
i 
 

 
 

 

Mining Time-aware Actor-level Evolution Similarity 
for Link Prediction in Dynamic Network 

 
 
 
 
 
  
 
 
 

 
 

   Faculty of Engineering and Information   
technology 

 
 
 
 
 

    Nazim Ahmed Choudhury 

 
 

Submitted in fulfilment of the requirements of the degree 
Doctor of Philosophy August 2018 

 

  



ii 
 

 



iii 
 

Abstract 

Background 

Topological evolution over time in a dynamic network triggers both the addition and deletion of 

actors and the links among them. A dynamic network can be represented as a time series of 

network snapshots where each snapshot represents the state of the network over an interval of 

time (for example, a minute, hour or day). The duration of each snapshot denotes the temporal 

scale/sliding window of the dynamic network and all the links within the duration of the window 

are aggregated together irrespective of their order in time. The inherent trade-off in selecting the 

timescale in analysing dynamic networks is that choosing a short temporal window may lead to 

chaotic changes in network topology and measures (for example, the actors’ centrality measures 

and the average path length); however, choosing a long window may compromise the study and 

the investigation of network dynamics. Therefore, to facilitate the analysis and understand 

different patterns of actor-oriented evolutionary aspects, it is necessary to define an optimal 

window length (temporal duration) with which to sample a dynamic network.  

In addition to determining the optical temporal duration, another key task for 

understanding the dynamics of evolving networks is being able to predict the likelihood of future 

links among pairs of actors given the existing states of link structure at present time. This 

phenomenon is known as the link prediction problem in network science. Instead of considering 

a static state of a network where the associated topology does not change, dynamic link 

prediction attempts to predict emerging links by considering different types of 

historical/temporal information, for example the different types of temporal evolutions 

experienced by the actors in a dynamic network due to the topological evolution over time, 
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known as actor dynamicities. Although there has been some success in developing various 

methodologies and metrics for the purpose of dynamic link prediction, mining actor-oriented 

evolutions to address this problem has received little attention from the research community. In 

addition to this, the existing methodologies were developed without considering the sampling 

window size of the dynamic network, even though the sampling duration has a large impact on 

mining the network dynamics of an evolutionary network. Therefore, although the principal 

focus of this thesis is link prediction in dynamic networks, the optimal sampling window 

determination was also considered.  

Method 

Considering the trade-offs in selecting the time scale with which to sample a dynamic network, 

as described above, this thesis developed a novel approach to determine an optimal sliding 

window by considering a variance analysis of network positional evolutions experienced by the 

actors in the dynamic network. The determination of an optimal time-scale was followed by 

calculations of three different actor-level dynamicities (structural, neighbourhood and 

community) in an optimally sampled dynamic network. Computing the similarity between a pair 

of actors is an intuitive and dominant solution to the problem of link prediction. Therefore, 

similarities between the actor-level evolutions experienced by a pair of actors were computed to 

measure the likelihood of future link formation between them. Three methods were used to 

compute evolutionary similarity: dynamic time warping, cross-correlation and the Bray-Curtis 

ecological similarity). Another dynamic feature was developed by considering evolutionary 

community-aware network structural information in dynamic networks. In a supervised dynamic 

link prediction setup, a total of nine dynamic similarity metrics/dynamic features were used for 
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the purpose of dynamic prediction to determine if evolutionary similarity between actor-pairs can 

measure the likelihood of future link formation between those pairs. 

Result   

By exploiting actor-level evolutionary network-positional information, this study developed a 

novel algorithm to discretise dynamic networks. The rationale behind using actor-level measures 

was that choosing an actor-level measure would create an equilibrium distribution of actor-level 

network activities over time.  The algorithm developed could work in the absence of any actor-

level attributes, was applicable to any size of network regardless of size and actor count and was 

also computationally inexpensive. Different validation methods were proposed to test the 

optimality of the identified window. The algorithm was found to be effective in all types of 

networks with any kind of candidate temporal window sizes.  

The dynamic features constructed by computing the similarities of micro- and meso-level 

evolutionary aspects of actors were also found persuasive in the dynamic link prediction task. 

Considering a list of evolutionary similarity-based features, it was observed that they perform 

better than the existing prediction methodologies used in static networks and time series-based 

dynamic link prediction methods. Further, it was found community-aware evolutionary 

information is advantageous in the task of predicting dynamic links. Furthermore, although both 

similar and dissimilar actors participate in future links in regard to their evolution similarity, 

actors with a positive correlation between their evolutionary aspects have better chances of 

forming emerging links. In relation to the different performance metrics used in this thesis, it was 

found that these features are not only suitable for the dynamic link prediction task (for example, 
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predicting the purchasing patterns of online customers, the growth of terrorist networks, etc.) but 

that they can also be used to understand the underlying network growth effectively. 

Conclusion 

In network science, it is intuitively presumed that similar actors form links among themselves. 

Considering the impact of similarity on link formation, this study computed the evolutionary 

similarities between different types of actor-level dynamicity measures. Since the rate of 

evolutions depends on optimal sampling of the corresponding dynamic network irrespective of 

network structure, neighbourhood and community, it is imperative to define the optimal 

sampling duration for the dynamic network. It was also observed that dynamic similarity 

metrics/dynamic features constructed in optimally sampled network snapshots perform well in 

prediction tasks when used in a supervised link prediction model for dynamic networks.  
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𝐸𝐸 (𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝐻𝐻𝑀𝑀, and 𝐺𝐺𝐹𝐹𝐹𝐹. Both these metrics compute similarity between a 
pair of actors by considering evolutionary community-aware structural 
information. The first uses a hierarchical agglomerative, whereas the second uses 
the Louvain community detection method. 
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Figure 8.5: Binned distribution of three dynamic feature values in three network 
datasets 𝐺𝐺𝐻𝐻𝑀𝑀, 𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, and 𝐺𝐺𝐹𝐹𝐹𝐹 for positively-labeled actor-pairs in the 
corresponding classification datasets. The chosen features are the best 
performing features in the respective datasets. These include  𝑠𝑠𝑆𝑆𝑆𝑆8

ℎ(𝑎𝑎, 𝑏𝑏) in 
𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 and 𝑠𝑠𝑆𝑆𝑆𝑆8

𝐸𝐸 (𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝐻𝐻𝑀𝑀, and 𝐺𝐺𝐹𝐹𝐹𝐹. 
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Figure 8.6: The four best performing correlation-based features in four datasets 
(i.e., 𝐺𝐺𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸, 𝐺𝐺𝑈𝑈𝑈𝑈𝑀𝑀, 𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀 and 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹). These features measure the similarity between 
actor pairs by computing correlation between actor-level evolutionary information. 
𝑆𝑆𝑆𝑆𝑆𝑆4(𝑎𝑎, 𝑏𝑏) denotes the correlation between temporal dynamicity values of actor 
pairs, whereas 𝑆𝑆𝑆𝑆𝑆𝑆5(𝑎𝑎, 𝑏𝑏) denotes the correlation between actor-level 
neighborhood dynamicity values. 
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1.1 Introduction 

Link prediction is a fundamental task in a complex networked system, such as a social 

network, where the principal task is to predict the future associations or interactions between 

networked entities, individuals or actors. These associations are driven by mutual interests 

inherent to a group of actors [1]. In network science, the principal goal of link prediction is to 

estimate the likelihood of new link formation [2]. However, most real-life systems are 

described as evolving networks, where entities (actors) and links (edges) may appear and 

disappear or attributes of entities and links may vary over time [3]. These evolving networks 

are called dynamic networks and they can be represented as a time series of network 

snapshots. In each snapshot, a specific temporal duration is considered to aggregate links 

regardless of their order of appearances. The aim of link prediction in dynamic networks is to 

predict future information based on historical data and this information is considered valuable 

in applications including national security, online recommendations, and organizational 

studies. In addition to this, link prediction has important practical significance. For example, 

it can support modelling information diffusion in online social networks, recommender 

systems for product recommendation and friend or co-author recommendations in a social 

(collaboration) network, and predict future interactions among biological entities that are 

expensive to discern through laboratory experiments [4]. Most link prediction strategies 

consider a static version of the corresponding network where the actor and link structures do 

not change. This means that the prediction methodologies are insufficient for the task of link 

prediction in dynamic networks. Although researchers have used time series information for 

this purpose, they have only considered temporal relational changes (for example, when 

friends of friends become friends) or the characteristics of pairs of actors (dyadic covariates) 

instead of the temporal network characteristics of the actors (actor-level evolutionary 

covariates). Further, most link prediction methodologies in dynamic networks overlook the 
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problem of defining an optimal sampling resolution to discretise the corresponding dynamic 

networks. Considering these two issues, this research developed a supervised link prediction 

strategy in dynamic networks by using some novel features. These novel features denote the 

similarity between actors in regard to the different evolutionary aspects demonstrated by 

them in dynamic networks. Further, these evolutionary aspects were quantified in an 

optimally sampled dynamic network. 

This chapter introduces the thesis. First, background information on link prediction is 

provided, followed by related definitions, a formulation of the research problem and a 

description of the research issues explored in this thesis. This background discussion is 

followed by a description of the motivation behind this research in regard to link prediction in 

dynamic networks, also known as dynamic link prediction, from the perspectives of dynamic 

network analysis and link prediction methodologies. It also summarizes the rationale behind 

the research objectives of this thesis. The chapter concludes with an outline of the thesis, 

explaining the different topics discussed in the subsequent chapters.  

1.2 Background 

1.2.1   Networks 

A network is a graph structure that consists of a set of nodes, also known as vertices or actors, 

and a set of ties among these actors, known as links. Alternatively, a network is a pattern of 

interconnections, also known as link structures, among a set of network components known 

as nodes, actors or vertices. Mathematically, a network can be formally defined as a 

graph  𝐺𝐺 =  (𝑉𝑉,𝐸𝐸)  that consists of the set 𝑉𝑉  of nodes and the set 𝐸𝐸  of edges, which are 

unordered pairs of elements of 𝑉𝑉. In this thesis, the words, ‘‘graph’ and ‘network’ are used 

interchangeably.  
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Nowadays, a network is a prevalent abstract structure that is used to understand and 

represent complex systems. Examples of their use include a society that requires billions of 

individuals to cooperate in order to run smoothly, communication infrastructure that 

integrates numerous mobile phones with computers and satellites, cognitive systems that 

require the coherent activity of billions of neurons in our brain and the biological existence of 

humans, which is dependent on seamless interactions between thousands of genes and 

metabolites within our cells. Referring again to these examples of systems that exist all 

around us, nodes, vertices or actors in networks can be individuals, mobile phones, transport 

vehicles, communication devices, cells, proteins, neurons, animals or any other entity. Links 

or edges can be any type of connection, relationship or interaction between these nodes, 

including societal, metabolic, infrastructural or even co-appearances.  

1.2.2 Network Topology 

In general, topology means the way in which the constituents of a system are interrelated or 

organized. Network topology is defined by a complete description of the way the components 

of a network (i.e., the nodes/actors) are connected to each other. There are three fundamental 

attributes of a network topology: degree, clustering and path length [5]. The topology of 

networks has been the subject of intensive attention, since it plays an extremely important 

role in many systems and processes including the flow of data in computer networks [6], the 

energy flow in food webs [7] and the diffusion of information in social networks [8]. 

1.2.3 Network Communities 

Most real-world networks demonstrate inhomogeneity and reveal a high level of order and 

organization instead of randomness [9]. Actors in these networks demonstrate a community 

structure where some groups of actors have a higher density of links among them and other 

groups have a lower density of links. These densely connected groups of actors organized in 

networks are commonly referred to as network communities, clusters or modules [10]. J. 
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Yang and Leskovec identify various reasons why actors form groups in networks  [11]. These 

include individuals forming families, villages, groups and associations to organize a society, 

topically related webpages on the internet densely linking among themselves and, finally, 

groups of actors in metabolic networks that are related to functional units, such as pathways 

and cycles.   

1.2.4 Static and Dynamic Networks 

In network analyses, a network can be static or dynamic. In a static network, the actors, links, 

corresponding network topology and communities of actor never change. No new actors or 

links are added and no existing actors and links get deleted. In contrast, in a dynamic 

network, new actors are added, new relationships are established between actors, existing 

actors disappear, and old relationships dissolve over time. These simultaneous appearances 

and disappearances of actors and links trigger alterations of corresponding network 

topologies and communities of actors in a dynamic network. Lu, Savas, Tang and Dhillon 

identified four different factors that contribute towards these dynamics: relational changes 

(for example, friends of friends become friends), characteristics and/or attributes of actors 

(i.e., actor covariates), characteristics or properties of pairs of actors (i.e., dyadic covariates) 

and random unexplained influences [12]. 

A dynamic network is comprised of different static network snapshots observed at 

different points in time. These observed networks are called short interval networks (SINs). 

Figure (1.1) shows an abstract representation of dynamic network consisting of five SINs at 

five different timestamps (i.e., 𝑡𝑡 = 1, 2, 3, 4, 5). A dynamic network 𝐺𝐺𝑇𝑇 = (𝑉𝑉,𝐸𝐸𝑇𝑇) consists of 

a set of uniquely labeled actors 𝑉𝑉 = [𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … 𝑣𝑣𝑛𝑛] and 𝐸𝐸𝑇𝑇 = [𝑒𝑒𝑡𝑡(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 , 𝑡𝑡)|𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉; 𝑡𝑡 ∈

𝑇𝑇] where 𝑡𝑡 represents the timestamp of link 𝑒𝑒 between actor-pair 𝑒𝑒(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗). In addition to this, 

both the static and dynamic networks can be undirected where 𝑒𝑒 = (𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) and 𝑒𝑒 =
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(𝑣𝑣𝑗𝑗 , 𝑣𝑣𝑖𝑖) denotes identical links or is directed where two links are not same. Thus, a dynamic 

network is composed of an evolutionary sequence of network snapshots  𝐺𝐺𝑇𝑇 = [𝐺𝐺𝑡𝑡1 ,

𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏, 𝐺𝐺𝑡𝑡′]  where 𝐺𝐺𝑡𝑡𝑖𝑖  denotes an individual SIN or a static 

network at time 𝑡𝑡𝑖𝑖. In this thesis, the words, ‘dynamic’, ‘temporal’ and ‘longitudinal’ are used 

interchangeably. 

In temporal (dynamic) networks, there are three aspects of change over time. The first 

aspect is the temporal changes of associated attributes of actors and links. The second aspect 

is when the number of actors remain unchanged but the links change over time, represented 

by 𝐺𝐺𝑇𝑇 = (𝑉𝑉,𝐸𝐸𝑇𝑇). The third aspect is when both the actors and links experience temporal 

changes  𝐺𝐺𝑇𝑇 = (𝑉𝑉𝑇𝑇,𝐸𝐸𝑇𝑇) . This study considers the second aspect of the dynamic network 

where the number of actors remains unchanged but the links change over time. 

The temporal arrival and departure of links lead a dynamic network to grow or shrink 

over time. The process of link formation is considered as a tenet behind the growth and 

evolution of a dynamic network [13,14]. This process of link formation considers the 

question of which actors will form associations with each other. In network science, this 

question is addressed by the link prediction problem.   

 

Figure 1.1: An abstraction of a dynamic network in which the state of the network 

changes over time. Each network snapshot at each individual timestamp is known as a 

short interval network (SIN). 
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1.2.5 Link prediction 

The task of link prediction is to predict the occurrence of a future link between two actors 

based on actors’ observed links and attributes. Mathematically, given a structure of a network 

at time 𝑡𝑡, link prediction models predict which new links are formed in structure at time 𝑡𝑡 +

1. The link prediction problem is also considered important for mining and analysing the 

evolution of social networks [15]. Link prediction methods use the properties of the network, 

such as link existence, link weights, common neighbours, node degree and clustering 

coefficients, to predict the link between a pair of actors [16]. There are three categories of 

algorithms that are predominantly used in network link prediction: similarity-based 

algorithms, maximum likelihood models and probabilistic models [17]; however, most 

methods that are situated in these categories consider the underlying network as static. In 

addition to their inherent limitations (described later in this chapter and in Chapter 2), these 

methods are found to be unsuitable for the link prediction task in dynamic networks, also 

known as dynamic link prediction.   

1.2.6 Dynamic Link Prediction  

In the context of the link prediction problem, two different time intervals (𝑡𝑡1, 𝑡𝑡′) , (𝑡𝑡′, 𝑡𝑡1′) 

where 𝑡𝑡1 < 𝑡𝑡′ < 𝑡𝑡1′ , are considered. As discussed above, the primary objective of a link 

prediction mechanism is to analyse the network structure and actors’ attributes in the training 

phase � 𝑡𝑡1, 𝑡𝑡′ �  in order to predict the possibility of future links in the test phase  �𝑡𝑡′, 𝑡𝑡2� . 

Therefore, considering two different time intervals,  (𝑡𝑡1, 𝑡𝑡′)  and (𝑡𝑡′, 𝑡𝑡1′) , the network 

 𝐺𝐺𝑇𝑇[𝑡𝑡1, 𝑡𝑡′] is used as the network in the training phase and  𝐺𝐺𝑇𝑇+1[𝑡𝑡′, 𝑡𝑡1′ ] is the network in the 

test phase. In dynamic link prediction task, a finite set of discrete time points within the 

range  𝑇𝑇 = [ 𝑡𝑡1, 𝑡𝑡′ ]  are considered as  𝑇𝑇 = [𝑡𝑡1, (𝑡𝑡1 + 𝜏𝜏),  (𝑡𝑡1 + 2𝜏𝜏) …  (𝑡𝑡1 + 𝑛𝑛𝜏𝜏) … (𝑡𝑡′ −

𝜏𝜏), 𝑡𝑡′], where τ denotes the temporal sampling interval mentioned above. Fluctuations of the 

total number of actors are taken into consideration across the time series of network 
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snapshots. Any link may appear in multiple network snapshots at different timestamp(s). 

Considering this temporal sequence of network 

snapshots  [𝐺𝐺𝑡𝑡1 , 𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏, 𝐺𝐺𝑡𝑡′]  for a given pair of actors (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗) , 

dynamic link prediction attempts to predict the likelihood of link formation between them 

during the interval (𝑡𝑡′, 𝑡𝑡1′) in  𝐺𝐺𝑇𝑇+1 by analysing the link formation and temporal information 

in  [𝐺𝐺𝑡𝑡1 , 𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏, 𝐺𝐺𝑡𝑡′]  at timestamps [𝑡𝑡1, (𝑡𝑡1 + 𝜏𝜏),  (𝑡𝑡1 +

2𝜏𝜏) …  (𝑡𝑡1 + 𝑛𝑛𝜏𝜏) … (𝑡𝑡′ − 𝜏𝜏), 𝑡𝑡′] . 

Dynamic link prediction has practical significances. Sett, Basu, Nandi and Singh note 

that it has been studied for prediction tasks in various areas including information retrieval, 

user and product relationships in recommendation systems, determining the structure of 

terrorist networks, surveillance systems in communication networks, and the describe the 

relationships between individuals in a friendship network [18]. In the next section, some 

important applications of dynamic link prediction are discussed, exploring its wider 

applicability, thus also denoting the rationality behind this research. 

1.3 Applications of Dynamic Link Prediction 

Apart from its theoretical value in supporting the study of underlying network evolution 

mechanisms, dynamic link prediction has a wide range of practical values. Researchers have 

applied link prediction techniques in different types of networks including social, 

transportation, disease, communication, and biological networks. A list of interesting real-life 

problems can be modelled as link prediction problems. ranging from the outbreak of disease, 

spam email detection, route recommendation to collective classification [19] as well as 

specialists’ predictions of receiving future referrals in healthcare systems [20] and predicting 

irregular links in disease-gene networks to find genes responsible for diseases [21]. 



9 
 

Applications where dynamic link prediction can be exploited are discussed in the following 

subsections. 

1.3.1 Recommender Systems 

Recommender systems utilize various sources of information and data to infer users’ 

interests. The basic underlying principle of recommendation algorithms exploits the 

dependencies between users and item-oriented activities. These dependencies can be better 

learnt through analysing the historical information of user-item relationships. Many forms of 

recommendation activities can be performed by using dynamic link prediction strategy. For 

example, personalized movie recommendations from Netflix [22],  job recommendations 

[23], potential friend recommendations in online social networks [24], potential business or 

scholarly (for example, patent) collaborator recommendations [25,26], international trade 

recommendations [27], item/commodities recommendations [28] and predicting users’ online 

ad-clicking patterns from the historical information about their actions and their friends [29]. 

1.3.2 Security Systems 

Link prediction is already used in anomalous mail detection to single out spam emails [30]. It 

is also applied to discover the missing and/or incomplete information inherent to criminal 

networks [31], anomalous link discovery [32], and fraudulent call detection in mobile 

networks [33]. Link prediction also supports privacy control in social networks. For example, 

Al-Oufi, Kim et al. propose a model that identifies trustworthy people for a given user based 

on weighted relationships and hence protects the corresponding user’s privacy and security 

from unreliable users [34]. 

1.3.3 Biological Systems 

In biological networks like protein interactions [35] or metabolic networks [36] where 

discovering potential interactions through laboratory experiment is expensive, link prediction 
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can provide support and reduce overheads. An important problem in computational biology is 

predicting gene–disease associations in order to identify the causal disease genes. Some 

representative researches in this category include studies in [37-39]. Similar foundational 

applications of link prediction in biological networks include discovering and/or developing 

new drugs [40], predicting drug sensitivity and/or drug responses [41,42] and symptoms of 

abnormal parameters of disease [43].  

1.3.4 Scholarly Systems 

A vast majority of link prediction literature deals with scientific collaboration or citation 

networks where the objective is to predict future collaboration between scholars [44] or 

citations of a scholarly contribution [45]. In addition to collaboration and citation networks, 

link prediction mechanisms were also applied to predict the type and experts of academic 

research [46,47], identifying missing references to avoid plagiarism [48] and scientist-article 

cooperation analysis [49]. 

1.3.5 Communication Systems 

Identifying optimal routes is a conventional problem in communication networks (for 

example, wireless technology). To avoid frequent breaks in routes in mobile ad-hoc networks 

and to improve the quality of routing in mobile wireless networks, different link prediction 

mechanisms have been used by researchers [50,51]. In addition to wireless network 

applications, link prediction has also supported improving transportation efficiency by 

identifying efficient routing strategies [52] including ensuring information transfer secrecy 

[53] and optimal routing [54] in sensor networks. 

1.3.6 Social Systems 

Link prediction mechanisms support the study of social network evolution. The principal 

application domain of dynamic link prediction is in social networks, including social media. 
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In online social networks such as Facebook, it can provide potential friend suggestions 

[24,55-57], special interpersonal links can be advised to users by analysing different social 

relations [58,59] , social influence detection [60] and information diffusion prediction [61]. 

Further, link prediction supports complete network inference from partially observed ones to 

better understand social network evolution [62,63].  

1.4 Statement of the Problem 

In recent years, inherently network-oriented and ubiquitous web and social media 

applications have resulted in a strong focus on network and relational data. Network data 

structure or graph models have become a common framework used to represent and analyse a 

large number of complex, integrated and real-world interacting systems from nature, society 

and technology, ranging from the billions of neurons in the human brain and the enormous 

collection of connected autonomous systems in the internet to the billions of users of social 

media. These networked systems are massive in size and contain tremendous amounts of 

content. They are also dynamic in nature and inherently evolutionary. Examples include 

romantic partners from online dating sites [64], protein interactions, nervous systems, power 

grids, ecosystems and physical and electronic communication infrastructure [65-67]. One of 

the inherent underlying structures of these networked systems is their evolution over time in 

experiencing temporal changes in the overall network dynamics. In these evolutionary 

networks, temporal patterns emerge through the simultaneous arrivals and/or departures of 

actors as well as the creation and/or deletion of links among these actors. Characterizing 

network structures in a time-dependent way or incorporating temporal information to model 

the dynamics of networks is often complex due to the intermittent existence of actors and 

links among them [68]. It has also been also found that temporality impacts on most of the 

dynamic processes taking place in networks [69-71]. Further, according to X. Li et al., high 
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dimensionality, the quantity of observations, complexity in selecting explanatory variables, 

sensitivity to noise due to sparsity and computational costs due to non-linear transformations 

pose major challenges in dynamic network analysis [72]. However, although the mining and 

analysis of evolutionary networks is a complex non-trivial task, it has drawn considerable 

research interest [73,74]. Other difficulties in analysing dynamic networks includes 

associated dynamicity, incomplete data due to topological approximation and limitations in 

time and space or experimental conditions [75] [15]. Although the mechanism by which 

evolution takes place in dynamic networks is yet to be congruously standardized or fully 

understood, network science proposes various methods supporting the study and modelling of 

the network evolutionary process that governs their dynamics [76]. One of these methods is 

link prediction. Link prediction is the basic and fundamental computational problem that 

models the underlying growth mechanism of an evolving network [77]. The emergence of 

new links, affecting the growth of underlying networks (as mentioned above), is paid the 

most attention in the analysis of network evolution. Therefore, link prediction mechanisms 

have attracted extensive research focus as they allow for the extraction of missing 

information and the evaluation of network dynamics [78]. Researchers consider link 

prediction the fundamental problem of network science, since it unfolds the mechanism 

governing the micro-dynamics of a network [79].     

1.4.1 Research Motivation 

As a time-evolving model, the problem of link prediction in network science has both 

theoretical and practical significance. Link prediction aims to uncover the underlying 

relationships among actors in a network to either help find missing links or to infer the future 

interactions among them by evaluating the likelihood of a link between two actors yet to be 

connected [80,81]. Link prediction models consume different types of information for these 

two purposes, including existing historical information either in regards to the network 
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structure and topology [82] or actor-oriented attributes [17]. The list of network structural 

information includes the number of common neighbours [83], clustering co-efficient [84] or 

actor attributes (for example, the degree of connections) [85]. Due to its wide range of 

applicability, a number of methodological improvements have been proposed to support this 

partial link analysis in networks. Most of these methods estimate the possibility of the 

emergence of new links among non-connected network actors by leveraging topological 

properties, actor/link attributes, local or global network structure [86] or probabilistic models 

[87]. Two of the major issues with these methods are dependency on static topological 

feature engineering [88] and failure to acknowledge the temporal changes in networks [89]. 

Although the link prediction problem is believed to be a time-evolving network analysis 

model, traditional similarity metrics-based methods generally fail to take the evolutionary 

aspects of the network into account. Sarkar, Chakrabarti and Jordan identify three weaknesses 

of these strategies: a dependency on heuristics (for example, counting the number of common 

neighbours); the use of heuristic measurements in static snapshots of the network (for 

example, counting the number of common neighbours between two actors in one network 

snapshot to predict their future association in the next snapshot; and, finally, the non-

integration of the temporal components in heuristic measurements (for example, disregarding 

the temporal neighbourhood changes between two actors) [90]. 

Temporal patterns emerge in evolutionary networks through the simultaneous arrival 

and/or departure of actors as well as the creation and/or deletion of links among these actors. 

This has led scholars to reconsider the evolutionary information in link prediction tasks, 

resulting in the concept of dynamic link prediction. Dynamic link prediction, also referred to 

as link prediction in dynamic networks, is the process of inferring the possibility of future 

links among dynamic entities or network actors through exploring historical or temporal 

information [91]. Different dynamic link prediction methods explore a wide range of 
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techniques (described in Chapter 2), including topological evolution in conjunction with 

different forecasting methods, sub-graph evolution, the dynamic latent space representation 

of actors and random walk-in temporal networks, the correlation between different types of 

links along with temporal features (for example, ‘recency’, temporal activeness), temporal 

probabilistic measures, non-parametric link prediction methods based on both the features of 

individual actors and their neighbourhood, machine learning models, statistical models, and 

matrix or tensor analysis [92].  

Despite their improved performance in predicting emerging or hidden links, some of 

these methods are subject to inherent limitations. For example, probabilistic models require 

the prior definition of the distribution of link occurrences, which is difficult to define before 

the actual prediction task and especially in temporal networks [93]. Most existing approaches 

(discussed in detail in Chapter 2) perform the task of dynamic link prediction by considering 

the temporal sequences of topological or structural features incident to actor-pairs instead of 

measuring their similarity and/or proximity by mining actor-level evolutionary aspects 

including the temporal patterns of neighbourhood changes or evolutionary community-aware 

information. Further, using the time series forecasting method to predict the future values of 

topological changes and then using these values for classifier training in supervised link 

prediction can be incoherent, since the prediction is performed using unrealistic values. To 

address these issues, it is imperative to consider the evolutionary similarity between actor-

pairs when developing features for supervised dynamic link prediction. Further, since the rate 

of evolution experienced by each actor in a network depends on the sampling duration of 

network snapshots that make up the corresponding dynamic network, it is also crucial to 

determine the optimal sampling interval in order to discretise the dynamic network and 

generate network snapshots.  
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1.4.2 Research Objectives 

As mentioned earlier, a dynamic network is a time series of network snapshots where each 

snapshot represents the state of the network over the temporal interval of different granularity 

(for example, minute, hour, day, month) [94]. The duration of the interval denotes the 

temporal scale of the dynamic networks, since all links within this duration are aggregated 

together irrespective of their temporal order. Links within a dynamic network are represented 

either as streaming interactions in time or a collection of finer aggregated snapshots. In order 

to achieve meaningful knowledge in dynamic network analysis, it is essential that in the 

transition from the streaming temporal interactions or a series of aggregated snapshots to a 

dynamic network abstraction, the extent of discarded information should be insignificant. 

While researchers usually pay scrupulous attention to the design of their longitudinal studies, 

they typically pay less attention to the temporal design of their studies. This temporal design 

refers to the timing and spacing of occasions of measurements [95] or simply the time 

scale/sliding window mentioned above. Although the selection of this time scale to sample 

dynamic networks is often done opportunistically [96], the complex temporal structure of a 

dynamic network is very sensitive to the appropriate selection of this temporal sliding 

window. This is because a too fine or too coarse window size will either conceal or unravel 

the important temporal dynamics of the network and the underlying interaction structures of 

actors [97].  

Further, actors in dynamic networks are subject to varying temporal changes (i.e., 

dynamicity) within the temporal network snapshots due to alterations of different network 

activities (for example, link formation and link deletion) over time. This triggers temporal 

changes in the actors’ positions and neighbourhood in dynamic networks and, subsequently, 

this actor-level dynamicity instigates both micro (for example, neighbourhood) and 

mesoscopic (for example, community participation) changes in dynamic networks. By mining 
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the similarity or correlation between these diverse actor-level temporal fluctuations (i.e., 

structural position, neighbourhood and community), it is possible to generate dynamic 

features for the purpose of dynamic link prediction. 

Considering the aforementioned two research issues, this study has two principal 

research objectives. First, this study develops an algorithm that effectively defines an optimal 

temporal window to sample/discretise a dynamic network, including some validation 

methods to evaluate the optimality of the sampling window size. Second, this study develops 

some dynamic similarity metrics (also called as dynamic features) by measuring the 

evolutionary similarity between actor-pairs for the purpose of dynamic link prediction. The 

dynamic similarity metrics, which are similar to the topological similarity metrics computed 

in traditional link prediction for static networks, are constructed by mining the temporal 

evolutionary similarity of actor-level evolution (the terms ‘evolution’ and ‘dynamicity’ are 

used interchangeably in this thesis) between actor-pairs in dynamic networks. In regards to 

the dynamic features developed in this study, the optimality of the sliding window selection 

is crucial since an individual actor’s link structure and its structural evolution and network 

position will vary in each network snapshot depending on the link aggregation [98].  
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  In Figure (1.2), this phenomenon is described pictorially. In Figure (1.2a), a list of 

time-stamped (i.e., daily) links are collected where the source (i.e., From Actor) and target 

(i.e., To Actor) actors form links and the temporal granularity of each link occurrence is a 

day. Figures (1.2b) and (1.2c) show the pattern of network snapshots where the sampling 

duration for the dynamic network is one and two days respectively. The sizes of the actors 

denote their number of connections (i.e., degree). The figures show that both the pattern and 

degree of connections for each actor are dependent on the interval duration considered for 

link aggregation in a network snapshot. Therefore, before developing dynamic features, an 

algorithm to detect the optimal time scale (i.e., sampling duration) to sample a dynamic 

network is proposed in this study. 

Considering the aforementioned rationales behind the research objectives, the 

outcome of this research can be of great importance. By defining an optimal time 

window/scale to sample a dynamic network and generate a time series of network snapshots, 

researchers can now map their sampling resolution to the inherent temporal resolution of the 

 
Figure 1.2: Differences in network analysis results of an abstract dynamic network that 

evolved in four days with the consideration of different window sizes. The sizes of actors 

are proportionate to their degree centrality values. (a) a list of date-stamped links, (b) first 

network snapshot considering one day time scale, (c) second network snapshot 

considering a time scale of two days. 
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underlying processes of the system considered. Further, instead of the arbitrary sampling of 

dynamic networks, optimal sampling will demonstrate the actual temporal dynamics of the 

corresponding network. Furthermore, it will allow researchers to consider temporal 

information related to the actual prediction task. Similarly, the dynamic features constructed 

in this study will introduce the notion of similarity-based algorithms in dynamic link 

prediction tasks. Earlier in this chapter, it was noted that similarity-based algorithms are one 

of the principal methods used in the prediction task. In a static network, these algorithms 

generally compute different graph-based topological similarity or actor attribute-based 

similarity. In the case of a dynamic network, the outcome of the dynamic features from this 

study will not only allow researchers to model different types of actor-level dynamicity but 

also to compute their evolutionary similarity, a concept yet to be explored in the complex 

network research.  Further, as explained in Section 2, in conjunction with relational changes 

and dyadic covariates, actor covariates also contribute towards the network dynamics. Thus, 

by mining different actor dynamicities, this study will also benefit the future studies on 

network evolution. 

1.4.3 Problem Formulation 

Although, link prediction in dynamic networks is complex and challenging, it is important for 

analysing the associated network evolution and is applicable to a wide variety of applications. 

Due to its inherent evolutionary nature, link prediction is vital for exploring interesting trends 

on evolutionary aspects of non-connected actors in dynamic networks. For example, mining 

micro-scale (for example, network structure and neighbourhood) or meso-scale (for example, 

community participation) changes that are incidental to actors in dynamic networks can be 

helpful for predicting the possibility of their future associations. Figure (1.3) shows some of 

the changes experienced by actors in a dynamic network that is sampled into two individual 

network snapshots. In this figure, in order to predict a link between actors 𝑎𝑎1  and 𝑎𝑎2  at  
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timestamp 𝑡𝑡3 , the pattern and degree of connections experienced by these two actors are  

analysed in two SINs at timestamps 𝑡𝑡1 and 𝑡𝑡2. At these two timestamps, both these actors 

  

Figure 1.3: Visual representation of addressing the dynamic link prediction problem by 

considering actor-level evolutionary similarity explored in this thesis. The top row 

represents a dynamic network which is sampled into two network snapshots 𝑔𝑔1 and 𝑔𝑔2 at 

timestamp 𝑡𝑡1and 𝑡𝑡2. To predict the future link between actors 𝑎𝑎1 and 𝑎𝑎2 at timestamp 𝑡𝑡3, 

this thesis compared similarity between different types of evolutions experienced by both 

actors over time. For example, at timestamp 𝑡𝑡1, actor 𝑎𝑎1 has one connection whereas the 

same actor has two connections at timestamp 𝑡𝑡2. Similarly, the same actor has different 

neighbours at timestamp 𝑡𝑡2 (i.e., 𝑎𝑎4,𝑎𝑎8 ) than those at timestamp 𝑡𝑡1 (i.e., 𝑎𝑎6). Thus, actor 

𝑎𝑎1 has lower neighbourhood retention rate but higher gaining rate. In the bottom row, the 

pattern and topology of the network snapshot is represented if the sampling interval was 

different (i.e., 𝑡𝑡1 + 𝑡𝑡2 ). Thus, the bottom network snapshot consists of an aggregated 

network of  𝑔𝑔1 ∪ 𝑔𝑔2. 
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have different degrees of connection. For example, at timestamp 𝑡𝑡1 , actor 𝑎𝑎1  has one 

neighbour and actor 𝑎𝑎2  has three neighbours. However, at timestamp 𝑡𝑡2 , the former has 

gained one more neighbour whereas the later has lost two. Further, at timestamp 𝑡𝑡2, actor  𝑎𝑎1 

had lost its only neighbour from the previous timestamp 𝑡𝑡1 despite gaining a new neighbour. 

This denotes that actor 𝑎𝑎1  has a low neighbour retention rate but a high gaining rate. 

Similarly, actor 𝑎𝑎2 lost three of its old neighbours but gained a new neighbour at timestamp 

𝑡𝑡2. 

 Considering the different types of evolutions that are experienced by actor-pairs, in 

this study, I develop dynamic features by considering the similarity of evolutions incident to 

pairs of actors. Detecting the optimal and meaningful sliding window (i.e., time scale 

resolution) for dynamic networks is a fundamental prerequisite for developing these features, 

given that temporal sampling duration affects the temporal changes of the underlying network 

structures in dynamic networks. In order to detect the optimal and meaningful sliding 

window, in this study I propose a novel method to detect an optimal time scale that is 

applicable to any dynamic network. Looking at optimally sampled dynamic networks, ranges 

of evolutionary information (for example, network topology, link structure, neighbourhood 

and community participation) were used to develop dynamic features to use in a supervised 

link prediction model. The performances of these features were compared against a static 

predictor (for example, ResourceAllocation 1 ) and an existing time series-based link 

prediction strategy in dynamic networks. Improved performances in dynamic link prediction, 

as investigated in this study, represent the dynamic features as the prospective candidates not 

only for dynamic link prediction tasks but also to further understand the underlying 

evolutionary mechanisms involved in the dynamic networks. 

                                                 
1 Appendix A. 
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Choosing the appropriate feature set to describe instances in the classification dataset 

and classifier’s training is one of the most important tasks in supervised link prediction. 

Traditional link prediction in static networks generally emphasizes the presence or absence of 

links and simultaneously considers topological information or actor attributes to construe the 

similarity between actors without considering the temporal information or the evolutionary 

aspects associated with actors. A key aspect in dynamic link prediction is to generate 

dynamic similarity metrics (i.e., dynamic features) that consider the evolutionary changes 

incident to actors. Therefore, in this thesis, I develop dynamic similarity metrics where 𝑖𝑖𝑡𝑡ℎ 

metric will assign a score  𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖�𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗� to non-connected actor pairs (𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) by considering 

the similarity/proximity of their evolutionary information in 

[𝐺𝐺𝑡𝑡1 ,  𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏,𝐺𝐺𝑡𝑡′] . These scores will measure the likelihood of 

future links that emerge in  𝐺𝐺𝑇𝑇+1 . As mentioned earlier, in dynamic link prediction, the 

network in the training phase 𝐺𝐺𝑇𝑇�𝑡𝑡1, 𝑡𝑡′� is sampled using an aggregation granularity (i.e., 

sliding window/temporal scale) to generate evolutionary network snapshots (i.e., SIN). 

1.5 Research Questions 

Considering the aforementioned research objectives (i.e., optimal temporal sampling 

resolution determination and evolutionary similarity-based dynamic link prediction) and the 

problem formulation in dynamic link prediction, various research questions arose concerning 

both research objectives. This section describes the associated research issues within both 

research objectives and the different questions pertaining to these issues. This section also 

points out the methods this study considered to answer these questions and outlines the 

research contributions of this research. 
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1.5.1 Optimal Sampling of Dynamic Network 

1.5.1.1 Research Issue 

Due to the incorporation of the time component into dynamic network analysis, the choice of 

the time scale to discretise and aggregate a given dynamic network has considerable 

implications on the observed of network structures, performing network analysis and the 

inference procedure adopted on the nature of the network including its processes. However, 

researchers generally select arbitrary temporal resolutions for the purpose of discretisation. 

Further, there is a lack of any simple algorithm considering the principal constituents of a 

network (i.e., the actors) that can work efficiently in networks of any size in absence of any 

actor attributes. Although researchers have attempted different methodologies to define the 

optimal sampling resolution, there exists a lack of appropriate validation methods to assess 

the optimality of window size. 

1.5.1.2 Research Questions  
• How can actor-level measures be used to determine the optimal sampling interval to 

discretise a dynamic network? 

• How can the optimality of the sampling resolution be validated? 

1.5.1.3 Methods 
To define the optimal window resolution in discretising a dynamic network, this research 

considers the variance analysis of actor-level network positional evolutionary measures. To 

validate the optimality of the identified temporal window, this study utilizes time series-based 

methods, anomaly-based methods and, finally, an unsupervised clustering approach that is 

widely practiced in data science.   
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1.5.2 Actor-level Dynamicity 

1.5.2.1 Research Issue  
In dynamic networks, actors experience different types and rates of micro-level (i.e., 

link/neighbours) and meso-level (i.e., community/group) changes. To develop dynamic 

similarity metrics based on the evolutionary similarity between actor-pairs, it is necessary to 

determine the types of evolution actors experience in dynamic networks due to those micro 

and meso-level changes. Therefore, the different types of actor-level dynamicity measures 

must be defined and quantified to quantify actor-level evolution in dynamic networks. 

1.5.2.2 Research Questions 
• What kinds of evolutions or dynamicities are demonstrated by actors in dynamic 

networks? 

• How can the actor-level dynamicities be quantified? 

1.5.2.3 Methods 
The mathematical quantification of actor-level dynamicities is measured by different network 

metrics (centralities, clustering, neighbourhood, etc.). This study also performs empirical 

analyses to determine the optimal (i.e., best) and the near-optimal (i.e., second best) sampling 

resolution for six real-world dynamic networks including an empirical assessment of the 

optimality of the identified window resolutions. 

1.5.3 Dynamic Similarity Metrics 

1.5.3.1 Research Issue 
Similarity-based algorithms are the most intuitive and dominant methods used in the link 

prediction models. In case of link prediction in static networks, similarity-based algorithms 

generally compute a similarity metric by considering the network topological similarity (for 

example, the number of common neighbours) between actors. However, in an evolutionary 
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network where both actors and links are dynamic, it is believed that actor covariates (for 

example, actor-level evolution) have an impact on emerging link formation. Therefore, in the 

case of dynamic link prediction, it is necessary to define the evolutionary similarity between 

actor-pairs. Further, it is also an important requirement to assess the impact of the optimal 

sampling resolution on dynamic link prediction.   

