through learning, the target of

learning and the application domain. Through these research directions, we

mainly aim to explore new possibilities in machine learning for improving

the field of automated algorithm design.

199

7.2. FUTURE RESEARCH DIRECTIONS

7.2.1 Innovative approaches to implementing machine

learning

This thesis mainly focuses on acquiring useful knowledge hidden in the

search data with machine learning by modelling the problem of algorithm

design (i.e., the determination of algorithmic components to compose) as

different machine learning tasks. However, there are many other machine

learning tasks, such as regression and clustering (Bishop and Nasrabadi,

2006). It would be interesting to further explore the potential of mod-

elling automated algorithm design tasks as new machine learning tasks, to

support the exploration of new machine learning methods.

In addition, it would be interesting to explore the effectiveness of different

approaches for modelling algorithm design tasks as learning tasks. This

exploration can valuable insights into the effectiveness and applicability of

different approaches in the decision-making of the algorithm design process.

The development of appropriate evaluation metrics is crucial for assessing

different learning approaches in the context of automated algorithm design.

These metrics should take into account several key factors to provide a

comprehensive evaluation, such as solution quality in problem-solving (i.e.,

solving optimisation problems), the efficiency of the learning process and

problem-solving, scalability, and adaptability to diverse problem domains.

Furthermore, automated algorithm design can be further enhanced with

the recent advances in general solution encoding (Stone et al., 2021) and

end-to-end problem-solving by machine learning(Vesselinova et al., 2020),

(Kotary et al., 2021). It is important to note that in terms of problem-

solving, search algorithms search the solution space by manually designed

strategies, while machine learning builds a model to be able to produce

solutions by learning the problem structure. Recent advances confirm the

200

7.2. FUTURE RESEARCH DIRECTIONS

superior performance of end-to-end approaches with machine learning over

conventional heuristics (Wu et al., 2021). This suggests that machine learn-

ing is able to learn the complex structure of optimisation problems, some of

which are very difficult to identify by human experts, and thus can further

enhance the performance of search algorithms. Considering such incor-

poration into automated algorithm design could further raise the level of

automation by reducing human involvement in algorithm design without

the loss of generality for addressing different problem domains of common

structures.

7.2.2 Knowledge interpretability

The research on machine learning in this thesis confirms that effective

algorithm designs contain hidden patterns that can be acquired through

rule inference learning methods, leading to further improvement in auto-

mated algorithm design. This suggests the importance of exploring differ-

ent knowledge representations and knowledge discovery techniques that can

reveal interesting findings and support algorithm design. In this regard, it

is worthwhile to investigate other rule inference learning techniques on ef-

fective algorithm designs, such as analysing periodical patterns or frequent

patterns in long, single algorithm compositions.

7.2.3 Learning different types of algorithmic compo-

nents

This thesis investigates different learning perspectives of basic GCOP com-

ponents, in particular the basic operators. However, other algorithmic

components, such as acceptance criteria, also show significant effects on

201

7.2. FUTURE RESEARCH DIRECTIONS

the performance of local search algorithms in the literature (Jackson et al.,

2018). For example, attention is given to both low-level heuristics and

acceptance criteria in selection hyper-heuristics (Asta and Özcan, 2014),

(Tyasnurita et al., 2015). Within the general AutoGCOP framework, it

would be interesting to extend the investigations of effective algorithmic

compositions to the behaviour of acceptance criteria, as well as the com-

bination of basic operators and acceptance criteria. A recent study in (Yi

et al., 2022) models both local search-based and population-based algo-

rithms with a wider range of algorithmic components into a general search

framework. Thus, there is a wide range of possible directions that should

be explored to further benefit from the investigations of different types of

algorithmic components.

7.2.4 Other problem domains

This thesis has introduced the general AutoGCOP framework for support-

ing the design of local search-based search algorithms. The promising re-

sults achieved in the thesis show that the automatically designed algorithms

based on AutoGCOP with the basic algorithmic components are indeed ef-

fective for solving VRPTW. In line with the work of (Yi et al., 2022), there

is mounting evidence that the basic GCOP components are effective in

VRPTW, and potentially can greatly contribute to multiple problem do-

mains. Thus, there is a wide range of possible extensions for solving other

optimisation problems in addition to VRPs.

202

Appendices

203

Appendix A

Machine Learning for

Evolutionary Computation -

the Vehicle Routing Problems

Competition

A.1 Introduction

This appendix introduces The Competition of Machine Learning for Evolu-

tionary Computation for Solving the Vehicle Routing Problems (ML4VRP)

1 that was organised as an essential part of this research study. This compe-

tition aims to serve as a vehicle to bring together the latest developments of

machine learning-assisted evolutionary computation for VRPs. It engages

participants to explore innovative and effective approaches to incorporate

machine learning into meta-heuristics and evolutionary computation for

solving VRPs.

1https://sites.google.com/view/ml4vrp

204

A.2. DESCRIPTION OF THE COMPETITION

The motivation behind this competition aligns closely with the objective of

the thesis. The thesis focuses on how machine learning can be used in the

automated design of search algorithms. In the competition, participants

can explore machine learning for not only designing search algorithms but

also enhancing existing ones. Thus, the competition encourages a wider

range of possibilities for machine learning in search algorithms compared

to the research studies in the thesis. The studies conducted within the

thesis can be seen as specific scenarios that fall within the broader scope

of the competition. The competition, in which I work as one of the organ-

isers, can be seen as an important supporting evidence for this thesis, thus

strengthening the credibility of the conducted research.

To effectively evaluate submissions to the competition, a solution evaluator

tool has been developed using Python. It is a stand-alone tool that can be

easily integrated into various algorithm design frameworks aimed at solving

VRPs, making it a valuable application for algorithm designers.

A.2 Description of the competition

The research in evolutionary computational algorithms and meta-heuristics

mainly focuses on improving the optimisation performance, discarding a

vast amount of data produced in the evolution/optimisation process. New

useful knowledge can be extracted from the data with machine learning to

enhance human-designed evolutionary computation (Pillay, 2021). VRP

variants of different difficulties provide an ideal testbed to enable a per-

formance comparison of machine learning-assisted computational optimi-

sation.

The ML4VRP competition calls for the development of machine learning-

205

A.2. DESCRIPTION OF THE COMPETITION

assisted evolutionary computation for VRPs. The competition focuses on

the VRP with Time Windows (VRPTW), a widely studied problem model

in the VRP literature. Participants must develop machine learning tech-

niques which can design and enhance evolutionary computational algo-

rithms or meta-heuristics for solving VRPTW.

Solomon (Solomon, 1987) and Hombeger-Gehring (Homberger and Gehring,

1999) instances are widely tested in the VRPTW literature. Both data sets

consist of six types of instances, i.e., C1, C2, R1, R2, RC1, and RC2, which

differ with respect to the customers’ geographical locations, vehicle capac-

ity, density, and tightness of the time windows.

The problem instances provided in the competition are taken from the

following two sources:

• Solomon (Solomon, 1987) data set of 100 customers.

• Homberger and Gehring (Homberger and Gehring, 1999) data set of

200 customers and 400 customers.

The provided problem instances are randomly selected from these three

sized problem instances, covering different instance types. These instances

are available to download from the competition’s GitHub repository and

can also be found in CVRPLIB2. A subset of these instances will be used

to evaluate the submitted solutions, which will remain unknown to the

participants until the results are released.

Participants are required to submit descriptions of the developed algo-

rithms and the corresponding solutions for the provided problem instances.

The submissions will be evaluated on randomly selected instances (from the

2CVRPLIB website: http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

206

A.3. SOLUTION EVALUATOR

provided instances) using an evaluator available in the GitHub repository3

dedicated to the ML4VRP competition. The most widely adapted eval-

uation function, i.e. to minimise the number of vehicles and total travel

distance, is used to determine the best machine learning-assisted evolution-

ary algorithms for solving VRPs. The algorithm which produced the best

average fitness for solving VRPs will receive the highest score.

A.3 Solution evaluator

The solution evaluator dedicated to the competition is implemented using

Python. Given a solution in a specific format and the corresponding prob-

lem instance, the evaluator performs a series of checks to determine the

feasibility of the solution. If the solution is feasible, the evaluator proceeds

with the calculation and prints out the objective function value, the num-

ber of routes and the total travel distance. If the solution is infeasible, the

evaluator returns a failure status.

Several studies on VRPTW use the hierarchical objective function, where

minimising the number of vehicles (routes) is the primary objective, fol-

lowed by minimising the total travel distance or travel time as the sec-

ondary objective (Bräysy and Gendreau, 2005a). Some search algorithms

in the literature adopt the weighted sum objective function (Bräysy and

Gendreau, 2005b). This competition follows the convention (as used in the

Cross-domain Heuristic Search Challenge (CHeSC) (Burke et al., 2011) for

the hidden domain VRPTW (Walker et al., 2012)), i.e., considering the

dual objectives of minimising the number of vehicles (NV) and minimising

the total travel distance (TD), which is the Equation 2.12 as used in the

3GitHub repository for the ML4VRP competition:
https://github.com/ML4VRP2023/ML4VRP2023

207

A.4. SUMMARY

thesis.

The evaluator can be used as a stand-alone tool to be incorporated into

other algorithm frameworks for solving VRPTW. Python is used as the

programming language to allow easy evaluation and result analysis.

A.4 Summary

This appendix introduces the ML4VRP competition which encourages the

collaboration between machine learning and evolutionary computation to

further enhance the efficiency and effectiveness of search algorithms in solv-

ing VRPs. Compared to the research aim of the thesis, the competition

focuses on a wider perspective of the use of machine learning in search algo-

rithms. Thus, the competition can be seen as supporting evidence for the

research studies conducted in the thesis. A solution evaluator for VRPTW

is developed for the evaluation of the solutions submitted to the competi-

tion. The ease of integration makes this solution evaluator a practical tool

for algorithm designers aimed at solving VRPTW.

