154 research outputs found

    High Performance Computing for DNA Sequence Alignment and Assembly

    Get PDF
    Recent advances in DNA sequencing technology have dramatically increased the scale and scope of DNA sequencing. These data are used for a wide variety of important biological analyzes, including genome sequencing, comparative genomics, transcriptome analysis, and personalized medicine but are complicated by the volume and complexity of the data involved. Given the massive size of these datasets, computational biology must draw on the advances of high performance computing. Two fundamental computations in computational biology are read alignment and genome assembly. Read alignment maps short DNA sequences to a reference genome to discover conserved and polymorphic regions of the genome. Genome assembly computes the sequence of a genome from many short DNA sequences. Both computations benefit from recent advances in high performance computing to efficiently process the huge datasets involved, including using highly parallel graphics processing units (GPUs) as high performance desktop processors, and using the MapReduce framework coupled with cloud computing to parallelize computation to large compute grids. This dissertation demonstrates how these technologies can be used to accelerate these computations by orders of magnitude, and have the potential to make otherwise infeasible computations practical

    BarraCUDA - a fast short read sequence aligner using graphics processing units

    Get PDF
    Abstract Background With the maturation of next-generation DNA sequencing (NGS) technologies, the throughput of DNA sequencing reads has soared to over 600 gigabases from a single instrument run. General purpose computing on graphics processing units (GPGPU), extracts the computing power from hundreds of parallel stream processors within graphics processing cores and provides a cost-effective and energy efficient alternative to traditional high-performance computing (HPC) clusters. In this article, we describe the implementation of BarraCUDA, a GPGPU sequence alignment software that is based on BWA, to accelerate the alignment of sequencing reads generated by these instruments to a reference DNA sequence. Findings Using the NVIDIA Compute Unified Device Architecture (CUDA) software development environment, we ported the most computational-intensive alignment component of BWA to GPU to take advantage of the massive parallelism. As a result, BarraCUDA offers a magnitude of performance boost in alignment throughput when compared to a CPU core while delivering the same level of alignment fidelity. The software is also capable of supporting multiple CUDA devices in parallel to further accelerate the alignment throughput. Conclusions BarraCUDA is designed to take advantage of the parallelism of GPU to accelerate the alignment of millions of sequencing reads generated by NGS instruments. By doing this, we could, at least in part streamline the current bioinformatics pipeline such that the wider scientific community could benefit from the sequencing technology. BarraCUDA is currently available from http://seqbarracuda.sf.netRIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Scientific Application Acceleration Utilizing Heterogeneous Architectures

    Get PDF
    Within the past decade, there have been substantial leaps in computer architectures to exploit the parallelism that is inherently present in many applications. The scientific community has benefited from the emergence of not only multi-core processors, but also other, less traditional architectures including general purpose graphical processing units (GPGPUs), field programmable gate arrays (FPGAs), and Intel\u27s many integrated cores (MICs) architecture (i.e. Xeon Phi). The popularity of the GPGPU has increased rapidly because of their ability to perform massive amounts of parallel computation quickly and at low cost with an ease of programmability. Also, with the addition of high-level programming interfaces for these devices, technical and non-technical individuals can interface with the device and rapidly obtain improved performance for many algorithms. Many applications can take advantage of the parallelism present in distributed computing and multithreading to achieve higher levels of performance for the computationally intensive parts of the application. The work presented in this thesis implements three applications for use in a performance study of the GPGPU architecture and multi-GPGPU systems. The first application study in this research is a K-Means clustering algorithm that categorizes each data point into the closest cluster. The second algorithm implemented is a spiking neural network algorithm that is used as a computational model for machine learning. The third, and final, study is the longest common subsequences problem, which attempts to enumerate comparisons between sequences (namely, DNA sequences). The results for the aforementioned applications with varying problem sizes and architectural configurations are presented and discussed in this thesis. The K-Means clustering algorithm achieved approximately 97x speedup when utilizing an architecture consisting of 32 CPU/GPGPU pairs. To achieve this substantial speedup, up to 750,000 data points were used with up 30,000 centroids (means). The spiking neural network algorithm resulted in speedups of about 33x for the entire algorithm and 160x for each iteration with a two-level network with 1000 total neurons (800 excitatory and 200 inhibitory neurons). The longest common subsequences problem achieved speedup of greater than 10x with 100 random sequences up to 500 characters in length. The maximum speedup values for each application were achieved by utilizing the GPGPU as well as multi-core devices simultaneously. The computations were scattered over multiple CPU/GPGPU pairs with the computationally intensive pieces of the algorithms offloaded onto the GPGPU device. The research in this thesis illustrates the ability to scale a heterogeneous cluster (i.e. CPUs and GPUs working collaboratively) for large-scale scientific application performance improvements. Each algorithm demonstrates slightly different types of computations and communications, which can be compared to other algorithms to predict how they would perform on an accelerator. The results show that substantial speedups can be achieved for scientific applications when utilizing the GPGPU and multi-core architectures