1.5.3.2 Research Questions 

• How can the evolutionary similarity between actor-pairs be calculated by considering 

different actor-level evolutions? 

• What impact do the evolutionary similarities between actor-pairs have on dynamic 

link prediction? 

• What is the impact of an optimal sampling window interval on dynamic link 

prediction? 

• What kind of actors participate in emerging links of a dynamic network in regard to 

their evolutionary similarity (i.e., similar/closer or dissimilar/distant)? 

• What are the performance enhancements of evolutionary similarity-based features 

over traditional neighbourhood-based prediction or time series-based link prediction 

in dynamic networks? 

1.5.3.3 Methods 
Temporal similarity measures (for example, dynamic time warping), cross-correlation, 

ecological similarity measures and community-aware structural similarity are used to 

compute evolutionary similarity-based features. This study also performs empirical analyses 

to apply the evolutionary similarity-based features in supervised link prediction in six real-

world dynamic networks to assess the performance of these features. This performance is 

then compared to traditional prediction methods. 
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1.6 Thesis Organization 

Before discussing the organization of the thesis, it is worth remembering that this research 

pertains to two research objectives: optimal time scale determination and evolutionary 

similarity-based supervised link prediction in dynamic networks. Considering these two 

objectives and the research questions mentioned in the previous section, an outline of the 

structure of the thesis is provided in Figure 1.4 that summarises the chapters’ contents and the 

research outcome. A brief description of the contents of each chapter (not including the 

present chapter) is provided in the following subsections. 

1.6.1 Chapter 2  

Considering both of the research objectives mentioned above, Chapter 2 reviews the literature 

related to both research objectives. All related methodologies that define optimal sliding 

windows and sampling dynamic networks into a series of network snapshots are also 

discussed. This chapter also categorizes existing dynamic link prediction methodologies and 

presents a list of the systems where dynamic link prediction mechanisms are utilized. 

1.6.2 Chapter 3 

This chapter describes the conception of the algorithm proposed to address the research issue 

related to the first research objective. Further, it also identifies different evaluation methods 

that can be used to validate the optimality of the identified sampling window. 
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Figure 1.4: Diagram outlining the structure of the thesis 
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1.6.3 Chapter 4 

With a view to address the research issues described in Section 4.2, this chapter develops the 

quantification of different types of actor-level evolutions. The actor-level evolutions are 

classified according to their link structure, neighbourhood and the community-aware changes 

experienced by individual actors in dynamic networks. These different types of actor-level 

evolutions (i.e., dynamicities) are used in the next chapter, Chapter 5, to develop evolutionary 

similarity-based dynamic features. 

1.6.4 Chapter 5 

This chapter discusses the theoretical background and conception of the different methods 

used in this research. The evolutionary similarity between actor-pairs is then computed. This 

chapter also discusses the framework of developing dynamic similarity metrics/dynamic 

features by considering different types of evolutionary similarity between actors.  

1.6.5 Chapter 6  

This chapter describes the dynamic network datasets, the supervised dynamic link prediction 

experimental setup, and the performance metrics used for empirical analyses. 

1.6.6 Chapter 7 

This chapter describes the results of the empirical analysis that was used to determine the 

optimal sampling window in the dynamic network datasets used in this study. The evaluation 

methods described in Chapter 3 were applied to the identified optimal window sizes to 

validate their optimality. 

1.6.7 Chapter 8 

This chapter describes the empirical results of the supervised link prediction experiment 

using the dynamic features developed and described in Chapter 5. It also extensively details 
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the outcomes of the application of dynamic features in link prediction tasks, including feature 

importance, feature distribution and feature comparisons against existing prediction 

methodologies. This chapter addresses the research questions outlined in this chapter by 

using the developed features in the dynamic link prediction tasks in publicly available real-

life networks where links are time-stamped. 

1.6.8 Chapter 9   

This chapter concludes this thesis with a detailed reflection on the research performed, 

including answers to the research questions of the thesis and avenues of future research. 
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Literature Review  
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2.1 Introduction 

A large number of systems (e.g., cell structure in human body constructed by micro-

molecules, various social relationships among human beings, and the present day’s large 

technological infrastructure based on the internet) can be modelled as dynamic networks 

since both network and time aspects exist in these systems. Incorporating temporal 

information with big data mining on social and other types of networked systems may result I 

comprehensive big data analyses [99]. The principal advantage of modelling systems as 

temporal networks, as identified by Holme & Saramäki, is that the behaviour of the 

dynamical systems can now be expressed clearly without even studying the actual dynamics 

at all [100]. The list of such behaviours include: (i) network influence measurement among 

its different parts, (ii) optimization of networks in regards to the dynamic systems, or (iii) 

similarity of roles played by different actors within the network. Further, temporal pattern of 

link appearances and disappearances in dynamic networks can affect the dynamics of 

different systems interacting through networks such as disease contagion or information 

diffusion [101].   

In dynamic networks, since both actors and links among them continuously arrive and 

leave over time, consequently the corresponding network may grow or shrink temporally. A 

central scientific challenge in this area is to model the network dynamics with precise 

description and explanation of the networks growths and shrinkages. Link prediction model is 

one of the prominent network growth models that capture the localized network dynamics 

(i.e., which actor will interact with which actor) instead of the global dynamics [102]. Unlike 

static network, link prediction models in dynamic network attempt to predict future actor 

interactions based on historical information that would be the most valuable aspects in 

applications like national security, online recommendations and organizational studies [91]. 
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Since dynamic networks datasets carry additional temporal information (e.g., creation time of 

links), therefore, this type of network datasets are viewed either as a sequence of network 

snapshots or as a continuous time process [103]. In this thesis, a dynamic network is 

considered as a sequence of network snapshots wherein each snapshot links are aggregated 

for a specific duration irrespective of their appearances within that duration.  

In the introduction chapter, this thesis (i.e., figure 1.3) demonstrated that different 

selections of temporal sampling to discretise a dynamic network effectively impact on the 

linkage patterns of its actors. Based on the temporal duration of each temporal network 

snapshot (i.e., short interval network), different types of actor-level evolutionary aspects (e.g., 

neighbourhood, communities) vary over time. The primary objective of this thesis is to 

developed different features by mining actor-level evolutions for the purpose of dynamic link 

prediction. However, the measurement of actor-level evolutions, by using social network 

metrics, greatly varies depending on the sampling interval of dynamic networks. Therefore, it 

is imperative to find out the optimality of this temporal sampling interval. Considering this, 

before delving into existing methods of dynamic link prediction, this thesis will illustrate 

different approaches, practiced by the research community, to address the optimality issue in 

sampling dynamic networks first. This chapter will also the motivation behind this issue 

including the limitations and challenges of existing methodologies to define the optimal 

temporal scale. This literary background on the first research objective will be followed by a 

comprehensive literature review on dynamic link prediction methodologies in different 

categories including their associated limitations.  
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2.2 Temporal Scale in Dynamic Networks 

This section discusses the background information and existing methods on the first research 

objective of this thesis which is determining the optimal time scale/window to split a dynamic 

network dataset into a sequence of network snapshots. 

2.2.1 Motivation and Background  

The evolution in dynamic networks occurs temporally among a set of actors and their links. 

In recent years, the study of longitudinal social networks has attracted enormous research 

interest across a wide range of disciplines [104-106] as researchers seek to determine the 

underlying mechanism(s) of networks’ formation, development and evolution overtime. 

Temporal networks, evolving over time, can be derived from a collection of network 

interactions by considering any temporal granularity (e.g., minutes, hours, day, month, year 

etc.). For each of these collections, a static network snapshot is created and the network 

evolution is measure in regards to the collective rate of changes demonstrated by all actors in 

these snapshots together.  

Temporal streams of interactions in dynamic systems often occur over a range of time 

scales and are generally aggregated into dynamic networks for temporal analysis [94]. The 

temporal window or resolution, at which these interactions are aggregated, greatly impact on 

the results of this temporal analyses [107]. The disparity between the inherent temporal 

resolution of the underlying process, and the resolution at which the corresponding analyses 

are performed, can either obscure important insights or reveal inappropriate information. This 

phenomenon is widely observable in longitudinal studies (e.g., seasonality in mobility 

patterns of animals, medical cohort study or animal population behaviour [108]). Researchers 

usually pay more attention to the design of their longitudinal studies and typically ignore the 

temporal design of their studies. As a result, temporal data are typically collected 
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opportunistically. It is noteworthy here that by temporal design, it refers to the timing and 

spacing of occasions of measurements [95]. One of the most important components of 

temporal design is the size of the time scale under consideration (i.e., the amount of time that 

elapses between occasions of consecutive measurements). This window size also denotes the 

bin size and as identified by Fish and Caceres, researchers have named this problem 

differently, such as, change point detection, time scale detection, oversampling correction, 

temporal resolution inference, aggregation granularity detection or windowing selection 

[109]. All time-stamped network activities within each window are generally aggregated for 

conducting a longitudinal network data analysis. Therefore, the choice of the time scale is a 

central component in the design of any longitudinal research study which is often overlooked. 

To stress on the importance of this fact, Moody et al. pointed out that more fine-grained time 

scale will unfold a great deal of temporal details of the network but conceal some interesting 

and meaningful patterns (e.g., communities) as the temporal granularity was too short to form 

them [110]. The authors also pointed out that too coarse temporal scale will not only cause 

loosing critical temporal information but also fail to engender meaningful observations in 

regards to the temporal changes of the system and its processes.  

2.2.2 Related Work  

The problem of identifying optimal time scale for streaming data analysis span over multiple 

research areas including information theory [111], signal processing [112], time series 

analysis in econometrics [113],  time series segmentation [114] and model granularity [115]. 

Considering the trade-off between information loss and noise reduction, although the list of 

literature offers a discretization process of longitudinal/dynamic systems; however, they 

don’t address the context of dynamic networks. Often the decision of temporal sampling a 

dynamic network is performed opportunistically [94] depending on a wide range of factors, 

as identified by Timmons and Preacher in [95]. These include types of social networks, 
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competing objectives, processes and measurements, a planned time horizon of the respective 

study, availability of funds, logistic and organizational constraints, availability and expected 

behaviours of participants of the study and desired accuracy and precision of the outcome of 

a study. Most theoretical and methodological approaches to define optimal time scale of 

dynamic networks focus on the aggregation of links in time-window graphs [116]. This 

impacts the observation bias and affect the accuracy and significance of analysis since 

dynamic network processes (e.g., formation and dissolution of ties) may begin or end during 

inter-event times [117]. Other approaches use the rule of thumb in analysing dynamic 

network which refers that higher number of sampling generates better results [118,119], or , 

in case of randomized clinical trials, a time scale was chosen that maximizes the efficiency in 

estimating the treatment effects [120]. Framework of statistical analysis including separable 

temporal exponential random graph model (STERGM) [121] can also be used by relating the 

timing of network snapshots to the precision of parameter estimates. 

Recent studies focused on empirical analysis by comparing the network statistics of 

temporal aggregations or some graph metrics over time against some threshold values to 

determine ‘appropriate’ or ‘meaningful’ temporal window size. Few examples include the 

Temporal Window in Network (TWIN) algorithm by Sulo, Berger-Wolf, & Grossman where 

the algorithm analyses the compression ratio and variance of time series of graph metrics, 

computed over a series of graphs comprised of temporal links, as functions of sampling 

window size [97]. A time-scale or the length of a temporal window, for which the variance 

and compression ratio are close to each other, defined the optimal time scale. A study by 

Soundarajan et al. defined another algorithm that identified the variable-length aggregation 

intervals by considering ‘structurally mature graph’ that represents the stability of network 

with respect to network statistics as well [122]. A detailed study in [94] illustrated this time-

windowing problem with different types of formalizations and approaches to identify the 
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optimal resolution of link aggregation. The study considered the time scale of dynamic 

networks including their corresponding advantages and limitations. Darst et al. followed a 

parameter free approach by using Jaccard similarity metric [123] to measure similarity 

between SINs and thus finding the optimal temporal resolution [124]. As mentioned earlier, 

Fish and Caceres used the quality of the performance of link prediction mechanism to 

determine the appropriate temporal resolution [125].  

Considering the task of determining the optimal time scale of temporal networks as 

task-dependent, Rajmonda S Caceres and Fish setup a supervised machine learning approach 

[99]. The authors leveraged ground truth on training data to find best window size in test 

data. For this purpose, the best window was selected that maximized the performance of the 

‘task algorithm’ in performing a given task effectively. The list of three task algorithms 

included: (i) link prediction, (ii) attribute prediction, and (iii) change point detection. A list of 

dynamic network analyses [126-128] incorporated the fact in their assumption that topology 

(e.g., degree distribution, clustering coefficient) is effectively static and any fluctuation in the 

network structure only contributes a small amount of unbiased noise to any network 

measurements. Therefore, in these studies, the authors considered quick sampling of dynamic 

networks relative to the speed of fluctuations and considered the fluctuations into dynamic 

network analysis by measuring topological features over a sequence of SINs where the 

duration of each SIN was very small.  As opposed to these study, Eagle considered dynamic 

topology to analyse network structure and attempted to characterize the effect of the window 

size in defining SINs on three different measured topological parameters [129]. These 

included (i) degree statistics, the correlation coefficient and a topological similarity measure. 

The author also demonstrated that spectral methods can support revealing the known 

periodicity in the network dynamics and select an appropriate window size. With the help of 

a new topological similarity measure called ‘adjacency correlation coefficient’ for comparing 
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the topology of networks at different timestamps, the author empirically determined the 

appropriate temporal window size that represented the inferred topological changes over 

time. With an objective to understand communities, and the discontinuous time points in 

streaming graphs, Sun et al. presented the GraphScore algorithm [130]. The algorithm 

monitored communities and their changes in stream of network snapshots efficiently where 

consecutive snapshots with similar descriptions, in regards to the communities in them, were 

group together into a time segment. When a new snapshot could not fit well into the current 

segment, the algorithm introduced a change point and started a new segment at that time 

stamp. In this way, SINs were aggregated (compressed) to generate optimal length for each 

temporal graph. 

2.2.3 Challenges and Limitation of Temporal Sampling Methods  

In general, as mentioned in the previous chapter, researchers are reluctant to pay more 

attention to the optimal selection of the inherent time scale or the duration of temporal 

window to discretise dynamic networks in comparison to the consideration paid to the design 

of associated longitudinal studies. Despite the complex temporal structure of dynamic 

networks is sensitive to the appropriate selection of this temporal sliding window, however, 

often, the selection of this time scale to sample dynamic networks is performed 

opportunistically [96]. The aforementioned approaches to determine the appropriate or 

optimal timing scale to analyse dynamic networks suffer from their inherent drawbacks. For 

example, Timmons and Preacher found deteriorating outcome from study using more 

network snapshots (i.e., SINs) and suggested researchers to consider the trade-offs between 

precision and sampling time. On the other hand, statistical frameworks are parametric 

dependent and will only work in small networks with few hundred actors. Therefore, few 

studies focused on either heuristics-based methods or attempted to optimize for a specific 

metric over networks. The downside of these methods is the selection of appropriate/perfect 
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metric for this purpose. Further, the parameter free methods are developed on the assumption 

of a ‘ground truth’ time scale which is determined through generative models.  

Depending on the amount of intervals for link aggregation in network snapshots of 

dynamic networks, the link structure of an individual actor will vary accordingly, and so will 

its structural evolution and network position [98]. To measure the rate of temporal network 

changes demonstrated by individual actor, it is crucial to consider the optimality of temporal 

choices in sampling dynamic networks by considering the rate of actor-level evolution. The 

rationale behind considering actor-oriented evolutionary aspects is that they are one of the 

central components of the dynamic network and contribute to the localized network 

dynamics. Furthermore, and most interestingly, despite their consideration of temporal 

network snapshots, almost all dynamic link prediction methodologies failed to shed light on 

this important issue. Therefore, prior to developing dynamic features by mining actor-level 

dynamicities, it is imperative to develop an algorithm to determine the optimal time scale to 

sample dynamic networks.  

In the next section, the background information on dynamic link prediction and a detail 

description of different methods addressing this issue are elaborated.  

2.3 Dynamic Link Prediction 

Understanding and characterizing different processes driving interactions in networked 

systems is one of the fundamental research issues that have drawn considerable research 

attention from the network science community. Link prediction problem, dealing with 

prognosticating different types of interactions, collaborations, associations, or influence 

between actors in a network, encompasses an unprecedented amount of literary contents 

alongside its application domains in sociology, biology, anthropology, and information 

systems. To deal with the challenging task of inferring emerging and/or missing links, 



38 
 

researchers exploited a wide range of network structural, relational and temporal features, and 

compounded different sources of both network and actor-related information in their models 

to improve prediction performances.  

Initially, link prediction problem was formulated as a generic data mining problem 

within the field of relational learning that included both the link structure and rich sets of 

descriptive attributes of the linked data objects. Probabilistic relational models, developed by 

Getoor & Sahami, was one such earliest relational learning model that represents the 

statistical correlation between one entity to the related others in regards their properties [131]. 

With the help of rich knowledge structure, encoded by relational archetypes, these models 

supported the reasoning of behind entity relationships. Lisa Getoor et al. extended the 

probabilistic realtional model with the help of two mechanisms to represent a probabilistic 

distribution over link structures of different relational entities [132]. Among others, relational 

Markov networks [133], structural logistic regression with a process to systematically 

generate features from relational data [134] and stochastic relational models [135] are few 

examples of relational link prediction algorithms. These models are only applicable to 

abstract graphs (i.e., networks without any actor or link attributes) and static graphs (temporal 

changes of links structures are not incorporated) where the link structures are the solitary 

source of predictive patterns, and incompetent in comprehending the complex graph-patterns 

(e.g., cliques, cluster). 

 
Subsequently, with the advent of network science [8], and social network analysis 

[136,137], to comprehend the underlying relational structure among different entities, 

network representation became the dominant data structure to model interactions among 

actors of different complex systems.  Simultaneously, these have supported studies of ego-

centred networks [138] and outlined measures to describe and understand actor-oriented 
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complex network structures [139]. Consequently, different link prediction strategies in 

networks were proposed as these studies identified the basic models of axioms governing 

network formation and its structural features. 

By analysing social networks of co-authorship networks, Liben-Nowell and Kleinberg 

studied first the link prediction problem in social networks to provide some apposite insights 

of the problem including special reference to some classical topological measures [77]. The 

prediction paradigm in this study typically extracts the similarity or proximity between a pair 

of actors in the network by exploiting various graph-based similarity scores and ranked them 

for the prediction of emerging link among those actors. Another notion of characterizing link 

prediction problem was rendered by Al Hasan et al. where the authors, in one hand, 

demonstrated that using extrinsic attributes other than graph topology can significantly 

increase prediction performance, and on the other hand, they used these features in a 

supervised learning setup by considering the link prediction problem as a binary classification 

task [140]. To date, these two studies are considered as the most pioneering and influential 

study in link prediction and reminiscent to the subsequent methods suggested by other 

scholars addressing the link prediction problem. 

Several commendable survey studies attempted to enumerate different strategies 

addressing link prediction problem. Lü & Zhou summarized popular link prediction 

algorithms for complex networks emphasizing on actor-similarity indices, maximum 

likelihood and probabilistic methods [17]. Al Hasan & Zaki categorized some representative 

link prediction methods for social networks into four different categories: (i) feature-based, 

(ii) Bayesian probabilistic, (iii) probabilistic relational, and (iv) linear algebraic models [86]. 

P. Wang et al. presented the most comprehensive and systematic survey study on link 

prediction in social networks which is suitable for beginners to understand the underlying 

problem definition, scopes, concepts, and different aspects focusing on this problem [15]. In 
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conjunction with a further comprehensive link prediction definition, general solution 

framework and evaluation metrics, the authors proposed a state-of-the-art categorization of 

link prediction strategies in two perspectives: (i) link prediction technique, (ii) link prediction 

problem. The former includes four different aspects: (i) actor, (ii) topology, (iii) social theory, 

and (iv) learning features. The later included six categories: (i) temporal link prediction, (ii) 

active/inactive link prediction, (iii) link prediction in bipartite networks, (iv) link prediction 

in heterogeneous networks, (v) unfollow or disappearing link prediction and (vi) link 

prediction scalability. Haghani & Keyvanpour classified the link prediction problem into two 

categories, independent of the procedures followed by different methods: (i) missing link 

prediction and (ii) future link prediction [141]. The latter (i.e., future link prediction) was 

further subcategorized into two categories, namely (i) periodic and (ii) non-periodic, where 

periodic link prediction that includes a series of evolutionary networks  resembles the 

dynamic link prediction strategies. Similarly, Srinivas and Mitra categorised the  link 

prediction literature into six different categories, namely: (i) static link prediction using local 

and global similarity metrics, (ii) link prediction in heterogeneous networks, (iii) link 

prediction in signed networks, (iv) unsupervised and supervised learning based algorithms, 

(v) semi-supervised learning algorithms and, finally, (vi) dynamic link prediction [142]. 

Among all these categorizations, temporal/dynamic/periodic link prediction deals with the 

challenge of predicting dynamic interactions among actors in the network over time which is 

different from the traditional link prediction problem that has no temporal aspects associated. 

Before delving into formal definition of dynamic link prediction, we need to define the 

concept of dynamic networks: 

2.3.1 Dynamic Link Prediction in Homogeneous Network 

A homogenous network is composed of similar type of actors and links. For example, 

Facebook Friendship is a homogeneous network where actors are Facebook users and a link 
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denotes a friendship relation between two users. In the next sections, different dynamic link 

prediction methodologies, applied over homogeneous networks, are discussed 

2.3.1.1 Matrix Factorisation 

In dynamic networks, nothing is stable. The latent positions of the actors in network evolve 

with the temporal evolution that takes place in the network. Considering the latent space 

modelling of static networks, a naïve approach for dynamic networks is to extend this method 

to model each actor using a single latent representation and subsequently update its position 

as the corresponding network evolves. However, this modelling tends to suffer, as identified 

by L. Zhu et al., from poor incorporation of historical information and abrupt transitions due 

to its overfitting tendency on the current time step [143]. Therefore, the authors attempted to 

infer the temporal latent positions for all actors in dynamic networks using two variants of 

block-coordinate gradient descent (BGCD) algorithm [144] which is widely used to infer 

low-rank latent space in networks through matrix-factorisation. A local BGCD algorithm was 

introduced that sequentially infers the latent space at each timestamp with a single SIN and 

previous temporal latent spaces instead of jointly inferring temporal latent space in all 

timestamps. It also supports reducing the computational cost. Dunlavy et al. and Acar et al. 

exploited singular value dicomposition (SVD), and Eigen-decomposition (ED), with the help 

of low-rank approximation, to predict links in dynamic networks [145,146]. The authors used 

both weighted and unweighted methods to collapse temporal data inot matrix format, 

followed by an extended version of Katz method [147] known as ‘truncated Katz score’ by 

using truncated matrix single value decomposition and CANDECOMP/PARAFAC (CP) 

[148] tensor decomposition method for multi-periods temporal link prediction. Both matrix 

and tensor factorisation were used by the authors where tensor factorisation is a higher-order 

extension of matrix factorisation and dramatically improves the prediction accuracy. The CP 

algorithm produces a highly interpretable factorisation in regards to the time dimension. W. 
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Yu et al. developed a dynamic link prediciton model that supported both spatial and temporal 

consistency [149]. They leveraged the time-dependent matrix factorisation to decompose the 

network adjacency matrices into time-dependent matrices, and capture the features of actors 

in a dynamic network. The authors also introduced the network propagation constraint by 

adopting label propagation principle under the practical assumption that two actors are 

similar if they have the similar feature and having the same label. The network propagation 

constraint ensures that actors remain in the close proximity of their neighbours in the hidden 

feature space, learnt by the time-dependent matrix factorisation.  

The aforementioned matrix and tensor factorisation based methods predict temporal 

links from a collapsed temporal network by ignoring the connection between temporal 

network snapshots. As reported by Ma et al. in their recent study that these methods are 

incompetent to incorporate the evolving information into feature extraction which is critical 

to dynamic network analysis and results in undesirable prediction performance [150]. 

According to the authors, regularization method that integrates the intrinsic geometrical 

structure of the data space is considered as a novel approach to address this issue. 

Consequently, by considering Non-negative Matrix Factorisation (NMF), they proposed a 

new algorithm, named Graph Regularized Non-negative Matric Factorisation (GrNMF) for 

dynamic link prediction with a view to improve the prediction performance by using a graph 

regularization strategy. Unlike others, instead of collapsing a dynamic network, it factorizes 

the SIN at time 𝑡𝑡 by setting SINs from timestamp 1 to 𝑡𝑡 − 1 as a regularizer and each SIN is 

weighted to be incorporated into the objective function of GrNMF. The principal advantage 

of this algorithm is that in one hand, it can leverage the power of Non-negative Matrix 

Factorisation (NMF) and graph regularization, and on the other, the framework can be 

extended to incorporate other information about dynamic networks (e.g., community 

membership).  
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By considering the equivalence between the Eigen-decomposition (ED) and Non-

negative Matrix Factorisation algorithms (NMF) and graph communicability, Ma et al. 

proposed two NMF-based frameworks for temporal link predictions [151]. The first 

framework collapses temporal features and the second one collapses the temporal networks. 

On the basis of matrix Factorisation formalism that combines both content and link 

information in conjunction with the aforementioned graph regularization method, Gao et al. 

proposed a unified model of dynamic link prediction that integrated three types of 

information: (i) global network structure, (ii) actor’s content, and (iii) network proximity 

information [152]. The model used both latent matric Factorisation and graph regularization 

methods including efficient optimization procedure that supported learning from latent 

factors.   

2.3.1.2 Statistical Model 

In this section, different statistical models, dependent of probabilistic distribution, are 

described: 

2.3.1.2.1 Probabilistic Generative Models 

In dynamic link prediction, probabilistic generative models were fitted to a sequence of 

observed networks and in these models; a dynamic network is represented by a set of 

unobserved parameters. The values of the parameters, estimated from a sequence of  𝑡𝑡 SINs, 

provide the probability score of a link between actors at time 𝑡𝑡 + 1. In these models, the 

prediction accuracy scores are used to measure the goodness-of-fit. Junuthula et al. identified 

two different types of generative models, namely: (i) latent feature model and (ii) dynamic 

stochastic block model [153]. 

In latent feature models, each actor has an unobserved feature vector, and a link 

between an actor pair is defined conditionally independent of all other actors, given their 
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feature vectors. Although, related studies [154-156] demonstrated them as tremendously 

flexible; however, they exploited Markov Chain Monte Carlo (MCMC) method which is 

incompetent to scale up for large number of actors. On the other hand, in stochastic block 

models, actors are divided into classes where actors in the same class have identical statistical 

features. Although the probability of a link formation between two actors is independent of 

statistical properties of all the other actors; however, it depends on the classes of the 

corresponding actors. Temporal changes of link probabilities and class membership are 

associated with stochastic block models to support dynamic link prediction. The 

representative studies [157-159] of stochastic block models are advantageous over latent 

space models in regards to their scaling capability in regards to the actor quantity (i.e., few 

thousands than few hundreds in the latent feature model).  

2.3.1.2.2 Other Probabilistic Models 

With a view to propose a user recommendation model in social networks, Barbieri et al. 

proposed a stochastic generative model that jointly factorized both social connections and 

feature assoications [160]. The model, called WTFW (Who to Follow and Why), is a type of 

stochastic topic model that can not only predict links in directed and actor-attributed 

networks but also provide explanations on each predicted links whether it is ‘topical’ or 

‘social’ in the context of online social networks. WTWF depends on latent factors (e.g., 

communities containing actors with similar behaviour) and explicit modelling of the 

underlying latent nature of the corresponding observed links. Besides, Hanneke and Xing 

proposed an extension of the Exponential Random Graph Models (ERGM) [161,162], where 

apart from adopting many methods and theorems from ERGM, Markov Chain Monte Calro 

(MCMC) maximum likelihood estimatmation algorithms was also applied to model the 

evolution of social network over multiple sequential observations [163].  
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By considering valuable temporal trends, emergent in dynamic networks, Potgieter et 

al. developed different temporal metrics and used Bayesian networks to model the 

interrelationships between local and emergent behaviours of actors [164]. The temporal 

metrics measured the local evolutionay behaviour of actors with an assumption that the 

formation of future associations denotes their emergent behaviours (e.g., the change 

percentage of the number of common neighbours) in a social network. The list of temporal 

metrics included degree, betweenness of actors, topological metrics (e.g., preferential 

attacment, Katz and AdamicAdar) and ‘recency’ to denote the time elapsed since an actor 

formed the last link. The authors also considered dyamic Bayesian network which is a 

directed acyclic graph (DAG) and the concept of social resource combinations [165]. The 

actual realtionships between the temporal metrics and link formations in each SIN at 

timestamp 𝑡𝑡 was determind by mining the trained components of dynamic Bayesian network.  

Markov chains, the favourite framework to model website navigational behaviours of 

users, were chosen by J. Zhu et al.  to develop a Markov model based dynamic link prediciton 

strategy [166]. Networks were constructed from the web log files including an algorithm for 

transition probability matrix compression to cluster web pages with similar transition 

behaviours. The authors also used a mechanism called ‘maximal forward path’ to improve the 

prediciotn performance that denoted a sequence of maximally connected pages by a user in 

the probaility calculation [167]. 

2.3.1.2.3 Statistical Relational Models 

As mentioned in the introduction section, in temporal networks, three aspects changes over 

time. Firstly, the temporal changes of associated attributes of actors and links, secondly, the 

number of actors remain unchanged, however, the links change over time, and finally, both 

the actors and links experience temporal changes. Considering the first case (i.e., changes of 

attributes of actors and links over time), Sanghai et al. extended the probabilistic relational 
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models (PRM) [168] to develop a separate PRM for each SIN in given dynamic network 

[169]. The authors modelled the dependencies of attribute values in a SIN at an individual 

timestamp to the next. Milch and Russell  considered the final case where both actors and 

links experienced temporal evolution  and developed a dynamic link prediction model by 

introducing Bayesian Logic [170]. It is considered as a first-order probabilistic modelling 

language that specifies probability distributions with varying sets of objects. Among other 

statistical models, Sharan and Neville attempted dynamic link prediction by incorporating 

time-varying dependencies into relational models [171]. The authors believed that temporal 

interaction dynamics contain valuable information that can improve prediction accuracy. The 

authors represented dynamic networks by aggregating the sequence of links between any pair 

of actors into one link with a weight, calculated by an exponential weighting scheme. As a 

result, a sequence of temporal network snapshots (i.e., SIN) would become a static weighted 

graph. The authors then incorporated the link weights in a relational Bayes classifier for the 

prediction purpose with a view to moderate the influence of attributes throughout the SINs.  

2.3.1.2.4 Probabilistic and Matrix Factorisations 

In these models, probabilistic dynamic modelling was proposed based on matrix Factorisation 

to deal with the time-varying relational data. One such model was proposed by Hayashi, 

Hirayama,and Ishii based on dynamic extension of matrix Factorisation [172]. In this model, 

the dynamic evolution of a sequence of relational matrices was modelled using low-rank 

matrices sampled from an exponential family distribution. The authors applied Laplace 

approximation to derive the sequential Bayesian estimation and capture the temporal 

variations of latent low-rank relationships effectively. By introducing original generalized 

linear models (GLM)  [173] in the context of matrix Factorisation, known as Exponential 

family Matrix Factorisation (EMF), the authors also demonstrated that their model performed 

well in both real-world and synthetic networks. Sarkar & Moore proposed a similar method 
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of probabilistic dynamic model based on matrix Factorisation, where the authors introduced a 

latent space model for temporal networks [174]. Their model estimated the distance between 

actors in the network by using Bernoulli natural parameter space and extended the latent 

space model for static link prediction by considering temporal correlation of actors’ position 

in latent spaces. However, the authors relied on Markov assumption in identifying latent 

locations of actors where the latent position of actor at time 𝑡𝑡 + 1 is independent of all 

previous locations given its latent location at time 𝑡𝑡. 

2.3.1.3 Machine Learning Model   

Machine learning strategies have also been exploited in dynamic link prediction. Based on 

supervised rank aggregation, Pujari and Kanawati developed a model that aggregates unique 

information, provided by each attributes of actors in the network, and introduced weighting 

scheme to the rank aggregation method to predict future association between them [175]. The 

authors expressed the link prediction problem as a political election process where the voters 

are different topological measures and candidates are the non-connected pairs of actors. Vu, 

Hunter, Smyth, and Asuncion proposed a regression based modeling framework for dynamic 

link prediction that incorporates both time-dependent network statistics and time varying 

regression coefficients  [103]. Leveraging the concept of survival and event history analysis 

[176], the authors employed a multivariate counting process including both multiplicative and 

additive intensity functions. These functions incorporated random network statistics and time 

varying regression coefficients. The additive approach, supported by this model, provided an 

efficient inference scheme to estimate the time varying coefficients and allowed scaling up 

for large networks. Zeng et al. developed a dynamic link prediction method called Self-

trining based Link Prediction using Temporal features (SLiPT) by using semi-supervised 

learning [177]. The authors were motivated by the fact that the potential information from 

large number of non-connected actor pairs can improve the prediction performance. Their 
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dynamic link prediction strategy used two temporal features, borrowed from the study by 

Potgieter et al. [164] (e.g., ‘recency’, the degree of actors in each time stamp), in conjunction 

with six topological features.  

The prediction performances of different topological measures vary intensively. 

Considering their performance variance and instability, researchers attempted to organize 

them together to develop ensemble algorithm to reduce the likelihood of selecting the worse 

preforming one and hence obtaining the stable link predictor. This motivated Y. He et al. to 

developed an ensemble algorithm for dynamic link prediction by consiering three different 

ordered weighted averaging (OWA) operators [178]. The operators included were maximum 

entropy, minimum variance and chi-square methods. These operators assign weights to nine 

common neighbourhoods-based topological measures and then aggregate their results to 

obtain the final prediction score. Temporal evolution in dynamic networks may engender new 

dimension of attributes (e.g., community memberships) of actors and links including multiple 

features for each dimension. Considering this fact, Bao et al. developed a prediction strategy 

based on principal component analysis (PCA) [179]. By using principal component 

regression (PCR), the authors attempted to devise a robust link prediction mechanism with 

optimal time complexity by using automatically identified features. These features were 

contextually important and mostly not derived from link topology.   

As dynamic social networks evolve over time, the volume of network datasets 

become larger and contains a large quantity of network events (e.g., publications, 

communications). O'Madadhain et al. developed a novel prediciton strategy based on the co-

participation likelihood of actors in different network events in conjunction with temporal 

changes of their ranks (e.g., influence, level of participation) in regards to the participations 

in series of events. predicting potential cooperation between social entities in social events 

[180]. The authors explicitly incorporated two important aspects of event data (i.e., time and 
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sequence) in conjunction with scalable and robust machine learning techniques. Instead of 

temporal events, Bringmann et al. considered the typical patterns of structural chnages in 

temporal networks including association rule mining and frequent pattern mining to develop a 

paradigm of learning and predicting social network evolution [181]. Motivated by their 

preceding study on graph evolution rules [182], the authors developed Graph Evolution Rule 

Miner (GERM) software that extracts graph evolution rules and support the prediction of 

emerging links in dynamic network. Considering three challenges in dynamic network 

analyses (i.e., high dimensionality of responses, large number of observations, and 

complexity associated with explanatory variable selection), X. Li et al.  proposed a deep 

learning framework (i.e., Conditional Temporal Restricted Boltzmann Machine) for dynamic 

link prediction [91]. It is a generative model in exponential family that integrates neighbour 

influence as adaptive bias into the energy function and employed the exponential capability 

to capture nonlinear variance in dynamic link prediction. According to the authors, this 

machine learning based approach is robust to noise and tackles the computational cost of 

learning and inference with the support of efficient Neighbour Influence Clustering 

algorithm. By employing low-dimensional latent space, Z. Zhang et al. proposed a machine 

learning based incremental dynamic link prediction algorithm [183]. In this algorithm, the 

authors employed the non-negative symmetric matrix decomposition in conjunction with 

block-cordinate gradient descent (BCGD) [184] algorithm to optimize the learn process. The 

assumption behind this algorithm is that actors with shorter distance in latent space have 

higher likelihood of forming links in future.  

Optimization of machine learning algorithms is computationally intensive. To 

minimize the cost incurred by optimization process, Bliss et al. developed a linear model that 

combined both neighbourhood-based topolgical similarity metrics and actor attributes in an 

evolutionary algorithm in an inquest for the coefficients supportive to the optimization 
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objective [102]. The authors used Covariance Matrix Adaptation Evolution Strategy (CMA-

ES) to optimize weights of a linear combination of sixteen topological metrics and actor 

attributes. A further optimization technique, ant colony optimization [185] was used by 

Sherkat et al. to develop a subgraph evolution based dynamic link prediction technique [186]. 

The unsupervised structural link prediction algorithm, based on the foraging behaviour of 

ants, studied the evolution of specially constructed subgraphs to predict emerging links. 

2.3.1.4 Temporal Measures 

Link topologies, in association with temporal information, play a critical role in dynamic link 

prediction. For example, the rate and length of communications provide indications on the 

type of relationship involved (e.g., family, commercial) [187]. It is also understood that the 

time of interactions between actors in a network is a dominant feature for ranking neighbours 

in regards to the likelihood of future association with a particular actor [89]. Therefore, 

different temporal methods have also gained attention from the researchers: 

2.3.1.4.1 Univariate Temporal Sequence 

This is the most generic and highly used method of dynamic link prediction. In a most 

straight approach, a time series of frequency of link occurrences is built by considering 

temporal sequence of network snapshots (i.e., SINs) and Auto Regressive Integrated Moving 

Average (ARIMA) [188] models are used to predict the future links [189]. Another similar 

approach was developed by Ibrahim and Chen where the authors developed a reduced static 

graph approach by incorporating both frequency and temporal information [93]. In this 

method, highly frequent links have higher probability of future appearances and a damping 

factor was used to denote the importance of a link based on the time of its occurrences. This 

type of time series model is capable of predicting the future occurrences of only repetitive 

links through interlink dependencies over time. Instead of considering link frequency, some 

other studies incorporated different time-varying structures. These included density and, 
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diameter [155], sub-graph and cycle structures [128] and clustering patterns [190] in a series 

of SINs. Recently, learning automata-based time series link prediction (LA-TSLP) was 

proposed by Moradabadi and Meybodi that used a set of Learning Automaton (LA) to predict 

future links [191]. As an adaptive decision-making tool, LA attempts to learn the optimal 

action from a set of allowable actions based on a probability distribution over the action set 

by interacting with the random environment [192]. Both a learning algorithm and 

reinforcement signal govern the updates of probability distribution of its action(s).   

2.3.1.4.2 Network Structural and Topological Metrics 

Some dynamic link prediction methods exploited the temporal network structural variations 

in dynamic networks. For example, Sarkar et al. developed a non-parametric algorithm for 

link prediciton in dynamic networks by considering both topological features and local 

neighbourhood of actors in different partitions of time domain [193]. The rationale behind 

their method is that the sociality of actors in social networks affected by its neighbours. By 

investigating the relationship between graph structure and link occurrences, Murata and 

Moriyasu developed a weighted graph proximity score for dynamic link prediction [194]. The 

authors assumed that association of link weights with graph proximity score can boost the 

performance of the dynamic link prediction  

Topological similarity metrics, widely used in link prediction in static networks, are 

incorporated in time series to devise the most eminent dynamic link prediction method. In 

this method, a time series of a chosen topological metric, denoting the proximity and/or 

similarity between a pair of actors, is constructed to acquire historical information of their 

topological changes. Similar to the univariate temporal sequence based methods, ARIMA 

models were used to estimate the probability of future link occurrences based on the 

forecasted topological similarity scores from the constructed time series. Representative 

studies in this category were performed by different scholars in [195,196,189].  
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Using neighbourhood based topological structure in conjunction with temporal 

information is a common process of generating time-aware topological metrics for dynamic 

link prediction. For example, Zhang et al. used an improved version of ‘ResourceAllocation’ 

algorithm [183]. Despite, ResourceAllocation 1  has a similar form like AdamicAdar1 

algorithm; however, the former suppresses the contribution of the high-degree common 

neighbours more than the latter. The authors had the ResourceAllocation algorithm modified 

by considering the degree of the common neighbours including the degree of the concerned 

actors of a link. Subsequently, their modified algorithm was capable of avoiding re-

computation of the whole network in case of any temporal structural changes.  

In case of dynamic link prediction in temporal directed, Bütün et al. proposed a 

neighbour and graph pattern based topological measure that not only considered the link 

direction but also link weights and associated temporal information to imporove the 

prediciton performance [197]. Besides this, few other studies explored the dynamic link 

prediction mechanism in directed networks. For example, Schall proposed a new metric 

called Traidic Closeness (TC) that calculated the ratio of the number of closed traids in 

comparison to the number of potential triads [198]. Similarly, Romero and Kleinberg  

demonstrated the importance of directed triadic closure on link formation in online social 

networks like Twitter [199]. 

2.3.1.4.3 Temporal Communities/Cluster 

In dynamic networks, structure of the network evolves over time where new links may arrive 

among new actors, new and existing actors, or between two existing ones. Link inference 

decision in temporal networks can be made using the combination of types of actors and 

links, including the heterogeneous contents associated with them within a particular structural 

locality (e.g., communities) of the network [200,201]. Therefore, dynamic community 
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detection/clustering approach was exploited for link prediction in both homogeneous and 

heterogeneous networks. Aggarwal et al. used a dynamic graph-clustering approach in the 

content-rich networks where clusters were created based on structural similarity  [202]. In 

this method, fine-grained clusters were created and maintained in evolving networks to 

generate local regions. Then content-specific linkage behaviours of different attributes within 

these local regions were exploited to predict future links. The authors demonstrated that 

clustered subnetworks in conjunction with relational attributes of different actors can further 

support the prediction of likelihood of future links.  