The submissions and results collected during the competition will be further

analysed to serve as a valuable benchmark to the literature. Comparing

the performance of the submissions could offer practical insights for future

work in developing novel machine learning strategies for the development

of effective algorithms. In the future, the competition can be extended

to other VRP domains, such as the classic VRP with capacity constraints

(CVRP), as well as Timetabling and other widely studied Combinatorial

Optimisation Problems.

208

Bibliography

Abbeel, P. and Ng, A. Y. (2004). Apprenticeship learning via inverse re-

inforcement learning. In Proceedings of the twenty-first international

conference on Machine learning, page 1.

Adenso-Diaz, B. and Laguna, M. (2006). Fine-tuning of algorithms using

fractional experimental designs and local search. Operations research,

54(1):99–114.

Agrawal, R. and Srikant, R. (1995). Mining sequential patterns. In Pro-

ceedings of the eleventh international conference on data engineering,

pages 3–14. IEEE.

Ai, T. J. and Kachitvichyanukul, V. (2009). A particle swarm optimization

for the vehicle routing problem with simultaneous pickup and delivery.

Computers & Operations Research, 36(5):1693–1702.

Aleti, A. and Moser, I. (2016). A systematic literature review of adaptive

parameter control methods for evolutionary algorithms. ACM Com-

puting Surveys (CSUR), 49(3):1–35.

Alfa, A. S., Heragu, S. S., and Chen, M. (1991). A 3-opt based simu-

lated annealing algorithm for vehicle routing problems. Computers &

Industrial Engineering, 21(1-4):635–639.

Almeida, C. P., Gonçalves, R. A., Venske, S., Lüders, R., and Delgado, M.

209

(2020). Hyper-heuristics using multi-armed bandit models for multi-

objective optimization. Applied Soft Computing, 95:106520.

Alpaydin, E. (2020). Introduction to machine learning. MIT press.

Altinkemer, K. and Gavish, B. (1991). Parallel savings based heuristics for

the delivery problem. Operations research, 39(3):456–469.

Ansótegui, C., Sellmann, M., and Tierney, K. (2009). A gender-based ge-

netic algorithm for the automatic configuration of algorithms. In In-

ternational Conference on Principles and Practice of Constraint Pro-

gramming, pages 142–157. Springer.

Araya, I. and Riff, M.-C. (2014). A filtering method for algorithm config-

uration based on consistency techniques. Knowledge-Based Systems,

60:73–81.

Asta, S. and Özcan, E. (2014). An apprenticeship learning hyper-heuristic

for vehicle routing in HyFlex. In 2014 IEEE symposium on evolving

and autonomous learning systems (EALS), pages 65–72. IEEE.

Asta, S., Özcan, E., Parkes, A. J., and Etaner-Uyar, A. Ş. (2013). Gener-

alizing hyper-heuristics via apprenticeship learning. In European Con-

ference on Evolutionary Computation in Combinatorial Optimization,

pages 169–178. Springer.

Back, T. (1996). Evolutionary algorithms in theory and practice: evolu-

tion strategies, evolutionary programming, genetic algorithms. Oxford

university press.

Badeau, P., Guertin, F., Gendreau, M., Potvin, J.-Y., and Taillard, E.

(1997). A parallel tabu search heuristic for the vehicle routing prob-

lem with time windows. Transportation Research Part C: Emerging

Technologies, 5(2):109–122.

210

Baker, B. M. and Ayechew, M. (2003). A genetic algorithm for the vehicle

routing problem. Computers & Operations Research, 30(5):787–800.

Balaprakash, P., Birattari, M., and Stützle, T. (2007). Improvement strate-

gies for the F-Race algorithm: Sampling design and iterative refine-

ment. In International workshop on hybrid metaheuristics, pages 108–

122. Springer.

Balaprakash, P., Birattari, M., Stützle, T., and Dorigo, M. (2010).

Estimation-based metaheuristics for the probabilistic traveling sales-

man problem. Computers & Operations Research, 37(11):1939–1951.

Batista, G. E., Prati, R. C., and Monard, M. C. (2004). A study of the

behavior of several methods for balancing machine learning training

data. ACM SIGKDD explorations newsletter, 6(1):20–29.

Battiti, R. and Brunato, M. (2010). Reactive search optimization: learn-

ing while optimizing. In Handbook of Metaheuristics, pages 543–571.

Springer.

Battiti, R. and Campigotto, P. (2011). An investigation of reinforcement

learning for reactive search optimization. In Autonomous Search, pages

131–160. Springer.

Battiti, R. and Protasi, M. (1997). Reactive search, a history-sensitive

heuristic for MAX-SAT. Journal of Experimental Algorithmics (JEA),

2:2–es.

Battiti, R. and Protasi, M. (2001). Reactive local search for the maximum

clique problem 1. Algorithmica, 29(4):610–637.

Battiti, R. and Tecchiolli, G. (1994). The reactive tabu search. ORSA

journal on computing, 6(2):126–140.

211

Baum, L. E. and Petrie, T. (1966). Statistical inference for probabilistic

functions of finite state Markov chains. The annals of mathematical

statistics, 37(6):1554–1563.

Beasley, J. E. (1983). Route first—cluster second methods for vehicle rout-

ing. Omega, 11(4):403–408.

Beheshti, Z. and Shamsuddin, S. M. H. (2013). A review of population-

based meta-heuristic algorithms. Int. J. Adv. Soft Comput. Appl,

5(1):1–35.

Bell, J. E. and McMullen, P. R. (2004). Ant colony optimization techniques

for the vehicle routing problem. Advanced engineering informatics,

18(1):41–48.

Ben-Ameur, W. (2004). Computing the initial temperature of simulated

annealing. Computational Optimization and Applications, 29(3):369–

385.

Berger, J., Barkaoui, M., and Bräysy, O. (2003). A route-directed hybrid

genetic approach for the vehicle routing problem with time windows.

INFOR: Information Systems and Operational Research, 41(2):179–

194.

Bezerra, L. C., López-Ibánez, M., and Stützle, T. (2015). Automatic

component-wise design of multiobjective evolutionary algorithms.

IEEE Transactions on Evolutionary Computation, 20(3):403–417.

Birattari, M., Stützle, T., Paquete, L., and Varrentrapp, K. (2002). A rac-

ing algorithm for configuring metaheuristics. In Proceedings of the 4th

Annual Conference on Genetic and Evolutionary Computation, pages

11–18. Morgan Kaufmann Publishers Inc.

212

Birattari, M., Yuan, Z., Balaprakash, P., and Stützle, T. (2010). F-race

and iterated F-Race: An overview. In Experimental methods for the

analysis of optimization algorithms, pages 311–336. Springer.

Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y.,

Fréchette, A., Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K.,

et al. (2016). Aslib: A benchmark library for algorithm selection.

Artificial Intelligence, 237:41–58.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pattern recognition and ma-

chine learning, volume 4. Springer.

Blanton Jr, J. L. and Wainwright, R. L. (1993). Multiple vehicle routing

with time and capacity constraints using genetic algorithms. In Pro-

ceedings of the 5th International Conference on Genetic Algorithms,

pages 452–459.

Blum, C. (2005). Ant colony optimization: Introduction and recent trends.

Physics of Life reviews, 2(4):353–373.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimiza-

tion: Overview and conceptual comparison. ACM computing surveys

(CSUR), 35(3):268–308.

Bogyrbayeva, A., Meraliyev, M., Mustakhov, T., and Dauletbayev, B.

(2022). Learning to solve vehicle routing problems: A survey. arXiv

preprint arXiv:2205.02453.

Boussäıd, I., Lepagnot, J., and Siarry, P. (2013). A survey on optimization

metaheuristics. Information sciences, 237:82–117.

Braekers, K., Ramaekers, K., and Van Nieuwenhuyse, I. (2016). The vehicle

routing problem: State of the art classification and review. Computers

& Industrial Engineering, 99:300–313.

213

Bräysy, O. (2003). A reactive variable neighborhood search for the vehicle-

routing problem with time windows. INFORMS Journal on Comput-

ing, 15(4):347–368.

Bräysy, O. and Gendreau, M. (2001). Genetic algorithms for the vehicle

routing problem with time windows. Arpakannus,(1), pages 33–38.

Bräysy, O. and Gendreau, M. (2005a). Vehicle routing problem with

time windows, part I: Route construction and local search algorithms.

Transportation science, 39(1):104–118.

Bräysy, O. and Gendreau, M. (2005b). Vehicle routing problem with time

windows, part ii: Metaheuristics. Transportation science, 39(1):119–

139.

Burke, E., Curtois, T., Hyde, M., Kendall, G., Ochoa, G., Petrovic, S.,

Vázquez-Rodŕıguez, J. A., and Gendreau, M. (2010). Iterated lo-

cal search vs. hyper-heuristics: Towards general-purpose search al-

gorithms. In IEEE congress on evolutionary computation, pages 1–8.

IEEE.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., McCollum, B., Ochoa,

G., Parkes, A. J., and Petrovic, S. (2011). The cross-domain heuristic

search challenge–an international research competition. In Learning

and Intelligent Optimization: 5th International Conference, LION 5,

Rome, Italy, January 17-21, 2011. Selected Papers 5, pages 631–634.

Springer.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E.,

and Qu, R. (2013). Hyper-heuristics: A survey of the state of the art.

Journal of the Operational Research Society, 64(12):1695–1724.

Caccetta, L., Alameen, M., and Abdul-Niby, M. (2013). An improved clarke

214

and wright algorithm to solve the capacitated vehicle routing problem.

Engineering, Technology & Applied Science Research, 3(2):413–415.

Carchrae, T. and Beck, J. C. (2005). Applying machine learning to low-

knowledge control of optimization algorithms. Computational Intelli-

gence, 21(4):372–387.

Cattaruzza, D., Absi, N., Feillet, D., and Vidal, T. (2014). A memetic

algorithm for the multi trip vehicle routing problem. European Journal

of Operational Research, 236(3):833–848.

Cengiz Toklu, M. (2022). A fuzzy multi-criteria approach based on clarke

and wright savings algorithm for vehicle routing problem in human-

itarian aid distribution. Journal of Intelligent Manufacturing, pages

1–21.