    Manycore high-performance computing in bioinformatics

    Get PDF
    Mining the increasing amount of genomic data requires having very efficient tools. Increasing the efficiency can be obtained with better algorithms, but one could also take advantage of the hardware itself to reduce the application runtimes. Since a few years, issues with heat dissipation prevent the processors from having higher frequencies. One of the answers to maintain Moore's Law is parallel processing. Grid environments provide tools for effective implementation of coarse grain parallelization. Recently, another kind of hardware has attracted interest: multicore processors. Graphic processing units (GPUs) are a first step towards massively multicore processors. They allow everyone to have some teraflops of cheap computing power in its personal computer. The CUDA library (released in 2007) and the new standard OpenCL (specified in 2008) make programming of such devices very convenient. OpenCL is likely to gain a wide industrial support and to become a standard of choice for parallel programming. In all cases, the best speedups are obtained when combining precise algorithmic studies with a knowledge of the computing architectures. This is especially true with the memory hierarchy: the algorithms have to find a good balance between using large (and slow) global memories and some fast (but small) local memories. In this chapter, we will show how those manycore devices enable more efficient bioinformatics applications. We will first give some insights into architectures and parallelism. Then we will describe recent implementations specifically designed for manycore architectures, including algorithms on sequence alignment and RNA structure prediction. We will conclude with some thoughts about the dissemination of those algorithms and implementations: are they today available on the bookshelf for everyone

    Reducing off-chip memory accesses of wavefront parallel programs in Graphics Processing Units

    Get PDF
    2014 Fall.Includes bibliographical references.The power wall is one of the major barriers that stands on the way to exascale computing. To break the power wall, overall system power/energy must be reduced, without affecting the performance. We can decrease energy consumption by designing power efficient hardware and/or software. In this thesis, we present a software approach to lower energy consumption of programs targeted for Graphics Processing Units (GPUs). The main idea is to reduce energy consumption by minimizing the amount of off-chip (global) memory accesses. Off-chip memory accesses can be minimized by improving the last level (L2) cache hits. A wavefront is a set of data/tiles that can be processed concurrently. A kernel is a function that get executed in GPU. We propose a novel approach to implement wavefront parallel programs on GPUs. Instead of using one kernel call per wavefront like in the traditional implementation, we use one kernel call for the whole program and organize the order of computations in such a way that L2 cache reuse is achieved. A strip of wavefronts (or a pass) is a collection of partial wavefronts. We exploit the non-preemptive behavior of the thread block scheduler to process a strip of wavefronts (i.e., a pass) instead of processing a complete wavefront at a time. The data transfered by a partial wavefront in a pass is small enough to fit in L2 cache, so that, successive partial wavefronts in the pass reuse the data in L2 cache. Hence the number of off-chip memory accesses is significantly pruned. We also introduce a technique to communicate and synchronize between two thread blocks without limiting the number of thread blocks per kernel or SM. This technique is used to maintain the order of wavefronts. We have analytically shown and experimentally validated the amount of reduction in off-chip memory accesses in our approach. The off-chip memory reads and writes are decreased by a factor of 45 and 3 respectively. We have shown that if GPUs incorporate L2 cache with write-back cache write policy, then off-chip memory writes also get reduced by a factor of 45. Our approach provides 98% and 74% L2 cache read hits and total cache hits respectively and the traditional approach reports only 2% and 1% respectively