In homogeneous networks, Rossetti et al. formalized the link prediction problem as a 

‘interaction prediction’ paradigm [203]. The authors combined dynamic social network 

analysis, time series forecasting, feature selection and network community structure to 

predict future interactions. In their method, the modularity structure of dynamic networks was 

considered as an important topology since it represents the boundary of sociality of social 

actors. The evolution of such boundaries denotes changes of actors’ social behaviours. The 

authors also divided the original problem into two disjoint tasks, namely (i) intra-community 

and (ii) inter-community interaction prediction. To extract community-aware features, the 

authors took advantage of three community detection algorithms, namely: (i) Louvain [204], 

(ii) Infohiermap [205], and (iii) DEMON [206]. Likewise, considering clustering information, 

Yuan et al. proposed a new dynamic link prediciton model [207] in association with 

MapReduce technology, a core component of Hadoop distributed system [208]. A similar 

appraoch of link prediciton in temporal networks was proposed by Ibrahim and Chen, known 

as Integrated Time series Model (ITM) where the authors used a combination of information 

from actors’ communities and centrality measures in conjunction of time series information 

[93]. In this model, the authors used modularity Louvain method [204,209] for community 
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detection purpose and eigenvector centrality measures to compute the importance (i.e., 

centrality) of actors.  

To study the link prediction in followee-follower networks of Twitter, Castaneda  

constructed communities of interest over time by considering organizational principles (e.g., 

hierarchy, user interest) [210]. To improve the protocol of Twitter in creating and 

maintaining a list of followees by the followers and let the followers avoid getting 

information overloaded, the author applied social network analysis and leveraged 

semantically enriched content (e.g., embedded links, URLs) to construct a triadic (user-

object-user) networks. In these networks, followers and followees were implicitly connected 

through tweet contents. With the help of evolutionary communities of interest, the author 

proposed a model to identify connections between Twitter users and henceforth predict 

alternative information sources for followers.   

2.3.1.4.4 Time-aware Features 

Munasinghe and Ichise developed a new time index called ‘Time-Score’ for dynamic link 

prediction by incorporating temporality with the topological features and link strengths  [211]. 

This time-aware measure is an extension of common neighbours with integrated time 

components. The assumption behind this method, as reported by the authors, is that the 

likelihoods of future links depends on the topological information (e.g., number of common 

neighbours, frequency of co-occurrences) and associated temporal duration (e.g., how long 

both actors have those common friendships). Munasinghe also developed another time-aware 

feature called ‘T_Flow’ which is an extension of the algorithm  by Lichtenwalter et al. called 

‘PropFlow’ [2]. The algorithm used link weights as transition probabilities and temporal 

random walk to compute the rate of information flow between two actors [212]. The rationale 

behind PropFlow algorithm is that if a pair of actor has higher transition probability, more 

information flow between them denoted the likelihood of their future association. 



55 
 

Munasinghe associated the duration of link activeness, as defined in the Time-Score measure, 

to compute the temporal aspects of the information flow between a pair of actors. Likewise, 

the authors in another study [213] developed a Time Path Index called ‘Link-Score’ by 

integrating temporal information with the path between actors and demonstrated that it 

performed better than the neighbourhood based Time-Score, despite its detrimental effect in 

regards to the execution time. To infer friendships in an online multiplayer game setting, 

Merritt et al.  developed temporal statistical feature to capture the interaction patterns among 

players [214]. The authors considered periodicities, interaction volume, and the similarity in 

players’ action within the online system. Different types of temporal features included in this 

study were: (i) pair autocorrelation (i.e., interaction continuity over a span of time), (ii) 

individual entropy calculated by considering individual’s schedule of interaction and the 

context of the interaction (i.e., game type) and finally, (iii) pair frequency to denote the 

quantity of interactions between friends over non-friends. The authors demonstrated that 

interactions periodicity in combination with prosocial behaviours across these interactions are 

good indicators of inferring future friendships. Yao et al. developed three temporal metrics 

based on common neighbourhood within two hops by considering the size of the common 

neighbours as the representation of network’s transitivity property [1]. These metrics 

included (i) time-varying link weight to reflect the topological variations over time and where 

the recent weight was preferred over the past and old link weights, (ii) change degree of 

common neighbours to reflect the stability of common neighbours where smaller-degree 

neighbours were considered more stable and finally, (iii) intimacy between common 

neighbours to determine the similarity between common neighbours. The final metric 

denoted that if two actors have common neighbours who are similar to each other, than these 

actors have higher likelihood of forming links in future.  
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Considering the periodic appearances and disappearances of links between actor in 

different SINs of a dynamic network as temporal network events, Soares and PrudêNcio 

developed new proximity measures for dynamic link predicton task [215]. The authors 

defined three different types of temporal events based on a specific activity between two 

actors from one SIN to its subsequent SINs. These are (i) conservative, an event that occurs 

when a link between two actors is preserved from one SIN to the next one, (ii) innovative, an 

event that occurs when a new link is created in a SIN which was not present in the previous 

one and finally, (iii) regressive, an event which is opposite to the innovative event (i.e., link 

disappears in a SIN which was present in the previous one). The authors proposed an event-

based scoring mechanism considering these three events over time. The proximity score 

between a non-connected actor pair was computed by a rewarding scheme that was updated 

along time depending on these three events occurring between the actors including their 

neighbourhood.   

Among other methods, Salem Narasimhan proposed three state-of-the-art supervised 

link prediction methods those are mutually exclusive [216].The author attempted to model 

the pattern of relationship formation between any two agents in a multi-agent dynamic 

network. These methods were called FELP (Feature Evolution based Link Prediction), HELP 

(History-based Eccentric Link Prediction) and MCLP (Minority Credit-based Link 

Prediction). In FELP, novel meta-feature vectors were constructed by considering a 

combination of time-augmented domain and topological attributes (e.g., AdamicAdar, degree 

mixing probability) of the network. In HELP, a complementary class of links between two 

connected components in dynamic networks was predicted using intuitive temporal network 

topological features (e.g., eccentric probability, group size). These links were considered 

complementary because the actors at both ends of these links were not reachable at the point 

of prediction (inter-group links). Finally, to address the inherent class skewness of the 
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supervised link prediction (i.e., positively and negatively labeled links), MCLP used single 

class learning on minority class examples only by extracting additional information from the 

network evolution. It was also capable of predicting inter-group links by considering 

temporal features like average seconds, average weekdays etc. 

Time-aware features were also used for dynamic link prediction in bipartite networks. 

By considering an User-Object network, Liu and Deng developed a time-weighted network 

model for this purpose [217]. The authors considered both time attenuation (i.e., time scale to 

denote the recent vs old network events) to put mode weight on recent events and diversion 

delay (i.e., delay duration between two different network events) to weigh the link weights in 

their time-weighted network model. 

2.3.1.4.5 Temporal Probabilistic  

Type-awareness of relationships can provide additional information for different data mining 

tasks (e.g., expert recommendation). One such application is to model Advisor-advisee 

relationship from a co-authorship network which provides additional semantic information 

than simple coauthor relationship. For example, it may support identifying different research 

communities, how research topics are emerging and who are the influential figures in 

different research communities. These facts motivated Chi Wang et al. to adopt a 

probabilistic ranking method and propose a time-constrained probabilistic factor graph 

(TPFG) model that integrated intuitive features to predict dynamic links in collaboration 

networks [218]. On the other hand, Lakshmi and Bhavani developed a measure called 

Temporal Co-Occurrence Probability (TCOP) to predict links in homogeneous networks 

[219]. Their algorithm was considered as an extension of the Co-occurrence probability 

algorithm developed by Chao Wang et al. which is a probabilistic graphical model using 

higher order topological information [220]. However, Lakshmi and Bhavani incorporated 

temporal information with such graphical models to compute clique potentials. The authors 
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also extended the ‘Time-Score’ measure, mentioned above, to include the cliques where the 

corresponding actors belong. Further, they normalized the interaction quantity to assign high 

probability to the recent cliques and low to the old ones. Ahmed and Chen designed a new 

method of dynamic link prediction based on a random walk in temporal networks [221]. By 

considering a probabilistic random walk, the similarity scores between an actor and its 

neighbours were computed within a SIN around that actor to reduce the computational time. 

The proposed method Time Series Random Walk (TSRW), as called by the authors, 

exploited a global topological similarity metric called SimRank [222]. In conjunction with 

temporal information and SimRank algorithm, the authors computed a sequence of 

probabilistic random walk transition matrices for each SIN in a dynamic network and 

combined them together to generate the final one. With this final transition matrix, a damping 

factor was used to give more importance to the recent link information. 

To predict the time (i.e., ‘When’) of the future link occurrences, given its features 

from the current network snapshot, Sajadmanesh et al. developed a probabilistic non-

parametric approach named Non-Parametric Generalized Linear Model (NP-GLM) [223]. 

NP-GLM modeled the distribution of link creation time given the feature vectors and was 

capable of learning the underlying distribution of the data including the amount of 

contribution of each extracted feature.   

2.3.1.5 Actor-oriented Measure 

Most of the aforementioned dynamic link prediction methods measure the likelihood of 

future links connecting pairs of actors. These methods attempted to define the probability of 

future link between two actors, by considering topological information, network structure, 

and attributes shared by both actors, irrespective of any individual actor-level measure. 

Neighbourhood based methods are incompetent in differentiating two pairs of actors with 

similar common neighbourhood but having different likelihoods of link formation [219]. 



59 
 

Further, according to Tylenda et al., link-based prediction strategies are based on the 

assumption that actors are interested in links irrespective of the interests of the actors 

themselves [89]. Therefore, the authors proposed actor-centric time-agonistic link prediction 

method where they demonstrated that the time-aware interaction information can support as 

an important feature to rank neighbouring actors, even beyond immediate direct 

neighbourhood, based on the likelihood of their future associations with the central actor. In 

addition, they also contributed with a novel actor-oriented approach to address the evaluation 

of link prediction. Other researchers also attempted to develop actor-oriented measures for 

link prediction in dynamic networks. By considering the temporal trends of actor popularity, 

T. Wang et al. developed a hypothesis where the likelihood of emerging links depends both 

on the structural importance and popularity (activeness) of actors in the links [81]. The 

authors proposed Popularity Based Structural Perturbation Method (PBSPM) that integrated 

both actors’ popularity and observed network topology. Considering the community 

participation of actors over time, Adrian et al. extended the sociability index of actors in 

temporal networks to define weighted sociability index [224]. Intuitively, sociability index 

(SoI) [225] measures the number of times an actor changes its cluster along time. Among 

other studies, Tabourier et al. considered link prediciton in ego-networks and defined a list of 

features to capture different temporal information in regards to the time of interactions 

between an ego (i.e., actor) and its neighbours [79].  

Semi-supervised label propagation-based learning algorithm, in conjunction with 

actor-oriented information, was also used as a dynamic link prediction strategy and hence 

acquired the name as link propagation [226]. To overcome the computational complexity, in 

regards to time and space requirements for network with thousands of actors, like many other 

actor-oriented strategies, the authors developed a fast and scalable method for link 

propagation. They used matrix Factorisation technique instead of widely used conjugate 
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graduate method widely used in semi-supervised link propagation. The authors also 

demonstrated a compact representation of the solution to the associated linear equation, and 

used a non-trivial combination of linear algebraic methods to solve the link prediction 

problem in dynamic networks.  

2.3.1.6 Other Methods 

Among other methods, Ahmed, Chen et al. presented a sampling based method of dynamic 

link prediciton where similarity scores, between a given actor and each of its neighbours, 

were computed by constructing a subgraph around that actor [227]. After combining the 

temporal network snapshots (i.e., SINs) into a weighted network, the actor-cantered subgraph 

was constructed by considering a chosen actor as the central one and then following a random 

walk in that weighted network from that actor. The underlying objective was to reduce the 

computational complexity by processing a smaller subnetwork rather than the whole network 

itself. The subgraph contained an optimal number of sampled paths to restrict the error of the 

estimated similarities within a given threshold.  

To discover all the interaction patterns occurring at regular intervals in dynamic networks, 

Lahiri and Berger-Wolf proposed periodic subgraph mining algorithm [228], a concept 

borrowed from periodic pattern mining [229] and its other variants [230]. The authors also 

proposed a novel measure to rank periodically mined subgraph to determine its closeness of 

being perfectly periodic. Rahman and Hasan  used a collection of induced subgraphs, known 

as Graphlet, in large scale graph analysis to predict links in dynamic networks [231]. By 

using the graphlet transition events (GTEs) in temporal network snapshots (SINs), the authors 

proposed GraTFEL (Graphlet Transition and Feature Extraction for Link Prediction) 

algorithm. It was defined as a novel learning method to obtain feature representation of actor-

pairs for the purpose of predicting the likelihood of future links among them. Based on the 
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assumption that subgraphs distribution in complex networks is statistically stable and typical 

even during significant structural changes [232], Juszczyszyn, Musial,and Budka attempted 

to characterize the network structural changes by statistical data, extracted from the 

evolutionary subgraphs [233]. Subsequently, the authors also proposed a dynamic link 

prediction method considering triads discovery and their transition measurement during 

network evolution. Thus, the link prediction strategy TTM-predictor (Triad Transition Metrix 

predictor) used the information related to temporal transition of triads found in dynamic 

networks.  

2.3.2 Dynamic Link Prediction in Heterogeneous Networks 

Most of the aforementioned link prediction strategies are designed for homogenous networks; 

however, many important real-world networks are inherently heterogeneous. These include 

bibliographic network (e.g., author-keyword), biological networks (e.g., gene-disease) or 

recommendation network (user-item). Due to the structural complexity and actor/link 

heterogeneity, link prediction in heterogeneous dynamic networks is challenging. Aggarwal 

et al. proposed a dynamic graph-clustering-based approach where both macro and micro 

decisions supported the link inference process in dynamic content-rich heterogeneous 

networks [234]. In this approach fine-grained clusters were generated based on structural 

similarity and constantly maintained in SINs. Structural behaviour of this dynamic 

summarization approach that divided the network into densely-connected regions supported 

the macro decision process whereas both structural and attribute information were used in the 

micro-decision process. Conversely, instead of considering structural similarity, meta-path 

based similarity was introduced by Sun et al. to define similar objects in hetergeneous 

network to aiding the dynamic link prediction [235]. The meta-path was defined as a 

sequence of relations existed between different types of objects or alternatively, the structural 

paths at the meta-level. Considering this meta-path framework, Li et al. also presented a 
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novel similarity measure called ‘PathSim’ heterogeneous military/combat networks [236]. 

This measure was capable of finding out the peer objects in the network (e.g., finding the 

viewers having similar movie choice or similar ratings).  

Probabilistic models were also exploited for link prediction purpose in heterogeneous 

networks. These models attempted to optimize a target function to develop a model 

composed of different parameters that best-fit the corresponding network. By modeling the 

influence (probability) propagation among heterogeneous relationships, Y. Yang et al. 

developed a novel probabilistic method, known as Multi Relational Influence Propagation 

(MRIP), for dynamic link prediciton task in heterogeneous networks [237]. MRIP was also 

capable of capturing the correlation between different types of links in heterogeneous 

networks. The authors also introduced temporal link predictors in heterogeneous networks by 

considering time-augmented variants of classical link predictors (e.g., CommonNeighbours1, 

AdamicAdar). Existing literatures further include several other probabilistic methods 

[238,239].   

2.3.3 Challenges and Limitations in Dynamic Link Prediction Strategy 

In case of link prediction in static networks, local similarity indices are constructed using 

neighbourhood-related topological information whereas global similarity indices use the 

whole network to extract topological information and compute similarity/proximity between 

actor pairs. Fundamentally, many real-world networks are dynamic in nature. With the 

temporal evolution of networks, actors simultaneously experience both micro and mesoscopic 

network structural changes forcing the topological properties to change over time. This 

phenomenon made the traditional topological similarity indices incompetent in dynamic link 

prediction.  

                                                 
1 Appendix  A 
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Sajadmanesh et al. pointed out three important challenges in dynamic link prediciton 

that cannot be solve trivially: (i) due to the indispensable integration of time component in 

network evolution, the formulation of dynamic link prediction is quite complex. Dynamic 

link prediction includes a ‘when’ query in addition to ‘which’ query in traditional binary link 

prediction task (ii) information deficiency in regards to the creation time of non-existent links 

whereas only the creation time of the existent links can be known and finally (iii) inferring a 

temporal probability distribution for each actor-pair in the network by considering their 

available features, and answer time-related queries about the link creation time, can be 

inefficient as the underlying distribution of the links’ creation time is unknown and a priori 

distribution considered may become unrepresentative or limited representation of the reality 

[223]. 

From the aforementioned different categories of dynamic link prediction strategies, it 

is evident that the temporal pattern of dynamic networks imposes the first constraints in 

analysing them. Many dynamic link prediction methodologies exploited random walk 

methods over temporal networks or some sorts of aggregation techniques to transform the 

temporal networks into a weighted static network and compute similarity between actors 

from that static version. These methods appeared to ignore the temporal components inherent 

to the dynamic networks and temporal information was not used in the principled manner of 

weighted static graph construction. It is also evident that some of the above-mentioned 

methods are subject to their inherent limitations. For example, many methodologies used time 

series to model the temporal pattern of dynamic networks and then exploited link occurrence 

frequencies, topological, network structural or heuristics based measures in each network 

snapshot (i.e., SIN) to compute the likelihood of future links between actors. Time series- 

based methods, considering only link occurrence frequency, can only allow us to predict 

repetitive links or links observed in any SIN. These methods are incompetent of predicting 
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unobserved links. On the other hand, time series-based methods, considering topological or 

structural metrics, can predict the unobserved links but not the repetitive links. Further, some 

of these methods included the time series forecasting method (e.g., ARIMA) to predict the 

future values of topological changes. This exercise can be counterproductive since prediction 

is performed using predicted and unrealistic values. 

Most of the dynamic link prediction methods predominantly calculate or estimate 

likelihood score for a non-existent link which quantifies emergence possibility of that link in 

future. This likelihood score is calculated by different topological similarity-based algorithms 

or probabilistic methods. The problem with the similarity-based algorithms is that different 

similarity measures denote different likelihood scores for the same link. For example, 

common neighbourhood based topological information may denote different likelihood score 

for two links despite both having actors with same number of common neighbours. On the 

other hand, probabilistic models involve the prior definition of distributions of link 

occurrences which is problematic for temporal networks. Further, the probabilistic model is 

only suitable for small networks with few hundred actors (e.g., ERGM). The underlying 

reason behind this is the inclusion of maximum likelihood methods. According to Y. He et 

al., the maximum liklihood calculation in probabilistic methods, by using surmised 

information, stringent rules and numerous parameters, is time consuming [178]. Similarly, 

matrix or tensor-based methods are not feasible for real-time link predictions in large 

networks due to the computational complexity and time requirements [93]. Further, in most 

machine learning based dynamic link prediction strategies, the corresponding algorithm need 

to be optimized. It is also evident that most of the methods, described above, considered only 

dyadic evolutionary information instead of actor-level evolution experienced by individual 

actors as a result of temporal changes in dynamic networks. Despite some existing methods 

defined actor-oriented features in each temporal network snapshots and combined them 
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together to denote similarity between them, however, these methods are incompatible of 

considering temporal evolution similarity between actors. 

Dynamic link prediction task needs to have both spatial and temporal consistencies 

[149]. The first property signifies the neighbourhood based topological information and the 

second enforces the smooth temporal network evolution [73]. In temporal link prediction, it 

requires to unify both these spatial and temporal factors [149]. To address this issue, firstly, it 

is imperative to identify the optimal time scale to discretise or sample streaming interactions 

among dynamic actors to generate temporal short interval networks (SIN). This time scale 

determines the length of the window or the duration of the interval for each SIN. Too coarse 

or fine-grained/smooth temporal window size will either generate topological error that lead 

to erroneous results or sampling error that causes to obscure important information [240]. 

2.4 Conclusion 

This chapter provided extensive literature reviews on both research objectives (i.e., optimal 

window length detection and dynamic link prediction) including the limitations prevalent in 

existing methodologies addressing both research issues. The research gaps and challenges, 

those provide the rationales behind this research work, were presented after each literature 

review section. For example, in most cases, the existing methodologies of determining 

optimal window length to sample dynamic networks are dependent on either global network 

metrics or actor attributes. These facts left them ignoring the local-level network metrics, 

attributed to individual actors - the principal constituents of a network. These methodologies 

are also considered as incompetent to work with large networks. On the other hand, the extant 

link prediction methodologies in dynamic networks ignored not only the optimal sampling of 

the corresponding networks but also actor-level evolutionary measures, in case of absence of 

any actor attributes, in predicting future links among them. In addition, some of these 
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methods either consider probability distribution of future links which is hard to presume prior 

to the actual prediction task (e.g., Exponential Random Graph Model) and some methods are 

computationally intensive in nature (e.g., Non-negative Matrix Factorisation). Considering 

these, this research not only develops a novel algorithm to optimally sample a dynamic 

network but also proposes some validation criteria to validate the optimality of the window 

size. Once optimal sampling is achieved, this study then develops different features by 

considering actor-level evolution similarity, the concept yet to be explored by the research 

community. These features also consider different types of actor-level evolutions (i.e., 

dynamicity) and can work in any size of the network in case any actor-level attributes are not 

presented. The next chapter provides the theoretical conception of an algorithm to detect the 

optimal sampling window size to discretise dynamic network including some evaluative 

measures to validate the optimality. 
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3.1 Introduction 

The design of any longitudinal study requires the selection of a time scale or window size 

(i.e., the amount of time that elapses between occasions of consecutive measurements) either 

before or after the data collection. This window size also denotes the bin size and 

alternatively known as ‘resolution’, ‘aggregation granularity’, ‘temporal sampling’, ‘sliding 

window’, or ‘temporal window’, used in dynamic data collection process. Although, in most 

longitudinal studies, the system under consideration naturally suggests the size of such a 

temporal resolution [241]; however, the routine practice, in regards to the choice of time scale 

or temporal window size, is arbitrary and followed according to the convenience of the data 

representation and analysis. All time-stamped network activities within each window are 

generally aggregated for conducting a longitudinal network data analysis. This practice is 

common in clinical cohort, epidemiological and psychological studies where researchers 

frequently use a chosen time scale without any rational or deterministic explanation [242].  

Simultaneously, to date, designing longitudinal network study overlooked actor-oriented 

approach that can be adopted to precisely determine the appropriate time scale [243]. Fish 

and Caceres used link prediction technique, the underlying growth mechanism of networks, 

to demonstrate that link prediction performs well on aggregation sequences close to the 

‘ground truth’ [125]. The term ground truth here denotes maximizing the number of network 

snapshots for a given dynamic network. Further, in a longitudinal study on smoking 

behaviour, Collins and Graham [118] found a positive correlation between smoking and peer 

smoking; however, the strength of the relationship decreased as the window size increased. 
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Figure 3.1: An abstract visual representation of a dynamic network that evolved over six 

timestamps (𝑡𝑡1, 𝑡𝑡2, 𝑡𝑡3, 𝑡𝑡4, 𝑡𝑡5,𝑎𝑎𝑛𝑛𝑎𝑎 𝑡𝑡6) to demonstrate how a given dynamic network can be 

described as a collection of multiple network snapshots (i.e., Short Interval Networks, SINs). 

An individual SIN denotes the length of the duration for which streaming links/interactions 

were aggregated into the corresponding snapshot. For example, in the top row, six individual 

SINs donated a collection of links formed at the corresponding timestamps and each 

timestamp can be of any duration (e.g., an hour, day, or month). In the second row, each 

aggregation window was increased twice (i.e., 𝑡𝑡1 + 𝑡𝑡2) leading the dynamic network to have 

three SINs instead of six. Simultaneously, the network structure changed among the actors. 

Finally, in the bottom row, the aggregation window represents three timestamp units from the 

top row combined (i.e., 𝑡𝑡1 + 𝑡𝑡2 + 𝑡𝑡3 ) denoting a larger duration for each SIN. Similarly, due 

to the altered duration, the network structure in each SIN was changed. 
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Conversely, in case of analysing human interaction patterns over time, using calendric time 

scale is considered convenient and supports the underlying social interaction system; 

however, practicing similar temporal scale choice in case of animal interaction pattern would 

be unrealistic since periodic animal behaviour does not rely on weekdays or weekend. 

Therefore, determining the optimal or appropriate sampling time scale is imperative to 

effectively analyse dynamic networks whereas a poorly chosen window size can cause 

researchers to make inaccurate conclusions about the variables or hypotheses being studied 

[100].  

In dynamic network abstraction, where a dynamic network is represented by a time 

series of network snapshots or short interval networks (SIN), the duration of each SIN 

represents the time scale or temporal window by which the dynamic network was sampled. 

Alternatively, it is called temporal network snapshot. In transition from streaming 

interactions to dynamic network abstraction, data may already come as a series of aggregated 

snapshots in some cases, or in other instances, from a given stream of interactions in time; we 

may have to aggregate into different SINs. Irrespective of these two design considerations, 

the level of aggregation of the temporal stream has a great impact on the observed patterns in 

the corresponding dynamic network, and the inferential process made on the network and its 

processes [244-246,97]. This phenomenon is visually presented in (Figure 3.1). In this figure, 

a dynamic network is presented that evolves over six individual timestamps. At each time 

window the network structure (randomly generated) varies from the periodic patterns 

observable in others. In the second row, the duration of link aggregation was doubled (i.e., 

consists of two individual time windows together) resulting the total number of SINs to three 

from six in the upper row. In the final or third row, the aggregation window was tripled to 

generate only two SINs. In each row, as the aggregation window or time scale to accumulate 

links over time varies, so do the network structure in each window including the number of 
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SINs. Therefore, it is understood that the selection of time scale of duration of a window can 

greatly impact the study and analysis of dynamic networks. When assigning a time span to a 

window of a dynamic network, the underlying principle is that actors of the network must 

have sufficient time to initiate network processes such as the formation and dissolution of 

ties.  

Actors in a dynamic network usually exhibit different rates participation in different 

network activities (e.g., for the formation of new ties or the dissolution of existing ties). In 

any given SIN with specified time length, some actors may show higher network activities 

than others while network activities by some actors may be under-represented. Further, an 

actor may demonstrate a high volume of network activity at the very beginning time of a 

particular window or another actor may create all its new ties at the end stage of the 

immediate window. Furthermore, in relation to a given window size, an actor might reveal all 

its network activities (e.g., create 15 ties and delete 10 ties) within a longitudinal network in 

only one window while the other might engage in the same activities in five windows. This 

would significantly affect the involvement of the actors contributing towards the evolution of 

the underlying dynamic network. Considering these phenomenon, the analysis of a given 

network could produce different results for the actor-level social network measures (e.g., 

network centrality) with the consideration of different time scale sizes. An appropriate or 

optimal time scale should reduce the differences in network activities demonstrated by the 

group of dynamic actors. This is because these dynamic actors show somehow similar or 

different level of network activities during the evolution of the underlying network. 

Therefore, in this thesis, a novel approach is proposed to determine the optimal or appropriate 

sampling size of the temporal window or time scale to analyse dynamic network.  
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Figure 3.2: An abstract visualization of dynamic networks to demonstrate how actor-oriented 

network structure changes over time. The dynamic network consists of a series of 

evolutionary network snapshots at different discrete timestamps  (𝑡𝑡 = 1, 2, 3, 4,5, 6)  (e.g., 

days). The top row represents a time series of six network snapshots  𝐺𝐺1,𝐺𝐺2 … ,𝐺𝐺6, known as 

short-interval networks (SINs). The second row represents the aggregated networks at 

timestamps 𝑡𝑡 = 2, 4, 6 where an individual SIN denotes (𝐺𝐺𝑡𝑡−1 ∪ 𝐺𝐺𝑡𝑡). The third row represents 

the aggregated networks at timestamps 𝑡𝑡 = 3, 6 where an individual SIN denotes (𝐺𝐺𝑡𝑡−2 ∪

𝐺𝐺𝑡𝑡−1 ∪ 𝐺𝐺𝑡𝑡). The bottom row represents an aggregated network (i.e., union of all SINs). Each 

network snapshot is accompanied by three normalized centrality measures (i.e., degree, 

closeness, and betweenness), incident to actor 𝑎𝑎1 and 𝑎𝑎2  at different timestamps, both in 

individual SINs and in aggregated networks. 
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The simple and novel approach to determine the sampling duration of dynamic 

networks is hypothesized on the minimum variance analysis of dynamicities demonstrated by 

the network components, the actors, participating in a given dynamic network. The minimum 

variance will ensure that the suggested time scale will neither be too coarse for some actors 

that reveal high rates of network activities nor be too small for some other actors that reveal 

slow rates of network activities. This approach will be applied to different dynamic network 

datasets to empirically determine their appropriate time scale or duration of network activity 

aggregation from different actor-level perspectives. In this thesis, the optimality of the 

identified temporal window sizes/time scales is further evaluated by different approaches 

including time series analysis. 

3.2 Actor-oriented Positional Evolution 

As mentioned earlier, a dynamic network comprises different network snapshots observed at 

different points in time known as short interval networks (SINs). An accumulation of these 

SINs into a bigger network is known as an aggregated network. In two consecutive SINs, the 

network involvement of an actor can be changed in two different ways. First, an actor may 

change its neighbourhood connectivity within the two SINs and thus change the network 

position. It can be captured by different network measures such as degree, closeness and 

betweenness centrality. Second, an actor may change its presence; for example, an actor may 

be present in the tth SIN, leave the network at the (t+1)th interval and re-join the network at 

(t+2)th interval. In (Figure 3.2), these phenomena are demonstrated visually. Similar to the 

(Figure 3.1), this figure represents a given dynamic network by using six SINs 

(i.e., 𝐺𝐺1,𝐺𝐺2,𝐺𝐺3,𝐺𝐺4,𝐺𝐺5,𝐺𝐺6) in six individual timestamps (e.g., days) in the top row, three SINs 

in the middle where the duration of time scale was doubled (i.e., two days) and two SINs in 

the third row where time scale duration was tripled (i.e., three days). In addition, this figure 
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also present an aggregated network that combined all SINs together (i.e., 𝐺𝐺1 ∪ 𝐺𝐺2 ∪  𝐺𝐺3 ∪

𝐺𝐺4 ∪  𝐺𝐺5 ∪  𝐺𝐺6) to represent the static version of this dynamic network. It is observable from 

this figure that due to the consideration of different time scale to aggregate links in dynamic 

networks, network positions and participations of actors and links vary. These positional 

evolutions are observable through the alterations of network centrality measures. In this 

figure, three different network centrality measures (i.e., degree, closeness and betweenness) 

of two actors (i.e., 𝑎𝑎1 and 𝑎𝑎2) are presented in all SINs of different temporal window sizes. It 

is evident that due to network evolutionary changes in different snapshots, in regards to the 

presence/absence of actors and formation/dissolution of links, the centrality measures of these 

two actors change accordingly. Thus, the evolution of an actor in a given longitudinal social 

network has two components: (i) positional; and (ii) participation [247]. Positional evolution 

denotes changes of network positions of actors in different network snapshots of a dynamic 

network relative to their positions in the aggregated network. On the other hand, participation 

changes exemplify the changing network participation of actors in any two consecutive 

temporal network snapshots. For example, an actor may participate in the (𝑡𝑡 − 1)th network 

snapshot but disappear in the 𝑡𝑡th snapshot, or alternatively, it may appear to participate in the 

𝑡𝑡th network snapshot and disappear in the subsequent (𝑡𝑡 +  1)th snapshot. These types of 

actor participatory transitions in consecutive network snapshots contribute to the participation 

dynamicity in the dynamic network  

According to social network analysis, a given dynamic network needs to be analysed 

in regards to the temporal aggregation of links among its actors [248,249]. Quantification of 

different aspects of the dynamicity in this network depends on both static and dynamic 

topology of social network analysis [250]. Due to the temporal nature of SINs, dynamic 

topology is exercised on temporal network snapshots, whereas; the static topology is applied 

to the aggregated network. SINs may have different durations that principally depend on the 
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underlying longitudinal network data. The accumulation of all SINs creates an aggregated 

network which is a big cross-sectional network (Figure 3.2).The rationale behind the concept 

of positional dynamicity and the reasoning behind using this concept to identify optimal 

sampling window size can further be perceived better from (Figure 3.2). In this figure, the 

network snapshots in the top three rows represent SINs of different durations (i.e., one, two 

and three days) and the bigger network in the bottom row denotes the aggregated cross 

sectional networks. It is evident from the varying sized SINs that changes in network 

positions or importance of actors depend both temporally and sampling resolution of SINs. 

Depending on temporal granularity to define SINs, an actor may either participate in network 

activities by forming links or may get disappeared by severing all links with its neighbours. 

Concurrently, the rate and volume of neighbourhood changes by actors fluctuate considering 

time and window size, which can be observed for two actors (i.e., 𝑎𝑎1 and 𝑎𝑎2) in this figure. 

The concept of positional dynamicity was developed to quantify these temporal positional 

variations considering both dynamic and static social network topology. Consequently, our 

objective in this study is to define the optimal time scale duration by considering the 

uniformity of positional dynamicities demonstrated by actors over time.        

The positional dynamicity of a longitudinal network represents changes in network 

positions of its member actors across different SINs compared to their network positions in 

an aggregated network [251]. SINs may have different durations that mainly depend on the 

underlying longitudinal network data. Given a dynamic network 𝐺𝐺𝑇𝑇 that can be observed at 

𝑇𝑇 = 𝑡𝑡1, 𝑡𝑡2, … 𝑡𝑡𝑚𝑚  different equal-time intervals where 𝑡𝑡𝑚𝑚 > 𝑡𝑡𝑚𝑚−1 > … …  𝑡𝑡2 > 𝑡𝑡1 , the list of 

SINs can be defined as 𝐺𝐺𝑡𝑡1 ,𝐺𝐺𝑡𝑡2 , … … 𝐺𝐺𝑡𝑡𝑚𝑚−1 ,𝐺𝐺𝑡𝑡𝑚𝑚  . Considering the aggregated network has 𝑁𝑁 

actors and 𝑠𝑠 SINs have 𝑛𝑛1,𝑛𝑛2, …𝑛𝑛𝑚𝑚  actors where, |𝑛𝑛1 ∪ 𝑛𝑛2 ∪ 𝑛𝑛3 ∪ … . .∪ 𝑛𝑛𝑚𝑚−1 ∪ 𝑛𝑛𝑚𝑚| = 𝑁𝑁, 

respectively, an equation to quantify the positional dynamicity of a member actor in a 

dynamic network was proposed by Uddin et al. [251]: 
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In Equation (1), PoDi denotes the positional dynamicity demonstrated by the ith actor, i
ANNP  

indicates the network position measure, calculated by using any actor-level social network 

measure individually (e.g., closeness centrality) or as a combinations of multiple measures 

(i.e., 𝑎𝑎𝑒𝑒𝑔𝑔𝑑𝑑𝑒𝑒𝑒𝑒 + 𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑒𝑒𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 + 𝑏𝑏𝑒𝑒𝑡𝑡𝑏𝑏𝑒𝑒𝑒𝑒𝑛𝑛𝑛𝑛𝑒𝑒𝑠𝑠𝑠𝑠 ) for the ith actor in the aggregated network, 

( )
i

SIN tNP  denotes the network position measure based on the same social network measure as 

described above in the tth SIN for the ith actor, ( , )M i t  represents the participation details (i.e., 

whether an actor is present or absent in the corresponding SIN) of all actors in all SINs and m 

indicates the number of SINs in the longitudinal social network. The value of  𝑀𝑀(𝑖𝑖, 𝑡𝑡) is one 

if the ith actor is present in tth SIN or zero (0) otherwise. Subsequently, an equation to 

determine the positional dynamicity of a particular SIN was also proposed by the authors as 

follows: 
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 … … … … (3.2) 

where ( )SIN tPoD  denotes the positional dynamicity of the tht  SIN, 𝑛𝑛𝑡𝑡 denotes the 

number of actors in the tht  short-interval network and 𝑁𝑁 denotes the total number of actors in 

the aggregated network. In Equation (3.1), the value of i
ANNP for an actor depends on the 

underlying social network analysis (SNA) measure used to capture the network position of 

that actor. The value of i
ANNP  will differ depending on the SNA measure considered (e.g., 

degree centrality or closeness centrality). Similarly, the value of ( )
i

SIN tNP depends on the SNA 

measure is used to quantify the network position of the actors. This, in turn, implies that the 
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value of PoDi (i.e., in the right hand side of Equation 3.1), depends on the SNA measure used 

to capture the network position of actors. The SNA measure, developed for this study, is a 

function of degree, closeness and betweenness centrality of an actor in an individual SIN. The 

rationale behind using a composite measure consists of these three centrality measures are as 

follows: firstly, they are the simplest, well-defined, and can successfully quantify an actor’s 

connectivity, position, communication dynamics, influence and broadcasting capabilities, and 

importance in a network. Secondly, these measures are correlated. For example, an actor with 

high betweenness and low closeness centrality can monopolise links from a small number of 

actors to many others. Likewise, high degree with low closeness centrality denotes that the 

actor is embedded in cluster far from the rest of the network [252]. The measure is defined as 

follows: 

𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡) =  𝐶𝐶𝑎𝑎
𝐷𝐷𝐷𝐷𝑔𝑔(𝑔𝑔𝑡𝑡) + 𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔𝑡𝑡) + 𝐶𝐶𝑎𝑎𝐵𝐵𝐷𝐷𝑡𝑡𝐵𝐵𝑛𝑛(𝑔𝑔𝑡𝑡)  … … (3.3) 

where 𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡) denotes SNA measure of actor 𝑖𝑖  in a particular short-interval network 

(SIN) g at time 𝑡𝑡, and expressed through a composite centrality measure. 𝐶𝐶𝑖𝑖
𝐷𝐷𝐷𝐷𝑔𝑔(𝑔𝑔𝑡𝑡) denotes 

degree centrality, 𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶  denotes closeness centrality and 𝐶𝐶𝑖𝑖𝐵𝐵𝐷𝐷𝑡𝑡𝐵𝐵𝑛𝑛  betweenness centrality of 

actor 𝑖𝑖 in a SIN g at time 𝑡𝑡. The measure 𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡) quantifies both i
ANNP  and ( )

i
SIN tNP . Thus, 

aggregation of degree, closeness and betweenness centrality measures of actors are 

considered to quantify the positions of actors both in SIN and aggregated cross-sectional 

networks.  Definitions of these three centrality measures are described below: 

3.2.1 Degree Centrality 

Degree is the simplest centrality measure among all that counts the number of direct 

neighbours. It refers to the number of ties an actor has to other actors or the number of 

connections an actor has. In directed network, the direction of the connections is considered. 
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The in-bound connections are considered as in-degree and out-bound connections are 

considered as out-degree. Degree centrality assigns importance score based purely on the 

number of links held by an actor. Degree centrality is useful for identifying the most 

connected and popular actor who can quickly connect with wider network with a possibility 

of holding most information.  The degree centrality is normalized by dividing the number of 

direct neighbours by the maximum number of actors (𝑛𝑛 − 1). The degree centrality 𝐶𝐶𝑎𝑎
𝐷𝐷𝐷𝐷𝑔𝑔  of 

actor 𝑎𝑎 is defined as: 

𝐶𝐶𝑎𝑎
𝐷𝐷𝐷𝐷𝑔𝑔 =

∑ 𝑝𝑝𝑎𝑎𝑎𝑎𝑎𝑎:𝑎𝑎≠𝑎𝑎

𝑛𝑛 − 1
 … … (3.4) 

where 𝑝𝑝𝑎𝑎𝑎𝑎 = 1 if there is a link between actor 𝑎𝑎 and 𝑏𝑏 and 𝑛𝑛 is the total number of 

actors.  

3.2.2 Closeness Centrality 

The closeness centrality measures the degree to which an individual actor is near all other 

actors in a network. It is defined by the inverse of the length of the geodesic distance (i.e., 

shortest path) to/from all other actors. Closeness centrality measures the momentum of 

influence by an actor or finds the best-placed actors to influence the entire network most 

quickly. Sometimes in a networked system, it is better to stay between others or in the middle 

rather than staying far from the rest. In this case, closeness centrality is an important measure 

to denote the ‘broadcaster’ actors. The normalized closeness centrality of an actor is 

represented by: 

   

𝐶𝐶𝑎𝑎𝐶𝐶𝐶𝐶𝐶𝐶 =
𝑛𝑛 − 1

∑ 𝑎𝑎(𝑎𝑎, 𝑏𝑏)𝑛𝑛−1
𝑎𝑎=1

 … … (3.5) 
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where 𝑎𝑎(𝑎𝑎, 𝑏𝑏) denotes the geodesic path between actor 𝑎𝑎 and 𝑏𝑏 and 𝑛𝑛 denotes the total 

number of actor. 

3.2.3 Betweenness Centrality 

Betweenness is a measure of the extent to which an actor is connected to other actors those 

are not connected to each other.  It is a measurement of actor in the network to what extent it 

serves as a bridge. By definition, an actor’s betweenness centrality measures the number of 

times it lies on the shortest path between other actors. This measure is useful to analyse 

communication dynamics within a network as high betweenness denotes authoritative or 

controlling power between disparate actors or clusters within the network. It can also denote 

peripheral actors among clusters. The normalized betweenness centrality of an actor 𝑎𝑎  is 

defined as: 

𝐶𝐶𝑎𝑎𝐵𝐵 =
∑ 𝑎𝑎𝑥𝑥𝑥𝑥(𝑎𝑎)𝑥𝑥≠𝑥𝑥

∑ 𝑎𝑎𝑥𝑥𝑥𝑥𝑥𝑥≠𝑥𝑥
 

𝐶𝐶𝑎𝑎𝐵𝐵𝐷𝐷𝑡𝑡𝐵𝐵𝑛𝑛 =
𝐶𝐶𝑎𝑎𝐵𝐵

[(𝑛𝑛 − 1)(𝑛𝑛 − 2)
2 ]

… … (3.6) 

 

where 𝐶𝐶𝑎𝑎𝐵𝐵  denotes the un-normalized betweenness centrality of an actor 𝑎𝑎 , 𝑎𝑎𝑥𝑥𝑥𝑥(𝑎𝑎) 

denotes the number of shortest path going through actor 𝑎𝑎 , 𝑎𝑎𝑥𝑥𝑥𝑥  denotes total number of 

shortest path and the denominator in the normalized version 𝐶𝐶𝑎𝑎𝐵𝐵𝐷𝐷𝑡𝑡𝐵𝐵𝑛𝑛 denotes the total number 

or pairs of actors excluding the actor itself. 