Chakhlevitch, K. and Cowling, P. (2005). Choosing the fittest subset of low

level heuristics in a hyperheuristic framework. In European Conference

on Evolutionary Computation in Combinatorial Optimization, pages

23–33. Springer.

Chaovalitwongse, W., Kim, D., and Pardalos, P. M. (2003). Grasp with a

new local search scheme for vehicle routing problems with time win-

dows. Journal of Combinatorial Optimization, 7:179–207.

Chawla, N. V. (2009). Data mining for imbalanced datasets: An overview.

Data mining and knowledge discovery handbook, pages 875–886.

Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer, W. P. (2002).

Smote: synthetic minority over-sampling technique. Journal of artifi-

cial intelligence research, 16:321–357.

Chen, B. (2018). Optimisation models and algorithms for real-life trans-

215

portation routing and scheduling problems. PhD thesis, University of

Nottingham.

Chen, B., Qu, R., Bai, R., and Ishibuchi, H. (2016). A variable neighbour-

hood search algorithm with compound neighbourhoods for vrptw.

Chen, C., Demir, E., and Huang, Y. (2021). An adaptive large neighbor-

hood search heuristic for the vehicle routing problem with time win-

dows and delivery robots. European Journal of Operational Research,

294(3):1164–1180.

Chen, T. K., Hay, L. L., and Ke, O. (2001). Hybrid genetic algorithms in

solving vehicle routing problems with time window constraints. Asia-

Pacific Journal of Operational Research, 18(1):121.

Chiang, W.-C. and Russell, R. A. (1996). Simulated annealing metaheuris-

tics for the vehicle routing problem with time windows. Annals of

Operations Research, 63(1):3–27.

Ching, W.-K. and Ng, M. K. (2006). Markov chains. Models, algorithms

and applications.

Christofides, N. (1979). The vehicle routing problem. Combinatorial opti-

mization.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central

depot to a number of delivery points. Operations research, 12(4):568–

581.

Connolly, D. (1992). General purpose simulated annealing. Journal of the

Operational Research Society, 43(5):495–505.

Cordeau, J.-F., Gendreau, M., Hertz, A., Laporte, G., and Sormany, J.-S.

(2005). New heuristics for the vehicle routing problem. Springer.

216

Cordeau, J.-F., Gendreau, M., Laporte, G., Potvin, J.-Y., and Semet, F.

(2002). A guide to vehicle routing heuristics. Journal of the Opera-

tional Research society, 53(5):512–522.

Cordeau, J.-F., Laporte, G., Savelsbergh, M. W., and Vigo, D. (2007).

Vehicle routing. Handbooks in operations research and management

science, 14:367–428.

Cowling, P. and Chakhlevitch, K. (2003). Hyperheuristics for managing

a large collection of low level heuristics to schedule personnel. In

The 2003 Congress on Evolutionary Computation, 2003. CEC’03., vol-

ume 2, pages 1214–1221. IEEE.

Cowling, P., Kendall, G., and Soubeiga, E. (2000). A hyperheuristic ap-

proach to scheduling a sales summit. In International Conference on

the Practice and Theory of Automated Timetabling, pages 176–190.

Springer.

Cowling, P., Kendall, G., and Soubeiga, E. (2002). Hyperheuristics: A ro-

bust optimisation method applied to nurse scheduling. In International

Conference on Parallel Problem Solving from Nature, pages 851–860.

Springer.

Coy, S. P., Golden, B. L., Runger, G. C., and Wasil, E. A. (2001). Using

experimental design to find effective parameter settings for heuristics.

Journal of Heuristics, 7(1):77–97.

Crammer, K. and Singer, Y. (2002). On the learnability and design of

output codes for multiclass problems. Machine learning, 47(2):201–

233.

Cruz-Reyes, L., Gómez-Santillán, C., Pérez-Ortega, J., Landero, V.,

217

Quiroz, M., and Ochoa, A. (2012). Algorithm selection: From meta-

learning to hyper-heuristics. In Intelligent Systems. IntechOpen.

Cuervo, D. P., Goos, P., Sörensen, K., and Arráiz, E. (2014). An iterated

local search algorithm for the vehicle routing problem with backhauls.

European Journal of Operational Research, 237(2):454–464.

Czech, Z. J. and Czarnas, P. (2002). Parallel simulated annealing for the

vehicle routing problem with time windows. In Proceedings 10th Eu-

romicro workshop on parallel, distributed and network-based process-

ing, pages 376–383. IEEE.

d O Costa, P. R., Rhuggenaath, J., Zhang, Y., and Akcay, A. (2020).

Learning 2-opt heuristics for the traveling salesman problem via deep

reinforcement learning. In Asian Conference on Machine Learning,

pages 465–480. PMLR.

Dantzig, G. B. and Ramser, J. H. (1959). The truck dispatching problem.

Management science, 6(1):80–91.

De Jong, K. A. and Spears, W. M. (1991). An analysis of the interacting

roles of population size and crossover in genetic algorithms. In Paral-

lel Problem Solving from Nature: 1st Workshop, PPSN I Dortmund,

FRG, October 1–3, 1990 Proceedings 1, pages 38–47. Springer.

Desale, S., Rasool, A., Andhale, S., and Rane, P. (2015). Heuristic and

meta-heuristic algorithms and their relevance to the real world: a sur-

vey. Int. J. Comput. Eng. Res. Trends, 351(5):2349–7084.

Deudon, M., Cournut, P., Lacoste, A., Adulyasak, Y., and Rousseau, L.-M.

(2018). Learning heuristics for the tsp by policy gradient. In Integra-

tion of Constraint Programming, Artificial Intelligence, and Opera-

tions Research: 15th International Conference, CPAIOR 2018, Delft,

218

The Netherlands, June 26–29, 2018, Proceedings 15, pages 170–181.

Springer.

Di Gaspero, L. and Urli, T. (2011). A reinforcement learning approach for

the cross-domain heuristic search challenge. In Proceedings of the 9th

Metaheuristics International Conference (MIC 2011), Udine, Italy.

Di Gaspero, L. and Urli, T. (2012). Evaluation of a family of reinforce-

ment learning cross-domain optimization heuristics. In International

Conference on Learning and Intelligent Optimization, pages 384–389.

Springer.

Dietterich, T. G. (2002). Machine learning for sequential data: A review. In

Structural, Syntactic, and Statistical Pattern Recognition: Joint IAPR

International Workshops SSPR 2002 and SPR 2002 Windsor, On-

tario, Canada, August 6–9, 2002 Proceedings, pages 15–30. Springer.

Doerner, K. F., Hartl, R. F., and Lucka, M. (2005). A parallel version of the

d-ant algorithm for the vehicle routing problem. Parallel Numerics,

5:109–118.

Doerr, B., Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2018). On the

runtime analysis of selection hyper-heuristics with adaptive learning

periods. In Proceedings of the Genetic and Evolutionary Computation

Conference, pages 1015–1022.

Dorigo, M. and Di Caro, G. (1999). Ant colony optimization: a new

meta-heuristic. In Proceedings of the 1999 congress on evolutionary

computation-CEC99 (Cat. No. 99TH8406), volume 2, pages 1470–

1477. IEEE.

dos Santos, J. P. Q., de Melo, J. D., Neto, A. D. D., and Aloise, D. (2014).

Reactive search strategies using reinforcement learning, local search

219

algorithms and variable neighborhood search. Expert Systems with

Applications, 41(10):4939–4949.

Drake, J. H., Kheiri, A., Özcan, E., and Burke, E. K. (2020). Recent ad-

vances in selection hyper-heuristics. European Journal of Operational

Research, 285(2):405–428.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm

and the record-to-record travel. Journal of Computational physics,

104(1):86–92.

Eberhart, R. and Kennedy, J. (1995). A new optimizer using particle swarm

theory. In MHS’95. Proceedings of the Sixth International Symposium

on Micro Machine and Human Science, pages 39–43. Ieee.

Eksioglu, B., Vural, A. V., and Reisman, A. (2009). The vehicle routing

problem: A taxonomic review. Computers & Industrial Engineering,

57(4):1472–1483.

El-Sherbeny, N. A. (2010). Vehicle routing with time windows: An overview

of exact, heuristic and metaheuristic methods. Journal of King Saud

University-Science, 22(3):123–131.

Elshaer, R. and Awad, H. (2020). A taxonomic review of metaheuristic

algorithms for solving the vehicle routing problem and its variants.

Computers & Industrial Engineering, 140:106242.

Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search

procedures. Journal of global optimization, 6:109–133.

Fisher, M. and Fisher, M. (1995). Chapter 1 vehicle routing. Handbooks

in Operations Research and Management Science, 8:1–33.

Fisher, M. L. and Jaikumar, R. (1981). A generalized assignment heuristic

for vehicle routing. Networks, 11(2):109–124.

220

Fleszar, K., Osman, I. H., and Hindi, K. S. (2009). A variable neighbour-

hood search algorithm for the open vehicle routing problem. European

Journal of Operational Research, 195(3):803–809.

Fournier-Viger, P., Faghihi, U., Nkambou, R., and Nguifo, E. M. (2010).

Cmrules: an efficient algorithm for mining sequential rules common to

several sequences. In Twenty-Third International FLAIRS Conference.

Fournier-Viger, P., Faghihi, U., Nkambou, R., and Nguifo, E. M. (2012a).

Cmrules: Mining sequential rules common to several sequences.

Knowledge-Based Systems, 25(1):63–76.

Fournier-Viger, P., Gueniche, T., and Tseng, V. S. (2012b). Using partially-

ordered sequential rules to generate more accurate sequence prediction.

In International Conference on Advanced Data Mining and Applica-

tions, pages 431–442. Springer.

Fournier-Viger, P., Gueniche, T., Zida, S., and Tseng, V. S. (2014).

Erminer: sequential rule mining using equivalence classes. In In-

ternational Symposium on Intelligent Data Analysis, pages 108–119.

Springer.