    String Matching with Multicore CPUs: Performing Better with the Aho-Corasick Algorithm

    Full text link
    Multiple string matching is known as locating all the occurrences of a given number of patterns in an arbitrary string. It is used in bio-computing applications where the algorithms are commonly used for retrieval of information such as sequence analysis and gene/protein identification. Extremely large amount of data in the form of strings has to be processed in such bio-computing applications. Therefore, improving the performance of multiple string matching algorithms is always desirable. Multicore architectures are capable of providing better performance by parallelizing the multiple string matching algorithms. The Aho-Corasick algorithm is the one that is commonly used in exact multiple string matching algorithms. The focus of this paper is the acceleration of Aho-Corasick algorithm through a multicore CPU based software implementation. Through our implementation and evaluation of results, we prove that our method performs better compared to the state of the art

    ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น ํ™˜๊ฒฝ์—์„œ GPU๋ฅผ ์‚ฌ์šฉํ•œ ๋ฒ”์šฉ์  ๊ณ„์‚ฐ ์‘์šฉ์˜ ํšจ์œจ์ ์ธ ์‹œ์Šคํ…œ ์ž์› ํ™œ์šฉ์„ ์œ„ํ•œ GPU ์‹œ์Šคํ…œ ์ตœ์ ํ™”

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2020. 8. ์—ผํ—Œ์˜.Recently, General Purpose GPU (GPGPU) applications are playing key roles in many different research fields, such as high-performance computing (HPC) and deep learning (DL). The common feature exists in these applications is that all of them require massive computation power, which follows the high parallelism characteristics of the graphics processing unit (GPU). However, because of the resource usage pattern of each GPGPU application varies, a single application cannot fully exploit the GPU systems resources to achieve the best performance of the GPU since the GPU system is designed to provide system-level fairness to all applications instead of optimizing for a specific type. GPU multitasking can address the issue by co-locating multiple kernels with diverse resource usage patterns to share the GPU resource in parallel. However, the current GPU mul- titasking scheme focuses just on co-launching the kernels rather than making them execute more efficiently. Besides, the current GPU multitasking scheme is not open-sourced, which makes it more difficult to be optimized, since the GPGPU applications and the GPU system are unaware of the feature of each other. In this dissertation, we claim that using the support from framework between the GPU system and the GPGPU applications without modifying the application can yield better