3.3 Proposed Algorithm 

This section describes the study’s approach to determine the window size of the underlying 

longitudinal network. 



81 
 

 

A two-step procedure was followed to determine the window size of a longitudinal network. 

In Figure (3.3), a visual demonstration of the algorithm is provided. In this figure, for the 

sake of clarity, a dynamic network was selected that was sampled using different time scales 

of days (e.g., 1, 2, 3 …, 7 days). 

3.3.1 Step One 

Step One used Equation (3.1) to quantify actors’ positional dynamicity values for a 

longitudinal network dataset and considered different lengths (e.g., one day to seven days in 

Figure 3.3) to define the SINs. The centrality measures defined in equation (3.3) were used to 

calculate actors’ network positions in each SIN and in the aggregated network.  

3.3.2 Step Two 

Step two compared different sets of actors’ dynamicity values. A consideration of different 

lengths for SINs led these different sets of actors’ dynamicity values. According to the 

dynamic network presented in Figure (3.3), there were seven different sets of actors’ 

dynamicity values since seven different values (i.e., one day, two days, three days … seven 

days) were considered to define the SINs. A variance comparison approach was used to 

compare different sets of actors’ dynamicity values. For a group of numbers (e.g., a set of 

actors’ dynamicity values), the variance measured how far all these numbers spread out from 

their mean or average [253]. A higher variance among a set of numbers indicated a wide 

spread of numbers around the mean. 

The corresponding length (used to define the SIN) was considered to be the right 

window size, if it produces the lowest variance for the dynamicity values of all actors. Thus: 

Window size = S; for which Variance �ADi
S� is the minimum ……(3.7) 
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Where, 𝐴𝐴𝐴𝐴𝑖𝑖𝑆𝑆  is the Actor Dynamicity (i.e., positional dynamicity) for the ith actor (where, 

1, 2,....i n= ) given that a length of S has been considered in defining SINs and there are n 

actors in the longitudinal network. 

 

  

 

Figure 3.3: An illustration of the changes in variances of positional dynamicity values of 

actors where three centrality measures (degree, betweenness, and closeness) were 

considered to quantify an actors’ position in Short Interval Networks (SINs). The time 

scale duration of each SIN may vary from one day to seven days. The blue shaded top row 

denotes a different duration/window size/time scale (in days) that is utilized to split the 

entire network dataset for generating SINs. The light-yellow shaded left most column 

denotes actors in the network and the values in the table denotes actor dynamicity values. 
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Figure 3.4: Algorithm to compute optimal temporal sliding window size to analyse a given 

longitudinal network with time labelled edges. 
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In (Figure 3.4), the algorithm to determine the optimal window length is presented. The 

lowest variance for the dynamicity values indicates that actors revealed the least difference in 

their positional dynamicity values over the time in the underlying longitudinal network, 

which is the underlying principle of this research as discussed in the first section of this 

article. If actors’ positions in different SINs and in the aggregated network have been 

quantified by three centrality measure together, for example, then the lowest variance 

exemplifies that actors showed a minimum difference among themselves in terms of the 

variability in their degree centrality values over the time in the underlying dynamic network. 

Therefore, for a suggested window size the lowest variance will confirm that – (i) an active 

actor will not exhibit a large number of network activities; and (ii) an actor showing low rate 

of network activity will display a minimum volume of network activities.  

3.4 Evaluation 

This section describes some evaluation approaches, based on time series analysis and 

supervised learning methods that were used to validate the optimality of the identified 

window sizes in dynamic networks. Three different methods were used to validate the 

effectiveness of the proposed approach of this study in identifying the optimal window length 

to sample a given longitudinal network: (i) Auto Regressive Integrated Moving Average 

(ARIMA) model; (ii) Time series anomaly detection method; and (iii) Unsupervised 

clustering method known as K-means clustering.  

3.4.1 ARIMA Model 

Understanding the dynamics of time-dependent complex social networks using time series of 

network variables has drawn attention of network science researchers. Time series analysis 

has broadly adopted in network analysis methods such as link predictions that model the 

underlying growth pattern of social networks. In time series analysis, past observations of a 
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time variable can be analysed to develop a model predicts the future values of the variable. 

This study considers the ARIMA univariate time series method to model the temporal 

dynamicity of longitudinal networks. Under the ARIMA model, the future values of a 

variable are determined using a linear combination of past values and past errors. The model 

can be expressed as follows: 

𝑦𝑦𝑡𝑡  =  𝜃𝜃0  +  ϕ1 𝑦𝑦𝑡𝑡−1   +   ϕ2 𝑦𝑦𝑡𝑡−2  +  … … +  ϕ𝑝𝑝 𝑦𝑦𝑡𝑡−𝑝𝑝  

+  𝜀𝜀𝑡𝑡   ̶  𝜃𝜃1𝜀𝜀𝑡𝑡−1   ̶  𝜃𝜃2𝜀𝜀𝑡𝑡−2   ̶   𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡  ̶  𝑞𝑞  … … (3.8) 

where, 𝑦𝑦𝑡𝑡 = actual value, 𝜀𝜀𝑡𝑡 = random error at time 𝑡𝑡, ϕ𝑖𝑖  and 𝜃𝜃𝑗𝑗  are the coefficients, 

and 𝑝𝑝  and 𝑞𝑞  are the integers for the auto regressive (AR) and moving average (MA)  

polynomials. ARIMA (p, d, q) represents an ARIMA model where p equals the number of 

autoregressive terms, q equals the number of lagged forecast errors in the prediction equation 

and d equals the number of non-seasonal differences needed for stationarity. 

Stationarity is important in developing time series model since the properties of 

stationary time series depend only on white noises which is Gaussian (random) in nature. 

Trends and seasonality, affecting the value of time series at different times, are two of the 

most important contributors towards time series stationarity. One way to make a time series 

stationary is known as differencing that computes the differences between consecutive 

observations. It helps stabilising the mean of a time series by eliminating trend and 

seasonality and thus the changes in the level of a time series. In ARIMA model, the 

parameter d represents the level of differencing required to make a time series stationary. The 

higher the order, higher trends or seasonality is present in the time series. Similarly, 

parameters p and q represent the lag order for both autoregressive and moving average 

process, where these lag orders determine the level of auto-correlation between time series 

values and associated error measures. For example, lag order p denotes that the time series 
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value tv  at time t is correlated with the value t pv −  at time ( )t p− . Interested readers are 

directed to the work by Hyndman [254] for detail description in ARIMA. Considering this, 

𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴 (0, 0, 0) is a white noise time series with no predictive pattern and trend components, 

requires no differencing, and demonstrate zero correlation among time series values and 

associated error terms. 

Considering the temporal SINs in a dynamic network as random networks, the total 

actor-level positional dynamicity represented by an individual SIN has to be random in nature 

without any correlation to the positional dynamicity generated by any previous SIN(s). 

Therefore, the time series of positional dynamicity demonstrated by the temporal sequence of 

SINs should be independent of any trend or seasonal components and random in nature. In 

order to prove this fact, I generated a univariate time series, with the help of equation (3.2), 

which denotes the positional dynamicity of individual SIN in a dynamic network. For 

different window lengths considered in this research (i.e., one-six days, weekly, fortnightly 

and monthly), different time series of SIN’s positional dynamicity were constructed. For all 

these series, the best fit ARIMA model was determined. Since the underlying concept is that 

the dynamicity distribution across SINs of any length will be free from trends and patterns 

(i.e., stationary series), the series which is be close to 𝐴𝐴𝐴𝐴𝐴𝐴𝑀𝑀𝐴𝐴 (0, 0, 0) will denote the best 

candidate for optimal SIN length. 

3.4.2 Time Series Anomaly Detection 

A time series is defined as a collection of observations of data items collected through 

repeated measurements temporally. It can be decomposed into three components: (i) long 

term variations or trend, (ii) systematic or calendar related movements or seasonal and (iii) 

out-of-control, irregular, and short term fluctuations known as residuals. Seasonality 

generally consists of regular, periodic, repetitive and predictable pattern whereas the trend 
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component is known as secular variation that denotes long-term non-periodic variations. In 

time series anomaly detection, it is imperative to identify the trend component(s) in time 

series which may introduce artificial anomalies within the time series [255]. In time series 

analysis, anomalies are denoted by point-in-time irregular data points. These anomalous data 

points can be global or local, and positive or negative. Global anomalies extend above or 

below expected seasonality; and local anomalies appear inside seasonal patterns and are 

always masked making them hard to detect.  The anomalies can further be categorized as 

positive and negative anomalies. Positive anomalies represent point-in-time increase of 

observed values (e.g., number of tweets during a famous gaming tournament) and negative 

anomalies represent point-in-time decrease of observed values (e.g., number of service 

request to a server during server malfunctioning). In this step, besides global and local 

anomalies, this study adopted a novel anomaly detection technique [256], as used in cloud 

data to identify positive and negative anomalies within the time series of positional 

dynamicity values. It employs statistical learning approach, time series decomposition and 

robust statistical metrics (e.g., median together ESD). This approach is known as Seasonal 

Hybrid ESD builds upon the Generalised ESD (Extreme Studentized Deviate) test for 

detecting in time series.  

In this approach, similar to that followed for ARIMA evaluation approach, positional 

dynamicity values of SINs were calculated using equation (3.2) to define different time series 

of positional dynamicity values, incident to SINs, and considering different temporal window 

lengths. Hybrid ESD was then applied to detect the percentage of anomalies in each time 

series and select the time series with minimum number of anomalies. The window length of 

the time series of SINs considering their positional dynamicity with minimum anomalies will 

denote the optimal window length.  



88 
 

In Figure (3.5), a visualization of time series anomalies as calculated by the Hybrid ESD 

algorithm is presented. 

3.4.3 K-means Clustering  

In this approach, an unsupervised learning approach was applied to cluster actors considering 

their actor-level dynamicity values for different window sizes, computed using equation 

(3.1). We employed a popular unsupervised learning approach, known as K-means clustering. 

This research clustered actors into K groups based on the similarity of their positional 

dynamicity values and considering the distribution of actor-level positional dynamicity as 

Gaussian distribution. K-means clustering algorithm starts with initial estimates for randomly 

selected K centroids where each centroid defines one cluster and then each data point is 

assigned to its nearest centroid based on the distance function described below. The objective 

of K-means clustering is to minimize total intra-cluster variance, known as squared error 

function. The objective function is defined as:   

2
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= −∑∑ … … (3.9) 

 
Figure 3.5: Percentage of anomalies present in a time series as determined by the 

Seasonal Hybrid Extreme Studentized Deviate algorithm. 
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where,  𝑀𝑀  denotes the number of clusters, 𝑁𝑁  represents number of samples, 𝑐𝑐 

represents centroid for cluster 𝑠𝑠  and m
n jx c−  denotes the distance function. If the 

distribution of calculated actor dynamicity values is sparse (i.e., the variance is high or too 

many extreme values) and the range of the actor dynamicity values is high, then there will be 

more clusters in comparison to the distribution with low variance. Therefore, in this step, the 

optimal number of clusters in K-means clustering was determined by considering the actor 

dynamicity values for different window lengths to identify the window size, for which 

window size the distribution of actors’ positional dynamicity has minimum centroids or lower 

number of clusters. In regards to the optimality of the number of clusters, the ultimate 

objective is to minimize the error measure, denoted by the total within-cluster sum of squares 

around the cluster means, as denoted in equation (3.9).  Then this study attempted to find out 

the total within-cluster variance or the total within-cluster sum of square (i.e., square of the 

distance function in equation 3.9) of these clusters. The window size, for which the total 

value of within-cluster sum of square or the value of the distance function in equation (3.9) in 

K-means clustering over actor dynamicity values is lowest, will be the potential candidate for 

the optimal window length. 

In clustering approach, identification of the optimal number of clusters is somehow 

subjective and depends on the methods used for measuring similarities among data points and 

the parameters used for partitioning. Generally, clustering algorithms are designed for 

multivariate environment where dataset is a collection of features describing each data point. 

However, the popular heuristic K-means algorithm is unable to guarantee the optimal number 

of clusters for univariate data. Since, in this study, I have one-dimensional data (i.e., actors’ 

positional dynamicity), I used ‘Ckmeans.1d.dp’ algorithm, developed by Wang & Song, 

which performs optimal one-dimensional k-means clustering using dynamic programming 

[257]. In this evaluation method, the first attempt is to find out the optimal number of clusters 
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considering univariate actors’ positional dynamicity distribution using different window sizes 

and, secondly, for each window size, calculate the within-cluster sum of squared distances. In 

every network datasets, the window size that gives lowest values for both quantities are 

considered as the optimal window size. 

3.5 Conclusion 

In dynamic or longitudinal networks, one important task is to identify the correct, appropriate 

or optimal choice of aggregation granularity in order to perform binning any stream of time 

stamped links to discern meaningful information and understand the rate of dynamics 

demonstrated by these networks. This identification of correct window length strongly 

impacts the structural analyses, efficacy of network mining and dynamics demonstrated by 

networks [258,246,107]. Having too coarse or too fine temporal granularity may conceal or 

fail to unravel critical information about network dynamics and impair the understanding of 

the structure of underlying interactions. Further, appropriate temporal binning decision in 

dynamic networks will enable to distinguish between noisy, local and critical temporal 

orderings.  

In the literature, there is a lack of actor-oriented measurement/method on the selection of 

optimal window size to analyse longitudinal networks and often the task is left on arbitrary 

choices of scholars depending on the experimental contexts or the requirements of the 

corresponding study. Sometimes it is also left up to the data collection process which is 

impractical. Researchers also attempted to exploit network-level structural properties across 

temporal network snapshots to identify the appropriate window length as discussed in section 

one. Therefore, this thesis proposed an approach that can be used to determine the appropriate 

window size for the analysis of any longitudinal network in relation to different actor-level 

perspectives. The approach was based on the concept of an actor-level dynamicity that 
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quantifies changes in actors’ network involvements (in terms of network position) during the 

evolution of the underlying longitudinal network. In detecting optimal window length, firstly, 

positional dynamicity was defined that quantifies the change associated to actor’s structural 

positions in networks over time. A combination of three well defined centrality measures was 

used to measure the positional dynamicity values of actors. These centrality measures have 

long been exploited in network science not only to quantify actor’s network activities but also 

to define actor’s prominence, communicability and reachability. To determine the optimal 

window length, the variances of actor dynamicity values will be compared by considering 

different time scale durations. The window length with minimum variance in actor 

dynamicity distributions define the appropriate sampling window to analyse dynamic 

network because the minimum variance will ensure that the suggested window size will 

neither be too large for some actors that reveal high rates of network activities and 

consequently exhibit the maximum network dynamicity nor be too small for some other 

actors that reveal slow rates of network activities and consequently exhibit the minimum 

dynamicity. It is noteworthy that the proposed method determines the optimal sampling time 

scale/window from a list of candidate time windows whereas these time windows are 

network dependent and can be of any durations (e.g., second, minute, hour, day, month). For 

example, if in a dynamic network, streaming links are collected or aggregated in every 

second then choices of candidate windows in multiple of day(s) would be inappropriate. 

Similarly, if links are aggregated in a dynamic network by considering temporal unit of single 

day, then choices of candidate windows in seconds or minutes would produce inaccurate 

results. Further, three validation tests were also proposed using time series analysis and 

unsupervised learning methods to support justification of the resultant optimal window length 

from the approach suggested in this research study. 
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4.1 Introduction 

Increasing size and complexity of dynamic networks raised the necessity of splitting a large 

network into small-scale manageable components and thereby facilitating the visualisation 

and inference procedure. Such splitting not only simplifies the exploration of different 

aspects of network but also describe the network without computational difficulties. 

Therefore, in the previous chapter, a sampling/discretization strategy was suggested to split 

the stream of links in dynamic networks into small-scale temporal network snapshots. An 

individual snapshot is called short interval network (SIN) 1 . In these temporal network 

snapshots, actors experience varying dynamicity in regards to their network positions, and 

neighbourhood formed over time.  

Temporal variations of different network activities (e.g., forming or severing links) 

result in micro-scale temporal changes of actors’ network structural positions and 

neighbourhood. Further, these actor-oriented microscopic network changes may result in 

mesoscopic alterations of network structure (e.g., communities of actors). Communities in 

social networks implicitly denote groups of actors with similar features or attributes or actors 

closely tied according to their roles, social interests, or collective behaviour. As attributes, 

social patterns, roles and interest of actors change over time, so do their network activities 

and association patterns. Consequently, these result in fluctuations of both local and global 

network structures. Further, due to the evolutionary patterns of link structures of actors in 

dynamic networks, across the different time intervals, they may either retain existing 

community memberships or gain new membership to different communities. Consequently, 

communities of actors may shrink or increase in size or completely disappear, erode, or new 

communities may form over time. Therefore, it is believed that in evolving social network, 

temporal microscale actor-level changes trigger mesoscopic or collective changes. 
                                                 
1 Please see appendix A 
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Considering three different types of actor-oriented evolutionary aspects (i.e., network 

structure, neighbourhood and community-aware), experienced by each actor in dynamic 

networks, in this chapter, I define three different types of actor dynamicities. The similarity 

between a pair of actors, in regards to these three types of evolution, representing their 

evolutionary proximity, will be used in the later chapter to develop features for dynamic link 

prediction. 

4.2 Actor Dynamicity 

In the previous chapter, the term actor dynamicity was explained in detail including two 

classes of actor dynamicities: (i) positional and (ii) participation1. By considering the degree 

of actor-level temporal fluctuations, Uddin et al. proposed these two types of actor-level 

dynamicities in their recent study [98]. The term ‘actor dynamicity’ refers to the variable 

involvement of individual actors in dynamic social networks. Focusing on this concept, I 

                                                 
1 Please see appendix A 

 

Figure 4.1: Visualization of an actors’ positional and neighbourhood changes in a dynamic 

network consists of two Short Interval Networks (SINs) at two different 

timestamps  𝒕𝒕𝟏𝟏 and  𝒕𝒕𝟐𝟐 . All actors are accompanied with their [degree, closeness, and 

betweenness] centrality measures in the corresponding SIN including their direct 

neighbourhoods. Actor 𝒂𝒂𝟒𝟒  and 𝒂𝒂𝟓𝟓  are coloured red and green to represent how their 

centrality measures are changed due to their positional changes in the SINs over time. 
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explored the temporal changes, incident to actors’ in the dynamic networks, in regards to 

their link structures, neighbourhoods, and community participations in every SIN, to 

construct my dynamic similarity metrics/dynamic features. Modifications of actors’ network 

positions in SINs over time due to their varying nature of network activities (i.e., link 

formation, link deletion) and changing neighbourhoods is visualized in (Figure 4.1). In this 

figure, link structures and neighbourhoods of all actors including their normalized centrality 

measures (i.e., For example, degree centrality of an actor a is calculated as 𝑑𝑑𝐷𝐷𝑔𝑔𝑑𝑑𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑎𝑎
𝑛𝑛−1

, see 

detail in chapter 3) are presented in two different SINs at two different timestamps (i.e., t1 

and t2 where t2 > t1). It is observable that the varying network positions of actors in temporal 

networks can effectively be mapped by the centrality measures. For example, actor a4 

experienced higher degree, closeness, and betweenness centrality in comparison to a5 in the 

SIN at 𝑡𝑡1 whereas actor a5 achieved higher measure in the SIN at 𝑡𝑡2, in comparison to a4, due 

to their corresponding network positions changes. Likewise, actor a4 lost one of its 

neighbours in the SIN at  𝑡𝑡2  where in the SIN at 𝑡𝑡1 , it had two direct neighbours. 

Simultaneously, in addition to its retention of a previously gained neighbours (i.e., a4) in the 

SIN at 𝑡𝑡1 , a5 gained two new neighbours in the SIN at 𝑡𝑡2  (i.e., a3, a1). These temporal 

changes in SINs occur over time due temporal micro-scale network activities performed by 

actors. 

On the other hand, in most social networks, there are parts where the actors are more 

densely connected to each other than the actors in the rest of the network. These condensed 

regions, known as clusters or communities, consist of actors with common structural 

properties, objectives or goals. With the wide adoption of networks to understand the social 

interaction pattern, the term ‘community’ started representing closely-connected actors 

demonstrating certain common characteristic structural properties [259]. According to Santo 

Fortunato, both global and local heterogeneous distributions of links within networked 



97 
 

systems result in spawning community structure within networks [9]. In evolving social 

network, interactions among its actors evolve over time and so do their community patterns. 

The underlying reasons are divergent, for example, actors may change their roles, acquire 

new links, severe old links with others, or new actors and links emerged. Simultaneously, 

with network evolution, owing to various network events, actors may join or leave a 

community that results shrinking or expanding the size of communities, merging, splitting or 

diminishing the existing communities or even engendering new communities. In (Figure 4.2), 

this phenomenon is visualized with the help of two abstract SINs at two different timestamps 

(i.e., 𝑡𝑡1, 𝑡𝑡2 ) in a dynamic network metaphor. The sizes of actors in the network snapshots are 

proportionate to their degree of connections and the colour codes represent different 

communities where different actors participated. Four actors (i.e., 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3,𝑎𝑎4 ) are 

 

Figure 4.2: Visualization of an actors’ clustering tendency changes in a dynamic network 

consists of two Short Interval Networks (SINs) at two different timestamps 𝑡𝑡1 and 𝑡𝑡2. Four 

actors (i.e., 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, and 𝑎𝑎4) are accompanied with their clustering coefficient values in 

the corresponding SIN. The sizes and colours of the actors represent their respective 

degree centrality and communities they belong to. 
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accompanied with their clustering coefficient values at two different timestamps. This figure 

demonstrates various aspects of actor-level temporal microscale changes resulting in 

community-aware mesoscale network alterations. For example, in this figure, at time 𝑡𝑡2, actor 

𝑎𝑎4 changes its community as a result of its neighbourhood changes.  Likewise, although, the 

clustering tendency of actors changes as a result of altering link structures among actor’s 

neighbourhood; however, acquiring more neighbourhoods does not implicitly extend actor’s 

cliquishness. It is also evident that varying neighbourhood and actors’ network positional 

changes simultaneously affect their clustering disposition.  

Considering these facts, in conjunction to the aforementioned observations, evident 

from Figures (4.1 & 4.2), I defined three types of actor-oriented dynamicities. Firstly, 

motivated by the concept of positional dynamicity, as described in the previous chapter, and 

considering the link structural changes (i.e., link formation and dissolution by an actor), I 

defined actor-level structural dynamicity. Secondly, by considering the alterations of 

neighbourhoods over time in a series of network snapshots, I defined neighbourhood 

dynamicity. Finally, the community dynamicity is defined by the degree of evolutionary 

changes, in regards to actor’s participation in communities or its clustering tendency, in SINs 

over time. In the following sections this study describes these two dynamicity measures: 

4.2.1 Structural dynamicity 

Motivated by the concept of the positional dynamicity, as defined by Uddin et al. in [98], the 

change in link structures and network positions, experienced by actors in every SIN over 

time, can be measured using different network measures used in social network analysis 

[251]. Therefore, I used the average of the composite measure, described in chapter 3 to 

measures actor’s positional dynamicity, to quantify an actor’s structural properties in each 

network snapshot (SIN) :  
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𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡) = ��𝐶𝐶𝑖𝑖
𝐷𝐷𝐷𝐷𝑔𝑔(𝑔𝑔𝑡𝑡) + 𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶(𝑔𝑔𝑡𝑡) + 𝐶𝐶𝑖𝑖𝐵𝐵𝐷𝐷𝑡𝑡𝐵𝐵𝑛𝑛(𝑔𝑔𝑡𝑡)�/3      𝑖𝑖 ∈ 𝑣𝑣𝑡𝑡

0                                                                             𝑖𝑖 ∉  𝑣𝑣𝑡𝑡
         … … (4.1) 

where 𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡) denotes SNA measure of actor 𝑖𝑖  in a SIN g at time 𝑡𝑡. 𝐶𝐶𝑖𝑖
𝐷𝐷𝐷𝐷𝑔𝑔(𝑔𝑔𝑡𝑡), 𝐶𝐶𝑖𝑖𝐶𝐶𝐶𝐶𝐶𝐶 

and 𝐶𝐶𝑖𝑖𝐵𝐵𝐷𝐷𝑡𝑡𝐵𝐵𝑛𝑛 denotes degree, closeness, and betweenness centrality measures of actor 𝑖𝑖 in the 

SIN 𝑔𝑔 at time 𝑡𝑡. The term 𝑣𝑣𝑡𝑡 denotes the set of actors in the SIN 𝑔𝑔 at time 𝑡𝑡. The underlying 

reasons for using such a composite measure of three centrality measures were described in 

the previous chapter. Those are, firstly, these measures are well-defined and can successfully 

quantify an actor’s connectivity, position, communication dynamics, influence and 

broadcasting capabilities, and importance in a network, and, secondly, these measures are 

correlated [260]. For example, an actor with high betweenness and low closeness centrality 

can monopolize links from a small number of actors to many others. Likewise, high degree 

with low closeness centrality denotes that the actor is embedded in cluster far from the rest of 

the network. Using the aggregating function (i.e., average of the three centrality measures) 

will normalize the score so that it will be within the range (0 ≤ 𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡) ≤ 1). 

To quantify actor-oriented dynamic changes, Uddin et al. also suggested to use both 

dynamic and static social network topology [251]. The underlying reason is that according to 

social network topology, dynamic network needs to analysed in regards to the temporal 

aggregation of links among its actors [248] and simultaneously, different aspects of 

dynamicity within dynamic networks can be quantified using both static and dynamic 

topology of social network analysis [250]. Social network analysis (SNA) supports the 

mapping and measuring of social relationships among actors in regards to links among them 

[137]. Therefore, in temporal network perspective, static SNA methods are applied to 

network data aggregated over the entire observation time and in contrast, dynamic SNA 

methods are applied to a temporal series of network snapshots or data that is collected in split 

intervals of the total period of observation [261]. For example, while analysing a 
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communication network from a list of mobile calls made by the users over the duration of a 

year, a dynamic SNA can be used over temporally sampled data, binned in hourly, daily, 

weekly, fortnightly or monthly. In contrast, the static SNA considers only one network 

constructed by aggregated all links and denoting all calls made over a year or more between 

the mobile network users. 

Further, Chen et al. used local topological similarity indices (e.g., AdamicAdar, 

Jaccard Coefficient), and instead of building time series of these indices, they considered 

their variations between adjacent time steps [262]. This approach by Chen et al. is diffeent 

from the other supervised dynamic link prediciton methods [196,195],. Upon drawing the 

diffeences between temporal properties (e.g., ‘return’ that denotes the increase and decrease 

of an actor’s degree from one time stamp to the next) and time-aware properties (e.g., change 

of the number of common neighbours of two actors over time), Chen et al. also developed a 

method that paid more attention to the evolutionary process of the network calculated by the 

variations of structural properties to train the classifier in a supervised link prediciotn setup. 

To find out the intrinsic relationship between the variations of topological propoerties and the 

formation of links between non-connected actor pairs, Chen et al. defined a measure to 

quntify the rate of change of the structural propoerties as  

∆𝑥𝑥𝑡𝑡(𝑖𝑖, 𝑗𝑗) =
𝑥𝑥𝑡𝑡+1(𝑖𝑖, 𝑗𝑗) − 𝑥𝑥𝑡𝑡(𝑖𝑖, 𝑗𝑗) 

𝑥𝑥𝑡𝑡(𝑖𝑖, 𝑗𝑗)
  … … (4.2) 

where ∆𝑥𝑥𝑡𝑡(𝑖𝑖, 𝑗𝑗) denotes the temporal rate of change of topological attribute 𝑥𝑥 ,  

𝑥𝑥𝑡𝑡(𝑖𝑖, 𝑗𝑗) denotes the property values incident to actor 𝑖𝑖  and 𝑗𝑗 at timestamp 𝑡𝑡. Motivated by 

these two aforementioned concepts, I defined structural dynamicity as the rate or degree of 

actor-level structural changes computed at time 𝑡𝑡 using the following equation: 

δ𝑖𝑖(𝑡𝑡) =
|𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡)  −  𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡−1)|

𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡 ∪  𝑔𝑔𝑡𝑡−1)
         … (4.3) 
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where δ𝑎𝑎(𝑡𝑡) denotes the degree of structural dynamicity demonstrated by an actor 𝑖𝑖 at 

time 𝑡𝑡. 𝑎𝑎𝑖𝑖(𝑔𝑔𝑡𝑡) denotes the composite centrality measure defined in equation (4.1) incident to 

actor 𝑖𝑖 in a SIN 𝑔𝑔𝑡𝑡 at time 𝑡𝑡 and finally 𝑔𝑔𝑡𝑡 ∪  𝑔𝑔𝑡𝑡−1 in the denominator denotes the aggregation 

of two network snapshots at timestamp 𝑡𝑡  and 𝑡𝑡 − 1 . Although this structural dynamicity 

measure looks analogous to the positional dynamicity1 measure defined in chapter 3 [98]; 

however, in equation (4.3), the aggregated network is computed at every time stamp 

differently. At every time stamp (𝑡𝑡 > 1 ), the structural difference of an actor between 

consecutive SINs is normalized by the structural measure of that actor computed in an 

aggregated network, constructed by combining 𝑔𝑔𝑡𝑡  and 𝑔𝑔𝑡𝑡−1 . Conversely, in positional 

dynamicity, Uddin et al. computed the aggregated network once and which is the union of all 

SINs together. The downside of this measure is that in streaming networks, assuming the total 

number SINs may not be feasible in advance.   

  

                                                 
1Appendix A 
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Figure 4.3: An abstract visualization of a dynamic network considering a series of 

evolutionary network snapshots at different discrete timestamps (𝑡𝑡 = 1, 2, and 3) which is 

used to metaphorically demonstrate the computation of actor-level structural and 

neighbourhood dynamicity measures. The top row represents a time series of three Short 

Interval Networks (SINs)  𝑔𝑔1,𝑔𝑔2,𝑔𝑔 and the bottom row represent the aggregated networks at 

timestamps 𝑡𝑡 = 2, 3  where the first network denotes union of  𝐺𝐺1 (i.e.,  𝑔𝑔1 ∪ 𝑔𝑔2 ) and the 

second denotes union of 𝑔𝑔2,𝑔𝑔3 (i.e., 𝑔𝑔2 ∪  𝑔𝑔3). On top of each SIN, two actors 𝑎𝑎1 and 𝑎𝑎2 are 

accompanied by their degree, closeness and betweenness centrality measures computed in the 

corresponding SIN. At the bottom, their direct neighbourhoods are presented. 
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According to Figure (4.3), the composite measure of actor a1 is 0.39 in 𝑔𝑔1 whereas 

in 𝑔𝑔2, it is 0.91 for the same actor. Similarly, from the bottom row of this figure we get the 

composite measure of this actor in the aggregated network (𝑖𝑖. 𝑒𝑒. ,𝑔𝑔1 ∪  𝑔𝑔2)  at timestamp 

𝑡𝑡 = 2 as 1.06. Therefore, at time 𝑡𝑡 = 2, the degree of structural evolution for actor a1 can be 

measured as  �|0.91−0.39|
1.06

= 0.491� . Similarly, at timestamp  𝑡𝑡 = 3 , the degree of structural 

evolution, experienced by the same actor is measured as  �|0.81−0.91|
1.19

= 0.084�. Since link 

prediction algorithms predominantly focus on network growth [263], the denominator in 

equation (4.3) denotes the composite centrality measures that an actor ought to achieve in a 

growing network. To be more precise, I compared an actor’s network structural difference in 

SINs at adjacent timestamps against the structural position in a static network consists of all 

links present at those two timestamps- an aggregated network without considering removal of 

any links.  

4.2.2 Neighbourhood Dynamicity 

In social network analysis, neighbourhood is defined as the local region around individual 

actors considering different path lengths [264]. The neighbourhood also includes all the links 

among all the actors having direct connection with egos. Neighbourhood based analysis 

within SINs can disclose different aspects of networks, including interesting features (e.g., 

local leadership changes, spurious/irregular activities) and structures not available from the 

aggregated global network [265]. Although, in this study, we considered the neighbourhood 

as an individual actor’s immediate field of interactions (i.e., at distance one); however, a 

further study can explore neighbourhood at different distances to observe the prediction 

performance. Subsequently, the neighbourhood dynamicity of an actor is measured in a SIN 

at timestamp (𝑡𝑡 > 1) as the ratio of an actor’s total neighbour count in 𝐺𝐺𝑡𝑡 in comparison to 

the total neighbour count in an aggregated network at timestamp 𝑡𝑡. The aggregated network, 
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in this context, at time 𝑡𝑡 is computed by aggregating all the links from all SINs, starting from 

the beginning till 𝑡𝑡. This ratio is further multiplied with the neighbourhood gaining rate at 

timestamp 𝑡𝑡 for all actors in 𝐺𝐺𝑡𝑡. Thus the neighborhood dynamicity λ𝑎𝑎 of actor 𝑖𝑖 at time 𝑡𝑡 is 

defined as: 

λ𝑖𝑖(𝑡𝑡) = �
|ℵ𝑖𝑖(𝑔𝑔𝑡𝑡)|

|ℵ𝑖𝑖(⋃ 𝑔𝑔𝑛𝑛𝑡𝑡
𝑛𝑛=1 )|� ∗  

1
{𝑉𝑉𝑡𝑡 −ℵ𝑖𝑖(𝑔𝑔𝑡𝑡)}                … … (4.4) 

whereℵ𝑖𝑖(𝑔𝑔𝑡𝑡) denotes the set of neighbours of actor 𝑖𝑖 and tV denotes the total number 

of actors in the SIN at timestamp 𝑡𝑡. The denominator in the first part of the equation denotes 

the neighbourhood of actor 𝑖𝑖 in an aggregated network comprised of all SINs before and at 

timestamp 𝑡𝑡 (i.e., 𝑔𝑔1 ∪  𝑔𝑔2 ∪  𝑔𝑔3 ∪ … ∪ 𝑔𝑔𝑡𝑡 ). The reason behind considering the aggregated 

network differently from how it was considered in the case of structural dynamicity is that in 

this case we consider the neighbours of an actor by their identity. In case of structural 

dynamicity, acquiring one link in a SIN will increase the corresponding actor’s degree 

centrality whereas losing a neighbour will simply decrease it irrespective of neighbour’s 

identity. If an actor connects to another in the first SIN, severe this link in the second SIN, 

and then again form a link with the same actor in the third SIN, these facts will augment the 

corresponding centrality measures of that actor in aggregated network in the equation (4.3). 

In contrast, the aggregated network in the equation (4.4) that neighbour will be considered 

once in the SIN where the neighbourhood was established first irrespective of the removal of 

the link between these two actors. The rationale behind this is that in neighbourhood 

dynamicity, I analysed the rate of actor’s neighbourhood retention and at the same time 

acquiring new neighbours at each time stamp. For example, in Figure 4.3, at timestamp 𝑡𝑡3, 

actor 𝑎𝑎2 gained two of its old neighbours (i.e., 𝑎𝑎3 and 𝑎𝑎5 from the SIN at 𝑡𝑡1 ) and 

consequently, the denominator of the equation (4.4) would be three both in 𝑡𝑡2 and 𝑡𝑡3 . 

However, in case of structural dynamicity calculation in the equation (4.3), considering 
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degree centrality, the value in SIN at 𝑡𝑡3 (i.e., 𝑎𝑎2(𝑔𝑔1 ∪  𝑔𝑔2) = 4) would be higher than what 

𝑎𝑎2  achieved in the aggregated network at timestamp 𝑡𝑡3 (i.e., 𝑎𝑎2(𝑔𝑔2 ∪  𝑔𝑔3) = 3). 

From the equation (4.4), we can observe that an actor can have maximum score of one 

as neighbourhood dynamicity if it forms association with every other actor in SIN at 

timestamp  𝑡𝑡 = 1, maintaining its neighbourhood in all the subsequent SINs in the dynamic 

network, and form association with every new actor appearing in subsequent SINs. On the 

other hand if an actor does not participate in any SIN (i.e., actor is not connected to any other 

actors or actor does not have any neighbours), its neighbourhood dynamicity score will be 

zero. From this equation, it is apparent that associations with more new actors in SINs and 

maintaining the acquired neighbourhood in subsequent SINs will ameliorate actor’s 

neighbourhood dynamicity score. It is noteworthy that for the first SIN the aggregated 

network in the denominator of equation (4.4) consists of only one and the first network 

snapshot. Therefore, for the first SIN where an actor appears (i.e., an actor gains 

neighbourhood), the first part of this equation before the multiplication sign assigns a value 

of one for that actor. For example, in Figure (4.3), actor a1, the neighbourhood dynamicity at 

𝑡𝑡 = 1  is computed as  �1 ∗  1
8−1

= 0.143� . Similarly, for 𝑡𝑡 = 2  and  3 , the neighbourhood 

dynamicity values for a1 is 0.133 and 0.095. For a2, the time series of neighbourhood 

dynamicity is [0.2, 0.042, 0.083]. Conversely, considering actor a9, the temporal sequence of 

neighbourhood dynamicity is [0, 0.167, 0.167] where this actor’s dynamicity is zero in 𝑔𝑔1 

due to its absence in that SIN.  

4.2.3 Community Dynamicity 

In conjunction with the actor dynamicity, varying roles and divergent network activities 

trigger changes in social communities within these network snapshots. Communities may 

appear, disappear, merge, split, shrink, expand or even sometimes remain unmodified without 
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incurring any changes. Understanding the evolutionary patterns of network communities, 

actors, and their community participations may support researchers understanding the 

underlying network evolution. Particularly, it can assist the social scientists to comprehend 

the underlying growth pattern of social networks. Different types of evolutionary changes, 

evident from the aforementioned figures; those are triggered by temporal variations of 

different network activities performed by network actors. Embracing this concept, I also 

computed the community-oriented actor dynamicity. The term ‘community dynamicity’ in 

this study denotes the ratio of evolutionary changes of actor’s participation in communities or 

its clustering tendency in SINs against its clustering tendency in temporally aggregated 

network over time. In conjunction, the community dynamicity also considers the 

corresponding temporal neighbourhood changes. The rationale behind using aggregated 

network, as mentioned earlier, is that link prediction mechanism of network science 

predominantly deals with network growth and in dynamic network analysis links are 

aggregated by considering an aggregation window size to accumulate links temporally.   

In network theory, actor’s clustering coefficient1 measures the degree the actors in 

networks tend to cluster together. Since in social networks, actors tend to build friendship 

with friends of their friends, this coefficient measures the extent one actor’s friends are also 

friends. For a complex social network, this measure characterises both global and local 

cliquishness of the actors and the network in regards to the triadic closure mechanism that 

characterizes the network evolution. Triadic closure emerges when friends to a common 

friend become friend as well and this is a general phenomenon in social networks. In this 

study, we consider the local clustering co-efficient with view to understand the actor-level 

evolution instead of the network itself. The clustering co-efficient of an actor 𝑖𝑖 in a network 

snapshot 𝐺𝐺𝑡𝑡 at timestamp 𝑡𝑡 is defined as: 

                                                 
1 Please see appendix A 
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𝐶𝐶𝐶𝐶𝐺𝐺𝑡𝑡
𝑖𝑖 =

2ℒ𝑖𝑖
𝐴𝐴𝐺𝐺𝑡𝑡
𝑖𝑖 �𝐴𝐴𝐺𝐺𝑡𝑡

𝑖𝑖 − 1�
    … (4.5) 

where, 𝐴𝐴𝐺𝐺𝑡𝑡
𝑖𝑖  denotes the number of direct neighbours or degree of actor 𝑖𝑖 in a network 

snapshot 𝐺𝐺𝑡𝑡 at time 𝑡𝑡 and  ℒ𝑖𝑖 denotes the number of links between 𝐴𝐴𝑖𝑖 neighbours of actor 𝑣𝑣. 

Subsequently, an actor’s community dynamicity using its clustering coefficient is measured 

in a SIN at timestamp 𝑡𝑡 as follows: 

𝜕𝜕𝑖𝑖(𝑡𝑡) = �
�𝐶𝐶𝐶𝐶𝐺𝐺𝑡𝑡

𝑖𝑖 − 𝐶𝐶𝐶𝐶𝐺𝐺𝑡𝑡−1
𝑖𝑖 �

𝐶𝐶𝐶𝐶𝐺𝐺𝑇𝑇
𝑖𝑖 �

   𝐷𝐷
�
2�𝜂𝜂𝐺𝐺𝑡𝑡

𝑖𝑖 ∩ 𝜂𝜂𝐺𝐺𝑡𝑡−1
𝑖𝑖 �

𝐷𝐷𝐺𝐺𝑡𝑡
𝑖𝑖 +𝐷𝐷𝐺𝐺𝑡𝑡−1

𝑖𝑖 �

  … (4.6) 

where 𝐶𝐶𝐺𝐺𝑡𝑡
𝑖𝑖  represents the clustering co-efficient and 𝜂𝜂𝐺𝐺𝑡𝑡

𝑖𝑖   denotes the neighbourhood of 

actor 𝑖𝑖  in SIN 𝐺𝐺𝑡𝑡 at timestamp 𝑡𝑡 and 𝐺𝐺𝑇𝑇 denotes an aggregated network as the union of two 

SINs at two adjacent timestamps (i.e., 𝐺𝐺𝑇𝑇 = 𝐺𝐺𝑡𝑡 ∪ 𝐺𝐺𝑡𝑡−1). The numerator in the base part of 

equation (4.6) represents the ratio of the rate of clustering coefficient changes of an actor in 

two adjacent SINs at timestamps 𝑡𝑡 and 𝑡𝑡 − 1. On the other hand, the denominator represents 

the clustering coefficient of that actor in an aggregated network consists of SINs at those 

timestamps. The denominator basically normalizes the difference in the numerator in regards 

to the cliquishness1 of the actor what it ought to achieve in a static network without severing 

any links. This score is further amplified by an exponent that measures the neighbourhood 

achievement and retention score of that actor at two adjacent timestamps; and the power of 

the exponent considers the Sorensen index [266] of the actor’s neighbourhood in 𝐺𝐺𝑡𝑡−1 and 

𝐺𝐺𝑡𝑡 . An actor can achieve high community dynamicity score if more of its neighbours 

participate in triadic closure events and simultaneously, it retains its neighbourhood between 

two adjacent timestamps. However, if the actor changes its communities in consecutive 

timestamps then the minimum value the exponent in equation (4.6) can have is zero (0) and 

                                                 
1 Please see appendix A 
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which will eventually penalize its dynamicity score. In this case, the community dynamicity 

score will be defined by the rate of clustering coefficient changes in consecutive SINs. 