Fournier-Viger, P., Lin, J. C.-W., Gomariz, A., Gueniche, T., Soltani, A.,

Deng, Z., and Lam, H. T. (2016). The spmf open-source data mining

library version 2. In Joint European conference on machine learning

and knowledge discovery in databases, pages 36–40. Springer.

Fournier-Viger, P., Lin, J. C.-W., Kiran, R. U., Koh, Y. S., and Thomas,

R. (2017). A survey of sequential pattern mining. Data Science and

Pattern Recognition, 1(1):54–77.

Fournier-Viger, P., Nkambou, R., and Tseng, V. S.-M. (2011). Rule-

growth: mining sequential rules common to several sequences by

221

pattern-growth. In Proceedings of the 2011 ACM symposium on ap-

plied computing, pages 956–961.

Fournier-Viger, P. and Tseng, V. S. (2011). Mining top-k sequential rules.

In International Conference on Advanced Data Mining and Applica-

tions, pages 180–194. Springer.

Fournier-Viger, P. and Tseng, V. S. (2013). Tns: mining top-k non-

redundant sequential rules. In Proceedings of the 28th Annual ACM

Symposium on Applied Computing, pages 164–166.

Fournier-Viger, P., Wu, C.-W., Tseng, V. S., Cao, L., and Nkambou, R.

(2015). Mining partially-ordered sequential rules common to multiple

sequences. IEEE Transactions on Knowledge and Data Engineering,

27(8):2203–2216.

Fournier-Viger, P., Wu, C.-W., Tseng, V. S., and Nkambou, R. (2012c).

Mining sequential rules common to several sequences with the win-

dow size constraint. In Canadian Conference on Artificial Intelligence,

pages 299–304. Springer.

Franzin, A. and Stützle, T. (2019). Revisiting simulated annealing:

A component-based analysis. Computers & Operations Research,

104:191–206.

Funke, B., Grünert, T., and Irnich, S. (2005). Local search for vehicle

routing and scheduling problems: Review and conceptual integration.

Journal of heuristics, 11:267–306.

Gagliolo, M. and Schmidhuber, J. (2006). Learning dynamic algorithm

portfolios. Annals of Mathematics and Artificial Intelligence, 47(3-

4):295–328.

222

Gagliolo, M., Zhumatiy, V., and Schmidhuber, J. (2004). Adaptive on-

line time allocation to search algorithms. In European conference on

machine learning, pages 134–143. Springer.

Gambardella, L. M., Taillard, É., and Agazzi, G. (1999). Macs-vrptw:

A multiple ant colony system for vehicle routing problems with time

windows.

Gao, L., Chen, M., Chen, Q., Luo, G., Zhu, N., and Liu, Z. (2020). Learn

to design the heuristics for vehicle routing problem. arXiv preprint

arXiv:2002.08539.

Garcia, B.-L., Potvin, J.-Y., and Rousseau, J.-M. (1994). A parallel im-

plementation of the tabu search heuristic for vehicle routing problems

with time window constraints. Computers & Operations Research,

21(9):1025–1033.

Gaskell, T. (1967). Bases for vehicle fleet scheduling. Journal of the Oper-

ational Research Society, 18(3):281–295.

Gehring, H. and Homberger, J. (1999). A parallel hybrid evolutionary

metaheuristic for the vehicle routing problem with time windows. In

Proceedings of EUROGEN99, volume 2, pages 57–64. Citeseer.

Gendreau, M., Hertz, A., and Laporte, G. (1992). New insertion and

postoptimization procedures for the traveling salesman problem. Op-

erations Research, 40(6):1086–1094.

Gendreau, M., Hertz, A., and Laporte, G. (1994). A tabu search heuristic

for the vehicle routing problem. Management science, 40(10):1276–

1290.

Gendreau, M., Potvin, J.-Y., Bräumlaysy, O., Hasle, G., and Løkketangen,

223

A. (2008). Metaheuristics for the vehicle routing problem and its ex-

tensions: A categorized bibliography. Springer.

Ghoseiri, K. and Ghannadpour, S. F. (2010). Multi-objective vehicle rout-

ing problem with time windows using goal programming and genetic

algorithm. Applied Soft Computing, 10(4):1096–1107.

Gillett, B. E. and Miller, L. R. (1974). A heuristic algorithm for the vehicle-

dispatch problem. Operations research, 22(2):340–349.

Giuliari, F., Hasan, I., Cristani, M., and Galasso, F. (2021). Transformer

networks for trajectory forecasting. In 2020 25th international confer-

ence on pattern recognition (ICPR), pages 10335–10342. IEEE.

Glover, F. (1986). Future paths for integer programming and links to

artificial intelligence. Computers & operations research, 13(5):533–549.

Glover, F. and Laguna, M. (1998). Tabu search. Springer.

Goksal, F. P., Karaoglan, I., and Altiparmak, F. (2013). A hybrid discrete

particle swarm optimization for vehicle routing problem with simul-

taneous pickup and delivery. Computers & Industrial Engineering,

65(1):39–53.

Goldman, B. W. and Tauritz, D. R. (2011). Meta-evolved empirical ev-

idence of the effectiveness of dynamic parameters. In Proceedings of

the 13th annual conference companion on Genetic and evolutionary

computation, pages 155–156.

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT

press.

Guerri, A. and Milano, M. (2004). Learning techniques for automatic al-

gorithm portfolio selection. In ECAI, volume 16, page 475.

224

Gümüş, D. B., Özcan, E., Atkin, J., and Drake, J. H. (2023). An investi-

gation of f-race training strategies for cross domain optimisation with

memetic algorithms. Information Sciences, 619:153–171.

Guyon, I. and Elisseeff, A. (2003). An introduction to variable and feature

selection. Journal of machine learning research, 3(Mar):1157–1182.

Haim, S. and Walsh, T. (2009). Restart strategy selection using machine

learning techniques. In International Conference on Theory and Ap-

plications of Satisfiability Testing, pages 312–325. Springer.

Haixiang, G., Yijing, L., Shang, J., Mingyun, G., Yuanyue, H., and Bing,

G. (2017). Learning from class-imbalanced data: Review of methods

and applications. Expert Systems with Applications, 73:220–239.

Han, A. F.-W. and Cho, Y.-J. (2002). A gids metaheuristic approach to

the fleet size and mix vehicle routing problem. In Essays and surveys

in metaheuristics, pages 399–413. Springer.

Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-smote: a new

over-sampling method in imbalanced data sets learning. In Interna-

tional conference on intelligent computing, pages 878–887. Springer.

Hansen, P. and Mladenović, N. (1999). An introduction to variable neigh-

borhood search. In Meta-heuristics, pages 433–458. Springer.

Hansen, P. and Mladenović, N. (2003). Variable neighborhood search. In

Handbook of metaheuristics, pages 145–184. Springer.

Hansen, P., Mladenović, N., Brimberg, J., and Pérez, J. A. M. (2019).

Variable neighborhood search. Springer.

Hansen, P., Mladenović, N., and Moreno Pérez, J. A. (2010). Variable

neighbourhood search: methods and applications. Annals of Opera-

tions Research, 175(1):367–407.

225

Hastie, T., Tibshirani, R., Friedman, J., Hastie, T., Tibshirani, R., and

Friedman, J. (2009). Unsupervised learning. The elements of statistical

learning: Data mining, inference, and prediction, pages 485–585.

He, H., Bai, Y., Garcia, E. A., and Li, S. (2008). Adasyn: Adaptive syn-

thetic sampling approach for imbalanced learning. In 2008 IEEE in-

ternational joint conference on neural networks (IEEE world congress

on computational intelligence), pages 1322–1328. IEEE.

He, X., Zhao, K., and Chu, X. (2021). Automl: A survey of the state-of-

the-art. Knowledge-Based Systems, 212:106622.

He, Y., Yuen, S. Y., Lou, Y., and Zhang, X. (2019). A sequential algorithm

portfolio approach for black box optimization. Swarm and evolutionary

computation, 44:559–570.

Ho, S. C. and Haugland, D. (2004). A tabu search heuristic for the vehicle

routing problem with time windows and split deliveries. Computers &

Operations Research, 31(12):1947–1964.

Ho, W., Ho, G. T., Ji, P., and Lau, H. C. (2008). A hybrid genetic algorithm

for the multi-depot vehicle routing problem. Engineering applications

of artificial intelligence, 21(4):548–557.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neu-

ral computation, 9(8):1735–1780.

Holland, J. H. (1975). Adaptation in natural and artificial systems: An in-

troductory analysis with applications to biology, control, and artificial

intelligence.

Homberger, J. and Gehring, H. (1999). Two evolutionary metaheuristics for

the vehicle routing problem with time windows. INFOR: Information

Systems and Operational Research, 37(3):297–318.

226

Hong, T.-P., Wang, H.-S., Lin, W.-Y., and Lee, W.-Y. (2002). Evolution

of appropriate crossover and mutation operators in a genetic process.

Applied intelligence, 16:7–17.

Hoos, H. H. (2008). Computer-aided design of high-performance algo-

rithms. Technical report, Technical Report TR-2008-16, University

of British Columbia, Department of

Hoos, H. H. (2011). Automated algorithm configuration and parameter

tuning. In Autonomous search, pages 37–71. Springer.

Horvitz, E., Ruan, Y., Gomes, C., Kautz, H., Selman, B., and Chickering,

M. (2001). A bayesian approach to tackling hard computational prob-

lems (preliminary report). Electronic Notes in Discrete Mathematics,

9:376–391.

Hottung, A. and Tierney, K. (2019). Neural large neighborhood

search for the capacitated vehicle routing problem. arXiv preprint

arXiv:1911.09539.

Hu, B. and Raidl, G. R. (2006). Variable neighborhood descent with self-

adaptive neighborhood-ordering. In Proceedings of the 7th EU/MEet-

ing on Adaptive, Self-Adaptive, and Multi-Level Metaheuristics.

Hutter, F., Hamadi, Y., Hoos, H. H., and Leyton-Brown, K. (2006). Perfor-

mance prediction and automated tuning of randomized and parametric

algorithms. In International Conference on Principles and Practice of

Constraint Programming, pages 213–228. Springer.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2010a). Automated config-

uration of mixed integer programming solvers. In International Con-

ference on Integration of Artificial Intelligence (AI) and Operations

227

Research (OR) Techniques in Constraint Programming, pages 186–202.