performance. We design and implement the frame- work while addressing two issues in GPGPU applications. First, we introduce a GPU memory checkpointing approach between the host memory and the device memory to address the problem that GPU memory cannot be over-subscripted in a multitasking environment. Second, we present a fine-grained GPU kernel management scheme to avoid the GPU resource under-utilization problem in a i multitasking environment. We implement and evaluate our schemes on a real GPU system. The experimental results show that our proposed approaches can solve the problems related to GPGPU applications than the existing approaches while delivering better performance.์ตœ๊ทผ ๋ฒ”์šฉ GPU (GPGPU) ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์€ ๊ณ ์„ฑ๋Šฅ ์ปดํ“จํŒ… (HPC) ๋ฐ ๋”ฅ ๋Ÿฌ๋‹ (DL)๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ์—ฐ๊ตฌ ๋ถ„์•ผ์—์„œ ํ•ต์‹ฌ์ ์ธ ์—ญํ• ์„ ์ˆ˜ํ–‰ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ์‘ ์šฉ ๋ถ„์•ผ์˜ ๊ณตํ†ต์ ์ธ ํŠน์„ฑ์€ ๊ฑฐ๋Œ€ํ•œ ๊ณ„์‚ฐ ์„ฑ๋Šฅ์ด ํ•„์š”ํ•œ ๊ฒƒ์ด๋ฉฐ ๊ทธ๋ž˜ํ”ฝ ์ฒ˜๋ฆฌ ์žฅ์น˜ (GPU)์˜ ๋†’์€ ๋ณ‘๋ ฌ ์ฒ˜๋ฆฌ ํŠน์„ฑ๊ณผ ๋งค์šฐ ์ ํ•ฉํ•˜๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ GPU ์‹œ์Šคํ…œ์€ ํŠน์ • ์œ  ํ˜•์˜ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์— ์ตœ์ €ํ™”ํ•˜๋Š” ๋Œ€์‹  ๋ชจ๋“  ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์— ์‹œ์Šคํ…œ ์ˆ˜์ค€์˜ ๊ณต์ • ์„ฑ์„ ์ œ๊ณตํ•˜๋„๋ก ์„ค๊ณ„๋˜์–ด ์žˆ์œผ๋ฉฐ ๊ฐ GPGPU ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ์ž์› ์‚ฌ์šฉ ํŒจํ„ด์ด ๋‹ค์–‘ํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๋‹จ์ผ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์ด GPU ์‹œ์Šคํ…œ์˜ ๋ฆฌ์†Œ์Šค๋ฅผ ์™„์ „ํžˆ ํ™œ์šฉํ•˜์—ฌ GPU์˜ ์ตœ๊ณ  ์„ฑ๋Šฅ์„ ๋‹ฌ์„ฑ ํ•  ์ˆ˜๋Š” ์—†๋‹ค. ๋”ฐ๋ผ์„œ GPU ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น์€ ๋‹ค์–‘ํ•œ ๋ฆฌ์†Œ์Šค ์‚ฌ์šฉ ํŒจํ„ด์„ ๊ฐ€์ง„ ์—ฌ๋Ÿฌ ์‘์šฉ ํ”„๋กœ๊ทธ ๋žจ์„ ํ•จ๊ป˜ ๋ฐฐ์น˜ํ•˜์—ฌ GPU ๋ฆฌ์†Œ์Šค๋ฅผ ๊ณต์œ ํ•จ์œผ๋กœ์จ GPU ์ž์› ์‚ฌ์šฉ๋ฅ  ์ €ํ•˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๊ธฐ์กด GPU ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น ๊ธฐ์ˆ ์€ ์ž์› ์‚ฌ์šฉ๋ฅ  ๊ด€์ ์—์„œ ์‘ ์šฉ ํ”„๋กœ๊ทธ๋žจ์˜ ํšจ์œจ์ ์ธ ์‹คํ–‰๋ณด๋‹ค ๊ณต๋™์œผ๋กœ ์‹คํ–‰ํ•˜๋Š” ๋ฐ ์ค‘์ ์„ ๋‘”๋‹ค. ๋˜ํ•œ ํ˜„์žฌ GPU ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น ๊ธฐ์ˆ ์€ ์˜คํ”ˆ ์†Œ์Šค๊ฐ€ ์•„๋‹ˆ๋ฏ€๋กœ ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ๊ณผ GPU ์‹œ์Šคํ…œ์ด ์„œ๋กœ์˜ ๊ธฐ๋Šฅ์„ ์ธ์‹ํ•˜์ง€ ๋ชปํ•˜๊ธฐ ๋•Œ๋ฌธ์— ์ตœ์ ํ™”ํ•˜๊ธฐ๊ฐ€ ๋” ์–ด๋ ค์šธ ์ˆ˜๋„ ์žˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ์„ ์ˆ˜์ • ์—†์ด GPU ์‹œ์Šคํ…œ๊ณผ GPGPU ์‘์šฉ ์‚ฌ ์ด์˜ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ํ†ตํ•ด ์‚ฌ์šฉํ•˜๋ฉด ๋ณด๋‹ค ๋†’์€ ์‘์šฉ์„ฑ๋Šฅ๊ณผ ์ž์› ์‚ฌ์šฉ์„ ๋ณด์ผ ์ˆ˜ ์žˆ์Œ์„ ์ฆ๋ช…ํ•˜๊ณ ์ž ํ•œ๋‹ค. ๊ทธ๋Ÿฌ๊ธฐ ์œ„ํ•ด GPU ํƒœ์Šคํฌ ๊ด€๋ฆฌ ํ”„๋ ˆ์ž„์›Œํฌ๋ฅผ ๊ฐœ๋ฐœํ•˜์—ฌ GPU ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น ํ™˜๊ฒฝ์—์„œ ๋ฐœ์ƒํ•˜๋Š” ๋‘ ๊ฐ€์ง€ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜์˜€๋‹ค. ์ฒซ์งธ, ๋ฉ€ํ‹ฐ ํƒœ ์Šคํ‚น ํ™˜๊ฒฝ์—์„œ GPU ๋ฉ”๋ชจ๋ฆฌ ์ดˆ๊ณผ ํ• ๋‹นํ•  ์ˆ˜ ์—†๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ํ˜ธ์ŠคํŠธ ๋ฉ”๋ชจ๋ฆฌ์™€ ๋””๋ฐ”์ด์Šค ๋ฉ”๋ชจ๋ฆฌ์— ์ฒดํฌํฌ์ธํŠธ ๋ฐฉ์‹์„ ๋„์ž…ํ•˜์˜€๋‹ค. ๋‘˜์งธ, ๋ฉ€ํ‹ฐ ํƒœ์Šคํ‚น ํ™˜ ๊ฒฝ์—์„œ GPU ์ž์› ์‚ฌ์šฉ์œจ ์ €ํ•˜ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋”์šฑ ์„ธ๋ถ„ํ™” ๋œ GPU ์ปค๋„ ๊ด€๋ฆฌ ์‹œ์Šคํ…œ์„ ์ œ์‹œํ•˜์˜€๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ œ์•ˆํ•œ ๋ฐฉ๋ฒ•๋“ค์˜ ํšจ๊ณผ๋ฅผ ์ฆ๋ช…ํ•˜๊ธฐ ์œ„ํ•ด ์‹ค์ œ GPU ์‹œ์Šคํ…œ์— 92 ๊ตฌํ˜„ํ•˜๊ณ  ๊ทธ ์„ฑ๋Šฅ์„ ํ‰๊ฐ€ํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์ ‘๊ทผ๋ฐฉ์‹์ด ๊ธฐ์กด ์ ‘๊ทผ ๋ฐฉ์‹๋ณด๋‹ค GPGPU ์‘์šฉ ํ”„๋กœ๊ทธ๋žจ๊ณผ ๊ด€๋ จ๋œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๋” ๋†’์€ ์„ฑ๋Šฅ์„ ์ œ๊ณตํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค.Chapter 1 Introduction 1 1.1 Motivation 2 1.2 Contribution . 7 1.3 Outline 8 Chapter 2 Background 10 2.1 GraphicsProcessingUnit(GPU) and CUDA 10 2.2 CheckpointandRestart . 11 2.3 ResourceSharingModel. 11 2.4 CUDAContext 12 2.5 GPUThreadBlockScheduling . 13 2.6 Multi-ProcessServicewithHyper-Q 13 Chapter 3 Checkpoint based solution for GPU memory over- subscription problem 16 3.1 Motivation 16 3.2 RelatedWork. 18 3.3 DesignandImplementation . 20 3.3.1 System Design 21 3.3.2 CUDAAPIwrappingmodule 22 3.3.3 Scheduler . 28 3.4 Evaluation. 31 3.4.1 Evaluationsetup . 31 3.4.2 OverheadofFlexGPU 32 3.4.3 Performance with GPU Benchmark Suits 34 3.4.4 Performance with Real-world Workloads 36 3.4.5 Performance of workloads composed of multiple applications 39 3.5 Summary 42 Chapter 4 A Workload-aware Fine-grained Resource Manage- ment Framework for GPGPUs 43 4.1 Motivation 43 4.2 RelatedWork. 45 4.2.1 GPUresourcesharing 45 4.2.2 GPUscheduling . 46 4.3 DesignandImplementation . 47 4.3.1 SystemArchitecture . 47 4.3.2 CUDAAPIWrappingModule . 49 4.3.3 smCompactorRuntime . 50 4.3.4 ImplementationDetails . 57 4.4 Analysis on the relation between performance and workload usage pattern 60 4.4.1 WorkloadDefinition . 60 4.4.2 Analysisonperformancesaturation 60 4.4.3 Predict the necessary SMs and thread blocks for best performance . 64 4.5 Evaluation. 69 4.5.1 EvaluationMethodology. 70 4.5.2 OverheadofsmCompactor . 71 4.5.3 Performance with Different Thread Block Counts on Dif- ferentNumberofSMs 72 4.5.4 Performance with Concurrent Kernel and Resource Sharing 74 4.6 Summary . 79 Chapter 5 Conclusion. 81 ์š”์•ฝ. 92Docto
    • โ€ฆ
    corecore