Therefore, if the clustering tendency of an actor does not change in two adjacent SINs, then 

its lowest possible community dynamicity can plummet to zero. For example, from Figure 

(4.4), the community dynamicity of actor 𝑎𝑎10  at timestamp 𝑡𝑡 = 2 is calculated as 

�0.40−1.0
0.50

�
𝐷𝐷�
2∗2
2+5�

= 1.381 in 𝐺𝐺𝑡𝑡2. Similarly, for actor 𝑎𝑎4 , at timestamp 𝑡𝑡 = 2, the community 

dynamicity value is measured as  �0.19−0.10
0.19

�
𝐷𝐷�
2∗4
5+7�

= 0.233  . In this way, a time series of 

community dynamicity values can be formed by considering each actor in the SINs at each 

timestamp of a given dynamic network to develop dynamic features. 

 
Figure 4.4: An abstract visualization of a dynamic network comprised of two Short-

Interval Networks (SINs) (A) 𝐺𝐺𝑡𝑡1 at time 𝑡𝑡1 and (B) 𝐺𝐺𝑡𝑡2 at time 𝑡𝑡2 and (C) denotes an 

aggregation of 𝐺𝐺𝑡𝑡1and 𝐺𝐺𝑡𝑡2  (i.e., 𝐺𝐺𝑡𝑡1 ∪ 𝐺𝐺𝑡𝑡2). Each SIN has three communities that are 

represented by three different colors and actors within these communities represent the 

color of the corresponding community. Actors 𝑎𝑎3,𝑎𝑎4,𝑎𝑎10, and 𝑎𝑎12 are accompanied by 

their clustering coefficient values in 𝐺𝐺𝑡𝑡1, 𝐺𝐺𝑡𝑡2 and the aggregated network on the right. 
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4.3 Conclusion 

In a dynamic network, actors usually exhibit different rates of network activities such as the 

formation of new links or the dissolution of an existing links. Further, due to the evolutionary 

patterns of actors’ link structures, they eventually endure existing community membership or 

gain new membership to different communities. Consequently, communities of actors may 

shrink or increase in size, erode, completely disappear or re-emerge over time. Thus, in 

evolving social network, temporal microscale actor-level changes trigger mesoscale or 

collective changes. On the other hand, a well-connected longitudinal network could reveal 

low dynamicity values for its member actors, if those actors had similar levels of 

dynamicities over time. Conversely, a sparse longitudinal network could reveal high 

dynamicity values for its member actors if those actors had different levels of dynamicity 

over time. Considering these, this study has defined three different types of actor-level 

dynamicities, demonstrated by actors in dynamic networks. Firstly, structural dynamicity 

quantifies an actor’s network structural changes measured by three well-defined centrality 

measures. This also quantifies actor’s popularity changes including changes in its 

broadcasting or brokerage capabilities in networks over time. Secondly, the neighbourhood 

dynamicity quantifies an actor’s neighbourhood retention rate including its rate of gaining 

new neighbours or loosing exiting ones. Finally, the community dynamicity measures the 

temporal changes of actor’s clustering tendency or its inclination of community participation. 

These three dynamicity measures can be used as units of changes, experienced by an 

individual actor in dynamic networks. In the next chapter, dynamic features will be 

developed by calculating similarity of these actor-level evolutions experienced by pairs of 

actors. The features will demonstrate actor evolutionary similarity/proximity in dynamic 

networks. 
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5.1 Introduction 

Among three different categories of link prediction strategies (i.e., similarity-based 

algorithms, maximum likelihood and probabilistic methods) [17], similarity-based algorithms 

are the most prevalent prediction methods. In social network analysis, it is widely believed 

that similar and/or closer actors tend to form link in future. These methods compute different 

network topological or actor-based similarity scores to denote the similarity and/or proximity 

between actor pairs and these scores are to denote the likelihood of link formations. For 

example, actors having large number of common neighbours or actors with similar smoking 

behaviour are presumed to be friend in future. In the earliest link prediction models, Liben-

Nowell and Kleinberg concentrated on graph-based similarity metrics for prediction task 

[77]. Later, Hasan et al. used various similarity metrics as features in a supervised learning 

setup and showed that using external information outside the scope of graph topology can 

significantly improve the prediction result [140].  

In previous chapters, we have observed that in temporal network snapshots, actors 

experience varying dynamicity in regards to their network positions, neighbourhood and 

communities formed over time. Temporal variations of different network activities (e.g., 

forming or severing links) result in microscale temporal changes of actors’ network structural 

positions and neighbourhood. Further, these microscale network changes may result in 

mesoscopic alterations of network structure (e.g., communities of actors). Considering these 

different types of actor-level dynamicities, feature engineering will be applied in this chapter 

to generate some important features for the purpose of dynamic link prediction.  

Feature engineering is a process of transforming data or raw information into features 

useful for predictive models. This chapter describes different similarity measurement 

methods used as part of the feature engineering process to compute the evolution similarity  
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score between actor-pairs. Different features engineered in this chapter represent 

similarity/proximity between actor-pairs in regards to different types of evolutionary aspects. 

Unlike static networks where similarity/proximity scores are calculated by mining different 

network (i.e., graph) topology and actor attributes, the similarity/proximity scores between 

actor-pairs are calculated by mining different types of actor-level evolutions. Therefore, the 

features constructed in this chapter are named as dynamic similarity metrics or simply, 

dynamic features. Therefore, this study sought to develop such dynamic features by 

computing similarity between actors by considering their changes in link structure, 

neighbourhood and community-specific information over time in dynamic networks. 

5.2 Dynamic Similarity Metrics/Dynamic Features 

In this section, I describe different methods to define dynamic features for the purpose of link 

prediction. These methods consider three evolutionary aspects of non-connected actor pairs 

defined in the previous chapter. These features will denote the similarity/proximity between 

actors in regards to their structural, neighbourhood or community evolution. To define the 

similarity/proximity between actor pairs, we compare the time series information constructed 

by using structural, neighbourhood, and community dynamicity, described in chapter 4, 

incident to actor pairs. 
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For example, according to Figure (5.1), to predict a link between actors a1 and a2 in 𝐺𝐺4, this 

study builds three separate temporal sequences of  δ𝑎𝑎(𝑡𝑡), λ𝑎𝑎(𝑡𝑡)and 𝜕𝜕𝑎𝑎(𝑡𝑡)  (i.e., actor-level 

structural, neighbourhood and community dynamicity) incident to actors a1 and a2. For these 

two actors, the temporal sequences of structural dynamicity are 𝑎𝑎1 =  [0, 0.491, 0.091] 

 

Figure 5.1: An abstract visualization of the dynamic link prediction framework considering 

a series of evolutionary network snapshots at different discrete timestamps  (𝑡𝑡 =

1, 2, 3 and 4) . The top row represents a time series of three Short-Interval Networks 

(SINs)  𝑔𝑔1,𝑔𝑔2,𝑔𝑔3, where these evolutionary networks are analyzed to predict a future link 

between actor 𝑎𝑎1 and 𝑎𝑎2  at timestamp  𝑡𝑡 = 4  in  𝑔𝑔4 . The bottom row represents the 

aggregated networks at timestamps 𝑡𝑡 = 2, 3 , in which the first network denotes union 

of 𝑔𝑔1,𝑔𝑔2(i.e., 𝑔𝑔1 ∪ 𝑔𝑔2), and the second denotes union of 𝑔𝑔2,𝑔𝑔3(i.e., 𝑔𝑔2 ∪  𝑔𝑔3). The numbers 

on top of each SIN represent the degree, closeness, and betweenness centrality measures of 

actors 𝑎𝑎1  and 𝑎𝑎2  in each SIN. At the bottom of each SIN, the direct neighborhoods are 

presented, incident to these two actors 
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and  𝑎𝑎2  =  [0, 0.437, 0.436] . It is noteworthy that for the first timestamp the structural 

dynamicity is assigned to zero since no variation can be computed using the first SIN. The 

similarity between a pair of actors is defined in regards to temporal similarity, correlation, 

and other similarity coefficients computed over temporal sequences encompassing their 

dynamicity values over time. In the following sections, different methods to compute the 

similarity/proximity between actor-level evolutionary information for non-connected actor, 

are described. Each method assigns a score 𝑠𝑠𝑖𝑖𝑠𝑠𝑖𝑖(𝑎𝑎, 𝑏𝑏) to a pair of actors (𝑎𝑎, 𝑏𝑏) where 𝑖𝑖𝑡𝑡ℎ 

method computes similarity or proximity between actors 𝑎𝑎 and 𝑏𝑏.  

5.2.1 Temporal Similarity 

The time-series of different network structural and/or topological properties considering 

multiple snapshots of the network or temporal information of link occurrences in network 

snapshots are widely used as input for link prediction in dynamic networks. In chapter 2, we 

have observed that researchers used the time series approach for link prediction to emulate 

the dynamic behaviour of complex networks. They also used the link creation time to analyse 

the effect of the elapsed time since a link first appeared and/or to assess the effect of 

‘recentness’ on new links around associated nodes. Although, few link prediction strategies 

have utilized time-series of actor level network attributes and time-aware techniques or 

forecasting methods to measure the probability of future links, however, they ignored the 

temporal similarity measures of these attributes.  

Due to the pervasive nature of time series date in many scientific domains, comparing 

different time sequences and similarity based matching of time sequence data is common in 

scientific research including signal processing and speech recognition. In some studies, 

simple (i.e., Euclidean) distance measures suffice, however, there are instances where two 

time sequences have approximately the same overall component shapes, but they do not align 
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in X-axis. In (Figure 5.2), we represent a simple example of this phenomenon by using two 

time series represented by the red and blue lines in the plot. In this figure, we observe that 

two time-series having similar overall shape but not align in the time axis. Existing distance 

measures (i.e., Euclidean, Manhattan) produce unintuitive results and demonstrate 

incompetency to produce optimal alignment while measuring the similarity between such 

temporal sequences with varying speeds. For example, the Euclidian technique measures 

distance between two time series simply by summing the squared distances from each point 

in one time series to the corresponding point in the other Figure (5.2 a). If two time series are 

identical with one being shifted a little along the time axis, then Euclidean distance may 

consider them as totally different time sequences.  

 
Figure 5.2: Visualizations of measuring similarity between two temporal sequences (a) 

traditional approach (b) Dynamic Time Warping (DTW) approach. Dashed lines 

represent the distance between corresponding points in both time series. The traditional 

approach aligns the ith point in one time series with the corresponding jth point of the 

other. Moreover, DTW provides non-linear alignment to produce a more intuitive 

similarity measures and allows similar shapes to match (i→ j, j+1) even if it requires 

localized stretching along the time axis. In the DTW approach, the difference between 

the two time series is the warped path distance, which is measured by summing the 

distances between each pair of points connected by the dashed lines. 
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Therefore, in time series analysis, dynamic time warpping (DTW) technique [267] is 

widely used to overcome the aforementioned limitation of traditional distance measures to 

provide intuitive distance measurements between temporal sequences while ignoring both 

global and local deviations in the time dimension [268]. It measures the similarity between 

two time-series by shrinking or expanding, or simply ‘wrapping’ the time axis of one (or 

both) sequences to achieve better alignment. This wrapping technique is an example of 

dynamic programming and can measure the similarity between two time series. In Figure 

(5.2b), each black dotted line connects a point in time series marked ‘ 𝑖𝑖 ’ with the 

corresponding similar point in the time series marked ‘𝑗𝑗’. If both time-series 𝑖𝑖 and 𝑗𝑗 were 

identical, all these dotted lines would be straight vertical lines and no-warpping would be 

necessary to align the temporal sequences. The difference between these two time series is 

the wrapped path distance which is measured by summing the distances between each pair of 

points connected by the dashed lines in the figure. Therefore, two time-series will have DTW 

distances as zero if they were identical except for localized stretching along the time axis. 

Due to its ability to determine the optimal alignment and similarity between temporal 

sequences, it is often used in time-series based classification in various domains including 

data mining, robotics, manufacturing and medicine. 

Let 𝑋𝑋𝑎𝑎 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑚𝑚] and 𝑌𝑌𝑎𝑎 = [𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, … 𝑦𝑦𝑛𝑛] be the time series of length 

|𝑠𝑠| and |𝑛𝑛| considering the chosen dynamicity measure, described in section 2.1 (i.e., 

structural and neighbourhood dynamicity), for actors 𝑎𝑎 and 𝑏𝑏 where  𝑠𝑠,𝑛𝑛 ≤ 𝑇𝑇, and 𝑇𝑇  is the 

total number of SINs. If 𝑎𝑎�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� denotes local distance measure (e.g., Euclidean), defined to 

compare two different points in 𝑋𝑋𝑎𝑎 and 𝑌𝑌𝑎𝑎 , then the goal of DTW technique is to find an 

optimal alignment between 𝑋𝑋𝑎𝑎 and 𝑌𝑌𝑎𝑎  with minimum overall distance [269]. The notion of 

this alignment depends on the definition of a (𝑠𝑠,𝑛𝑛)-warping path. I then construct a wrap 

path which is a sequence 𝑝𝑝 = 𝑝𝑝1,𝑝𝑝2,𝑝𝑝3, … ,𝑝𝑝ℓ  with 𝑝𝑝ℓ = (𝑠𝑠ℓ,𝑛𝑛ℓ) ∈ [1:𝑠𝑠]𝑥𝑥[1:𝑛𝑛]  for  ℓ ∈
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[1:ℒ] where 𝑠𝑠𝑎𝑎𝑥𝑥(|𝑠𝑠|, |𝑛𝑛|)  ≤  ℒ <  |𝑠𝑠| + |𝑛𝑛|, where ℒ denotes the length of the warping 

path. The wrap path considers all points in both time series starting from 𝑝𝑝1 =  (1, 1)  to 

𝑝𝑝ℓ = (|𝑠𝑠|, |𝑛𝑛|) such that 𝑝𝑝ℓ = (𝑖𝑖, 𝑗𝑗),𝑝𝑝ℓ+1 = (𝑖𝑖′, 𝑗𝑗′) where (𝑖𝑖 ≤ 𝑖𝑖′ ≤ 𝑖𝑖 + 1) and (𝑗𝑗 ≤ 𝑗𝑗′ ≤ 𝑗𝑗 +

1) and 𝑖𝑖 and 𝑗𝑗 are indexes from time series 𝑋𝑋𝑎𝑎  and 𝑌𝑌𝑎𝑎  respectively. The optimal warping 

path 𝑝𝑝∗, between 𝑋𝑋𝑎𝑎 and 𝑌𝑌𝑎𝑎 , is defined as the minimum distance among all possible warping 

paths. To accomplish this it may encounter that a single point in one time series may be 

mapped to multiple points of the other. The optimal warping path is determined by following 

a dynamic programming method that recursively measures the following function at every 

step: 

𝛾𝛾(𝑖𝑖, 𝑗𝑗) = 𝑎𝑎�𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗� + 𝑠𝑠𝑖𝑖 𝑛𝑛�𝛾𝛾(𝑖𝑖 − 1, 𝑗𝑗 − 1), 𝛾𝛾(𝑖𝑖 − 1, 𝑗𝑗),𝛾𝛾(𝑖𝑖, 𝑗𝑗 − 1)�    … (5.1)  

 

The total cost 𝑎𝑎𝑝𝑝(𝑋𝑋𝑎𝑎,𝑌𝑌𝑎𝑎 ) of a warping path 𝑝𝑝 between 𝑋𝑋𝑎𝑎 and 𝑌𝑌𝑎𝑎  with respect to the 

local cost measure 𝑎𝑎�𝑥𝑥𝑖𝑖,𝑦𝑦𝑗𝑗�  is defined as 𝑎𝑎𝑝𝑝(𝑋𝑋𝑎𝑎,𝑌𝑌𝑎𝑎 ) = ∑ 𝑎𝑎(𝑥𝑥𝑚𝑚ℓℒ
ℓ=0 , 𝑦𝑦𝑛𝑛ℓ)  . Further, the 

optimal warping path between two temporal sequences is a warping path 𝑝𝑝∗ with the minimal 

total cost among all possible warping paths: 

 

𝑎𝑎𝑝𝑝∗(𝑋𝑋𝑎𝑎,𝑌𝑌𝑎𝑎 ) = 𝑠𝑠𝑖𝑖𝑛𝑛∑ 𝑎𝑎(𝑥𝑥𝑚𝑚ℓℒ
ℓ=0 ,𝑦𝑦𝑛𝑛ℓ) | 𝑝𝑝 is an (𝑠𝑠,𝑛𝑛)-warping path    … (5.2) 

 

Considering temporal sequences of three dynamicity values (i.e., structural, 

neighbourhood and community), this study applied DTW technique to measure temporal 

similarity between them. Temporal similarity between time series of actors’ dynamicity 

values will represent their evolutionary proximity/similarity. Therefore, the value of the first 
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dynamic similarity metrics, developed in this study for actor pair 𝑎𝑎  and 𝑏𝑏  considering 

structural dynamicity values, is computed as follows: 

𝑠𝑠𝑖𝑖𝑠𝑠1(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎𝑝𝑝∗�𝛿𝛿𝑖𝑖𝑎𝑎,  𝛿𝛿𝑗𝑗𝑎𝑎� = 𝑠𝑠𝑖𝑖𝑛𝑛 ��𝑎𝑎�𝛿𝛿𝑚𝑚𝐶𝐶𝑎𝑎  , 𝛿𝛿𝑛𝑛𝐶𝐶𝑎𝑎 �             … (5.3)
ℒ

ℓ=1

 

where 𝛿𝛿𝑖𝑖𝑎𝑎 and 𝛿𝛿𝑗𝑗𝑎𝑎 are the 𝑖𝑖𝑡𝑡ℎ and 𝑗𝑗𝑡𝑡ℎ element of time series of structural dynamicity, 𝑠𝑠 

and 𝑛𝑛 denotes the length of temporal sequences of structural dynamicity values incident to 

the actor pair 𝑎𝑎 and 𝑏𝑏 , respectively. Similarly, to compute the second and third dynamic 

similarity metric, the temporal similarity between neighbourhood and community dynamicity 

values over time, between a pair of actors 𝑎𝑎 and 𝑏𝑏, can be computed as:   

𝑠𝑠𝑖𝑖𝑠𝑠2(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎𝑝𝑝∗�λ𝑖𝑖
𝑎𝑎,  λ𝑗𝑗

𝑎𝑎� = 𝑠𝑠𝑖𝑖𝑛𝑛 ��𝑎𝑎�λ𝑚𝑚𝐶𝐶
𝑎𝑎  , λ𝑛𝑛𝐶𝐶

𝑎𝑎 �             … (5.4)
ℒ

ℓ=1

 

𝑠𝑠𝑖𝑖𝑠𝑠3(𝑎𝑎, 𝑏𝑏) = 𝑎𝑎𝑝𝑝∗�𝜕𝜕𝑖𝑖
𝑎𝑎,  𝜕𝜕𝑗𝑗

𝑎𝑎� = 𝑠𝑠𝑖𝑖𝑛𝑛 ��𝑎𝑎�𝜕𝜕𝑚𝑚𝐶𝐶
𝑎𝑎  ,𝜕𝜕𝑛𝑛𝐶𝐶

𝑎𝑎 �             … (5.5)
ℒ

ℓ=1

 

Where λ𝑖𝑖
𝑎𝑎 and 𝜕𝜕𝑖𝑖

𝑎𝑎 denote the neighbourhood and community dynamicity values of an actor 𝑎𝑎. 

5.2.2 Correlation-based Similarity 

Correlation analysis is a statistical evaluation method quantifies the extent two continuous 

variables tend to change together and captures the strength and direction of the linear 

association between these two variables. It is widely used in financial network analysis, asset 

allocation, portfolio optimization and risk management [270]. Correlation-based network 

analysis became a popular data-mining tool for visualizing and analyzing biological 

relationships within large data sets [271]. Actors and links in this type of network represent 

molecular elements (e.g., metabolites or genes) and their correlation coefficient (strength and 

sign), respectively [272,273] and links inferred by correlation analyses reflect a coordinated 

behaviour between actors across the data set (treatments, genotypes, conditions, and time) 
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[274]. Besides, correlation analysis is widely used in financial analyses where networks of 

shares can be constructed by using return correlations [275]. This study applied correlation 

analysis to measure the affinities or similarities between actor pairs in regards to the temporal 

sequences of dynamicity values in all SINs. The assumption here is that two actors are similar 

if they change in a similar fashion (i.e., dynamicity values of one actor increases or decreases 

with the other at the same time) considering three dynamicity measures proposed in this 

study. If δ𝑎𝑎(𝑡𝑡)  and δ𝑎𝑎(𝑡𝑡) denote the structural dynamicity, λ𝑎𝑎(𝑡𝑡)   and λ𝑎𝑎(𝑡𝑡)  denote the 

temporal neighbourhood dynamicity and 𝜕𝜕𝑎𝑎(𝑡𝑡) and 𝜕𝜕𝑎𝑎(𝑡𝑡) of actor 𝑎𝑎 and 𝑏𝑏 at time 𝑡𝑡 then the 

evolution similarity between them is computed in regards to the Pearson correlation 

coefficient. Considering 𝑋𝑋 = [𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, … 𝑥𝑥𝑚𝑚] and 𝑌𝑌 = [𝑦𝑦1,𝑦𝑦2,𝑦𝑦3, … 𝑦𝑦𝑛𝑛] as two continuous 

variables, the Pearson correlation between these two can be computed by the following: 

𝑑𝑑𝑥𝑥𝑥𝑥 =
∑ �(𝑥𝑥𝑖𝑖 − �̅�𝑥)(𝑦𝑦𝑗𝑗 − 𝑦𝑦�)�𝑡𝑡

�∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)2𝑡𝑡 �∑ (𝑦𝑦𝑗𝑗 − 𝑦𝑦�)2𝑡𝑡
           … (5.6) 

Between two continuous variables 𝑋𝑋  and 𝑌𝑌 , if 𝑋𝑋  is a linear function of the other 

variable 𝑌𝑌, then a positive value (i.e., 𝑑𝑑 > 0) denotes the existence of a positive correlation 

between 𝑋𝑋  and 𝑌𝑌 . Conversely, a negative value (i.e., 𝑑𝑑 < 0 ) denotes the existence of a 

negative correlation between 𝑋𝑋 and 𝑌𝑌 and a zero value (i.e., 𝑑𝑑 = 0) indicates non-existence of 

any kind of association. Positive correlation indicates that if one variable increases than the 

other has a tendency to increase. In contrast, negative correlation denotes the opposite 

behaviour (i.e., if one variable increases then the other has a tendency to decrease). In case no 

correlation present, the variable does not demonstrate any tendency.  

Therefore, considering three different dynamicity values, computed temporally at 

each time stamp, as series of continuous variables, the fourth, fifth and sixth dynamic 
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similarity metrics to measure similarity/proximity between the actor pair 𝑎𝑎  and 𝑏𝑏  are 

computed as follows: 

𝑠𝑠𝑖𝑖𝑠𝑠4(𝑎𝑎, 𝑏𝑏) =
∑ �(δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎���)(δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎���)�𝑡𝑡

�∑ (δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎���)2𝑡𝑡 �∑ (δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎���)2𝑡𝑡

              … (5.7) 

𝑠𝑠𝑖𝑖𝑠𝑠5(𝑎𝑎, 𝑏𝑏) =
∑ �(λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎���)(λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎���)�𝑡𝑡

�∑ (λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎���)2𝑡𝑡 �∑ (λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎���)2𝑡𝑡

              … (5.8) 

      𝑠𝑠𝑖𝑖𝑠𝑠6(𝑎𝑎, 𝑏𝑏) =
∑ �(𝜕𝜕𝑎𝑎(𝑡𝑡) − 𝜕𝜕𝑎𝑎����)(𝜕𝜕𝑎𝑎(𝑡𝑡) − 𝜕𝜕𝑎𝑎���)�𝑡𝑡

�∑ (𝜕𝜕𝑎𝑎(𝑡𝑡) − 𝜕𝜕𝑎𝑎����)2𝑡𝑡 �∑ (𝜕𝜕𝑎𝑎(𝑡𝑡) − 𝜕𝜕𝑎𝑎���)2𝑡𝑡

          … (5.9) 

where δ𝑎𝑎, λ𝑎𝑎 and 𝜕𝜕𝑎𝑎 denote the structural, neighbourhood and community dynamicity 

of an actor 𝑎𝑎 respectively. 

5.2.3 Dynamicity Abundance-base Similarity 

Although a significant amount of dynamic link prediction studies have exploited the time 

series of topological similarity metrics (e.g., CommonNeighbours), this study used 

abundance-based similarity metric which is widely used in biology and ecology domain.  

Frequently used by marine ecologists to measure bio-diversity, the Bray-Curtis similarity 

measure was initially proposed by J. Roger Bray and John T. Curtis in 1957 [276] which is 

principally employed in multivariate analysis of biological assemblage data and signifies the 

‘relativisation’ of species-wise differences in regards to the their total abundance in biological 

metaphor [277] . Despite the availability of traditional distance measures (e.g., Euclidean) 

that conform to the concept of distance, there are some more appropriate measures as 

distance metrics in an environment with multivariate samples. The Bray-Curtis dissimilarity 

measure is one such well-known measure to quantify the difference between samples when it 
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comes to ecological abundance data collected at different sampling locations. In ecological 

perspective, less abundant species including samples with lower total abundances have 

greater effect on Bray-Curtis index [278]. Using this measure, values for an individual 

species are standardized once by computing the abundances relative to maximum value 

attained by that species over all samples and standardized twice with respect to the sample 

total. 

Using Bray-Curtis method, the distance between two entities 𝑋𝑋 and 𝑌𝑌 in regards to 𝑛𝑛-

dimensional feature space can be determined by the following formula as described by 

Legendre and Legendre [279]: 

𝐵𝐵𝐶𝐶𝑋𝑋𝑋𝑋 =
∑ |𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1

∑ |𝑥𝑥𝑖𝑖 + 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1

    … (5.10)     

where 𝑥𝑥𝑖𝑖  and 𝑦𝑦𝑖𝑖  denotes the 𝑖𝑖𝑡𝑡ℎ  feature of species 𝑋𝑋  and 𝑌𝑌 , respectively. The 

numerator signifies the differences between 𝑋𝑋 and 𝑌𝑌 in regards to the abundance of feature 𝑖𝑖 

and the denominator normalizes these differences. Instead of considering traditional 

topological similarity metrics built upon commonality of neighbourhoods and network 

structure between actors, this study considered the evolutionary aspect (i.e., structural, 

neighbourhood and community dynamicity) of actors in 𝑇𝑇  number of SINs to compute 

similarity between them. In the context of this study where each SIN will represent a 

sampling location, the Bray-Curtis distance between actors 𝑎𝑎 and 𝑏𝑏 using three dynamicity 

measures can be defined as:  

𝐵𝐵𝐶𝐶𝑎𝑎𝑎𝑎 =
∑ ∑ |𝑥𝑥𝑖𝑖 − 𝑦𝑦𝑖𝑖|𝑛𝑛

𝑖𝑖=1
𝑇𝑇
𝑡𝑡=1

∑ ∑ |𝑥𝑥𝑖𝑖 + 𝑦𝑦𝑖𝑖|𝑛𝑛
𝑖𝑖=1

𝑇𝑇
𝑡𝑡=1

       … (5.11) 
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where 𝑛𝑛 denotes the total number of dynamicity values (i.e., 𝑛𝑛 = 3). Since in this 

thesis, I considered three evolutionary features (i.e., structural, neighbourhood and 

community dynamicity), therefore: 

𝐵𝐵𝐶𝐶𝑎𝑎𝑎𝑎 =
∑ [|δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎(𝑡𝑡)| + |λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎(𝑡𝑡)| + |𝜕𝜕𝑎𝑎(𝑡𝑡) − 𝜕𝜕𝑎𝑎(𝑡𝑡)|]𝑇𝑇
𝑡𝑡=1

∑ [|δ𝑎𝑎(𝑡𝑡) + δ𝑎𝑎(𝑡𝑡)| + |λ𝑎𝑎(𝑡𝑡) + λ𝑎𝑎(𝑡𝑡)| + |𝜕𝜕𝑎𝑎(𝑡𝑡) + 𝜕𝜕𝑎𝑎(𝑡𝑡)|]𝑇𝑇
𝑡𝑡=1

     … (5.12)  

where, δ𝑎𝑎 , λ𝑎𝑎  and 𝜕𝜕𝑎𝑎  are structural, neighbourhood, and community dynamicity 

values of actor a. Since the distance represents dissimilarity, therefore, 1 − 𝐵𝐵𝐶𝐶𝑎𝑎𝑎𝑎 was used to 

represent similarity. Hence, the seventh dynamic similarity metric in this study is defined as 

follows: 

𝑠𝑠𝑖𝑖𝑠𝑠7(𝑎𝑎, 𝑏𝑏) =  1 − 𝐵𝐵𝐶𝐶𝑎𝑎𝑎𝑎        … (5.13) 

5.2.4 Temporal Community-aware Network Structure 

To employ community-aware information in link prediction task, it is imperative to partition 

a network into communities. Most community-aware link prediction methods exploited an 

existing community detection algorithm to compute the similarity among actor-pairs 

considering the community-oriented structural information. For example, ‘InfoMap’ [280] 

algorithm minimizes the length of random walks and mostly used in information theory was 

used by Soundaranjan and Hopcroft [281] in their study. Likewise, Valverde-Rebaza and 

Lopes [282] used the ‘Label Propagation’ based community detection method [283] to 

develop a similarity measure for the purpose of link prediction in static networks. Following 

them, this study used Louvain algorithm [204] and greedy agglomerative hierarchical 

community detection algorithm proposed by Newman in [284] for the community detection 

purpose. The former method has been successfully and widely used for detecting 

communities in many different types of large networks with millions of actors and links. As a 

greedy optimization method, Louvain optimizes the modularity by firstly looking for smaller 
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communities locally with optimized modularity (i.e., numerical index to evaluate partitions in 

a network) and secondly, aggregating actors belonging to the same community to build a 

network where individual community act as an actor. The latter method of community 

detection follows a greedy method for the purpose of optimizing and maximizing the 

modularity and produces a tree-like dendogram as a presentation of hierarchical rendering of 

the network communities. This algorithm can efficiently clusters large number of actors 

while generating the given number of communities and also known well for its scaling 

capability. The final dynamic similarity metric was computed in this research by using the 

community-aware information extracted from the communities detected in each SIN of a 

given dynamic network. For each non-connected actor pair, in each SIN using the identified 

 
Figure 5.3: Community-aware network architecture supporting link prediction. The 

orange-coloured actor 𝑎𝑎6  is an actor with multiple community memberships. The red-

colored actors in each community represent the peripheral actors in each community. 

Red-colored dotted links denote the bilateral links bridging two communities. It is 

noteworthy that links connected to actor 𝑎𝑎6 from individual communities are considered 

bilateral links. 
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communities, similarity between a pair of actors was computed depending on their 

community participation including the structures of communities. 

Before delving into the actual similarity/proximity score between actor-pairs, I first define 

few preliminary concepts and notation those will be used in the following sections with the 

help of Figure (5.3).  

5.2.4.1 Peripheral Actors: If an actor simultaneously belong to more than one 

community, or resides in one community but belong to one end of a link where the other end 

belongs to another actor from a different community, is considerd as a peripheral actor. 

Similarly, if an actor is connected to another actor that has multiple community memberships 

is also considered as a peripheral actor. For example the green-coloured actor 𝑎𝑎6 in Figure 

(5.3) is a peripheral actor that has multiple community memberships. Similarly, the red-

coloured actors 𝑎𝑎3 , 𝑎𝑎5, 𝑎𝑎7, 𝑎𝑎8, 𝑎𝑎9, 𝑎𝑎14 , and 𝑎𝑎15 are considered as peripheral actors for their 

respective communities since they are either part of links transcending more than one 

community or conneced to an actor having multiple community memberships. If 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 

are two communities in a SIN 𝑔𝑔𝑡𝑡 and 𝑉𝑉𝑖𝑖 and 𝑉𝑉𝑗𝑗 denote the set of actors belong to these two 

communities, then a peripheral actor is denoted by 𝑣𝑣𝑔𝑔𝑡𝑡
𝑖𝑖.𝑗𝑗 . A set of peripheral actors between 

two communities 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗  in a SIN 𝑔𝑔𝑡𝑡  is denoted by �𝑉𝑉𝑔𝑔𝑡𝑡
𝑖𝑖.𝑗𝑗�  where 𝑖𝑖 ≠ 𝑗𝑗.  

5.2.4.2 Bilateral Links: The number of links connecting two different communities. 

Actor in both end of these links belong to different communities. Similarly, in the presence of 

actor with multiple community memberships, all links from a community connecting to that 

actor are also consideered as bilateral links. For example, in (Figure 5.3), the red-coloured 

dotted links (𝑒𝑒.𝑔𝑔. , (𝑎𝑎3,𝑎𝑎15), (𝑎𝑎5,𝑎𝑎8), (𝑎𝑎9,𝑎𝑎14) ) are bilateral links as they are connecting 

two communities. Likewise, links including (𝑎𝑎5,𝑎𝑎6), (𝑎𝑎6,𝑎𝑎15), (𝑎𝑎6,𝑎𝑎14), (𝑎𝑎3,𝑎𝑎6) are 
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considered as bilateral links since these contain an actor with multiple memberships at one 

end of them. If 𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗 are two communities in a SIN 𝑔𝑔𝑡𝑡, then a bilateral link between these 

two communities is denoted by 𝑒𝑒𝑔𝑔𝑡𝑡
𝑖𝑖,𝑗𝑗 ;   𝑖𝑖 ≠ 𝑗𝑗. A set of bilateral links between two communities 

𝐶𝐶𝑖𝑖 and 𝐶𝐶𝑗𝑗  is denoted by  �𝐸𝐸𝑔𝑔𝑡𝑡
𝑖𝑖,𝑗𝑗�.  

5.2.4.3 Actor Connectivity: The actor connectivity between two actors 𝑎𝑎 and 𝑏𝑏 in a SIN 

𝑔𝑔𝑡𝑡 at timestamp 𝑡𝑡 is the total of minimum number of actors and links that must be removed to 

disconnect all paths from actor  𝑎𝑎 to 𝑏𝑏. If 𝐸𝐸𝑔𝑔𝑡𝑡
𝑐𝑐 (𝑎𝑎, 𝑏𝑏) denotes the set links and 𝑉𝑉𝑔𝑔𝑡𝑡

𝑐𝑐(𝑎𝑎, 𝑏𝑏) denotes 

the set of actors of minimum cardinality such that, when removed, would severe off the 

connectivity between actor 𝑎𝑎  and 𝑏𝑏  then the actor connectivity between actor 𝑎𝑎  and 𝑏𝑏  is 

defined as: 

λ𝑔𝑔𝑡𝑡
𝑎𝑎,𝑎𝑎 = �𝐸𝐸𝑔𝑔𝑡𝑡

𝑐𝑐 (𝑎𝑎, 𝑏𝑏) � + �𝑉𝑉𝑔𝑔𝑡𝑡
𝑐𝑐(𝑎𝑎, 𝑏𝑏) �        … (5.14) 

Larger value for λ𝑔𝑔𝑡𝑡
𝑎𝑎,𝑎𝑎 denotes that there are many different alternative paths in a SIN gt are 

defined to maintain the connectivity between actor 𝑎𝑎 and 𝑏𝑏. 

To measure similarity/proximity between non-connected actor pairs using temporal 

community-aware network structural information in regards to the aforementioned concepts, 

three different contexts were taken into consideration. Firstly, if both actors belong to the 

same community within a SIN; then their similarity score for that SIN is strengthen by the 

rate of clustering tendency of their common neighbours within the same community. 

However, the score is weakened by a dividing factor that represents the clustering tendency 

of the common neighbours residing in other communities different from the community 

where the corresponding actor-pair belongs. The assumption here is that if more neighbours 

of the common neighbours, incident to a non-connected actor pairs, performs triadic closure 

then the possibility of that actor-pair to close the triangle between them is amplified and so as 
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the probability of forming link between them. Valverde-Rebaza and Lopes exploited a similar 

concept where common neighbours within the same community strenghten  twice more in the 

similarity/proximity score [282]. Secondly, if both actors in a pair reside in different 

communities, then the similarity score between them is computed considering the number of 

peripheral actors, bilateral links, path length between actors and their actor connectivity 

score. Finally, if there is no path defined between a pair of actors residing in different 

community within any SIN 𝐺𝐺𝑡𝑡, then a score of zero is assigned to denote their proximity in 

that particular SIN. 

Considering 𝐶𝐶𝑖𝑖(𝑔𝑔𝑡𝑡)  denoting the 𝑖𝑖𝑡𝑡ℎ  community and 𝜂𝜂𝑎𝑎
𝐶𝐶𝑖𝑖(𝑔𝑔𝑡𝑡)  the neighbourhood of 

actor 𝑎𝑎 in a SIN 𝑔𝑔𝑡𝑡 at timestamp 𝑡𝑡, and the aforementioned three different contexts, the final 

similarity metric using community related and network structural information in every SIN is 

defined as follows: 

 

𝑠𝑠𝑖𝑖𝑠𝑠8(𝑎𝑎, 𝑏𝑏) =

⎩
⎪
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𝑥𝑥

𝑥𝑥∈𝜂𝜂𝑎𝑎
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𝐶𝐶𝑖𝑖(𝑔𝑔𝑡𝑡) ∪  𝜂𝜂𝑏𝑏

𝐶𝐶𝑖𝑖(𝑔𝑔𝑡𝑡)
𝑛𝑛
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                𝑖𝑖𝑖𝑖 𝑎𝑎, 𝑏𝑏 ∈ 𝐶𝐶𝑖𝑖(𝑔𝑔𝑡𝑡)

���V𝑔𝑔t
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i,j � +
λ𝑔𝑔𝑡𝑡
𝑎𝑎,𝑎𝑎
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𝑇𝑇
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      𝑖𝑖𝑖𝑖 𝑎𝑎 ∈ 𝐶𝐶𝑖𝑖(𝑔𝑔𝑡𝑡),𝑏𝑏 ∈ 𝐶𝐶𝑗𝑗(𝑔𝑔𝑡𝑡), 𝑖𝑖 ≠ 𝑗𝑗

0                                 𝑖𝑖𝑖𝑖 𝑎𝑎 ∈ 𝐶𝐶𝑖𝑖(𝑔𝑔𝑡𝑡),𝑏𝑏 ∈ 𝐶𝐶𝑗𝑗(𝑔𝑔𝑡𝑡), 𝑖𝑖 ≠ 𝑗𝑗,   𝑝𝑝𝑔𝑔𝑡𝑡
𝑎𝑎,𝑎𝑎 = ∅ 

 

                                           …  (5.15) 

 

Considering equation (5.15), if two actors belong to the same community in a SIN 𝑔𝑔𝑡𝑡 at 

the timestamp 𝑡𝑡 ; then the similarity between them is increased by the increasing rate of 

clustering tendency of the intra-community common neighbours incident to both actors but 

decreased by the clustering tendency of inter-community neighbours of them who belong to 
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other communities. The assumption here is, if neighbours of the common neighbours, 

incident to non-connected actor pair within the same community, tend to close traingles, then 

the possibility of forming links between them is enhanced. Conversely, if they belong to 

different communities, then similarity is calculated as the total of the number of peripheral 

actors, bilateral links and actor connectivity score for the actor-pair in conjunction with the 

inverse of the geodesic distance between both actors. The assumption here is, in regards to 

social network structure, the peripheral actors are considered as intercessor or negotiator 

between two distant actors, bilateral links signify the common attributes or properties 

between communities. Further, the higher the actor connectivity between non-connected actor 

pairs the higher the probability of emerging links between them since there are more possible 

ways actors can reach each other. On the other hand, the connectivity score is undermined by 

the length of the geodesic distance between the corresponding actors. The rationale behind 

this part of the equation is that despite higher connectivity score, if the corresponding actors 

reside in the furthest corner from each other, then the possibility of forming link between 

them is demeaned. 

5.3 Conclusion 

Since most networks inherently evolve over time, it is imperative to delve into temporal 

networks and network dynamics to resolve issues with link prediction problem in dynamic 

networks [285]. Since most future links emerge between similar actors, this research 

computed the similarity between actors in regards to their structural, neighbourhood and 

community-aware evolutions, measured by three different dynamicity values. To develop the 

dynamic features by considering evolution similarity, these three actor-level dynamicity 

measures were leveraged to quantify the similarity/proximity between actors in dynamic 

network. Dynamic programming-based temporal similarity measures (i.e., Dynamic Time 
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Warping), and Pearson correlation measures were applied to develop the first six dynamic 

similarity metrics. The seventh dynamic feature was constructed by considering a similarity 

measures widely used in ecology. In this measure, we quantify the normalized abundance of 

actor-level dynamicity in temporal networks. Finally, with the help of two different existing 

community detection algorithms, by integrating evolutionary community-aware topologies in 

conjunction with both inter and intra-community network structure, the last dynamic feature 

was developed. These dynamic features will describe the instances of the classification 

datasets in a supervised link prediction setup to train different classifiers. The traditional 

topological similarity measures (e.g., common neighbours) were avoided due to their 

incompetency and susceptibility to attenuation in link prediction task. For example, two non-

connected pairs of actors can demonstrate different likelihood of future link formation having 

similar measurement in regards to neighbourhood based topological metrics. Similarly, 

although there is an abundance of topological metrics; however, selecting the right one that 

fits in the corresponding study’s context is a challenging task. Despite researchers attempted 

to build ensemble of topological metrics to alleviate the critical issue, however, ensemble-

based methods are always considered computationally intensive. Further, very few studies 

have considered actor-level attributes in dynamic link prediction task, let alone their 

evolutionary features. In contrast, this study developed dynamic features relying on actor-

level evolutionary aspects where both temporal and time-aware features were considered. In 

conjunction, associated actor-level network structural features were also considered. These 

features will be beneficial in dynamic link prediction task where actor-level attributes (e.g., 

age, role, gender) are not available. Further, these features will support the quantification of 

dynamic behaviours demonstrated by actors in dynamic networks.  
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Chapter 6 
 

Datasets and Experimental Settings  
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6.1 Introduction 

In the previous two chapters, I described conception of two major objectives of this thesis: 

firstly, determination of optimal sampling interval/window size to discretise a dynamic 

network including some evaluative test measures to validate the optimality of time scale, and 

secondly, feature engineering to develop dynamic features by mining different actor-level 

temporal evolutions for dynamic link prediction purpose. These features denote the evolution 

similarity scores those will be used in supervised link prediction. In this chapter, I describe 

my empirical experimental settings including detail description of the dynamic network 

datasets, supervised link prediction setup, performance measurement metrics.    