Springer.

Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2010b). Sequential model-

based optimization for general algorithm configuration (extended ver-

sion). Technical Report TR-2010–10, University of British Columbia,

Computer Science, Tech. Rep.

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009).

ParamILS: an automatic algorithm configuration framework. Journal

of Artificial Intelligence Research, 36:267–306.

Hutter, F., Hoos, H. H., and Stützle, T. (2007). Automatic algorithm

configuration based on local search. In Aaai, volume 7, pages 1152–

1157.

Hutter, F., Xu, L., Hoos, H. H., and Leyton-Brown, K. (2014). Algo-

rithm runtime prediction: Methods & evaluation. Artificial Intelli-

gence, 206:79–111.

Ioannou, G., Kritikos, M., and Prastacos, G. (2001). A greedy look-ahead

heuristic for the vehicle routing problem with time windows. Journal

of the Operational Research Society, 52(5):523–537.

Jackson, W. G., Özcan, E., and John, R. I. (2018). Move acceptance in

local search metaheuristics for cross-domain search. Expert Systems

with Applications, 109:131–151.

Jeni, L. A., Cohn, J. F., and De La Torre, F. (2013). Facing imbalanced

data–recommendations for the use of performance metrics. In 2013

Humaine association conference on affective computing and intelligent

interaction, pages 245–251. IEEE.

228

Jin, J., Crainic, T. G., and Løkketangen, A. (2012). A parallel multi-

neighborhood cooperative tabu search for capacitated vehicle routing

problems. European Journal of Operational Research, 222(3):441–451.

Juan, A. A., Faulin, J., Ruiz, R., Barrios, B., and Caballé, S. (2010). The

sr-gcws hybrid algorithm for solving the capacitated vehicle routing

problem. Applied Soft Computing, 10(1):215–224.

Jurgovsky, J., Granitzer, M., Ziegler, K., Calabretto, S., Portier, P.-E., He-

Guelton, L., and Caelen, O. (2018). Sequence classification for credit-

card fraud detection. Expert Systems with Applications, 100:234–245.

Kachitvichyanukul, V. et al. (2007). A particle swarm optimization for the

capacitated vehicle routing problem. International journal of logistics

and SCM systems, 2(1):50–55.

Kadioglu, S., Malitsky, Y., Sellmann, M., and Tierney, K. (2010). ISAC-

Instance-specific algorithm configuration. In ECAI, volume 215, pages

751–756.

Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan,

A. M., and Talbi, E.-G. (2022). Machine learning at the ser-

vice of meta-heuristics for solving combinatorial optimization prob-

lems: A state-of-the-art. European Journal of Operational Research,

296(2):393–422.

Kemeny, J. G. and Snell, J. L. (1976). Markov chains. Springer-Verlag,

New York.

Kendall, G., Cowling, P., and Soubeiga, E. (2002). Choice function and

random hyperheuristics. In Proceedings of the 4th Asia-Pacific Con-

ference on Simulated Evolution and Learning, pages 667–671.

229

Kerschke, P., Hoos, H. H., Neumann, F., and Trautmann, H. (2019). Au-

tomated algorithm selection: Survey and perspectives. Evolutionary

computation, 27(1):3–45.

Khalil, E., Dai, H., Zhang, Y., Dilkina, B., and Song, L. (2017). Learning

combinatorial optimization algorithms over graphs. Advances in neural

information processing systems, 30.

Khamassi, I. (2011). Ant-Q hyper heuristic approach applied to the cross-

domain heuristic search challenge problems.

Kheiri, A. and Keedwell, E. (2015). A sequence-based selection hyper-

heuristic utilising a hidden Markov model. In Proceedings of the 2015

Annual Conference on Genetic and Evolutionary Computation, pages

417–424. ACM.

KhudaBukhsh, A. R. (2009). SATenstein: Automatically building local

search SAT solvers from components. PhD thesis, University of British

Columbia.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by

simulated annealing. science, 220(4598):671–680.

Kontoravdis, G. and Bard, J. F. (1995). A grasp for the vehicle routing

problem with time windows. ORSA journal on Computing, 7(1):10–23.

Kotary, J., Fioretto, F., Van Hentenryck, P., and Wilder, B. (2021). End-

to-end constrained optimization learning: A survey. arXiv preprint

arXiv:2103.16378.

Kotthoff, L., Gent, I. P., and Miguel, I. (2011). A preliminary evaluation of

machine learning in algorithm selection for search problems. In Fourth

Annual Symposium on Combinatorial Search.

230

Kotthoff, L., Gent, I. P., and Miguel, I. (2012). An evaluation of machine

learning in algorithm selection for search problems. Ai Communica-

tions, 25(3):257–270.

Kubat, M., Matwin, S., et al. (1997). Addressing the curse of imbalanced

training sets: one-sided selection. In Icml, volume 97, pages 179–186.

Citeseer.

Küçükoğlu, İ. and Öztürk, N. (2015). An advanced hybrid meta-heuristic

algorithm for the vehicle routing problem with backhauls and time

windows. Computers & Industrial Engineering, 86:60–68.

Kumar, S. N. and Panneerselvam, R. (2012). A survey on the vehicle

routing problem and its variants.

Lafferty, J., McCallum, A., and Pereira, F. C. (2001). Conditional random

fields: Probabilistic models for segmenting and labeling sequence data.

Lagoudakis, M. G. and Littman, M. L. (2000). Algorithm selection using

reinforcement learning. In ICML, pages 511–518.

Laporte, G., Gendreau, M., Potvin, J.-Y., and Semet, F. (2000). Classical

and modern heuristics for the vehicle routing problem. International

transactions in operational research, 7(4-5):285–300.

Laporte, G., Louveaux, F., and Mercure, H. (1992). The vehicle rout-

ing problem with stochastic travel times. Transportation science,

26(3):161–170.

Laporte, G., Ropke, S., and Vidal, T. (2014). Chapter 4: Heuristics for the

vehicle routing problem. In Vehicle Routing: Problems, Methods, and

Applications, Second Edition, pages 87–116. SIAM.

231

Laurikkala, J. (2001). Improving identification of difficult small classes by

balancing class distribution. In Conference on Artificial Intelligence

in Medicine in Europe, pages 63–66. Springer.

Layeb, A., Ammi, M., and Chikhi, S. (2013). A grasp algorithm based

on new randomized heuristic for vehicle routing problem. Journal of

computing and information technology, 21(1):35–46.

Lenstra, J. K. and Kan, A. R. (1981). Complexity of vehicle routing and

scheduling problems. Networks, 11(2):221–227.

Levy, O. and Goldberg, Y. (2014). Neural word embedding as implicit ma-

trix factorization. Advances in neural information processing systems,

27:2177–2185.

Li, B., Wu, G., He, Y., Fan, M., and Pedrycz, W. (2022). An overview and

experimental study of learning-based optimization algorithms for the

vehicle routing problem. IEEE/CAA Journal of Automatica Sinica,

9(7):1115–1138.

Li, X. and Tian, P. (2006). An ant colony system for the open vehicle rout-

ing problem. In Ant Colony Optimization and Swarm Intelligence:

5th International Workshop, ANTS 2006, Brussels, Belgium, Septem-

ber 4-7, 2006. Proceedings 5, pages 356–363. Springer.

Liefooghe, A., Jourdan, L., and Talbi, E.-G. (2011). A software framework

based on a conceptual unified model for evolutionary multiobjective

optimization: ParadisEO-MOEO. European Journal of Operational

Research, 209(2):104–112.

Lin, S. (1965). Computer solutions of the traveling salesman problem. Bell

System Technical Journal, 44(10):2245–2269.

232

Lin, S.-W., Lee, Z.-J., Ying, K.-C., and Lee, C.-Y. (2009). Applying hy-

brid meta-heuristics for capacitated vehicle routing problem. Expert

Systems with Applications, 36(2):1505–1512.

Lindauer, M., Hoos, H., and Hutter, F. (2015). From sequential algorithm

selection to parallel portfolio selection. In International Conference on

Learning and Intelligent Optimization, pages 1–16. Springer.

Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2017). On the runtime

analysis of generalised selection hyper-heuristics for pseudo-boolean

optimisation. In Proceedings of the Genetic and Evolutionary Compu-

tation Conference, pages 849–856.

Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2020a). How the dura-

tion of the learning period affects the performance of random gradient

selection hyper-heuristics. In AAAI, pages 2376–2383.

Lissovoi, A., Oliveto, P. S., and Warwicker, J. A. (2020b). Simple hyper-

heuristics control the neighbourhood size of randomised local search

optimally for leadingones. Evolutionary computation, 28(3):437–461.

Liu, F., Lu, C., Gui, L., Zhang, Q., Tong, X., and Yuan, M. (2023). Heuris-

tics for vehicle routing problem: A survey and recent advances. arXiv

preprint arXiv:2303.04147.

Liu, F. and Zeng, G. (2009). Study of genetic algorithm with reinforce-

ment learning to solve the tsp. Expert Systems with Applications,

36(3):6995–7001.

López, V., Fernández, A., Garćıa, S., Palade, V., and Herrera, F. (2013).

An insight into classification with imbalanced data: Empirical results

and current trends on using data intrinsic characteristics. Information

sciences, 250:113–141.

233

Lopez-Ibanez, M. and Stutzle, T. (2012). The automatic design of multi-

objective ant colony optimization algorithms. IEEE Transactions on

Evolutionary Computation, 16(6):861–875.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search.

Springer.

Lundy, M. and Mees, A. (1986). Convergence of an annealing algorithm.

Mathematical programming, 34(1):111–124.

Malitsky, Y., Sabharwal, A., Samulowitz, H., and Sellmann, M. (2011).

Non-model-based algorithm portfolios for SAT. In International Con-

ference on Theory and Applications of Satisfiability Testing, pages 369–

370. Springer.

Malitsky, Y. and Sellmann, M. (2010). Stochastic offline programming.