6.2 Network datasets 

To Collect dynamic network datasets, this study used both ‘KONECT Network Dataset’[286] (i.e., the 

Koblenz Network Collection)  and ‘Network Repository’ [287]. KONECT project is run by Institute 

of Web Science and Technologies at the University of Koblenz as part of collecting large network 

datasets to facilitate research in network science and related fields and Network Repository is 

considered as the first and the largest interactive repository of network datasets. The first 

dynamic network dataset comes from a reality mining project at Massachusetts Institute of 

Technology (MIT) in 2004 where the actors were tracked with the help of their personal 

smart phones to study interpersonal interaction. In this undirected network an actor in the 

network represents a person and a link indicates a physical contact among two persons. The 

second dataset comes from internal email communications among employees of a mid-sized 

manufacturing company where actors represent employees and links represent individual 

emails between two employees. The next dataset contains an undirected network data from a 

Facebook-like social network originated from an online community for students at University  
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Table 6.1: Basic statistics of the dynamic network datasets used in this study. The actors and 

links denote the total unique number of actors and links found in the entire network. Temporal 

fluctuations of the quantity of actors and links occur in each temporal network snapshot of the 

network known as Short Interval Network (SIN). From the link prediction perspective, the 

total duration of the time-resolved network, data were split into two non-overlapping intervals 

(i.e., training and test). The start and end denote the beginning and end of each interval. Nine 

different sampling intervals (i.e., duration length/time scale of SINs) were used and the 

optimum was singled out from these time-scale durations.  

Network Actors Links 

Training 

Duration 

yyyy/mm/dd 

(hh:mm) 

Test 

Duration 

yyyy/mm/dd 

(hh:mm) 

Temporal 
Granularity 

Sampling 
Window 

Sizes 

 𝑮𝑮𝑴𝑴𝑴𝑴𝑴𝑴 96 2539 
Start 2004/09/14 2005/02/01 

day 1-7, 14, 30 
End 2005/01/31 2005/05/05 

𝑮𝑮𝑬𝑬𝑬𝑬𝒂𝒂𝑬𝑬𝑬𝑬 167 3250 
Start 2010/01/02 2010/08/01 

day 1-7, 14, 30 
End 2010/07/31 2010/09/30 

𝑮𝑮𝑼𝑼𝑼𝑼𝑴𝑴 1899 13838 
Start 2004/03/24 2004/06/01 

day 1-7, 14, 30 
End 2004/05/31 2004/10/26 

𝑮𝑮𝑭𝑭𝑭𝑭 11715 34539 
Start 2007/01/01 2007/04/01 

day 1-7, 14, 30 
End 2007/03/31 2007/04/30 

𝑮𝑮𝑴𝑴𝑰𝑰𝑭𝑭 801 2631 

Start 
2009/04/28 

10:03 

2009/05/01 

10:05 
minute 

30, 60, 90, 
120, 180, 
240, 360, 
480, 720 End 

2009/04/30 

17:54 

2009/05/01 

18:06 

𝑮𝑮𝑯𝑯𝑴𝑴 113 2196 

Start 
2009/06/29 

06:00 

2009/07/01 

6:11 
minute 

30, 60, 90, 
120, 180, 
240, 360, 
480, 720 End 

2009/06/30 

11:51 

2009/07/01 

4:59 
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of California, Irvine, where actors represent students within the community and a link 

represents that two students communicated via a message. The fourth undirected network 

dataset is a very small subset of total ‘Facebook’ friendship graph where an actor represents a 

Facebook user and a link represents a friendship between two users.  

 To collect more dynamic network datasets, I also attempt to capitalize on different 

efforts that were made to mine behavioural networks of direct interactions between individual 

actors, in two real-world events that included temporal settings [288]. The first event is the 

INFECTIOUS exhibition that was held at the Science Gallery in Dublin, Ireland. The 

exhibition held from 17/04/2009 to 17/07/2009. The second event was the ACM Hypertext 

conference, arranged by the Institute for Scientific Interchange (ISI) Foundation. It was held 

in Turin, Italy, from 29/06/2009 to 29/07/2009. These two events generated networks of 

proximity or interactions where in INFECTIOUS, the network of interactions was 

constructed among museum viewers. In the ACM conference, the network was generated 

based on the proximity of conference participants. Therefore, in these two networks actors 

are museum viewers and conference participants respectively and a link represents a contact 

or physical proximity between two actors. For the sake of brevity, we name these seven 

networks as 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇, 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 ,  𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀, 𝐺𝐺𝐹𝐹𝐹𝐹 , 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹,and  𝐺𝐺𝐻𝐻𝑇𝑇 to denote the network originated from 

MIT reality project, small manufacturing company, University of California Irvine, real 

Facebook Friendship, INFECTIOUS exhibition, and ACM Hypertext conference respectively 

in the rest of the study. In the first network datasets, the links are date stamped with 

individual dates and the smallest temporal granularity of these networks is a day. On the other 

hand, in 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹and 𝐺𝐺𝐻𝐻𝑇𝑇, the links are time stamped where the smallest temporal granularity is 

minutes. Therefore, the first four dynamic networks are sampled using a single day and 

multiples of this. In contrast, the final two networks were discretised using temporal window 

size of 30 minutes and multiples of it. Table (6.1) sets out the basic statistics of these network 
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datasets. In this table, the numbers of unique actors and links in each network dataset are 

presented including their total temporal duration that was split into two non-overlapping 

intervals from link prediction perspective. In dynamic network, actors’ participations and link 

formations vary temporally. So the same link may appear multiple time times in different 

temporally sampled short interval networks (SINs). For example, in the dynamic network 

dataset collected from MIT realty project, the total number of links within the temporal 

duration is 1086403 where as the number of unique links, as presented in the table, is 2539. 

This means that a lot of links appeared and disappeared over time. I have also presented the 

unit of temporal granularity (i.e., smallest temporal unit) for each network and nine different 

sampling window sizes from where the optimal one was determined by applying the method 

proposed in chapter three. For example, the smallest temporal granularity in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 is a day 

and I used nine different temporal window sizes to sample 𝐺𝐺𝑇𝑇(i.e., network in the training 

phase) and these are one, two, three, four, five, six, seven, fourteen and thirty days. The one, 

fourteen and thirty days were selected to emulate daily, fortnightly and monthly dynamic 

network. Similarly, in 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹, the smallest temporal granularity is minute and thus I used half 

hour (i.e., 30 mins), hourly (i.e., 60 min), one and half hour (90 min), two hours (120 min) 

and so on. The final temporal duration or time scale was 12 hours (720 min). It is noteworthy 

here, that, although the duration of the INFECTIOUS exhibition was three months; however, 

for the temporal analysis’s sake (since the temporal granularity considered is minute), I 

considered the specified durations as mentioned in the Table (5.1) for 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹. 

6.3 Supervised Link Prediction 

Link prediction strategies, using network structural pattern, can be predominantly categorized 

into two categories: (i) unsupervised and (ii) supervised. In unsupervised approach, a non-

connected actor-pair is chosen first and then get assigned a score based on the chosen metric 
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or feature. After assigning scores, all such actor-pairs are ranked according to the scoring 

scheme (e.g., number of common neighbours) and then top-L ranked pairs are considered as 

predicted links. In contrast, supervised methods for link prediction problems need to predict 

emerging links by successfully discriminating positive and negatively labelled links within a 

classification dataset where instances are described using a set of features. Different 

advantageous of supervised link prediction were reported over its unsupervised counterpart. 

For example, firstly, what should be the optimal value of top L or how many top ranked links 

should be considered as future probable links, and secondly, since the ranking is performed in 

decreasing order which denotes that only the actor-pairs with high score of the chosen metric 

will form the emerging links which is not always true in the real world [289]. Further, a high 

score in one chosen metric does not necessarily imply a high score in an alternative measure. 

Lichtenwalter et al. also pointed out supervised link prediction approach as expedient over 

unsupervised approach [2]. According to the authors, in supervised approach, learning 

algorithms are competent in capturing the interacting relationships among different structural 

properties of features. In addition, it is also considered as adaptive in comparison to 

unsupervised approach which is invariant in nature. Further, in supervised approach, a 

classifier, trained by using a single unsupervised method, can outperform the performances 

demonstrated by the ranking scheme of the corresponding method. 

Supervised link prediction approach is also considered as a binary classification task. 

This approach learns and differentiates between positive and negative instances with the help 

of interesting features describing all instances. Considering the aforementioned dominance 

of, I considered to exploit it with the help of dynamic features. In a supervised link prediction 

setup, the total duration of the time-resolved network is partitioned into two non-overlapping 

sub-intervals. The first interval is considered as the training phase and the second one is 

known as the test phase. Network, link structure, actor attributes and topological features 
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during the training interval are analysed to predict links in the test phase. After selecting these 

sub-ranges of duration, the classification datasets are constructed to be used in different 

learning algorithms. A classification dataset consists of a set of actor-pairs that appeared in 

the training phase but did not form links between then during the test phase. Each pair in this 

set is either labelled as positive or negative sample depending on the existence of links 

between them in the test phase. If a pair has a link formed during the test interval then it is 

labelled as positive sample or negative otherwise. The classification model for supervised 

link prediction problem predicts future links by successfully distinguishing the positive 

samples from the negative ones in the classification dataset. Thus, it is considered as a binary 

classification task. Each actor-pair in the classification dataset is described by a set of 

features learnt by a supervised learning framework [290].  

In this research, classification datasets were built for all network datasets. These 

classification datasets consist of positive and negative sample instances where each instance 

is a non-connected actor-pair found in the training phase but did not form links in the test 

phase. Since in the real-world evolutionary networks, the number of links that has actual 

physical existence is trivial in comparison to the all potential links, the supervised link 

prediction problem suffers from the class imbalance problem. To be more precise, in dynamic 

network, although there exists an enormous number of potential links between actors that can 

be formed during the test phase in supervised link prediction problem; however, only a trivial 

portion of those probable links physically occur in real life leaving the number of positively 

labelled sample instances in the classification dataset easily outnumbered by the total number 

of negatively labelled instances. This phenomenon is known as the class imbalance problem 

[291-293]. In pattern classification problem, class imbalance is a fundamental problem where 

number of training instances of a minority class is much smaller than the number of instances 

of other majority classes.  
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There are predominantly two categories of learning algorithms for class imbalance 

problem: (i) resampling and (ii) cost-sensitive based [294] Over-sampling and under-

sampling are two resampling methods that attempt to obtain a more balanced number of 

instances for both minority and majority classes by modifying their prior probability. The 

under-sampling method is suitable for large–scale applications where it extracts a smaller set 

of majority class instances, while maintaining the minority instances. Reducing the number of 

training instances boost the training time and make the learning problem more controllable 

[295]. In contrast, the over-sampling technique increases the number of minority instances. 

Despite minority instances are over-represented, the principal advantage of this method is 

that no information is lost from the training samples [291]. On the other hand, cost-sensitive 

based techniques assign different costs to errors in different classes [296]. Although, by these 

methods, classification accuracy can be achieved for minority classes; however, subsequent 

 
 
Figure 6.1: Standard confusion matrix used in the evaluation of supervised link prediction 

performance (i.e., binary classification model) 
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inclusion of cost function in the learning process will alter the initial probability distribution 

[297].  

From the aforementioned description, to minimize the effect of class imbalance in the 

classification dataset, by following Choudhury and Uddin,  I restricted the workload ratio of 

positive vs negative instances in each network as 1:5 [298]. In this regard, it is noteworthy 

here that although, Lichtenwalter et al. asymptotically imposed a higher limit on the ratio 

between the positive and negative samples in a classification dataset [2]; however, many 

studies  [299,92,220,298] tend to restrict the ratio of positive and negative samples in 

supervised learning approach to a certain degree (e.g., 1:5, 1:10).  Further, I used synthetic 

minority over sampling technique (SMOTE) [300] algorithm that over samples the minority 

class in classification problem by creating ‘synthetic’ samples rather than over-sampling with 

replacement. The technique is found to be efficient to boost classification performance. 

SMOTE generates synthetic examples by operating in the feature space rather than the data 

space. It oversamples the minority class by considering each instance from this class and 

introducing synthetic examples along the line segments that join any/all k-nearest neighbours 

of that instance. It provided a new approach to over-sampling that can improve the classifiers 

performances for minority class. Chawla et al. also demonstrated that a combination of 

SMOTE-based over-sampling the minority class and under-sampling the majority class can 

achieve better classifier performances.   

6.4 Performance Evaluation 

In supervised link prediction problem, performance evaluation metrics are broadly 

categorized into two classes. These are (i) fixed threshold metrics (e.g., accuracy, precision 

and recall) and (ii) k-equivalents, threshold curves (e.g., receiver operating characteristics 

(ROC) curve, precision-recall/P–R curve) and the area under the ROC curve (AUCROC) or 
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P-R curve (AUCPR) [301]. Generally, in data mining and machine learning research domain, 

precision and recall are the two widely used metric where precision denotes the fraction of 

predicted links those are actually true (i.e., physically appear in the test phase) and recall 

denotes the fraction of true links those are predicted. For example, if an supervised link 

prediction technique predict 10 instances in the classification dataset as true links appearing 

in future and out of the 10, only five links are actually found in the test phase then the 

precision is 50 % ( 5
10
∗ 100 ). In case of recall, if there are actually 12 true links and 

supervised link prediction technique has predicted five of them then it is considered as 41% 

recall score is achieved ( 5
12
∗ 100). A standard confusion matrix, presented in Figure (6.1), is 

generally used to calculate these measures. In this figure precision, recall (i.e., True Positive 

Rate) and False Positive Rate metrics are represented by the elements of the confusion 

matrix.  An ROC curve is a two-dimensional plot where the true positive rate is plotted on 

the Y-axis and the false positive rate is plotted on the X-axis to show the relative trade-offs 

among the two class values (i.e., positive vs. negative).  

As mentioned earlier, I used dynamic similarity metrics as dynamic features, as 

constructed in chapter 5, to describe both positively and negatively labelled instances (i.e., 

actor pairs) in the classification datasets. Dynamic feature values were normalized such that 

the distribution has zero mean and one standard deviation. To measure classification 

performances, accuracy score (i.e., a 10-fold cross-validation and the mean scores), 

AUCROC (Area Under Receiver Operating Characteristics Curve), and AUCPR (Area Under 

Precision-Recall Curve) were used. While the AUCROC measure is the de-facto standard for 

measuring supervised learning based classification, AUCPR is reported for a more 

differentiated view in regards to the learning task in imbalance dataset. Despite its criticism 

[301], AUCROC is a popular metric (after accuracy) used in binary classification. Accuracy 
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only classifies the class label right or wrong; however, AUCROC quantifies the uncertainty 

associated with classifiers by introducing a probability value. As an important traditional 

measure, AUCROC score is interpreted as the probability that a randomly chosen missing 

link (i.e., link to be predicted) in the test phase belonging to  𝐺𝐺𝑇𝑇+1 is given higher probability 

score than a randomly chosen non-existent link absent both in the training  𝐺𝐺𝑇𝑇  and test 

network  𝐺𝐺𝑇𝑇+1. The formula to calculate AUCROC is defined as 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝐶𝐶 = 𝑛𝑛′+0.5𝑛𝑛′′

𝑛𝑛
 where n 

denotes the number of independent comparisons, 𝑛𝑛′ denotes the times where a missing link in 

the test network has been given a higher score and 𝑛𝑛′′ denotes the times where a non-existent 

link has been given a higher score.  

AUCROC curve demonstrates how the number of correctly classified positive 

examples varies with the number of incorrectly classified negative examples and shows an 

overly optimistic view of an algorithm’s performance. In contrast, the area under precision 

recall (P-R) curve (i.e., AUCPR) often serves as a summary statistics while comparing the 

performances of several different algorithms. The minimum value of AUCPR can be 

determined as 𝐴𝐴𝐴𝐴𝐶𝐶𝐴𝐴𝐴𝐴𝑚𝑚𝑖𝑖𝑛𝑛 = 1 +  (1−𝜋𝜋) ln(1−𝜋𝜋)
𝜋𝜋

  with skew 𝜋𝜋 = 𝑝𝑝𝑜𝑜𝐶𝐶𝑖𝑖𝑡𝑡𝑖𝑖𝑝𝑝𝐷𝐷 𝐶𝐶𝑎𝑎𝑚𝑚𝑝𝑝𝐶𝐶𝐷𝐷𝐶𝐶
𝑛𝑛

  where 𝑛𝑛  = 

total number of samples in the classification dataset [299]. According to this equation, 

considering the ratio of positive and negative samples as 1:5 (i.e., the ratio of positive and 

negative samples is 1:5 in this study) in the classification datasets of  𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇, 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶,  𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀, 𝐺𝐺𝐹𝐹𝐹𝐹 

, 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 and 𝐺𝐺𝐻𝐻𝑇𝑇 with the value of the skew 𝜋𝜋 = 0.167, the minimum value of AUCPR in these 

datasets should be 0.09.  

For comparison sake, I also compared the performances of dynamic features with a 

well-known metric ‘ResourceAllocation1’ [302]  which is widely used for link prediction 

purpose in static network and demonstrated improved performance. I also implemented the 
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link prediction strategy in dynamic networks proposed by Soares & Prudêncio where the 

authors built time series of traditional topological metrics (e.g., Jaccard Coefficient) for non-

connected actor pairs for each SIN in the training phase and used time series forecasting 

method (e.g., ARIMA) to predict the final score of the topological metrics and used those 

forecasted values to train the classifier [303]. Different variations of this method are also 

extensively followed by other authors to support link prediction in dynamic networks [1,196]. 

For the sake of brevity, in the rest of the study, we used 𝑠𝑠𝑖𝑖𝑠𝑠𝑅𝑅𝑅𝑅(𝑎𝑎, 𝑏𝑏) and 𝑠𝑠𝑖𝑖𝑠𝑠Soares(𝑎𝑎, 𝑏𝑏) to 

denote the values computed for the positively and negatively labelled actor-pairs considering 

‘ResourceAllocation’ metric and dynamic link prediction strategy proposed by Soares & 

Prudêncio. It is noteworrthy that to compute  𝑠𝑠𝑖𝑖𝑠𝑠Soares we have considered the well-known 

‘Jaccard Coefficient 1 ’ measure as the topological similarity metric and used ARIMA 

forecasting method to predict the future values of the selected metric incident to actor pairs.   

6.5 Conclusion 

In this chapter, the experimental settings, dynamic network datasets, supervised learning 

setup and performance measurement metrics of dynamic link prediction task by using 

dynamic features (described in chapter 5) were discussed. In supervised link prediction setup, 

a classification dataset is constructed where each instance in the dataset is an actor pair with 

either a positive and negative label depending on their formation of a true link. Each instance 

is described by useful features where a learning algorithm is employed to classify each 

instance correctly and turning it into a binary classification problem. This research developed 

features by mining temporal evolutions experienced by each actor pair. Each feature score 

denotes the evolution similarity between a pair of actors. Temporal evolution rate varies in 

dynamic networks and the measurements of actor-level dynamicity greatly depend on the 
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temporal sampling of the corresponding network. Therefore, it is imperative to define an 

optimal sampling scale to discretise the network. In the next chapter, I describe the results of 

experiments to determine the optimal and near optimal sampling resolution for each dataset 

described in this chapter. It is noteworthy that to determine the optimal window size, I used 

the candidate window sizes for each network described in the table of this chapter. Although, 

these sizes are defined for the sake of experimental purpose, however, candidate windows 

can be of any size irrespective of the duration. The candidate windows were chosen in such 

way so that each network snapshot has sufficient (at least one) link(s) without any loop or 

duplicity. Further, it is not optimal to select nonconforming temporal windows. For example, 

if a dynamic network consists of aggregating links over day then the selection of seconds, 

minutes or hours as candidate window sizes will be inappropriate. Similarly, if a dynamic 

network consists of the aggregation of links by microsecond then selection of a day, or its 

multiples as candidate windows will also be inappropriate. Once optimal temporal window is 

identified for each dataset then in the next chapter, I describe the results of dynamic link 

prediction over each network by using the dynamic features constructed in optimally sampled 

network. 
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Chapter 7 
 

Optimal Temporal Scale in Dynamic 
Networks: Empirical Results  
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7.1 Introduction 

Constructing time-aware dynamic features largely depends on the optimal length of temporal 

duration for each SIN since, as described in chapter 4, the structure of the network greatly 

varies by the total number of aggregated links within a particular timeframe. As the network 

structure varies due to the size variations of the link aggregation window in dynamic 

networks, so do the actor-oriented network measures and associated evolutionary 

information. As both these aspects are used in developing the dynamic features/dynamic 

similarity metrics, as described in the previous chapter (please see chapter 5 for details), it is 

imperative to define the optimal/appropriate time-scale duration for network snapshots in a 

given dynamic network.  

To recap the problem formulation from the introduction chapter, in dynamic link 

prediction task, a finite set of discrete time points are considered as  𝑇𝑇 = [𝑡𝑡1, (𝑡𝑡1 + 𝜏𝜏),  (𝑡𝑡1 +

2𝜏𝜏) …  (𝑡𝑡1 + 𝑛𝑛𝜏𝜏) … (𝑡𝑡′ − 𝜏𝜏), 𝑡𝑡′] where τ denotes the temporal sampling interval (i.e., time 

scale). A dynamic network 𝐺𝐺𝑇𝑇 = (𝑉𝑉,𝐸𝐸𝑇𝑇) consists of a set of uniquely labeled actors 𝑉𝑉 =

[𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3, … 𝑣𝑣𝑛𝑛]  and 𝐸𝐸𝑇𝑇 = [𝑒𝑒𝑡𝑡(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 , 𝑡𝑡)|𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗 ∈ 𝑉𝑉; 𝑡𝑡 ∈ 𝑇𝑇]  where 𝑡𝑡  represents the timestamp 

of link 𝑒𝑒 between actor-pair 𝑒𝑒(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗), is composed of an evolutionary sequence of network 

snapshots  𝐺𝐺𝑇𝑇 = [𝐺𝐺𝑡𝑡1 , 𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏, 𝐺𝐺𝑡𝑡′] where each 𝐺𝐺𝑡𝑡𝑖𝑖  is known as 

short interval network (SIN). Fluctuations of the total number of actors are taken into 

consideration across the time series of network snapshots. Any link may appear in multiple 

network snapshots at different timestamp(s). Considering this temporal sequence of network 

snapshots [𝐺𝐺𝑡𝑡1 , 𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏, 𝐺𝐺𝑡𝑡′],  for a given pair of actors (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗), 

dynamic link prediction attempts to predict the likelihood of link formation between them 

during the interval (𝑡𝑡′, 𝑡𝑡1′) in  𝐺𝐺𝑇𝑇+1 by analysing the link formation and temporal information 

in  [𝐺𝐺𝑡𝑡1 , 𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏, 𝐺𝐺𝑡𝑡′]  at timestamps [𝑡𝑡1, (𝑡𝑡1 + 𝜏𝜏),  (𝑡𝑡1 +
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2𝜏𝜏) …  (𝑡𝑡1 + 𝑛𝑛𝜏𝜏) … (𝑡𝑡′ − 𝜏𝜏), 𝑡𝑡′] . Further, as evident from the list of features constructed in 

chapter 6, each feature contains the time information 𝑡𝑡 that generally denotes each timestamp 

𝑡𝑡1 + 𝑛𝑛τ (i.e., initial time + 𝑛𝑛𝑡𝑡ℎ  temporal duration τ). Therefore, before exploring the results 

of dynamic link prediction task using the dynamic features, in this chapter, I describe the 

result of experiments performed to determine the optimal time-scale for each SIN in 

 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇, 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶,  𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀, 𝐺𝐺𝐹𝐹𝐹𝐹, 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹,and  𝐺𝐺𝐻𝐻𝑇𝑇.  As mentioned earlier, to split each network 𝐺𝐺𝑇𝑇 and 

generate time series of SINs, I used the method described in chapter 3 to determine the 

optimal temporal window size for each dynamic network considered in this research. 

7.2 Determination of Optimal Time Scale  

In this section, I describe the results of the optimal time scale determination method, 

described in chapter 3, applied over six different network datasets, which will help me to 

identify the most and second most appropriate (i.e., optimal and near optimal) temporal 

window size to sample or discretise the each dynamic network.  
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7.2.1 Optimal Window Size 

I first performed the variance analysis of actors’ positional dynamicity values considering 

nine window sizes for each datasets. In Table (7.1), I present the results of the algorithm 

developed in chapter 3 that determines the optimal window size to discretise dynamic 

network by analysing the variance analysis of actor-level positional dynamicity values. It is 

noteworthy that window size that represents the smallest variance in positional dynamicity 

values is considered as the optimal temporal scale. In this table, the green-shaded cell in each 

dataset represents the lowest variance in the distribution of actor-level positional dynamicity 

values and thus denotes the optimal sampling scale. On the other hand, the yellow-shaded cell 

Table 7.1: Variances of actor-level positional dynamicity values in each dynamic 

network dataset sampled by considering nine different window sizes. The green-shaded 

cell represents the smallest value and according to the algorithm developed in chapter 3, 

denotes the best optimal window size in the respective dataset and the yellow-shaded cell 

represents the second best optimal window size for each dynamic network. 

Dataset 
Window Size (days) 

1 2 3 4 5 6 7 14 30 

 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 0.0110 0.0104 0.0098 0.0090 0.0081 0.0076 0.0070 0.0055 0.0051 

𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 0.0177 0.0170 0.0210 0.0196 0.0171 0.0156 0.0143 0.0099 0.0063 

𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀 0.0042 0.0037 0.0028 0.0027 0.0027 0.0025 0.0021 0.0015 0.0023 

𝐺𝐺𝐹𝐹𝐹𝐹 0.0019 0.0057 0.0104 0.0145 0.0186 0.0219 0.0236 0.0256 0.0273 

 Window Size (minutes) 

 30 60 90 120 180 240 360 480 720 

𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 0.0002 0.0004 0.0006 0.0010 0.0015 0.0017 0.0021 0.0024 0.0036 

𝐺𝐺𝐻𝐻𝑇𝑇 0.0160 0.0167 0.0151 0.0133 0.1001 0.0078 0.0058 0.0055 0.0015 
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denotes the second best optimal scale having the second lowest variance. From this table, it is 

evident that in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇, and  𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶, networks, the optimal window size is 30 days (i.e., monthly 

window). The second best window size for these two networks is 14 days. Therefore, 

according to the proposed algorithm, it concludes that monthly or fortnightly SINs will 

suffice to analyse these dynamic networks. On the other hand, in 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀, the proposed approach 

identified 14 days (fortnightly window) as the optimal time-scale duration to generate 

network snapshots. The second best optimal window size in this network is seven days (i.e., 

weekly) window. In case of 𝐺𝐺𝐹𝐹𝐹𝐹 , the daily window (i.e., one day) was identified as the 

optimal time-scale duration with the lowest variance of actor-oriented positional dynamicity 

values reported. The second best window size in 𝐺𝐺𝐹𝐹𝐹𝐹 is two days. In case of the other two 

dynamic network datasets (i.e.,𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹  and 𝐺𝐺𝐻𝐻𝑋𝑋 ), where the unit of temporal granularity is 

minute, two different temporal-scale durations were identified as their optimal window sizes. 

In 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹, the optimal time-scale duration is half an hour (i.e., 30 minutes) and in 𝐺𝐺𝐻𝐻𝑋𝑋 it is 720 

minutes (i.e., 12 hours). Consequently, hourly window (i.e., 60 minutes) and eight-hour 

window (i.e., 480 minutes) became the second best time-scale durations for them 

respectively. A general phenomenon observable from the table is that higher number of actors 

may leads towards lower-scale temporal duration. For example, in case of the dynamic 

networks with lowest link aggregation duration as day (𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀 , 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 , 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶  and 𝐺𝐺𝐹𝐹𝐹𝐹 , the 

highest number of actors were found 𝐺𝐺𝐹𝐹𝐹𝐹  (i.e., 11715 in dataset description table from 

chapter 6) and the optimal temporal scale in this case was identified as the daily (i.e., one 

day) window. On the flip side, the lowest number of actors was found in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 (i.e., 96) and in 

this case the optimal temporal scale was identified as the monthly window (i.e., 30 days). 

Similarly, in case of the networks where the lowest temporal granularity is minute (i.e., 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 

and 𝐺𝐺𝐻𝐻𝑇𝑇), the optimal temporal granularity in 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 is 30 minutes (i.e., half hour) which is 

lower than the temporal granularity of 720 minutes (i.e., 12 hours) identified in 𝐺𝐺𝐻𝐻𝑇𝑇, although 
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the number of actor in the later  (i.e., 113) is lower than the former (i.e., 801). This fact may 

not be necessarily true in all respects. This phenomenon solely depends on the rate of 

network activities (i.e., formation/deletion of links) demonstrated by the actors in dynamic 

networks over time. For example, as presented in the table of basic network statistics in 

chapter 6, the number of unique links in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 was 2539 whereas the total number of links 

found within the temporal duration specified in the table was 1086403. This means that same 

link between a pair of actors was found in multiple times since in dynamic network links 

appear and disappear over time. On the other hand, in 𝐺𝐺𝐹𝐹𝐹𝐹, the number of unique links found 

was 34539 and the total number of links within the temporal duration for this network dataset  
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Table 7.2: Evaluation results to justify the optimal time-scale duration out of nine sampling 

window choices as per the approach presented in chapter 3 in three dynamic networks (i.e., 

 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇, 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶,  𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀). Evaluation tests include the best-fit ARIMA model, percentage of time 

series anomalies present (Anomaly %) in the time series of positional dynamicity of Short 

Interval Networks (SINs) of nine different lengths and minimum total within-cluster variance 

(Minimum Variance) within optimal number of clusters (# Optimal Clusters). The univariate 

K-means clustering method was used for distribution of positional dynamicity values of 

actors. The green-shaded columns denote the optimal temporal window. The yellow-shaded 

columns are the contenders as the second-best window(s) in the respective dataset. The red-

shaded column(s) represent the contender window to be the second best optimal window 

choice in the respective dataset. 

 𝑮𝑮𝑴𝑴𝑴𝑴𝑴𝑴 

Window  (days) 1 2 3 4 5 6 7 14 30 

Best Fit 
ARIMA 

(3,0,3) (0,0,0) (1,1,1) (0,1,1) (0,1,1) (0,1,0) (0,1,1) (0,1,0) (0,0,0) 

Anomaly (%) 8.57 4.29 10.64 5.71 7.14 8.33 0 4.81 0 

# Optimal 
Clusters  

1 1 2 2 2 2 2 2 1 

Minimum 
variance  

1.0389 0.2226 0.2767 0.2525 0.2042 0.1893 0.1999 0.1688 0.4889 

𝑮𝑮𝑬𝑬𝑬𝑬𝒂𝒂𝑬𝑬𝑬𝑬   

Best Fit 
ARIMA 

(1,0,0) (0,1,1) (0,1,1) (1,1,1) (3,1,0) (0,1,1) (2,1,0) (2,1,0) (0,1,0) 

Anomaly (%) 18.82 12.38 14.08 16.98 18.6 19.44 19.35 10.0 12.5 

# Optimal 
Clusters 

4 5 4 4 3 3 3 3 3 

Minimum 
variance 

0.0888 0.0887 0.2115 0.2021 0.3646 0.3311 0.3208 0.2416 0.1406 

  𝑮𝑮𝑼𝑼𝑼𝑼𝑴𝑴   

Best Fit 
ARIMA 

(0,1,0) (0,1,0) (2,0,1) (0,0,0) (1,0,0) (0,1,0) (1,1,0) (0,0,0) (0,0,0) 

Anomaly (%) 13.33 8.7 12.5 15.38 20.05 11.11 14.29 0 0 

# Optimal 
Clusters 

8 9 9 9 8 9 9 8 8 

Minimum 
variance 

0.1340 0.0866 0.0814 0.0745 0.0948 0.0782 0.0667 0.0489 0.0631 
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Table 7.3: Evaluation results to justify the optimal time-scale duration out of nine sampling 

window choices in three dynamic networks (i.e.,  𝐺𝐺𝐹𝐹𝐹𝐹, 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹,  𝐺𝐺𝐻𝐻𝑇𝑇). Evaluation tests include 

the best-fit ARIMA model, percentage of time series anomalies present (Anomaly %) in the 

time series of positional dynamicity of Short Interval Networks (SINs) of nine different 

lengths and minimum total within-cluster variance (Minimum Variance) within optimal 

number of clusters (# Optimal Clusters). The univariate K-means clustering method was used 

for distribution of positional dynamicity values of actors. The green-shaded columns denote 

the optimal temporal window. The yellow-shaded columns are selected as the second-best 

window(s) in the respective dataset. The red-shaded column(s) represent the contender 

window to be the second best optimal window choice in the respective dataset. 

 𝑮𝑮𝑭𝑭𝑭𝑭 

Window (days) 1 2 3 4 5 6 7 14 30 

Best Fit 
ARIMA 

(0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (0,0,1) (0,0,1) (0,0,0) (1,0,0) 

Anomaly (%) 3.33 4.44 4.44 0 16.67 0 0 14.29 0 

# Optimal 
Clusters 

9 9 9 9 9 9 9 9 9 

Minimum 
variance 

0.4882 1.3647 2.1300 2.4751 2.9288 3.0239 3.4416 2.9288 3.5974 

𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹   

Window 
(minutes) 

30 60 90 120 180 240 360 480 720 

Best Fit 
ARIMA 

(0,0,1) (0,0,0) (0,0,1) (0,0,0) (1,0,0) (2,0,1) (0,1,0) (1,1,0) (0,0,0) 

Anomaly (%) 0 15.38 15.79 14.29 0 12.5 14.29 0 0 

# Optimal 
Clusters 

4 4 5 3 7 4 4 8 8 

Minimum 
variance 

0.0096 0.0106 0.0092 0.0316 0.0089 0.0341 0.0411 0.0011 0.0015 

        𝐺𝐺𝐻𝐻𝑇𝑇   

Best Fit 
ARIMA 

(0,1,0) (2,0,1) (0,0,0) (0,0,0) (0,0,1) (0,1,0) (0,0,1) (0,0,0) (0,0,0) 

Anomaly (%) 0 4.17 0 0 7.81 5.75 10.64 0 0 

# Optimal 
Clusters 

1 1 1 2 2 2 3 4 2 

Minimum 
variance 

1.7954 1.8796 1.6965 0.2981 0.2858 0.1973 0.1217 0.0578 0.0403 
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Figure 7.1: Visual presentations of the percentage of anomalies present in a time series of 

positional dynamicity values for every Short Interval Network (SIN). The time series were built 

for all SINs considering two different window sizes (i.e., time-scales) in 𝑮𝑮𝐌𝐌𝐌𝐌𝐌𝐌 , 𝑮𝑮𝐔𝐔𝐔𝐔𝐌𝐌 , and 

𝑮𝑮𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄𝐄 networks. The respective time scales are (a) 3 days, (b) 14 days in 𝑮𝑮𝐌𝐌𝐌𝐌𝐌𝐌, (c) 1 day, (d) 2 

days in 𝑮𝑮𝑼𝑼𝑼𝑼𝑴𝑴, and finally, (e) 1 day, (f) 2 days in 𝑮𝑮𝑬𝑬𝑬𝑬𝒂𝒂𝑬𝑬𝑬𝑬. The blue dots represent the percentages 

of anomalies (numbers within each image) in the time series. 
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Figure 7.2: Visual presentations of the percentage of anomalies present in the time series 

of positional dynamicity values for every Short Interval Networks (SINs). The time series 

were built for all SINs considering two different window (i.e., time-scales) sizes in GFF, 

GINF, and GHT networks. The respective time scales are (a) 5 day, (b) 1 days in GFF, (c) 90 

minutes, (d) 240 minutes in GINF and finally, (e) 6 hour (360 min), (f) 1 hour (60 min) 

in GHT. The blue dots represent the percentages of anomalies (numbers within each image) 

in the time series. 
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was 42698. It is observable that the number of network activities in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 was exceedingly 

higher than the rate of network activities found in 𝐺𝐺𝐹𝐹𝐹𝐹.  

7.2.2 Optimal Window Size Validation 
Once the optimal and near-optimal window lengths for each network were identified by the 

proposed algorithm in chapter 3, in this step, I applied the evaluation part, also described in 

chapter 3, to validate the identified optimality. This is performed by determining the best fit 

ARIMA model, percentage of anomalies in time series of positional dynamicity values of 

SINs and finally identifying minimum total within-cluster variance (i.e., sum of squared 

errors) within optimal number of clusters in K-means clustering considering positional 

dynamicity of actors in SINs. It is noteworthy that the standard threshold value of these 

validation tests were ARIMA(0,0,0) for the best-fit ARIMA model, lowest number of 

anomalies present in regards to time series anomalies and lowest intra-cluster variance in 

minimum number of clusters by considering K-means clustering. For details, an interested 

reader is referred to chapter 3). Tables (7.2 & 7.3) illustrate these validation results. In this 

validation phase, I used two R packages named as ‘forecast’ [304] for ARIMA validation and 

‘AnomalyDetection’ [255] for the time series anomaly detection purpose. The later one is 

capable of detecting percentage of anomalies present in univariate time series including 

directionality (i.e., positive, negative or both) of anomalies. This package, with the help of 

Seasonal Hybrid Extreme Studentized Deviate (S-H-ESD) method, can detect maximum 

number of anomalies present as a percentage of the data. This percentage value was set to 

five. This means we consider time series with maximum five percent anomalies. Figures (7.1 

& 7.2) present the visualisation of percentage of time series anomalies present in two 

different time series of positional dynamicity values for each SIN. Two time series of SINs in 

each dynamic network dataset was constructed by considering two different time scale or 

temporal window sizes. The blue dots represent the anomalies present in each time series. In 
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(Figure 7.1), two different time series for 𝐺𝐺MIT, 𝐺𝐺UCI, and 𝐺𝐺Email were presented where one 

time series presents the window size containing comparably the higher amount of anomalies 

and the other with the lower amount of anomalies present. Similarly, (Figure 7.2), presents 

two different time series in 𝐺𝐺FF , 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 , and 𝐺𝐺𝐻𝐻𝑇𝑇 networks. On the other hand, for the 

evaluation task using k-means clustering, I used the associated R package [257]. 

From Table (7.2), it is apparent that the optimal window size of thirty days (i.e., 

monthly temporal window) in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇  network, as determined by the approach suggested in 

chapter 3, passed all the validation tests. In regards to the best-fit ARIMA model, the time 

series of positional dynamicity values, demonstrated by SINs where the SINs were generated 

by considering a temporal window size of 30 days, presents no auto-correlation between the 

dynamicities of SINs and associated error-values. Further, it demonstrated time series 

information without any trend and seasonality which was the presumption in regards to SINs 

being random networks. Considering the time series anomalies present in the time series of 

SINs’ dynamicity values, it presented zero anomalies and considering univariate K-means 

clustering over actor-level positional dynamicity values, it demonstrated lowest optimal 

number of clusters with minimum total within-cluster variance. Similar to 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇, in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶, 

the optimal temporal window size of 30 days (i.e., monthly) was identified by the proposed 

algorithm. In regards to the validation test, the monthly optimal window in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 , 

demonstrated a weak fit in regards to the best-fit ARIMA model (i.e., ARIMA(0,0,0)) where 

the time series of SINs’ dynamicity values revealed non-stationarity. This represent the 

presence of trends and/or seasonality (i.e., ARIMA(0,1,0)). Despite being poorly fit in regards 

to the ARIMA model, it was found to be the best one among all other temporal window 

choices (Table 7.2) in regards to the threshold values, considered for all the validation tests, 

mentioned earlier. The second best temporal scale of this dynamic network (i.e., fortnightly 

window) outperformed the best one in regards to the amount of anomalies present in the time 
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series of corresponding SINs’ positional dynamicity values. Despite its poor performance, the 

optimal monthly window outplayed the second best window choice (i.e., fortnightly) in 

regards to number of optimal clusters in K-means clustering and considering the minimum 

total within-cluster variances. Although, both the optimal monthly and semi-optimal temporal 

window choices had similar optimal K-number of clusters in univariate K-means clustering; 

however, considering the other two tests (i.e., best-fit ARIMA, and minimum total within-

cluster error rate/variances), I decided to consider it as the best window size for this dynamic 

network. 