International Journal on Artificial Intelligence Tools, 19(04):351–371.

Mandic, D. and Chambers, J. (2001). Recurrent neural networks for pre-

diction: learning algorithms, architectures and stability. Wiley.

Mani, I. and Zhang, I. (2003). knn approach to unbalanced data distribu-

tions: a case study involving information extraction. In Proceedings

of workshop on learning from imbalanced datasets, volume 126. ICML

United States.

Manning, C. and Schutze, H. (1999). Foundations of statistical natural

language processing. MIT press.

Maŕın-Blázquez, J. G. and Schulenburg, S. (2003). A hyper-heuristic frame-

work with xcs: Learning to create novel problem-solving algorithms

constructed from simpler algorithmic ingredients. In Learning classi-

fier systems, pages 193–218. Springer.

234

Maŕın-Blázquez, J. G. and Schulenburg, S. (2006). Multi-step environment

learning classifier systems applied to hyper-heuristics. In Proceedings

of the 8th annual conference on Genetic and evolutionary computation,

pages 1521–1528.

Marinakis, Y. (2012). Multiple phase neighborhood search-grasp for the

capacitated vehicle routing problem. Expert Systems with Applications,

39(8):6807–6815.

Marinakis, Y., Iordanidou, G.-R., and Marinaki, M. (2013). Particle swarm

optimization for the vehicle routing problem with stochastic demands.

Applied Soft Computing, 13(4):1693–1704.

Mascia, F., López-Ibánez, M., Dubois-Lacoste, J., and Stützle, T. (2013).

From grammars to parameters: Automatic iterated greedy design for

the permutation flow-shop problem with weighted tardiness. In Inter-

national Conference on Learning and Intelligent Optimization, pages

321–334. Springer.

Mazzeo, S. and Loiseau, I. (2004). An ant colony algorithm for the ca-

pacitated vehicle routing. Electronic Notes in Discrete Mathematics,

18:181–186.

McClymont, K. and Keedwell, E. (2011a). A single objective variant of the

online selective Markov chain hyper-heuristic (MCHH-S).

McClymont, K. and Keedwell, E. C. (2011b). Markov chain hyper-heuristic

(MCHH) an online selective hyper-heuristic for multi-objective con-

tinuous problems. In Proceedings of the 13th annual conference on

Genetic and evolutionary computation, pages 2003–2010.

Meignan, D., Koukam, A., and Créput, J.-C. (2010). Coalition-based meta-

235

heuristic: a self-adaptive metaheuristic using reinforcement learning

and mimetism. Journal of Heuristics, 16(6):859–879.

Mendoza, J. E., Castanier, B., Guéret, C., Medaglia, A. L., and Velasco,

N. (2010). A memetic algorithm for the multi-compartment vehicle

routing problem with stochastic demands. Computers & Operations

Research, 37(11):1886–1898.

Meng, W. and Qu, R. (2021). Automated design of search algorithms:

Learning on algorithmic components. Expert Systems with Applica-

tions, 185:115493.

Meng, W. and Qu, R. (2023a). Automated design of local search algorithms:

Predicting algorithmic components with lstm. Expert Systems with

Applications, page 121431.

Meng, W. and Qu, R. (2023b). Sequential rule mining for automated design

of meta-heuristics. In Proceedings of the Companion Conference on

Genetic and Evolutionary Computation, pages 1727–1735.

Messelis, T. and De Causmaecker, P. (2014). An automatic algorithm selec-

tion approach for the multi-mode resource-constrained project schedul-

ing problem. European Journal of Operational Research, 233(3):511–

528.

Mester, D., Bräysy, O., and Dullaert, W. (2007). A multi-parametric evolu-

tion strategies algorithm for vehicle routing problems. Expert Systems

with Applications, 32(2):508–517.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and

Teller, E. (1953). Equation of state calculations by fast computing

machines. The journal of chemical physics, 21(6):1087–1092.

236

Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., and Dean, J. (2013).

Distributed representations of words and phrases and their composi-

tionality. In Advances in neural information processing systems, pages

3111–3119.

Mısır, M. and Sebag, M. (2017). Alors: An algorithm recommender system.

Artificial Intelligence, 244:291–314.

Misir, M., Verbeeck, K., De Causmaecker, P., and Berghe, G. V. (2010).

Hyper-heuristics with a dynamic heuristic set for the home care

scheduling problem. In IEEE Congress on Evolutionary Computation,

pages 1–8. IEEE.

Mısır, M., Verbeeck, K., De Causmaecker, P., and Berghe, G. V. (2012). An

intelligent hyper-heuristic framework for chesc 2011. In International

Conference on Learning and Intelligent Optimization, pages 461–466.

Springer.

Mısır, M., Verbeeck, K., De Causmaecker, P., and Berghe, G. V. (2013). An

investigation on the generality level of selection hyper-heuristics under

different empirical conditions. Applied Soft Computing, 13(7):3335–

3353.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Com-

puters & operations research, 24(11):1097–1100.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-

stra, D., and Riedmiller, M. (2013). Playing atari with deep reinforce-

ment learning. arXiv preprint arXiv:1312.5602.

Mole, R. and Jameson, S. (1976). A sequential route-building algorithm

employing a generalised savings criterion. Journal of the Operational

Research Society, 27(2):503–511.

237

Moscato, P. et al. (1989). On evolution, search, optimization, genetic al-

gorithms and martial arts: Towards memetic algorithms. Caltech con-

current computation program, C3P Report, 826(1989):37.

Na, B., Jun, Y., and Kim, B.-I. (2011). Some extensions to the sweep al-

gorithm. The International Journal of Advanced Manufacturing Tech-

nology, 56:1057–1067.

Nagata, Y., Bräysy, O., and Dullaert, W. (2010). A penalty-based edge

assembly memetic algorithm for the vehicle routing problem with time

windows. Computers & operations research, 37(4):724–737.

Nammous, M. K. and Saeed, K. (2019). Natural language processing:

Speaker, language, and gender identification with LSTM. In Advanced

Computing and Systems for Security, pages 143–156. Springer.

Nanry, W. P. and Barnes, J. W. (2000). Solving the pickup and delivery

problem with time windows using reactive tabu search. Transportation

Research Part B: Methodological, 34(2):107–121.

Ngueveu, S. U., Prins, C., and Calvo, R. W. (2010). An effective memetic

algorithm for the cumulative capacitated vehicle routing problem.

Computers & Operations Research, 37(11):1877–1885.

Noble, W. S. (2006). What is a support vector machine? Nature biotech-

nology, 24(12):1565–1567.

Ochoa, G., Hyde, M., Curtois, T., Vazquez-Rodriguez, J. A., Walker, J.,

Gendreau, M., Kendall, G., McCollum, B., Parkes, A. J., Petrovic, S.,

et al. (2012). Hyflex: A benchmark framework for cross-domain heuris-

tic search. In European Conference on Evolutionary Computation in

Combinatorial Optimization, pages 136–147. Springer.

238

Or, I. (1976). TRAVELING SALESMAN TYPE COMBINATORIAL

PROBLEMS AND THEIR RELATION TO THE LOGISTICS OF

REGIONAL BLOOD BANKING. Northwestern University.

Ortiz-Bayliss, J. C., Terashima-Maŕın, H., and Conant-Pablos, S. E.

(2013a). A supervised learning approach to construct hyper-heuristics

for constraint satisfaction. In Mexican Conference on Pattern Recog-

nition, pages 284–293. Springer.

Ortiz-Bayliss, J. C., Terashima-Maŕın, H., and Conant-Pablos, S. E.

(2013b). Using learning classifier systems to design selective hyper-

heuristics for constraint satisfaction problems. In 2013 IEEE Congress

on Evolutionary Computation, pages 2618–2625. IEEE.

Ortiz-Bayliss, J. C., Terashima-Maŕın, H., Ross, P., and Conant-Pablos,

S. E. (2011). Evolution of neural networks topologies and learning pa-

rameters to produce hyper-heuristics for constraint satisfaction prob-

lems. In Proceedings of the 13th annual conference companion on Ge-

netic and evolutionary computation, pages 261–262.

Osman, I. H. (1993). Metastrategy simulated annealing and tabu search

algorithms for the vehicle routing problem. Annals of operations re-

search, 41:421–451.

Osman, I. H. and Wassan, N. A. (2002). A reactive tabu search meta-

heuristic for the vehicle routing problem with back-hauls. Journal of

Scheduling, 5(4):263–285.

Özcan, E., Bilgin, B., and Korkmaz, E. E. (2008). A comprehensive analysis

of hyper-heuristics. Intelligent Data Analysis, 12(1):3–23.

O’Mahony, E., Hebrard, E., Holland, A., Nugent, C., and O’Sullivan, B.

(2008). Using case-based reasoning in an algorithm portfolio for con-

239

straint solving. In Irish conference on artificial intelligence and cogni-

tive science, pages 210–216.

Pappa, G. L., Ochoa, G., Hyde, M. R., Freitas, A. A., Woodward, J.,

and Swan, J. (2014). Contrasting meta-learning and hyper-heuristic

research: the role of evolutionary algorithms. Genetic Programming

and Evolvable Machines, 15:3–35.

Paraskevopoulos, D. C., Repoussis, P. P., Tarantilis, C. D., Ioannou, G.,

and Prastacos, G. P. (2008). A reactive variable neighborhood tabu

search for the heterogeneous fleet vehicle routing problem with time

windows. Journal of Heuristics, 14(5):425–455.

Pellegrini, P. and Birattari, M. (2006). The relevance of tuning the parame-

ters of metaheuristics. In Technical Report. Technical report, IRIDIA,

Université Libre de Bruxelles.

Peng, F., Tang, K., Chen, G., and Yao, X. (2010). Population-based al-

gorithm portfolios for numerical optimization. IEEE Transactions on

evolutionary computation, 14(5):782–800.

Penna, P. H. V., Subramanian, A., and Ochi, L. S. (2013). An iterated local

search heuristic for the heterogeneous fleet vehicle routing problem.