In 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀, the optimal window size of 14 days (i.e., fortnightly window) surpassed all 

the other temporal window choices. According to the evaluations presented in Table (7.2), the 

monthly window size demonstrated better performance than the original second best temporal 

window (i.e., weekly-7days) in Table (7.1). It showed better fit in all validation tests but the 

measurement of errors (total within-cluster variance) present in K-means clustering. Thus, 

considering its win in three out of four tests, in the following chapter(s), I will consider the 

monthly window as the second best choice to sample the dynamic network  𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀 rather than 

the weekly temporal window. A different scenario was found in 𝐺𝐺𝐹𝐹𝐹𝐹 in Table (7.3). In this 

dynamic network, considering the best-fit ARIMA test, the second best window outplayed 

the optimal one. The time series of positional dynamicity values, computed in SINs generated 

by the optimal daily (i.e., one day) window, demonstrated auto-correlation between the 

associated error terms (i.e., moving average) present in the time series information (please see 

chapter 3 section 4.2 for detail). In regards to the optimal number of K-clusters in K-means 

clustering, it also showed similar results like the second best one. Nonetheless, the daily 

window choice outperformed the second best choice (i.e., two days) in regards to the 

anomalies present in the time series information and the amount of errors present in K-means  
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Figure 7.3: Distribution of the actors’ positional dynamicity values and corresponding 

clusters of univariate K-means clustering in 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 network considering a window size of 12 

hours (720 minutes) (top row) and one hour (60 minutes) (bottom row). In each row, the left 

plot represents the optimal number of clusters in the univariate K-means clustering 

algorithm over the actors’ positional dynamicity. The right plot represents the corresponding 

distribution of actor dynamicity values. 
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Figure 7.4: Distribution of the actors’ positional dynamicity values and corresponding 

clusters of univariate K-means clustering in the 𝐺𝐺𝐻𝐻𝑇𝑇 network, considering a window size of 

1.5 hours (90 minutes) (top row) and 8 hours (480 minutes) (bottom row). In each row, the 

left plot represents the optimal number of clusters in the univariate K-means clustering 

algorithm over the actors’ positional dynamicity. The right plot represents the corresponding 

distribution of actor dynamicity values. 
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clustering (total minimum within-cluster variance). Therefore, I concluded with this window 

choice as the winner.   In 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 and 𝐺𝐺𝐻𝐻𝑇𝑇, where the unit of temporal granularity was minute, I 

observed similar phenomena in both dynamic networks. In the former (i.e., 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹) dynamic 

network, the best temporal window choice of 30 minutes (i.e., half hour) was outperformed 

by the second best choice (i.e., hourly window) in regards to the best-fit ARIMA model. 

However, in regards to the other three validation tests, I found it performing better than the 

others as evident in Table (7.3). Therefore, considering its win in three out of four validation 

tests, I considered the originally found optimal window choices as the winner. Similar to the 

case found in 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀 , the original second best window size in this network (i.e., hourly 

window) was outperformed by the window size of 12 hours (i.e., 720 minutes) in all three 

tests except the optimal number of clusters in K-means clustering. Considering the three out 

four winner as mentioned above, in this case the better contender (i.e., 12 hours) will be 

considered as the second best temporal window choice in the following chapter(s). Similar 

observations were evident in 𝐺𝐺𝐻𝐻𝑇𝑇. Although, the originally identified best/optimal window 

choice performed better in comparison to the others by considering all validation tests, 

however, the window size of 90 minutes was found to be better contender as the second best 

one. By the proposed algorithm, it was 480 minutes (i.e., 8 hours) was the originally chosen 

second-best window choice in this dynamic network. The 90 minutes window choice 

demonstrated better performance in regards to the optimal number of clusters in univariate K-

means clustering despite having greater amount of total minimum within-cluster errors 

present. In Figures (7.3 & 7.4), the optimal number of clusters in univariate K-means 

clustering, by using  ‘Ckmeans.1d.dp’ algorithm[257], over actor-level positional dynamicity 

values and the corresponding distribution of these values are presented for dynamic networks 

𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 and 𝐺𝐺𝐻𝐻𝑇𝑇 respectively.  
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In Figure (7.3), two contender window sizes (i.e., 12 hours vs. one hour) were 

selected to compute actors’ positional dynamicities. It is evident from the figure that 

considering 12 hours (720 minutes), the number of optimal clusters (i.e., eight) is higher than 

those of hourly window size (i.e., four). However, the minimum total within-cluster variance 

is higher in the latter. Similarly, in Figure (7.4), by considering 90 minutes, the optimal 

number of cluster was one whereas in case of 480minutes (i.e., 8 hours), it was four. 

Simultaneously, it was evident from the figure that in the latter case, the minimum total 

within-cluster variance is lower than the former.  In 𝐺𝐺𝐻𝐻𝑇𝑇, by considering the performances of 

these two window choices (90 minutes vs. 480 minutes), it is evident that both of them 

demonstrated equal performance in regards to best-fit ARIMA model and the amount of error 

present in the time series information. However, they both outperformed each other in one 

out of the rest two tests. Therefore, I will consider originally identified 480 minutes (i.e., 8 

hours) as the second best choice in regards to the optimal temporal window selection.  In 

Table (7.4), the final optimal and second-best optimal window choices are presented. In this 

Table 7.4: Number of Short Interval Networks (SINs) generated by different choices of 
temporal window sizes for each dynamic network used in this study. This also denotes the 
length of temporal network snapshots. 

Dataset 
Window Size (days) 

1 2 3 4 5 6 7 14 30 

 𝑮𝑮𝑴𝑴𝑴𝑴𝑴𝑴 140 70 47 35 28 24 20 10 5 

𝑮𝑮𝑬𝑬𝑬𝑬𝒂𝒂𝑬𝑬𝑬𝑬 186 105 71 53 43 36 31 16 8 

𝑮𝑮𝑼𝑼𝑼𝑼𝑴𝑴 45 23 16 13 10 9 7 4 3 

𝑮𝑮𝑭𝑭𝑭𝑭 90 45 30 23 18 15 13 7 3 

 Window Size (minutes) 

 30 60 90 120 180 240 360 480 720 

𝑮𝑮𝑴𝑴𝑰𝑰𝑭𝑭 50 26 19 14 10 8 7 5 4 

𝑮𝑮𝑯𝑯𝑴𝑴 48 24 16 12 8 6 4 4 2 
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table, also the statistics in regards to the total number of SINs generated by considering all 

different temporal window choices are presented. In this table, the optimal time scale and the 

second best optimal time scale choices in each dataset are shaded as green and yellow 

respectively.  

7.3 Conclusion 

In dynamic networks, one important task is to identify the correct, appropriate or optimal 

choice of aggregation granularity in order to perform binning any stream of time stamped 

links to discern meaningful information and understand the rate of dynamics demonstrated by 

these networks. As identified by Fish and Caceres, researchers have named this problem 

differently, such as, change point detection, time scale detection, oversampling correction, 

temporal resolution inference, aggregation granularity detection or windowing selection 

[109]. This identification of correct window length strongly impacts the structural analyses, 

efficacy of network mining and dynamics demonstrated by networks [258,246,107]. Having 

too coarse or too fine temporal granularity may conceal or fail to disentangle critical 

information about network dynamics and impair the understanding of the structure of 

underlying interactions. Further, appropriate temporal binning decision in dynamic networks 

will enable to distinguish between noisy, local and critical temporal orderings.  

The approach I followed to define the optimal time scale for dynamic networks, as 

described in chapter 3,  is based on the concept of an actor-level dynamicity that quantifies 

changes in actors’ network involvements (in terms of network position) during the evolution 

of the underlying longitudinal network. To determine the optimal window length from nine 

sampling resolutions in each dynamic network, I have compared the variances of nine sets of 

actor-level positional dynamicity values. The window length with minimum variance in actor 

dynamicity distributions define the appropriate sampling window to analyse the dynamic 
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network because the minimum variance will ensure that the suggested window size will 

neither be too large for some actors that reveal high rates of network activities to exhibit a 

large volume of network activities nor be too small for some other actors that reveal slow 

rates of network activities to exhibit a minimum number of network activities. In the first 

table of this chapter, I presented the optimal and second-best optimal sampling window sizes 

identified by the algorithm in each dynamic network dataset. Once identified, I have also 

evaluated their optimality with the help of four validation tests. The theoretical backgrounds 

of these tests are described in chapter 3. The threshold value for each test was described both 

in chapter 3 and this chapter. These values are best-fit ARIMA model closer to ARIMA(0,0,0) 

with stationary and lowest possible time series anomalies present in time series of positional 

dynamicity demonstrated by each SIN in a dynamic network, and lowest optimal number of 

clusters including minimum intra-cluster variance in K-means clustering.  In two tables, I 

presented the validation test results for each optimal and second-best optimal window choices 

in each dataset. It was observed that in all cases the optimal window choices, identified by the 

proposed algorithm, passed maximum validations. However, in some cases, the second-best 

optimal window choices were subject to change due to other contenders was demonstrating 

better performance in regards to the validation tests. Finally, in the last table, I present the 

selected optimal window choices and second-best (near-optimal) window choices for each 

dataset including the number of SINs generated under each sampling window size.     
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Chapter 8 
 

Supervised Dynamic Link Prediction: 
Empirical Results    
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8.1 Introduction 

In this chapter, the results of an empirical analysis where the dynamic features (described in 

chapter six), applied in a supervised link prediction setup to predict links in six different 

dynamic networks, are presented. These dynamic features were then compared to one 

similarity metric, widely used in link prediction in static network, and one time series based 

link prediction approach to determine the superiority of the dynamic features developed in 

this study. Then this chapter also presents the distribution of feature values to determine 

whether similar or dissimilar actors in regards to their evolutionary aspects participate in 

emerging links. Since the dynamic features or dynamic similarity metrics denote the 

evolution similarity between actor-pairs, so a lower value of the feature would denote 

dissimilar actors and higher value denote higher evolution similarity between actor- pairs. In 

this chapter, I also describe the feature importance to identify which feature(s) performed 

better in which database in regards to the prediction task.      

8.2 Preambles 

Dynamic similarity metrics for link prediction task in this thesis was developed by 

considering the similarity and/or proximity between actors in dynamic networks regarding 

their evolutionary aspects. Three types of actor-level evolutionary information were defined 

including (i) structural, (ii) neighbourhood and (iii) community-aware dynamicity. The 

similarity between a pair of actors was defined by computing the temporal similarity and 

correlation between these evolutionary aspects. In addition, two other similarity measures 

were defined. The first was based on a measure used in ecology, known as Bray-Curtis 

Similarity measure, whereas the second considered evolutionary changes of actor-level 

community participation and network structure.  
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To use community-aware network-structural information, two different community detection 

techniques were used: (i) agglomerative hierarchical community detection and (ii) Louvain 

community detection algorithm. Table (8.1) sets out the Summary of dynamic features 

constructed in chapter 6. For the sake of brevity, the classification dataset for each network 

will be denoted as follows: 𝐺𝐺𝐼𝐼𝐷𝐷𝑡𝑡𝐵𝐵𝑜𝑜𝑑𝑑𝑁𝑁𝜏𝜏  where 𝜏𝜏 denotes the length of the optimal time scale 

identified for each dataset in the previous chapter. Thus, six classification datasets, by 

considering the optimal time scale in each of the six dynamic networks, will be denoted 

by 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇30 , 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶30 , 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀14 , 𝐺𝐺𝐹𝐹𝐹𝐹1 , 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹0.5  and 𝐺𝐺𝐻𝐻𝑇𝑇12  in which each network is accompanied with the 

identified optimal temporal window length in their respective dataset. For example, in  𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇, 

it is the monthly window (i.e., 30 days), in  𝐺𝐺𝐹𝐹𝐹𝐹, it is the daily window (i.e., 1 day), in  𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹, 

it is the half (0.5) an hour (i.e., 30 minutes), and in  𝐺𝐺𝐻𝐻𝑇𝑇, it is 12 hours (i.e., 720 minutes). 

The fundamental purpose of supervised link prediction in dynamic networks was to build a 

binary classification model and successfully differentiate between positive and negatively 

labelled actor-pairs. For this purpose, after developing the classification datasets, three 

different classifiers were considered. These included simple logistic regression, Random 

Forest and Bagging algorithms. In the latter two algorithms, ensemble-based methods were 

used. Ensemble is a machine learning concept in which the idea is to combine multiple 

models using the same learning algorithm, or alternatively, a set of weak learners are grouped 

to form a stronger learner to obtain better performance. 
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Table 8.1: A list of different dynamic features in which each feature computes 𝒔𝒔𝑬𝑬𝑬𝑬𝑬𝑬 (𝒂𝒂,𝒃𝒃), a 

similarity score between actor 𝒂𝒂 and 𝒃𝒃 by using different evolutionary aspects and actor-level 

network structures in dynamic networks. 

Metrics Equation Description 

𝑠𝑠𝑖𝑖𝑠𝑠1(𝑎𝑎, 𝑏𝑏) 𝑠𝑠𝑖𝑖𝑛𝑛 ��𝑎𝑎�𝛿𝛿𝑚𝑚𝐶𝐶
𝑎𝑎  , 𝛿𝛿𝑛𝑛𝐶𝐶𝑎𝑎 �

ℒ

ℓ=1

 Temporal similarity 
of structural, 

neighbourhood and 
community 

dynamicity measured 
using the Dynamic 

Time Warping 
(DTW) Technique 

𝑠𝑠𝑖𝑖𝑠𝑠2(𝑎𝑎, 𝑏𝑏) 𝑠𝑠𝑖𝑖𝑛𝑛 ��𝑎𝑎�λ𝑚𝑚𝐶𝐶
𝑎𝑎  ,λ𝑛𝑛𝐶𝐶

𝑎𝑎 �
ℒ

ℓ=1

 

𝑠𝑠𝑖𝑖𝑠𝑠3(𝑎𝑎, 𝑏𝑏) 𝑠𝑠𝑖𝑖𝑛𝑛 ��𝑎𝑎�𝜕𝜕𝑚𝑚𝐶𝐶
𝑎𝑎  ,𝜕𝜕𝑛𝑛𝐶𝐶𝑎𝑎 �

ℒ

ℓ=1

 

𝑠𝑠𝑖𝑖𝑠𝑠4(𝑎𝑎, 𝑏𝑏) 
∑ �(δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎���)(δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎���)�𝑡𝑡

�∑ (δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎���)2𝑡𝑡 �∑ (δ𝑎𝑎(𝑡𝑡) − δ𝑎𝑎���)2𝑡𝑡

 Correlation between 
structural, 

neighbourhood and 
community 

dynamicity of two 
non-connected actors 

computed using 
Pearson correlation 

𝑠𝑠𝑖𝑖𝑠𝑠5(𝑎𝑎, 𝑏𝑏) 
∑ �(λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎���)(λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎���)�𝑡𝑡

�∑ (λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎���)2𝑡𝑡 �∑ (λ𝑎𝑎(𝑡𝑡) − λ𝑎𝑎���)2𝑡𝑡

 

𝑠𝑠𝑖𝑖𝑠𝑠6(𝑎𝑎, 𝑏𝑏) 
∑ �(𝜕𝜕𝑎𝑎(𝑡𝑡)− 𝜕𝜕𝑎𝑎���)(𝜕𝜕𝑎𝑎(𝑡𝑡) − 𝜕𝜕𝑎𝑎���)�𝑡𝑡

�∑ (𝜕𝜕𝑎𝑎(𝑡𝑡)− 𝜕𝜕𝑎𝑎���)2𝑡𝑡 �∑ (𝜕𝜕𝑎𝑎(𝑡𝑡) − 𝜕𝜕𝑎𝑎���)2𝑡𝑡
   

𝑠𝑠𝑖𝑖𝑠𝑠7(𝑎𝑎, 𝑏𝑏) 
1

−
∑ [|δ𝑎𝑎(𝑡𝑡) − δ𝑏𝑏(𝑡𝑡)| + |λ𝑎𝑎(𝑡𝑡)− λ𝑏𝑏(𝑡𝑡)| + |𝜕𝜕𝑎𝑎(𝑡𝑡) − 𝜕𝜕𝑏𝑏(𝑡𝑡)|]𝑇𝑇
𝑡𝑡=1

∑ [|δ𝑎𝑎(𝑡𝑡) + δ𝑏𝑏(𝑡𝑡)| + |λ𝑎𝑎(𝑡𝑡) + λ𝑏𝑏(𝑡𝑡)| + |𝜕𝜕𝑎𝑎(𝑡𝑡) + 𝜕𝜕𝑏𝑏(𝑡𝑡)|]𝑇𝑇
𝑡𝑡=1
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𝑎𝑎,𝑎𝑎 = ∅ 
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Ensemble-based learning models play a crucial role in alleviating the root causes of error in 

learning, which are due to noise, bias, and variance. On the other hand, Logistic Regression 

(i.e., binary logistic regression) is an example of a generalized linear model. This represents a 

special type of regression in which the binary response variable (i.e., label of the link, 

positive or negative) was related to a set of explanatory (i.e., predictor) variables (i.e., 

dynamic features). Before analysing the performance of the classifiers used in supervised link 

prediction in dynamic networks, a brief description of these three classifiers is presented in 

the following sections.  

8.3 Classifiers 

This section describes three classifiers used in this research for supervised classification 

purpose. 

8.3.1 Bagging 

Bagging stands for ‘Bootstrap AGGregatING’ [305] that attempts to decrease the variance of 

the prediction by generating additional data for training purposes from the original dataset. It 

uses combinations with repetitions or random sampling with replacements from the original 

training dataset. Although the model’s prediction performances are not necessarily always 

improved, increasing the cardinality or size of the training datasets supports reducing the 

variance. The basic idea behind this learning algorithm is to split the training instances from 

the classification dataset into multiple random subsets. A classifier (e.g., decision tree) is 

trained for each collection of data subsets and thereby generating ensembles of multiple 

models. The prediction average from different trees is used and is considered more robust 

compared to a single decision tree. Bagging uses bootstrap sampling to obtain these subsets 

of data to train the base learner (i.e., decision tree) in conjunction with voting for 
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classification (i.e., plurality voting) and average for regression to aggregate the outputs of the 

base learner(s). 

8.3.2 Random Forest 

The Random Forest is a notion of an ensemble technique in statistical learning that is utilized 

for classification and/or prediction purposes in both statistics and machine learning [306]. 

The ensemble method is a divide-and-conquer approach in which improved prediction 

performance is generated by considering a weighted average (vote) of multiple basic model 

such as a decision tree. A decision tree is a tree-like complex and deterministic data structure 

in which each branch node represents a choice condition between a number of alternatives 

and each leaf node represents a classification or decision. The learning process starts by 

building a multitude of decision trees for the sample data. To classify a new object from a 

vector of sample data, the input vector is put down each of the trees in the forest. 

Consequently, each tree provides a classification that is considered as its vote for a class. 

Subsequently, the forest chooses the classification voted by the maximum number of trees. At 

each tree, a fraction of samples is randomly chosen (with replacement) to make the tree grow. 

At each branch node, a random subset of features/attributes, describing the samples (e.g. 

dynamic features in this study), is chosen to achieve the best split of the samples. The best 

threshold value of these features, contributing towards the best split, is held constant while 

the forest grows. 

Given ensemble methods, the difference between Bagging and Random Forest is that 

the latter is considered as an extension of the former. In addition to creating subsets of data, it 

a random selection of features is considered rather than considering all features to grow 

decision tress. Interestingly, bagging algorithms are used on features in which each decision 



168 
 

tree uses a random subset of features and ends up creating many random trees to signify its 

name as a Random Forest. 

8.3.3 Logistic Regression 

Logistic Regression is a statistical method that is considered a special type of regression in 

which the dependent variable is binary or dichotomous. The goal of Logistic Regression is to 

find the best fitting model to describe the relationship between the dichotomous characteristic 

of interest and a set of explanatory or independent variables (i.e., predictor). It considers a 

linear model, which is made up of a linear predictor and two functions: (i) link function, that 

describes how the expectation of the dependent variable depends on the linear predictor, and 

(ii) a variance function that describes how the variance of the response variable depends on 

the expected value. It differs from linear regression by modelling the probability of the 

response variable, thereby taking a particular value that is based on combinations of values 

taken by the predictors. In case of linear regression, instead of the probability, the expected 

value of the response variable is considered. The term ‘logistic’ is a synonym of the word 

‘Sigmoid’ and thus uses a sigmoid activation function with an ‘S’ shaped curve. As the 

sigmoid function simplifies the mathematics involved during optimization, it is considered an 

ideal choice for a small-scale classification problem.    

8.4 Results 

In this section, the empirical results, obtained in supervised dynamic link prediction strategy 

using the dynamic features established in chapter 5, are described:  

8.4.1 Classifier Performances 

In this section, the classification performances of three classifiers are described regarding the 

dynamic features developed in the previous chapter that are summarized in the Table 8.2. A 
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Table 8.2: Classification performances of three classifiers (i.e., LR=Logistic Regression, 

RF=Random Forest, and B=Bagging) in classifying positive and negatively-labelled 

instances in the classification datasets of six different dynamic network datasets. The 

instances in the corresponding dataset were described by dynamic features constructed by 

considering temporal series of network snapshots. Two different time scales (optimal and 

second optimal) were considered to generate these network snapshots.    

Optimal Time Scale Second Optimal Time Scale 

 Classifier Accuracy 
% 

AUC 
ROC 

AUC 
PR 

 
Accuracy 

% 
AUC 
ROC 

AUC 
PR 

𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇30  
LR 83.89 0.653 0.13 

𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇14  
83.88 0.647 0.13 

RF 76.17 0.660 0.18 73.89 0.560 0.12 
B 75.16 0.560 0.11 73.88 0.580 0.11 

𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶30  
LR 83.25 0.634 0.17 

𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶14  
81.55 0.638 0.24 

RF 82.31 0.682 0.22 82.78 0.591 0.25 
B 81.34 0.573 0.16 81.34 0.647 0.18 

𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀14  
LR 83.27 0.614 0.27 

𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀30  
83.27 0.657 0.25 

RF 83.65 0.637 0.39 83.45 0.712 0.38 
B 83.10 0.616 0.36 83.05 0.641 0.29 

𝐺𝐺𝐹𝐹𝐹𝐹1  
LR 83.47 0.623 0.24 

𝐺𝐺𝐹𝐹𝐹𝐹2  
84.01 0.605 0.29 

RF 82.13 0.619 0.29 82.51 0.591 0.29 
B 83.51 0.618 0.29 83.84 0.602 0.27 

𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹0.5  
LR 94.49 0.987 0.85 

𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹12  
88.13 0.926 0.60 

RF 95.47 0.989 0.84 90.58 0.961 0.69 
B 93.27 0.989 0.87 91.68 0.957 0.75 

𝐺𝐺𝐻𝐻𝑇𝑇12  
LR 80.07 0.590 0.26 

𝐺𝐺𝐻𝐻𝑇𝑇1.5 
80.07 0.619 0.26 

RF 81.05 0.623 0.29 80.03 0.646 0.28 
B 77.64 0.557 0.26 78.22 0.547 0.24 
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comparable performance representation of a static topological similarity metric (i.e., 

ResourceAllocation RA) and a time series forecasting-based dynamic link prediction 

strategy, proposed by Soares and Prudêncio [195]. The well-known machine learning library 

WEKA [307] was used for classification purposes using default parameters. For example, in 

case of ensemble-based Random Forest classification algorithm, WEKA uses Random Tree 

as base classifier that construct a tree considering K randomly chosen attributes at each node. 

It also does not perform pruning and allows estimation of class probabilities based on a hold-

out set. Further, Random Forest algorithm in WEKA also considers 10 trees by default 

including unlimited depth for each tree. On the other hand, in case of Bagging classification 

algorithm, WEKA uses Reduced Error Pruning Tree ("REPT") which is the fast decision tree 

learning algorithm that builds a decision tree based on the information gain or reducing the 

variance. It builds a decision/regression tree using information gain as the splitting criterion, 

and prunes it using reduced error pruning. The default parameters in REPT are: unrestricted 

depth of trees, the minimum total weight of the instances in a leaf is two, and the minimum 

proportion of the variance on all the data that needs to be present at a node in order for 

splitting to be performed in regression trees is set to 0.001). In conjunction with REPT, 

Bagging also uses a parameter known as the size of each bag which is set to 100 percent of 

the training set size. 

Table (8.2) presents the classification performances that were demonstrated by three 

classifiers using dynamic features constructed in this study. In this table, the classifier’s 

performances are described using three metrics described in the previous chapter. These 

include accuracy by 10-fold cross-validation, Area Under ROC Curve (AUCROC), and Area 

Under PR Curve (AUCPR). Considering the best optimal temporal window choices in all 

datasets, the classification performances demonstrated by all classifiers were significant. 

When considering the accuracy score, most of the classifiers achieved more than 80% 
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accuracy across all datasets, except for the Bagging algorithm in two network datasets (i.e., 

𝐺𝐺𝐻𝐻𝑇𝑇 and 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇) and Random Forest classifier in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 for the second-best temporal window 

choice. The best accuracy score was achieved by the Random Forest classifier in the 

INFECTIOUS dataset 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹, considering both the best (i.e., half an hour) and the second-best 

(i.e., 12 hour) temporal window choices. The worst performance, for the accuracy percentage, 

was recorded in the 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 dataset by the Bagging classifier for both optimal and second 

optimal temporal scale choices. Moreover, when considering the AUCROC scores, the best 

performance was recorded in the same dataset (i.e., 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 ) by all classifiers. However, 

Random Forest exceeded others by nominal differences. 

The worst performance, when considering the AUCROC score, was demonstrated by 

the Bagging algorithm in the Hypertext dataset (i.e., 𝐺𝐺𝐻𝐻𝑇𝑇). Despite its trivial performances, 

Bagging classifier exceeded the others with regard to the AUCPR scores in 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 when 

considering both the optimal and second-optimal temporal scale choices. In the 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 dataset, 

the lowest score in this performance metric was recorded by the same classifier. It is 

noteworthy that, the minimum AUCPR score of 0.09, was surpassed by all classifiers across 

six datasets. In addition, although in some instances, the AUCROC scores were much lower 

than the best score recorded in 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹, however, it was observed that all classifiers performed 

better than a random classifier, which can achieve a maximum AUCROC score of 0.50. 
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Figure 8.1: The average performances indicated by three classifiers (i.e., logistic regression, 

Random Forest, and Bagging) considering three performance metrics (Accuracy %, 

AUCROC, and AUCPR) in classification datasets. Each Performance metric denotes the 

average of aggregated performances demonstrated by the three classifiers together 

considering three performance metrics (Accuracy, AUCROC and AUCPR). Dynamic 

features were generated by considering Short Interval Networks (SINs) with both optimal 

(dark colour) and second-best optimal (light colour) time scale choices. The dark coloured 

bars represent the performance metrics when the optimal time scale was considered and the 

light coloured bars represent the performance metrics of the classifiers when the second best 

optimal time scale was considered in the corresponding dataset.  
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For the temporal window choices, it was observed that, other than few exceptions 

(e.g., 𝐺𝐺𝐹𝐹𝐹𝐹 ), in most cases, three classifiers performed well in the classification dataset in 

which the dynamic features were constructed by considering the best and optimal temporal 

scale choice rather than the second-best choice. In the Facebook Friendship dataset, in 

AUCROC and AUCPR scores, three classifiers were observed with better performances 

when considering the best optimal time scale choice. However, in accuracy scores, three 

classifiers were outperformed by the second-best time scale. To further demonstrate that 

improved supervised dynamic link prediction performance depends on the optimal choice of 

the temporal window when actor-oriented evolutionary features were used, the average 

performances of three classifiers are demonstrated by considering both the optimal and non-

optimal temporal window choices Figure (8.1). In this figure, the performances of each 

classifier in three different metrics were averaged and in the corresponding classification 

dataset, dynamic features were constructed, considering that SINs had both an optimal and a 

non-optimal temporal duration. For example, in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 , considering the optimal temporal 

duration of 30 days, accuracy scores demonstrated by three classifiers, were aggregated and 

then divided by three to obtain the average accuracy score. Similarly, AUCROC and AUCPR 

scores were averaged for all classifiers. Next, the average performance scores of these three 

classifiers were computed in the similar fashion in a classification dataset in which each SIN 

had a temporal duration of one day (i.e., daily), a non-optimal temporal scale choice in this 

case. The figure demonstrates that optimal temporal duration affects the supervised link 

prediction performances in dynamic networks. In almost all cases, the optimal temporal 

window choice of the SINs supported the construction of actor-oriented evolutionary features 

that demonstrated better performance in predicting the future links. Thus, it is evident that an 

optimal time scale greatly impacted accurate link predictions in dynamic networks.    
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Further, it was evident that both linear and ensemble classifiers demonstrated notable 

performances in classification tasks. Regarding the accuracy scores in the optimal time scale 

choice, the Logistic Regression performed better in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 , 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶  and 𝐺𝐺𝐹𝐹𝐹𝐹  datasets. In 

contrast, the ensemble classifier Random Forest performed well in 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀, 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 and 𝐺𝐺𝐻𝐻𝑇𝑇 . In 

AUCROC scores, Logistic Regression displayed a better performance when compared to its 

counterpart Random Forest only in 𝐺𝐺𝐹𝐹𝐹𝐹 .  An interesting observation was that Logistic 

Regression had either outperformed or performed closer to the other ensemble classifier (i.e., 

Bagging) across all datasets using the AUCROC scores. In addition, except for two datasets 

(i.e., 𝐺𝐺𝐹𝐹𝐹𝐹, 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀), it downplayed Bagging in AUCPR scores. Nevertheless, in most cases, the 

Random Forest classifier performed notably better than others in AUCROC and AUCPR 

scores despite its setback in 𝐺𝐺𝐹𝐹𝐹𝐹  considering AUCROC scores, and in 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 , considering 

AUCPR scores. it is noteworthy that between two ensemble-based classifiers, bagging, where 

a decision tree was used as a base classifier, was susceptible to overfitting and 

computationally expensive, as it considered all the available features to split a node in 

decision trees. Conversely, Random Forest, a special case of bagging, randomly considered 

only a subset of the best features of those available. Therefore, its performance was superior 

to that of bagging in several cases.  
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Table 8.3: Importance ranking of different dynamic features constructed in this study using 

different algorithms including Information Gain (IG), Chi-square statistical evaluation (Chi), 

attributes ranking in support vector machine classifier (SVM), and feature ranking in a 

Random Forest (RF) classifier. Ranks are in decreasing order in which number one (1) denotes 

the highest ranking. The ‘Total’ column represents the aggregation of all ranking score to 

generate the final ranking. 𝑠𝑠𝑖𝑖𝑠𝑠8
𝐶𝐶  denotes the 8th metric that used hierarchical agglomerative 

clustering approach and 𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ  denotes the same metric using Louvaincommunity detection 

approach. The green-shaded cells represent the best performing features, whereas the yellow-

shaded cells indicate the second-best features. 

  IG Chi SVM RF Total  IG Chi SVM RF Total 

𝑮𝑮𝑴𝑴𝑴𝑴𝑴𝑴 

𝑠𝑠𝑖𝑖𝑠𝑠1 9 9 6 9 33 

𝑮𝑮𝑭𝑭𝑭𝑭 

6 6 7 3 22 
𝑠𝑠𝑖𝑖𝑠𝑠2 4 4 2 6 16 4 4 4 7 19 
𝑠𝑠𝑖𝑖𝑠𝑠3 5 5 4 1 15 9 9 9 1 28 
𝑠𝑠𝑖𝑖𝑠𝑠4 3 3 5 3 14 5 5 5 2 17 
𝑠𝑠𝑖𝑖𝑠𝑠5 2 2 8 8 20 8 8 8 8 32 
𝑠𝑠𝑖𝑖𝑠𝑠6 7 7 7 5 26 7 7 3 9 26 
𝑠𝑠𝑖𝑖𝑠𝑠7 8 8 1 7 24 3 3 6 4 16 
𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶  6 6 3 2 17 2 2 1 5 10 
𝑠𝑠𝑖𝑖𝑠𝑠8

ℎ 1 1 9 4 15 1 1 2 6 10 
 

𝑮𝑮𝑬𝑬𝑬𝑬𝒂𝒂𝑬𝑬𝑬𝑬 

𝑠𝑠𝑖𝑖𝑠𝑠1 9 9 6 7 31 

𝑮𝑮𝑴𝑴𝑰𝑰𝑭𝑭 

8 8 5 7 28 
𝑠𝑠𝑖𝑖𝑠𝑠2 4 4 1 9 18 7 7 2 4 20 
𝑠𝑠𝑖𝑖𝑠𝑠3 5 5 7 4 21 9 9 7 8 33 
𝑠𝑠𝑖𝑖𝑠𝑠4 3 3 3 3 12 2 2 9 1 14 
𝑠𝑠𝑖𝑖𝑠𝑠5 2 2 2 2 8 1 1 1 9 12 
𝑠𝑠𝑖𝑖𝑠𝑠6 7 7 4 1 19 4 5 3 5 17 
𝑠𝑠𝑖𝑖𝑠𝑠7 8 8 5 8 29 6 6 4 6 22 
𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶  6 6 8 6 26 3 3 6 3 15 
𝑠𝑠𝑖𝑖𝑠𝑠8

ℎ 1 1 9 5 16 5 4 8 2 19 
 

𝑮𝑮𝑼𝑼𝑼𝑼𝑴𝑴 

𝑠𝑠𝑖𝑖𝑠𝑠1 9 9 9 3 30 

𝑮𝑮𝑯𝑯𝑴𝑴 

3 3 7 4 17 
𝑠𝑠𝑖𝑖𝑠𝑠2 4 4 2 5 15 6 6 6 7 25 
𝑠𝑠𝑖𝑖𝑠𝑠3 5 5 4 1 15 2 2 3 2 9 
𝑠𝑠𝑖𝑖𝑠𝑠4 3 3 5 2 13 4 4 2 6 16 
𝑠𝑠𝑖𝑖𝑠𝑠5 2 2 1 4 9 8 8 8 3 27 
𝑠𝑠𝑖𝑖𝑠𝑠6 7 7 7 7 28 5 5 4 8 22 
𝑠𝑠𝑖𝑖𝑠𝑠7 8 8 3 6 25 7 7 1 5 20 
𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶  6 6 6 8 26 1 1 5 1 8 
𝑠𝑠𝑖𝑖𝑠𝑠8

ℎ 1 1 8 9 19 9 9 9 9 36 
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8.4.2 Feature Importance 

After the performance measurement of classifiers when using nine different dynamic 

features, it was attempted to determine the relative importance of these dynamic features 

(i.e., 𝑠𝑠𝑖𝑖𝑠𝑠1(𝑎𝑎, 𝑏𝑏), 𝑠𝑠𝑖𝑖𝑠𝑠2(𝑎𝑎, 𝑏𝑏), … 𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏) and 𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶 (𝑎𝑎, 𝑏𝑏)), described in Table (6.1) to assess 

their relative competency in dynamic link prediction task in all six datasets. In the eighth 

feature, two community detection algorithms were considered (i.e., Louvain and hierarchical 

agglomerative clustering). Therefore, 𝑠𝑠𝑖𝑖𝑠𝑠8(𝑎𝑎, 𝑏𝑏) was further classified into … 𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏) and 

𝑠𝑠𝑖𝑖𝑠𝑠8
𝐶𝐶 (𝑎𝑎, 𝑏𝑏) in which 𝑠𝑠𝑖𝑖𝑠𝑠8

ℎ(𝑎𝑎, 𝑏𝑏)denotes the metric that considered the hierarchical clustering 

approach, whereas 𝑠𝑠𝑖𝑖𝑠𝑠8
𝐶𝐶 (𝑎𝑎, 𝑏𝑏)  denotes the feature constructed by considering Louvain 

community detection approach. For the ranking purpose, three different algorithms were 

considered from the WEKA machine learning software. These included information gain, 

chi-square evaluation, and Support Vector Machine (SVM) attribute evaluation. In Table 

(6.3), a comparable picture of these features was provided with regard to their rank of 

importance obtained by these algorithms. Information gain and chi-square evaluator 

algorithms evaluated the worthiness of a feature by calculating the information gain and chi-

squared statistics with respect to the class variables. On the other hand, the SVM column 

denoted the rank of a feature with regard to the SVM. In this evaluation method, the 

worthiness of features was evaluated by using a SVM classifier in which the ranks of features 

were calculated by the square of the weight assigned by the SVM. Similarly, in this table, the 

column with Random Forest heading represents the importance of each feature according the 

feature evaluation mechanism employed in Random Forest (RF) classifier. 

In Table (8.3), the ranks of the features were assigned in decreasing order with one 

denoting the highest ranking. Finally, all ranks for each four algorithms were aggregated to 

generate the final rank. The most important feature in each dataset was shaded green whereas 
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the second-best one was shaded yellow. This table indicates that 𝑠𝑠𝑖𝑖𝑠𝑠4(𝑎𝑎, 𝑏𝑏), constructed by 

considering the correlation between time series of actor-level structural dynamicity values, 

was the most prominent feature in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇. Temporal similarity between community dynamicity 

values of non-connected actor pairs, measured by the Dynamic Time Warping method, 

denoted by 𝑠𝑠𝑖𝑖𝑠𝑠3(𝑎𝑎, 𝑏𝑏), was the second best dynamic feature in the same dataset accompanied 

by 𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏). The latter represents similarity between actors using evolutionary community-

aware network structural information by using a hierarchical agglomerative community 

detection algorithm. In contrast,  𝑠𝑠𝑖𝑖𝑠𝑠5(𝑎𝑎, 𝑏𝑏) , the correlation between neighbourhood 

dynamicity values of actor-pairs, became the most valuable feature in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 ,𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀, and 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹. 

𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 and 𝑠𝑠𝑖𝑖𝑠𝑠4(𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀 and 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 were the second best important features 

in the respective datasets. In the rest of the two datasets (i.e., 𝐺𝐺𝐹𝐹𝐹𝐹 and 𝐺𝐺𝐻𝐻𝑇𝑇), it is 𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏) 

that was the most significant dynamic feature, although in 𝐺𝐺𝐹𝐹𝐹𝐹 , this feature was jointly 

accompanied by 𝑠𝑠𝑖𝑖𝑠𝑠8
𝐶𝐶 (𝑎𝑎, 𝑏𝑏) to win the first place. 𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶 (𝑎𝑎, 𝑏𝑏) worked in a similar way such as 

𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏). However, it used the Louvain community detection method. Further, in the same 

dataset, 𝑠𝑠𝑖𝑖𝑠𝑠7(𝑎𝑎, 𝑏𝑏) , which calculated similarity between actors by using Bray-Curtis 

similarity measure from ecology, was the second best emphatic feature, whereas in case of 

𝐺𝐺𝐻𝐻𝑇𝑇, it was 𝑠𝑠𝑖𝑖𝑠𝑠3(𝑎𝑎, 𝑏𝑏), temporal similarity between neighborhood dynamicity values of a 

pair of actors that was computed by the Dynamic Time Warping method. Thus, based on the 

aforementioned discussion, it was evident that although, most dynamic features perform well  
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Figure 8.2: Visual representation of Precision-Recall (i.e., left column) and ROC curves 

(right column) of three network datasets 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀  (top row), 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇  (middle row) and 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 

(bottom row), considering the following features: (i) dynamic features 𝑆𝑆𝑖𝑖𝑠𝑠𝐷𝐷𝑥𝑥𝑛𝑛𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐  (ii) 

topological similarity metric, Resource Allocation (RA) as a static link predictor 𝑆𝑆𝑖𝑖𝑠𝑠𝑅𝑅𝑅𝑅, and 

(iii) Time series forecasting-based link prediction 𝑆𝑆𝑖𝑖𝑠𝑠𝑆𝑆𝑜𝑜𝑎𝑎𝑑𝑑𝐷𝐷𝐶𝐶. 
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Figure 8.3: Visual representation of Precision-Recall (i.e., left column) and ROC curves 

(right column) of three network datasets 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹(top row), 𝐺𝐺𝐻𝐻𝑇𝑇 (middle row) and 𝐺𝐺𝐹𝐹𝐹𝐹  (bottom 

row), considering the following features: (i) dynamic features 𝑆𝑆𝑖𝑖𝑠𝑠𝐷𝐷𝑥𝑥𝑛𝑛𝑎𝑎𝑚𝑚𝑖𝑖𝑐𝑐  (ii) topological 

similarity metric, Resource Allocation (RA) as a static link predictor 𝑆𝑆𝑖𝑖𝑠𝑠𝑅𝑅𝑅𝑅, and (iii) Time 

series forecasting based link prediction 𝑆𝑆𝑖𝑖𝑠𝑠𝑆𝑆𝑜𝑜𝑎𝑎𝑑𝑑𝐷𝐷𝐶𝐶. 
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in supervised dynamic link prediction in dynamic networks, only few features performed 

decisive and applicable to datasets irrespective of their structure. The performance variations 

of three classifiers considering different metrics and variable importance factors, associated 

with different dynamic features constructed, is beyond the content and extent of this study. 

However, further studies can elucidate these research issues, which will help to determine the 

optimal temporal window size that is suitable for dynamic link prediction task in different 

contexts.   

8.4.3 Comparison with Static Predictor  

In this section, the performance of the best performing dynamic features was compared with 

a topological similarity metric, which is widely used in static network link prediction. The 

chosen topological similarity metric in this case was the ‘ResourceAllocation1’ (RA) metric 

[308]. This metric works in the similar fashion how the AdamicAdar (AA) index [309] works 

(i.e., 1
log𝑑𝑑(𝑧𝑧)

 vs. 1
𝑑𝑑(𝑧𝑧)

). Both these metrics suppressed the contribution of high degree common 

neighbours. The principal difference between these two metrics lies within the degree (i.e., 

𝑎𝑎(𝑧𝑧) ) of common neighbors. If the common neighbors of an actor-pair have more 

connections, than the differences between AA and RA are significant. To compute the RA 

index for each actor-pair in the classification dataset of individual network dataset, the 

temporal network snapshots  𝐺𝐺𝑇𝑇 = [𝐺𝐺𝑡𝑡1 , 𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏, 𝐺𝐺𝑡𝑡′]  were 

aggregated into one cross-sectional network  𝐺𝐺𝑇𝑇 , a static version of the corresponding 

dynamic network. Next, the RA index was computed for each positively and negatively-

labelled actor-pair, which was then fed into three classifiers mentioned before, as a feature to 

describe the instances in the classification dataset. In Figure (8.2 & 8.3), comparable plots of 

dynamic features and RA topological similarity metric, in supervised link prediction context, 

                                                 
1 ResourceAllocation is described in appendix A 
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by Precision-Recall (P-R) and ROC (Receiver Operating Characteristics) curves in six 

different network datasets are presented. It is noteworthy that in P-R plots, the goal of the 

curves is to appear in the bottom left corner of the graph to be optimal. The closer a curve is 

to the diagonal line, the higher the classifier’s performance in classification. Conversely, in 

ROC plots, the goal of the curves is to be in the top-left region of the plots [310]. The higher 

the curve is away from the diagonal line, the better the predictor’s performance. These figures 

present that apart from the ROC plot in 𝐺𝐺𝐻𝐻𝑇𝑇  and P-R plot in 𝐺𝐺𝐹𝐹𝐹𝐹 , in other 10 plots, the 

dynamic features established in this study, outperformed the static predictor, the Resource 

Allocation topological similarity metric. It is worth mentioning that in representing the 

performance comparison between dynamic and static topological feature by ROC and P-R 

plots, the corresponding winner classifier and the optimal time scale choices in each dataset 

were considered (described in section 2.1 and Table 6.2 of this chapter). These involve 

Random Forest in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇30 , 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶30 , 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀14 , 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹0.5 , and 𝐺𝐺𝐻𝐻𝑇𝑇12   and Logistic Regression in 𝐺𝐺𝐹𝐹𝐹𝐹1 for 

ROC plots. Subsequently, for the P-R curve, a similar classifier was used across all datasets.   