Journal of Heuristics, 19(2):201–232.

Petke, J., Haraldsson, S. O., Harman, M., Langdon, W. B., White, D. R.,

and Woodward, J. R. (2017). Genetic improvement of software: a com-

prehensive survey. IEEE Transactions on Evolutionary Computation,

22(3):415–432.

Peya, Z. J., Akhand, M., Sultana, T., and Rahman, M. H. (2019). Distance

based sweep nearest algorithm to solve capacitated vehicle routing

240

problem. International Journal of Advanced Computer Science and

Applications, 10(10):259–264.

Pihera, J. and Musliu, N. (2014). Application of machine learning to algo-

rithm selection for tsp. In 2014 IEEE 26th International Conference

on Tools with Artificial Intelligence, pages 47–54. IEEE.

Pillay, N. (2021). Automated design (autodes): Current trends and fu-

ture research directions. Automated Design of Machine Learning and

Search Algorithms, pages 185–187.

Pillay, N. and Beckedahl, D. (2017). EvoHyp-a Java toolkit for evolutionary

algorithm hyper-heuristics. In 2017 IEEE Congress on Evolutionary

Computation (CEC), pages 2706–2713. IEEE.

Pillay, N. and Qu, R. (2018). Hyper-Heuristics: Theory and Applications.

Springer.

Pillay, N., Qu, R., Pillay, N., and Qu, R. (2018a). Vehicle routing problems.

Hyper-Heuristics: Theory and Applications, pages 51–60.

Pillay, N., Qu, R., Srinivasan, D., Hammer, B., and Sorensen, K. (2018b).

Automated design of machine learning and search algorithms [guest

editorial]. IEEE Computational intelligence magazine, 13(2):16–17.

Pisinger, D. and Ropke, S. (2007). A general heuristic for vehicle routing

problems. Computers & operations research, 34(8):2403–2435.

Polacek, M., Hartl, R. F., Doerner, K., and Reimann, M. (2004). A variable

neighborhood search for the multi depot vehicle routing problem with

time windows. Journal of heuristics, 10:613–627.

Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimiza-

tion: An overview. Swarm intelligence, 1:33–57.

241

Pomerol, J.-C. (1997). Artificial intelligence and human decision making.

European Journal of Operational Research, 99(1):3–25.

Potvin, J.-Y. and Bengio, S. (1996). The vehicle routing problem with time

windows part ii: genetic search. INFORMS journal on Computing,

8(2):165–172.

Potvin, J.-Y., Duhamel, C., and Guertin, F. (1996). A genetic algorithm

for vehicle routing with backhauling. Applied Intelligence, 6:345–355.

Potvin, J.-Y. and Rousseau, J.-M. (1993). A parallel route building algo-

rithm for the vehicle routing and scheduling problem with time win-

dows. European Journal of Operational Research, 66(3):331–340.

Potvin, J.-Y. and Rousseau, J.-M. (1995). An exchange heuristic for route-

ing problems with time windows. Journal of the Operational Research

Society, 46(12):1433–1446.

Prins, C. (2004). A simple and effective evolutionary algorithm for the vehi-

cle routing problem. Computers & Operations Research, 31(12):1985–

2002.

Qi, Y., Hou, Z., Li, H., Huang, J., and Li, X. (2015). A decomposition

based memetic algorithm for multi-objective vehicle routing problem

with time windows. Computers & Operations Research, 62:61–77.

Qu, R. (2021a). A general model for automated algorithm design. In

Automated Design of Machine Learning and Search Algorithms, pages

29–43. Springer.

Qu, R. (2021b). Recent developments of automated machine learning and

search techniques. In Automated Design of Machine Learning and

Search Algorithms, pages 1–9. Springer.

242

Qu, R., Kendall, G., and Pillay, N. (2020). The general combinatorial

optimization problem: Towards automated algorithm design. IEEE

Computational Intelligence Magazine, 15(2):14–23.

Ramos, I. C., Goldbarg, M. C., Goldbarg, E. G., and Neto, A. D. D. (2005).

Logistic regression for parameter tuning on an evolutionary algorithm.

In 2005 IEEE Congress on Evolutionary Computation, volume 2, pages

1061–1068. IEEE.

Rao, G., Huang, W., Feng, Z., and Cong, Q. (2018). LSTM with sentence

representations for document-level sentiment classification. Neurocom-

puting, 308:49–57.

Reimann, M., Doerner, K., and Hartl, R. F. (2004). D-ants: Savings based

ants divide and conquer the vehicle routing problem. Computers &

Operations Research, 31(4):563–591.

Remde, S., Cowling, P., Dahal, K., Colledge, N., and Selensky, E. (2012).

An empirical study of hyperheuristics for managing very large sets

of low level heuristics. Journal of the operational research society,

63(3):392–405.

Roberts, M. and Howe, A. E. (2006). Directing a portfolio with learning.

In AAAI 2006 Workshop on Learning for Search, pages 129–135.

Rochat, Y. and Taillard, É. D. (1995). Probabilistic diversification and

intensification in local search for vehicle routing. Journal of heuristics,

1:147–167.

Ropke, S. and Pisinger, D. (2006). An adaptive large neighborhood search

heuristic for the pickup and delivery problem with time windows.

Transportation science, 40(4):455–472.

243

Ross, P., Schulenburg, S., Maŕın-Bläzquez, J. G., and Hart, E. (2002).

Hyper-heuristics: learning to combine simple heuristics in bin-packing

problems. In Proceedings of the 4th Annual Conference on Genetic

and Evolutionary Computation, pages 942–948.

Rossi-Doria, O., Sampels, M., Birattari, M., Chiarandini, M., Dorigo,

M., Gambardella, L. M., Knowles, J., Manfrin, M., Mastrolilli, M.,

Paechter, B., et al. (2002). A comparison of the performance of dif-

ferent metaheuristics on the timetabling problem. In International

conference on the practice and theory of automated timetabling, pages

329–351. Springer.

Rousseau, L.-M., Gendreau, M., and Pesant, G. (2002). Using constraint-

based operators to solve the vehicle routing problem with time win-

dows. Journal of heuristics, 8:43–58.

Schirmer, A. (2000). Case-based reasoning and improved adaptive search

for project scheduling. Naval Research Logistics (NRL), 47(3):201–222.

Schulze, J. and Fahle, T. (1999). A parallel algorithm for the vehicle routing

problem with time window constraints. annals of operations research,

86(0):585–607.

Shafi, K., Bender, A., and Abbass, H. A. (2012). Multi objective learning

classifier systems based hyperheuristics for modularised fleet mix prob-

lem. In Asia-Pacific Conference on Simulated Evolution and Learning,

pages 381–390. Springer.

Shaw, P. (1997). A new local search algorithm providing high quality

solutions to vehicle routing problems. APES Group, Dept of Computer

Science, University of Strathclyde, Glasgow, Scotland, UK, 46.

244

Shaw, P. (1998). Using constraint programming and local search meth-

ods to solve vehicle routing problems. In Principles and Practice

of Constraint Programming—CP98: 4th International Conference,

CP98 Pisa, Italy, October 26–30, 1998 Proceedings 4, pages 417–431.

Springer.

SINTEF. VRPTW benchmark problems, on the sintef transport opti-

misation portal. https://www.sintef.no/projectweb/top/vrptw/

solomon-benchmark/100-customers/. Published April 18, 2008.

SINTEF. VRPTW benchmark problems, on the sintef transport opti-

misation portal. https://www.sintef.no/projectweb/top/vrptw/

homberger-benchmark/1000-customers/. Published April 18, 2008.

Skydt, M. R., Bang, M., and Shaker, H. R. (2021). A probabilistic se-

quence classification approach for early fault prediction in distribution

grids using long short-term memory neural networks. Measurement,

170:108691.

Smagulova, K. and James, A. P. (2020). Overview of long short-term

memory neural networks. In Deep Learning Classifiers with Memristive

Networks, pages 139–153. Springer.

Smith, S. F., Lassila, O., and Becker, M. (1996). Configurable, mixed-

initiative systems for planning and scheduling. Advanced Planning

Technology, pages 235–241.

Solomon, M. M. (1987). Algorithms for the vehicle routing and schedul-

ing problems with time window constraints. Operations research,

35(2):254–265.

Soria-Alcaraz, J. A., Ochoa, G., Sotelo-Figeroa, M. A., and Burke, E. K.

(2017). A methodology for determining an effective subset of heuris-

245

https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/
https://www.sintef.no/projectweb/top/vrptw/solomon-benchmark/100-customers/
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/1000-customers/
https://www.sintef.no/projectweb/top/vrptw/homberger-benchmark/1000-customers/

tics in selection hyper-heuristics. European Journal of Operational

Research, 260(3):972–983.

Srikant, R. and Agrawal, R. (1996). Mining sequential patterns: General-

izations and performance improvements. In International conference

on extending database technology, pages 1–17. Springer.

Stone, C., Hart, E., and Paechter, B. (2021). A cross-domain method

for generation of constructive and perturbative heuristics. Automated

Design of Machine Learning and Search Algorithms, pages 91–107.

Sui, J., Ding, S., Liu, R., Xu, L., and Bu, D. (2021). Learning 3-opt heuris-

tics for traveling salesman problem via deep reinforcement learning.

In Asian Conference on Machine Learning, pages 1301–1316. PMLR.

Sutton, R. S., Barto, A. G., et al. (1998). Introduction to reinforcement

learning, volume 135. MIT press Cambridge.

Swan, J., Özcan, E., and Kendall, G. (2011). Hyperion–a recursive hyper-

heuristic framework. In International Conference on Learning and

Intelligent Optimization, pages 616–630. Springer.

Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science,

240(4857):1285–1293.

Taillard, É. (1993). Parallel iterative search methods for vehicle routing

problems. Networks, 23(8):661–673.

Taillard, É., Badeau, P., Gendreau, M., Guertin, F., and Potvin, J.-Y.

(1997). A tabu search heuristic for the vehicle routing problem with

soft time windows. Transportation science, 31(2):170–186.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation. John

Wiley & Sons.