8.4.4 Comparison with Time Series Link Prediction 

In this section, a performance comparison between the dynamic features and a time series 

forecasting-based link prediction strategy is presented in which the topological evolution was 

explored in dynamic networks by using temporal sequences of topology information. This 

strategy was developed by Soares and Prudêncio in which the authors built a time series of a 

chosen topological similarity metric (e.g., AdamicAdar1) for all non-connected actor pairs 

calculated in a temporal series of network snapshots or SINs in different past times 𝐺𝐺𝑇𝑇 =

[𝐺𝐺𝑡𝑡1 , 𝐺𝐺𝑡𝑡1+𝜏𝜏,  𝐺𝐺𝑡𝑡1+2𝜏𝜏 …  𝐺𝐺𝑡𝑡1+𝑛𝑛𝜏𝜏 …𝐺𝐺𝑡𝑡′−𝜏𝜏, 𝐺𝐺𝑡𝑡′]. After the time series construction, a forecasting 

technique (e.g., ARIMA) was used to predict the next value of that metric in the next network 

                                                 
1 Appendix A 
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 𝐺𝐺𝑇𝑇+1, which was used as input to supervised link prediction models [195]. In this section, 

their method was followed by using the same topological similarity metric RA, described 

above, to build the time series of the RA index for all instances of actor-pairs in the 

classification dataset. Then, the ARIMA procedure was followed to predict the future values 

of RA for each instance that was fed into the supervised learning setup as described in the 

previous chapter. The performance comparison was presented by using the same plots in 

Figure 6.2 and 6.3. These Figures demonstrate that in all cases, the dynamic features 

outplayed the time series forecasting-based link prediction in a supervised learning-based 

setting. Similar to the previous section, the best performing classifiers and the optimal time 

scale choice were used in the performance comparison.     

8.5 Dynamic Feature Distribution 

To determine whether similar or dissimilar actors, in regards to these evolving features in 

each network snapshots, participate in emerging links, the distributions of dynamic feature 

values were analysed. For this purpose, the best performing dynamic features were selected 

from Table (8.3). In Figure (8.4), distributions of the top two performing features from Table 

(8.3) in datasets 𝐺𝐺𝐻𝐻𝑇𝑇 , 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶  and 𝐺𝐺𝐹𝐹𝐹𝐹  are presented. In this figure, the top performing 

dynamic features found in these three datasets were 𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏)  and 𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶 (𝑎𝑎, 𝑏𝑏) , which 

denoted dynamic similarity metrics and computed the similarity between actor-pairs through 

using temporal community-aware network structural information. Although they performed 

in a similar fashion, their differences lie in the community detection method employed. The 

former employs hierarchical agglomerative clustering, whereas the latter used a Louvain 

community detection approach (see chapter 5 for details).  
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Figure 8.4: Distribution of three dynamic feature values in three network datasets 𝑮𝑮𝑯𝑯𝑴𝑴, 

𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶, and 𝐺𝐺𝐹𝐹𝐹𝐹 for both positive and negatively-labeled actor-pairs in the corresponding 

classification datasets. The chosen features are the best performing features in the 

respective datasets. These are 𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ (𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 and 𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶 (𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝐻𝐻𝑇𝑇, and 𝐺𝐺𝐹𝐹𝐹𝐹. Both 

these metrics compute similarity between a pair of actors by considering evolutionary 

community-aware structural information. The first uses a hierarchical agglomerative, 

whereas the second uses the Louvain community detection method. 

 

 

Figure 8.5: Binned distribution of three dynamic feature values in three network datasets 

𝐺𝐺𝐻𝐻𝑇𝑇, 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶, and 𝐺𝐺𝐹𝐹𝐹𝐹 for positively-labeled actor-pairs in the corresponding classification 

datasets. The chosen features are the best performing features in the respective datasets. 

These include  𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 and 𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶 (𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝐻𝐻𝑇𝑇, and 𝐺𝐺𝐹𝐹𝐹𝐹. 
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From the classification performances that were demonstrated by different classifiers, 

it was observed that Logistic Regression classifier archived better accuracy in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶  and 

𝐺𝐺𝐹𝐹𝐹𝐹 . In contrast, Random Forest performed better in 𝐺𝐺𝐻𝐻𝑇𝑇 . The feature distribution from 

Figure (8.4) can help us to better understand the performance variations demonstrated by 

these two classifiers. For this purpose, the distributions of normalized feature values were 

plotted along the y-axis for the two features mentioned above, to investigate the spread of 

both positive and negatively labelled samples in the corresponding classification dataset. For 

the two features in the two right most plots (i.e., 𝑠𝑠𝑖𝑖𝑠𝑠8
ℎ(𝑎𝑎, 𝑏𝑏) in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 , and 𝑠𝑠𝑖𝑖𝑠𝑠8

𝐶𝐶 (𝑎𝑎, 𝑏𝑏) in 

𝐺𝐺𝐹𝐹𝐹𝐹), the distributions of positive and negative classes exhibited differences with comparably 

reduced amount of overlapped regions. This facilitated the linear classification algorithm to 

pick patterns from the feature values and classify the samples correctly. In addition, the 

fraction of features values for both positive and negative class in the critical overlap region of 

the left most plot (i.e., 𝑠𝑠𝑖𝑖𝑠𝑠8
𝐶𝐶 (𝑎𝑎, 𝑏𝑏)  in 𝐺𝐺𝐻𝐻𝑇𝑇 ) was most likely the candidates for 

misclassification by the linear classifier in which ensemble classifier performed better. This 

depicted the underlying performance variations demonstrated by different classifiers.  

However, from these plots, the spreads of positively-labelled links that appeared in 

the test phase of the link prediction, were not observed. Therefore, binned distributions of 

these three dynamic features were presented for those links that appeared in the test phase of 

the corresponding datasets in Figure (8.5). From the distributions of positively-labelled links 

in three datasets by considering highest performing dynamic features, it was observed that in 

𝐺𝐺𝐹𝐹𝐹𝐹, the lower the feature value the higher the likelihood of forming links between actor-

pairs. However, in the other two datasets, the feature values of the true positive links spread 

over range of values, large and small. Although a pattern of lower feature values of the high 

performing feature existed for the emerging links in 𝐺𝐺𝐹𝐹𝐹𝐹, however, this phenomenon was not  
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Figure 8.6: The four best performing correlation-based features in four datasets (i.e., 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶, 

𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀 , 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇  and 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹 ). These features measure the similarity between actor pairs by 

computing correlation between actor-level evolutionary information. 𝑆𝑆𝑖𝑖𝑠𝑠4(𝑎𝑎, 𝑏𝑏) denotes the 

correlation between temporal dynamicity values of actor pairs, whereas 𝑆𝑆𝑖𝑖𝑠𝑠5(𝑎𝑎, 𝑏𝑏) denotes 

the correlation between actor-level neighborhood dynamicity values. Considering these two 

features, the number of positive and negatively-correlated actors-pairs regarding their 

structural dynamicity 𝑆𝑆𝑖𝑖𝑠𝑠4(𝑎𝑎, 𝑏𝑏)  and neighborhood dynamicity 𝑆𝑆𝑖𝑖𝑠𝑠5(𝑎𝑎, 𝑏𝑏)  values are 

presented in four datasets in which the actor-pairs were either positively or negatively 

labelled in the corresponding classification datasets. The number of positive and negatively 

labelled links is denoted by the blue and red colour respectively. From the positively labelled 

links is observed that true links emerge among the actors those have positive correlation in 

regards to their evolution. It is observable from the figure that positive correlation between 

actor-level evolutions contributes more in emerging links. 
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applicable for the other two networks. It is noteworthy that only the high performing ones 

were considered to investigate the distribution of feature values. However, in a future study, 

the spread of distribution for the other feature values can be explored, despite their lower 

importance in the corresponding classification task. This justifies the selection of supervised 

link prediction over unsupervised strategy. If the ranking of feature values was performed in 

decreasing order by using unsupervised learning, and only the top-K values of the 

corresponding features were considered as probable links in future, then the result would be 

insignificant results. This was due to the phenomena described in Figure 8.5, in which true 

positive links not only emerged from higher values of top-performing features but also from 

the lower values.  

Considering the top performing features, it was also observed that, correlation based 

features performed exclusively well across datasets. For example, the dynamic similarity 

metric 𝑆𝑆𝑖𝑖𝑠𝑠5(𝑎𝑎, 𝑏𝑏)that computed similarity between actor-pairs by considering the correlation 

between their neighborhood dynamicity values were the most prominent feature in three 

datasets (𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 , 𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀and 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹). Therefore, to investigate what type of correlation existed 

between the dynamicity values of actor-pairs to form emerging links, correlation-based 

feature values were examined in four networks. These included 𝑆𝑆𝑖𝑖𝑠𝑠5(𝑎𝑎, 𝑏𝑏)  in 𝐺𝐺𝐸𝐸𝑚𝑚𝑎𝑎𝑖𝑖𝐶𝐶 , 

𝐺𝐺𝑈𝑈𝐶𝐶𝑀𝑀 and 𝐺𝐺𝑀𝑀𝐼𝐼𝐹𝐹,  and 𝑆𝑆𝑖𝑖𝑠𝑠4(𝑎𝑎, 𝑏𝑏)  in 𝐺𝐺𝑀𝑀𝑀𝑀𝑇𝑇 . 𝑆𝑆𝑖𝑖𝑠𝑠4(𝑎𝑎, 𝑏𝑏)  measured the correlation between 

structural dynamicity values of actor-pairs. In Figure (8.6), the correlation types of both 

positively and negatively labelled actor-pairs (i.e., links) are presented in these four datasets. 

In each plot, the left bar represented the fraction of actor-pairs showing a positive correlation 

between their dynamicity values from both positive and negative classes. In addition, the 

right bar represented a negative correlation between dynamicity values of links in both 

classes. The red-coloured fraction denoted negatively-labelled actor pairs, whereas the blue-

coloured fraction denoted positively-labelled links in each dataset. This figure shows that 
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most emerging links appear from the positive correlation of their corresponding dynamicity 

values incident to actor-pairs.   

8.6 Concluding Remarks 

Considering the problem of dynamic link prediction, this research attempted to develop 

evolutionary features by considering actor-oriented evolutionary information in dynamic 

networks. These features were constructed to act as input in supervised dynamic link 

prediction and subject to measure the similarity/proximity between actor-pairs with regard to 

different types of temporal changes they experience in evolving networks. Therefore, as the 

first step of defining dynamic similarity metrics, known as dynamic features, three different 

actor-level evolutionary aspects were identified: (i) network structural, (ii) neighbourhood, 

and (ii) cliquishness or community participation. Considering this evolutionary information 

associated with an individual actor, three different types of actor-oriented dynamicity 

measures were defined, known as structural, neighbourhood, and community dynamicity. 

Since these dynamicities include different temporal evolutions, experienced by actors, it is 

noteworthy that one of the important aspects of dynamic network analysis was to define the 

optimum time scale to sample the network and generate time series of network snapshots 

(i.e., SIN). For this purpose, the method described by chapter 3 was applied to find the 

optimal or best time scale for each SIN (i.e., link aggregation duration) for six real-life 

undirected social networks of different size and domains. With the optimal temporal window 

size defined for each SIN, ranging from half an hour to a month, time series of SINs were 

generated for each dynamic network datasets to compute the above mentioned three 

dynamicity values. This was followed by development of nine different dynamic features by 

using evolutionary features, denoting similarity between a pair of actors in evolutionary 

perspective, using dynamicity values.  
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To develop the dynamic features in this study, firstly, actor-level dynamicity values 

were leveraged in a dynamic programming-based temporal similarity method (i.e., DTW) and 

the Pearson correlation measures to develop the first six dynamic features. The seventh 

dynamic feature was constructed by measuring abundance of dynamicity using a similarity 

metric widely used in ecology, known as the Bray-Curtis similarity measure. In this measure, 

the normalized abundance of actor-level dynamicity values, incident to actor-pairs, were 

quantified by considering each SIN as a sample site (i.e., sampling zones in ecology) in 

temporal networks. Finally, based on two different existing community detection algorithms 

(i.e., Louvain and hierarchical agglomerative clustering), the eight and the last dynamic 

feature was developed by integrating evolutionary community-aware topologies, the actor’s 

evolutionary community participation in conjunction with both an inter and intra-community 

network structure and associated neighbourhood changes. 

In a supervised link prediction setup, two ensemble-based classifiers and one linear 

classifier were exploited to measure the performance of the aforementioned dynamic features. 

Considering the performance metrics, we observed that these features were only be indulged 

for a dynamic link prediction purpose can but also effectively support modelling of the 

network growth. Moreover, these features are so supportive in supervised dynamic link 

prediction that a simple linear classifier can perform well in classifying both positive and 

negatively-labelled links. The performances of dynamic features were also compared with a 

traditional topological metric (i.e., ‘ResourceAllocation’) widely used in link prediction 

purpose in cross-sectional networks (i.e., static network) and a time series forecasting-based 

dynamic link prediction strategy. In both cases, in this study, it was observed that dynamic 

features, constructed by leveraging the evolutionary aspect of actors, not only performed as 

good as the existing ones but also, surprisingly in most cases, outweighed them regarding 

prediction performance. Furthermore, in six dynamic network datasets, the ranks of dynamic 
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features were identified to determine the best performing feature(s), respectively. It was 

observed that correlation-based dynamic features measuring the level of correlation between 

actor-level dynamicity values performed well across most dynamic networks. These were 

followed by the eight metric, which was developed by exploiting evolutionary community-

aware network structural information. Moreover, the spread and distribution of top-

performing dynamic feature values were examined to investigate whether actor-pairs with 

either greater or smaller feature values showed a high likelihood. Although, no definite 

information could be extracted from the distribution of other dynamic features with regard to 

the range of their value in forging emerging links; however, considering the Pearson 

correlation-based features, it was evident that positively correlated actor-pairs, regarding their 

actor-level dynamicity values, were good indicators of forming future links in dynamic 

networks.  
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9.1 Discussion 

Time-varying systems have a complex underlying network structure in which entities and 

their relations or interactions change temporally. Due to the evolutionary nature of its 

constituents, efficiently performing link inference in a dynamic network is extremely 

challenging. Numerous methodologies have been attempted to address the problem of 

predicting dynamic links by acquiring knowledge from the static version of the problem. In 

several studies, time components were incorporated into prediction strategies because time 

information, which is associated with links in this type of network, is crucial for accurate 

prediction [219]. Temporal link prediction has attracted considerable research interest in 

various domains, including sociology, anthropology, information, and computer science 

[227], while in several domains, especially in biology and medical care research, temporal 

link prediction can support the prediction of future interactions between entities that are hard 

and expensive to understand physically [311-313]. The link prediction problem in complex 

networks has received considerable interest because, in addition to its diverse application 

scenarios, it can be leveraged to understand the underlying rationale behind network growth 

and evolution. Although divergent prediction strategies, metrics and methodologies have 

emerged to solve this problem in static networks, the ineptness of these strategies in 

accommodating the associated dynamicity and evolutionary information results in their 

inadequacy in dynamic link prediction.  

In previous studies, the integration of temporal information has been complied 

considering both time series analyses and evolutionary aspects (for example, temporal link 

decay and the duration of link activeness). However, existing dynamic link prediction 

strategies are not free from hindrances. Their inherent shortcomings are twofold: firstly, there 

is a lack of a standard framework to identify the correct, appropriate or optimal choice of 
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aggregation granularity to perform binning on any stream of time-stamped links to discern 

meaningful information and to understand the rate of dynamics demonstrated by these 

networks; and, secondly, the disregarding of evolutionary information incident to actors, the 

principal constituents of the network, in the prediction task. Therefore, it is imperative that 

temporal components need to be integrated as a parameter to the actor-level evolutionary 

aspects that can support the link prediction problem in dynamic networks.  

Link formations in dynamic networks have an inherent rhythm and often occur over a 

range of time scales. Moreover, temporal streams of links are commonly aggregated into 

dynamic networks for temporal analysis and the resolution, or window size, at which the 

original data is aggregated, has a great impact on the results extracted from this analysis. Any 

discrepancy between the inherent temporal window of the underlying process and the 

window size at which the analysis is performed can either obscure important insights of the 

dynamic data or lead to erroneous conclusions [94]. Furthermore, the level of aggregation of 

the temporal stream of dynamic networks greatly impacts the patterns observed, the inference 

strategies employed in the corresponding network, and its processes [258,314], including the 

identification of noisy, local and critical temporal orders. Furthermore, the identification of 

an appropriate temporal window length strongly impacts structural analyses, the efficacy of 

network mining and the dynamics demonstrated by the network and its actors [258,246,107]. 

Having too coarse or too fine temporal granularity may conceal or fail to unravel critical 

information about network dynamics and thereby impair the understanding of the 

evolutionary structure of underlying interactions. Therefore, for any stream of time-stamped 

links that form a  dynamic network, it is imperative to make the right choice of aggregation 

granularity that is used to bin dynamic data [315].  

Considering the aforementioned concerns, this thesis predominantly undertook two 

major research objectives: determining the optimal sampling duration to discretise dynamic 
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networks and integrating actor-level evolutionary aspects in dynamic link prediction. In 

addressing the former, this study proposed a novel algorithm based on actor-level network 

positional variations over time, including some validation measures to endorse the optimality 

of the window size. To address the later, this research developed dynamic similarity metrics 

that contribute as features in supervised link prediction tasks in dynamic networks by mining 

different actor-level evolutions in optimally sampled dynamic networks. In the section below, 

I summarize my research contribution in this thesis in regard to the research questions 

defined in the first chapter. 

9.2 Research Contribution 

As described in Chapter 2, the amount of information on exploiting the actor-level 

dynamicity values to detect the optimal temporal scale and predict emerging links in dynamic 

networks is limited. Often this task is left to the arbitrary choices of scholars depending on 

the experimental contexts or the requirements of the corresponding studies. In other studies, it 

is left to the data-collection process, which is impractical. Several studies attempted to exploit 

network-level structural properties across temporal network snapshots to identify the 

appropriate window length. Furthermore, in Chapter 2, in which existing dynamic link 

prediction strategies are described, it was evident that little or no attention was paid to the 

sampling or discretization issue of the dynamic networks, with a common tendency to 

randomly select a temporal window size to generate network snapshots. Considering these 

two research issues, a list of research questions were addressed by this thesis. The following 

sections look further at these questions and their answers. 
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9.2.1 Optimal Sampling of Dynamic Network 

9.2.1.1 Research Question  

• How can actor-level measures be used to determine the optimal sampling interval to 

discretise a dynamic network? 

9.2.1.2 Research Contribution 

The foremost motivation behind using actor-level measures is because they are the principal 

constituents of dynamic networks. In dynamic networks, actors may appear or disappear and 

change their link structures continuously over time, thus contributing to the network 

dynamics. This fact may trigger multiple events. First, some actors may demonstrate higher-

level network activities than others while network activities by some actors are under-

represented. Second, an actor may demonstrate a high rate of network activities at the very 

beginning of a particular time window or another actor may create all its new ties at the end 

of the immediate window. Finally, in relation to a given window size, an actor may reveal all 

its network activities in only one window of the sampled dynamic network while another 

might engage in the same activities in comparably in more windows. This would significantly 

affect the involvement of dynamic actors contributing to the evolution of the underlying 

dynamic network. Consequently, the analysis of a given network could produce different 

results for the actor-level social network measures (for example, network centrality) when 

considering different time scale sizes. However, using an appropriate or optimal time scale 

should reduce the differences in network activities demonstrated by the group of dynamic 

actors.  Therefore, choosing an actor-level measure would create symmetry in the distribution 

of actor-level network activities over time. 

To determine the optimal window length, this study proposed a novel algorithm by 

considering the distribution of actor-level positional dynamicity values measured by using 
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popular centrality measures. In Chapter 3, the algorithm was described and the appropriate 

rationales behind using the corresponding measurements were explained. In this algorithm, 

the variances of actor dynamicity values are compared by using different time-scale durations 

to sample a dynamic network. The window length with the minimum variance in actor 

dynamicity distributions defines the appropriate sampling window to analyse the dynamic 

network because the minimum variance will ensure that the suggested window size will be 

neither too large to reveal the high rates of network activities for some actors to exhibit a 

large volume of network activities nor be too small for other actors who reveal slow rates of 

network activities to exhibit a minimum number of network activities. 

In Chapter 7, this research also demonstrated the experimental results of applying the 

algorithm over six real-life dynamic networks in order to identify the optimal and second-best 

optimal temporal window sizes and to discretise them. It is noteworthy that the proposed 

algorithm determines the optimal sampling time scale/window from a list of candidate time 

windows where the candidate time windows are network and context dependent and can be of 

any duration (for example, second, minute, hour, day or month). For example, if streaming 

links are collected or aggregated every second in a dynamic network, then choices of 

candidate windows in multiple of day(s) would be inappropriate. Similarly, if links are 

aggregated in a dynamic network using the temporal unit of single day, then selecting a 

candidate window of seconds or minutes would produce inaccurate results. However, 

selecting a large number of candidate windows would also be unreasonable. For example, if 

links appear at a rate of one per minute in a dynamic network, then considering candidate 

windows as multiples of microseconds, milliseconds or even seconds would result with most 

network snapshots having no links at all. Similarly, in a system where links are triggered 

once per day, considering ample candidate windows in multiples of seconds, minutes or 

hours would be unsuitable.  
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9.2.1.3 Research Question  

• How can the optimality of the sampling resolution be validated? 

9.2.1.4 Research Contribution 

In Chapter 3, this thesis proposed three different evaluation criteria to validate the optimality 

of the candidate window(s). These validation measures are based on best-fit ARIMA model, 

time-series anomalies and an unsupervised clustering model known as k-means clustering. 

Chapter 3 describes these validation methods in detail, including the rationales behind using 

them to validate the optimality. In Chapter 7, these validation measures were applied over the 

optimal window resolution(s) of real-life dynamic networks identified by the proposed 

algorithm that considers the variances of actor-level positional dynamicity values. In all 

network datasets, this study observed that the identified optimal window(s) were valid and 

effective, despite a few exceptions found in case of the second-best optimal windows. In two 

network datasets, it was observed that multiple candidate windows, including the originally 

identified ones by the algorithm, became contenders to be the second-best optimal windows.  

9.2.2 Actor-level Dynamicity 

9.2.2.1 Research Question 

• What kinds of evolutions or dynamicities are demonstrated by actors in dynamic 

networks? 

9.2.2.2 Research Contribution 

In Chapter 4, this study developed three types of actor-level dynamicities demonstrated by 

actors in dynamic networks. These dynamicities were developed based on the evolutionary 

changes experienced by actors in regard to their network structures, neighbourhoods and 

clustering tendency.  
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9.2.2.3 Research Question 

• How can the actor-level dynamicities be quantified? 

9.2.2.4 Research Contribution 

In Chapter 4, this thesis defined the mathematical quantification of different actor-level 

dynamicities. The first one is the structural dynamicity, which was measured by using three 

prominent centrality measures used in social network. These are degree, closeness and 

betweenness centrality. Chapter 4 also provided necessary definitions of three centrality 

measures and why they were used to quantify this dynamicity. The second actor-level 

dynamicity was quantified by considering the actor’s neighbourhood retention and gaining   

rate over time. This was called neighbourhood dynamicity. If an actor has both a high gaining 

rate in conjunction with a high retention rate of neighbours in a dynamic network then the 

corresponding actor has high neighbourhood dynamicity. The final actor-level dynamicity 

was defined by measuring the temporal changes of actors’ clustering tendency or community 

participation. In all cases, the differences between actor-oriented centrality measures, 

neighbourhood counts and clustering coefficients in consecutive network snapshots were 

compared against the same values computed in an aggregated network that consisted of two 

individual snapshots in two consecutive timestamps.    

9.2.3 Dynamic Similarity Metrics 

9.2.3.1 Research Question 

• How can the evolution similarity between actor-pairs be calculated by considering 

different actor-level dynamicities? 

9.2.3.2 Research Contribution 

In Chapter 5, this thesis proposed three different methods to compute the evolution similarity 

between actor-pairs: temporal similarity measures based on the dynamic time warping 
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(DTW) method, cross-correlation and using an ecological similarity measure known as the 

Bray-Curtis similarity measure. This chapter also provided detailed descriptions of the 

functionalities of these methods. The last similarity measure was developed by considering 

an actor’s community participation pattern and community-aware structural evolutions over 

time in dynamic networks. By considering three different actor-level dynamicities in the first 

three similarity measures (DTW, cross-correlation and Bray-Curtis), this thesis proposed 

seven evolutionary similarity measures. In addition to this, by considering two different 

community detection algorithms (Louvain and hierarchical agglomerative clustering) in 

conjunction with the community-aware temporal changes in dynamic networks, this research 

also developed another two evolution similarity measures. The dominant rationales are that 

the community structure effectively manifests the information about actors with similar 

behaviour that can be conducive in predicting their future interaction [316], and that the high 

and low condensation of links among actors can be an effective prediction of emerging links 

[317]. Furthermore, incorporating community and structural information drastically improved 

the accuracy of link prediction [80]. These nine evolution similarity measures were called 

dynamic similarity metrics/dynamic features in this research and were used in supervised link 

prediction.    

9.2.3.3 Research Question 

• What impact do the evolutionary similarities between actor-pairs have in dynamic 

link prediction? 

9.2.3.4 Research Contribution 

In Chapter 8, this thesis applied nine different dynamic similarity metrics/dynamic features, 

theoretically constructed in Chapter 5, in a supervised link prediction setup by considering six 

dynamic networks. Two ensemble-based classifiers and one linear classifier were used to 
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measure the performance of the dynamic features. Considering the performance metrics, it 

was observed that these features are not only supportive for dynamic link prediction purposes 

but also effectively support modelling the network growth. Moreover, considering the 

classification performances demonstrated by both linear and ensemble classifiers, it was 

evident that dynamic features were competitive in supervised link prediction setup where 

even a mere linear classifier can successfully predict emerging links by classifying both 

positively and negatively labelled links. This thesis also observed that community-aware 

dynamic similarity metrics performed better in emerging link prediction in dynamic 

networks.   

9.2.3.5 Research Question 

• What is the impact of an optimal sampling window interval on dynamic link 

prediction? 

9.2.3.6 Research Contribution 

In Chapter 8, it was observed that evolutionary similarity-based features performed better 

where different actor-level evolutions were computed in an optimally sampled dynamic 

network. In all cases, this research observed that optimal sampling to discretise dynamic 

networks is imperative for improved performance in predicting emerging links.  

9.2.3.7 Research Question 

• What kind of actors participate in emerging links of a dynamic network in regard to 

their evolutionary similarity (i.e., similar/closer or dissimilar/distant)? 

9.2.3.8 Research Contribution 

The empirical results from Chapter 8 demonstrate that although actors with both similar and 

dissimilar evolutionary similarity participate in emerging links in dynamic networks, there 
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exists a positive correlation between their dynamicity values. More concretely, positively 

correlated actor-level dynamicities denote a higher likelihood of future link formations. 

9.2.3.9 Research Question  

• What are the performance enhancements of evolutionary similarity-based features 

over traditional neighbourhood-based prediction or time series-based link prediction 

in dynamic networks? 

9.2.3.10 Research Contribution 

The performances of dynamic features were compared with a traditional topological metrics 

(i.e., ResourceAllocation) that are widely used in link prediction purposes in cross-sectional 

(i.e., static) networks and a time series-based dynamic link prediction strategy developed by 

Soares and Prudêncio [195]. In both cases, it was observed that dynamic features, constructed 

by leveraging different evolutionary aspects of actors, not only perform as well as the 

existing dynamic features but also, surprisingly in most cases, outweigh them regarding 

prediction performance. 

9.3 Conclusion 

The literary discussions in Chapter 2 showed that the two most important aspects of dynamic 

link prediction framework have been overlooked by researchers in network science. These 

are the concrete abstraction of the dynamic or temporal networks and understanding the 

different types of evolutions experienced by the actors in these networks. In general, as 

discussed in Chapters 2 and 3, a given dynamic network is understood by a time series of 

smaller network snapshots, known as a short interval network (SIN). Instead of arbitrarily or 

randomly establishing the appropriate duration of this SIN over time for the entire duration of 

a given dynamic network, it is imperative to conjecture a standard framework to derive the 
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optimal temporal length of the SINs in a series. Failure to do so will lead to a huge 

performance differences in different link prediction strategies over the same dynamic 

network. Further, only looking at the construction of dynamic features by considering the 

actor-level network information computed in SIN over time will provide inadequate results 

unless an optimal sampling strategy exists to discretise temporal links. Furthermore, in 

dynamic network analysis, while capturing the rate of actor-level evolutions measured by 

different social network metrics depends on the underlying network structure of these SINs, 

the aggregation window in binning temporal links determines the underlying structure of  

these network snapshots. Thus, due to this inter-dependency, for the purpose of dynamic link 

prediction, the first prerequisite is to establish the optimum temporal duration of SINs in a 

dynamic network. 

Therefore, in this study, the two most important issues in dynamic link prediction 

were  the optimal temporal scale of dynamic networks and developing a supervised dynamic 

link prediction model by using actor-level evolutionary features to understand dynamic 

network growth. For the first issue, the proposed approach used in this thesis was different 

from previous approaches in terms of its simplicity, computational efficiency and 

applicability. It is free from relying on either maintaining the ground truth (i.e., more 

sampling is better) and it is not dependent on parametric distribution. Unlike other methods, 

as described in Chapter 3, it uses metrics related to the network structural evolutions of 

actors, the central constituents of a network, instead of network or graph metrics.  

This study proposed that actor-level evolutionary measures be used to predict future 

links in dynamic networks without actor attributes. The common practice in dynamic link 

prediction is either to leverage the topological structure of networks, applicable to pair of 

actors, or to use a computation intensive probabilistic or parametric approach. In previous 

studies, the integration of temporal components into the prediction process was attempted. 



202 
 

However, in these studies actor-level temporal network evolutionary aspects were either 

completely or partially ignored. Therefore, in this research, I attempted to construct dynamic 

features that compute the similarity/proximity between actor-pairs by considering their 

dynamicity information. Instead of exploiting dyadic information, this study leveraged an 

individual actor’s evolution over time for the feature of construction. Moreover, different, 

unique methods were considered to compute the similarity between dynamic actors which 

have not been explored before.  

The approach used in this study to construct dynamic features can be further extended in 

several ways. For example, instead of using centrality measures or the clustering tendency of 

actors to predict the future dynamicity values of actors, other network structures or topology 

(for example, assortativity) can be exploited, including time series forecasting methods (for 

example, ARIMA). Moreover, other similarity measures (for example, Euclidean, Manhattan) 

can be employed instead of dynamic time warping to measure the similarity between 

temporal information. In case of the final dynamic similarity metric, other community 

detection algorithms (for example, edge betweenness) can be used to enhance prediction 

performance. Finally, like many other applications of link prediction problems, this study 

may be valuable to help define novel dynamic similarity metrics for dynamic link predictions 

in networks that inherently evolve over time, including terrorist networks, online social 

networks (for example, Twitter), scholarly and knowledge networks (for example, keyword 

networks) and collaborative filtering to model consumers’ buying behaviour. 
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AdamicAdar 

AdamicAdar is a topological similarity index that is widely used in link prediction in 

static networks. This index refines the simple counting of common features (e.g., number 

of common neighbours) by weighting intermittent features heavily. The similarity index 

𝑆𝑆𝑅𝑅𝑅𝑅(𝑎𝑎, 𝑏𝑏) between two actors a and b is calculated by adding weights to the nodes which 

are connected to both nodes 𝑎𝑎 and 𝑏𝑏: 

𝑆𝑆𝑅𝑅𝑅𝑅(𝑎𝑎, 𝑏𝑏) = �
1

log𝐾𝐾𝑧𝑧𝑧𝑧∈⎾(𝑎𝑎)∩⎾(𝑎𝑎)

 

Where ⎾(𝑎𝑎) denotes the neighbourhood of actor 𝑎𝑎, 𝑧𝑧 is the common neighbour to both 𝑎𝑎 

and 𝑏𝑏, and 𝐾𝐾 denotes the degree of actor 𝑧𝑧 

ResourceAllocation 

ResourceAllocation is an index used in link prediction models over static networks. The 

index is a topological similarity index that calculates similarity between two actors in a 

network based on the intermittent actors connecting these two actors. The 

ResourceAllocation similarity index 𝑆𝑆𝑅𝑅𝑅𝑅(𝑎𝑎, 𝑏𝑏) between actor 𝑎𝑎 and 𝑏𝑏 is computed as the 

amount of resource actor 𝑎𝑎  receives from actor 𝑏𝑏  through indirect links where each 

intermediate link contributes a unit of resource:  

𝑆𝑆𝑅𝑅𝑅𝑅(𝑎𝑎, 𝑏𝑏) = �
1
𝐾𝐾𝑧𝑧𝑧𝑧∈⎾(𝑎𝑎)∩⎾(𝑎𝑎)

 

Where ⎾(𝑎𝑎) denotes the neighbourhood of actor 𝑎𝑎 and 𝐾𝐾 denotes the degree of actor 𝑧𝑧 
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CommonNeighbours 

It is one of the simplest methods of link prediction that captures the notion that two strangers 

who have a common friend may be introduced by that friend. This method introduces the 

triangle closure mechanism in graph topology and denotes the fact that two actors in a 

network are likely to form a link if they have many common neighbours and/or friends.  

CommonNeighbours similarity index 𝑆𝑆𝐶𝐶𝐼𝐼(𝑎𝑎, 𝑏𝑏) between two actors 𝑎𝑎 and 𝑏𝑏 is determined by: 

𝑆𝑆𝐶𝐶𝐼𝐼(𝑎𝑎, 𝑏𝑏) = |⎾(𝑎𝑎) ∩⎾(𝑏𝑏)| 

Jaccard Coefficient 

This statistic was proposed to compare similarity and diversity of sample sets. It denotes the 

ratio of common neighbours of actors 𝑎𝑎 and 𝑏𝑏 to the all neighbors nodes of 𝑎𝑎 and 𝑏𝑏. Jaccard 

coefficient prevents higher degree actors to have high similarity score with other actors.  The 

Jaccard similarity measure 𝑆𝑆𝐽𝐽𝐶𝐶(𝑎𝑎, 𝑏𝑏) between two actors 𝑎𝑎 and 𝑏𝑏 is denoted by: 

𝑆𝑆𝐽𝐽𝐶𝐶(𝑎𝑎, 𝑏𝑏) =
|⎾(𝑎𝑎) ∩⎾(𝑏𝑏)|
|⎾(𝑎𝑎) ∪⎾(𝑏𝑏)| 

Clustering Coefficient 

In network theory, Clustering Coefficient measures the degree to which actors in a network 

tend to cluster together. In most real-world social network, actors are inclined to create tightly 

knit groups characterised by a relatively high density of ties. Clustering coefficient is 

generally considered as local (i.e., actor-level) measure. The clustering coefficient 𝐶𝐶𝐶𝐶 of an 

actor 𝑎𝑎  is calculated as 

𝐶𝐶𝐶𝐶𝑎𝑎 =
2𝐿𝐿𝑎𝑎

𝐾𝐾𝑎𝑎(𝐾𝐾𝑎𝑎 − 1)
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Where 𝐾𝐾𝑎𝑎  is the degree of actor 𝑎𝑎  and 𝐿𝐿𝑎𝑎  denotes the number of edges between the 𝐾𝐾𝑎𝑎 

neighbours of actor 𝑎𝑎. Alternatively, it is defined in regards to triadic closure which, in social 

network principle, denotes the fact that if two people in a social network have a friend in 

common, then there is an increased likelihood that they will form a relationship in future. It is 

also a measure to quantify how complete the neighbourhood of an actor is. The term 

clustering coefficient can also be defined in regards to triadic closure. The later denotes the 

tendency for people who share connections ia social network to become connected. 

Therefore, considering triangles (i.e., two actors sharing one common friend), the local 

clustering coefficient is defined as the fraction of pairs of actor’s friends are friends with each 

other.  

𝐶𝐶𝐶𝐶𝑎𝑎 =
𝑛𝑛𝑛𝑛𝑠𝑠𝑏𝑏𝑒𝑒𝑑𝑑 𝑐𝑐𝑖𝑖 𝑡𝑡𝑑𝑑𝑖𝑖𝑎𝑎𝑛𝑛𝑔𝑔𝑐𝑐𝑒𝑒𝑠𝑠 𝑐𝑐𝑐𝑐𝑛𝑛𝑛𝑛𝑒𝑒𝑐𝑐𝑡𝑡𝑒𝑒𝑎𝑎 𝑡𝑡𝑐𝑐 𝑎𝑎𝑐𝑐𝑡𝑡𝑐𝑐𝑑𝑑 𝑎𝑎
𝑁𝑁𝑛𝑛𝑠𝑠𝑏𝑏𝑒𝑒𝑑𝑑 𝑐𝑐𝑖𝑖 𝑡𝑡𝑑𝑑𝑖𝑖𝑎𝑎𝑛𝑛𝑔𝑔𝑐𝑐𝑒𝑒𝑠𝑠 𝑐𝑐𝑒𝑒𝑛𝑛𝑡𝑡𝑒𝑒𝑑𝑑𝑒𝑒𝑎𝑎 𝑎𝑎𝑑𝑑𝑐𝑐𝑛𝑛𝑛𝑛𝑎𝑎 𝑎𝑎

 

 

Cliquishness 

In graph theory, a clique is a subset of vertices of an undirected graph such that every two 

distinct vertices in the clique are adjacent. The term cliquishness represents the tendency to 

associate with only select groups. In social network’s perspective, cliquishness signifies a 

group of individuals interacting with one another or share similar interests.  

Short Interval Network 

A longitudinal network consists of a time series of network snapshots observed at different 

points in time to collect network data for analysis. These observed networks are short interval 

networks  



226 
 

Aggregated Network 

Accumulation of a series of short interval networks into a bigger network is known as the 

aggregated network. 

Positional Dynamicity 

The positional dynamicity represents the changes of network positions of actors in different 

short interval networks relative to their positions in the aggregated network. In two 

consecutive short interval networks, an actor can change its neighbourhood connectivity in 

many different ways. This will ultimately change its network position between these two 

network snapshots.  

The network position of individual actors could be quantified using any actor-level social 

network measure (e.g. degree centrality or closeness centrality).  

Assuming that a given longitudinal network has been observed at t1, t2, t3… tm different times 

where tm> tm-1> tm-2>…..> t2> t1 with m short interval networks and one aggregated network 

for this longitudinal network. These m short interval networks have n1, n2, n3 … nm actors or 

nodes whereas the aggregated network consists of N actors. An actor may appear in more 

than one short interval network. The sets of actors present in these m short-interval networks 

are S1, S2, S3… Sm. Thus,  

|S1|=n1; |S2|=n2….|Sm-1|=nm-1; |Sm|=nm 

|S1 U S2 U S3 U….. U Sm-1 U Sm|=N 

The two dimensional matrix M (N X m) represents the presence and absence details of N 

actors in m short interval networks. This matrix contains only binary values, either 0 or 1. For 

example, M (2, 3) = 1 denotes that the second actor is present in the third short interval 
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network. Based on these assumptions, positional dynamicity can be calculated for an actor by 

the following equation: 

( )

1 ( )

| |
* ( , )

| |
*100%

i im
AN SIN t
i i

t AN SIN t
i

NP NP
M i t

NP NP
PoD

m
=

 −
 

+  =
∑

 

Where, iPoD  denotes the positional dynamicity demonstrated by actor ith actor; i
ANNP  

indicates the network position measure which is calculated by any actor-level social network 

measure such as closeness centrality for the ith actor in the aggregated network; ( )
i

SIN tNP  

denotes the network position measure based on the same social network measure (i.e. 

closeness centrality) in the tth short interval network for the ith actor; ( , )M i t  represents the 

participation details of actors in all short interval networks; and m indicates the number of 

short interval networks in the longitudinal social network. The denominator m is used as a 

normalizing factor, allowing the above equation to compare the positional dynamicity of 

different actors in different longitudinal social networks. 

Participation Dynamicity 

This dynamicity component exemplifies the changing network participation of actors in any 

two consecutive short interval networks. In a given longitudinal social network that follows 

the similar assumption as in positional dynamicity, an actor may not be present in all short-

interval networks. For example, an actor may participate in the (t-1)th short interval network 

but become absent in the tth short interval network, or alternatively, it may choose to 

participate in the tth short interval network and remain absent in the subsequent (t+1)th short 

interval network. These types of actor participatory transitions in consecutive short interval 

network also contribute to the dynamicity shown by the longitudinal network. Since an 

actor’s presence in the current underlying short interval network can ensure its contribution 
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towards network dynamicity there exists two possible ways for an actor to show the 

participation dynamicity. Firstly, the actor is present in both the tth and (t-1)th short interval 

network. In this case, the participation dynamicity for that actor in the tth short interval 

network can be calculated with the following equation: 

1
( ) 1 *i t t

SIN t
n nPaD
N N

− = −  
 ……. (5) 

Here, ( )
i
SIN tPaD  represents the participation dynamicity of actor i in the tth short interval 

network. tn
N

 and 1tn
N
−  indicate the probabilities that the actor will be present in the tth and (t-

1)th short interval network, respectively. Hence, 1*t tn n
N N

−  indicates the probability that the 

actor will be present in both the tth and (t-1)th short interval network. This value (i.e. 1*t tn n
N N

−

) represents how likely it is that that actor will be found in both the tth and (t-1)th short interval 

networks. Thus, the complement of this value is the participation dynamicity shown by the 

actor in the tth short interval network. As the maximum value for 1*t tn n
N N

− is 1, the 

complement of 1*t tn n
N N

−  is [ 11 *t tn n
N N

−− ].  

  

. 
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