246

Tan, K. C., Lee, L. H., Zhu, Q., and Ou, K. (2001). Heuristic methods for

vehicle routing problem with time windows. Artificial intelligence in

Engineering, 15(3):281–295.

Tan, S.-Y. and Yeh, W.-C. (2021). The vehicle routing problem: State-of-

the-art classification and review. Applied Sciences, 11(21):10295.

Tang, K., Peng, F., Chen, G., and Yao, X. (2014). Population-based al-

gorithm portfolios with automated constituent algorithms selection.

Information Sciences, 279:94–104.

Terashima-Maŕın, H., Flores-Alvarez, E., and Ross, P. (2005). Hyper-

heuristics and classifier systems for solving 2d-regular cutting stock

problems. In Proceedings of the 7th annual conference on Genetic and

evolutionary computation, pages 637–643.

Thabtah, F. and Cowling, P. (2008). Mining the data from a hyperheuristic

approach using associative classification. Expert systems with applica-

tions, 34(2):1093–1101.

Thangiah, S. R. (1993). Vehicle routing with time windows using genetic

algorithms. Citeseer.

Thangiah, S. R., Nygard, K. E., and Juell, P. L. (1991). Gideon: A genetic

algorithm system for vehicle routing with time windows. In Proceedings

The Seventh IEEE Conference on Artificial Intelligence Application,

pages 322–323. IEEE Computer Society.

Tian, H., Wang, X.-F., Mohammad, M. A., Gou, G.-Y., Wu, F., Yang,

Y., and Ren, T.-L. (2018). A hardware Markov chain algorithm real-

ized in a single device for machine learning. Nature communications,

9(1):4305.

Toth, P. and Vigo, D. (2002). The vehicle routing problem. SIAM.

247

Turky, A., Sabar, N. R., Dunstall, S., and Song, A. (2020). Hyper-heuristic

local search for combinatorial optimisation problems. Knowledge-

Based Systems, page 106264.

Tyasnurita, R., Özcan, E., and John, R. (2017). Learning heuristic se-

lection using a time delay neural network for open vehicle routing.

In 2017 IEEE Congress on Evolutionary Computation (CEC), pages

1474–1481. IEEE.

Tyasnurita, R., Özcan, E., Shahriar, A., and John, R. (2015). Improv-

ing performance of a hyper-heuristic using a multilayer perceptron for

vehicle routing.

Urbanowicz, R. J. and Moore, J. H. (2009). Learning classifier systems:

a complete introduction, review, and roadmap. Journal of Artificial

Evolution and Applications, 2009.

Van Breedam, A. (1994). An Analysis of the Behavior of Heuristics for the

Vehicle Routing Problem for a Selectrion of Problems with Vehicle-

related, Customer-related, and Time-related Constraints. RUCA.

Van Breedam, A. (1995). Improvement heuristics for the vehicle routing

problem based on simulated annealing. European Journal of Opera-

tional Research, 86(3):480–490.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,

A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need.

Advances in neural information processing systems, 30.

Vesselinova, N., Steinert, R., Perez-Ramirez, D. F., and Boman, M. (2020).

Learning combinatorial optimization on graphs: A survey with appli-

cations to networking. IEEE Access, 8:120388–120416.

248

Vidal, T., Crainic, T. G., Gendreau, M., and Prins, C. (2013). A hybrid ge-

netic algorithm with adaptive diversity management for a large class of

vehicle routing problems with time-windows. Computers & operations

research, 40(1):475–489.

Vrakas, D., Tsoumakas, G., Bassiliades, N., and Vlahavas, I. P. (2003).

Learning rules for adaptive planning. In ICAPS, pages 82–91.

Walker, J. D., Ochoa, G., Gendreau, M., and Burke, E. K. (2012). Vehicle

routing and adaptive iterated local search within the HyFlex hyper-

heuristic framework. In International Conference on Learning and

Intelligent Optimization, pages 265–276. Springer.

Wan, H., Guo, S., Yin, K., Liang, X., and Lin, Y. (2020). CTS-

LSTM: LSTM-based neural networks for correlatedtime series predic-

tion. Knowledge-Based Systems, 191:105239.

Wang, J., Han, J., and Li, C. (2007). Frequent closed sequence mining

without candidate maintenance. IEEE Transactions on Knowledge

and Data Engineering, 19(8):1042–1056.

Wark, P. and Holt, J. (1994). A repeated matching heuristic for the ve-

hicle routeing problem. Journal of the Operational Research Society,

45(10):1156–1167.

Wassan, N. A., Wassan, A. H., and Nagy, G. (2008). A reactive tabu search

algorithm for the vehicle routing problem with simultaneous pickups

and deliveries. Journal of combinatorial optimization, 15(4):368–386.

Willard, J. (1989). Vehicle routing using r-optimal tabu search. Master’s

thesis, The ManagementSchool, ImperialCollege, London.

Wong, R. T. (1983). Combinatorial optimization: Algorithms and complex-

249

ity (Christos H. Papadimitriou and Kenneth Steiglitz). SIAM Review,

25(3):424.

Woodward, J. R., Johnson, C. G., and Brownlee, A. E. (2016). Connect-

ing automatic parameter tuning, genetic programming as a hyper-

heuristic, and genetic improvement programming. In Proceedings of

the 2016 on Genetic and Evolutionary Computation Conference Com-

panion, pages 1357–1358.

Wu, Y., Song, W., Cao, Z., Zhang, J., and Lim, A. (2021). Learning im-

provement heuristics for solving routing problems. IEEE transactions

on neural networks and learning systems, 33(9):5057–5069.

Xing, Z., Pei, J., and Keogh, E. (2010). A brief survey on sequence classi-

fication. ACM Sigkdd Explorations Newsletter, 12(1):40–48.

Xu, J. and Kelly, J. P. (1996). A network flow-based tabu search heuristic

for the vehicle routing problem. Transportation science, 30(4):379–393.

Xu, L., Hoos, H., and Leyton-Brown, K. (2010). Hydra: Automatically

configuring algorithms for portfolio-based selection. In Twenty-Fourth

AAAI Conference on Artificial Intelligence. Citeseer.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2007). SATzilla-07:

the design and analysis of an algorithm portfolio for SAT. In Interna-

tional Conference on Principles and Practice of Constraint Program-

ming, pages 712–727. Springer.

Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2008). SATzilla:

portfolio-based algorithm selection for SAT. Journal of artificial in-

telligence research, 32:565–606.

Yates, W. B. and Keedwell, E. C. (2017). Offline learning for selection

250

hyper-heuristics with Elman networks. In International Conference on

Artificial Evolution (Evolution Artificielle), pages 217–230. Springer.

Yellow, P. (1970). A computational modification to the savings method

of vehicle scheduling. Journal of the Operational Research Society,

21(2):281–283.

Yi, W., Qu, R., Jiao, L., and Niu, B. (2022). Automated design of meta-

heuristics using reinforcement learning within a novel general search

framework. IEEE Transactions on Evolutionary Computation.

Yuen, S. Y., Lou, Y., and Zhang, X. (2019). Selecting evolutionary algo-

rithms for black box design optimization problems. Soft Computing,

23(15):6511–6531.

Zeyer, A., Bahar, P., Irie, K., Schlüter, R., and Ney, H. (2019). A com-

parison of transformer and LSTM encoder decoder models for asr. In

2019 IEEE Automatic Speech Recognition and Understanding Work-

shop (ASRU), pages 8–15. IEEE.

Zhao, Q. and Bhowmick, S. S. (2003). Sequential pattern mining: A survey.

ITechnical Report CAIS Nayang Technological University Singapore,

1(26):135.

Zhao, Y. W., Wu, B., Wang, W., Ma, Y. L., Wang, W., and Sun, H.

(2004). Particle swarm optimization for vehicle routing problem with

time windows. In Materials Science Forum, volume 471, pages 801–

805. Trans Tech Publ.

Zheng, J., He, K., Zhou, J., Jin, Y., and Li, C.-M. (2021). Combining

reinforcement learning with lin-kernighan-helsgaun algorithm for the

traveling salesman problem. In Proceedings of the AAAI conference

on artificial intelligence, volume 35, pages 12445–12452.

251

Zhou, J., Wu, Y., Cao, Z., Song, W., Zhang, J., and Chen, Z. (2023). Learn-

ing large neighborhood search for vehicle routing in airport ground

handling. IEEE Transactions on Knowledge and Data Engineering.

Zhou, L. (2013). Performance of corporate bankruptcy prediction models

on imbalanced dataset: The effect of sampling methods. Knowledge-

Based Systems, 41:16–25.

252

	Abstract
	Acknowledgements
	Introduction
	Background and motivations
	Research aim and objectives
	Main works and contributions
	Thesis outlines
	List of publications

	Related Works
	The vehicle routing problem
	Search algorithms for Vehicle Routing Problems
	A review of learning in automated design of search algorithms
	Machine learning
	Summary

	AutoGCOP: A General Framework for Automated Design of Local Search Algorithms
	Introduction
	The AutoGCOP framework with extended GCOP model
	Effectiveness of algorithmic components on VRPTW
	Conclusions

	Online learning to predict algorithmic components for automated algorithm composition
	Introduction
	Learning models
	Effectiveness of the learning models on VRPTW
	Concluisons

	Offline learning to predict algorithmic components for automated algorithm composition
	Introduction
	The new machine learning task on algorithm composition
	Data collection and process for machine learning
	Learning from algorithmic components
	Findings of classification methods on automated algorithm composition
	Conclusions and discussions

	Sequential rule mining on the compositions of algorithmic components
	Introduction
	Data of algorithm design for data mining
	Automated algorithm design with sequential rule mining
	Findings of sequential rules for algorithm design
	Performance of sequential rules for automated algorithm composition
	Conclusions

	Conclusions and future works
	Conclusions
	Future research directions

	Appendices
	Machine Learning for Evolutionary Computation - the Vehicle Routing Problems Competition
	Introduction
	Description of the competition
	Solution evaluator
	Summary

	Bibliography

