9 research outputs found

    Data Retrieval and Sorting for Multidimensional Data Using Machine Learning in Big Data

    Get PDF
    How to retrieve accurately and quickely locate information from massive network data from the big data is focuse on data retrieve sorting optimization model.Based on traditional data retrieval sorting technology this work proposes multidimensional data retrieval and sorting considering the characteristic of data,users and application. This work use the financial microblog data retrieval base on real query intensions and financial tendency of the system. Finally this work shows the test results for multidimensional data retrieval and sorting using machine learning. In this thesis, proposed methodology has been presented. The proposed system is implemente using machine learning based on the multidimensional data characteristic. This proposed system is implemented in java . It shows soritng and retrieval result of the system based on the characteristic of multidimensional data

    Evolutionary improvement of programs

    Get PDF
    Most applications of genetic programming (GP) involve the creation of an entirely new function, program or expression to solve a specific problem. In this paper, we propose a new approach that applies GP to improve existing software by optimizing its non-functional properties such as execution time, memory usage, or power consumption. In general, satisfying non-functional requirements is a difficult task and often achieved in part by optimizing compilers. However, modern compilers are in general not always able to produce semantically equivalent alternatives that optimize non-functional properties, even if such alternatives are known to exist: this is usually due to the limited local nature of such optimizations. In this paper, we discuss how best to combine and extend the existing evolutionary methods of GP, multiobjective optimization, and coevolution in order to improve existing software. Given as input the implementation of a function, we attempt to evolve a semantically equivalent version, in this case optimized to reduce execution time subject to a given probability distribution of inputs. We demonstrate that our framework is able to produce non-obvious optimizations that compilers are not yet able to generate on eight example functions. We employ a coevolved population of test cases to encourage the preservation of the function's semantics. We exploit the original program both through seeding of the population in order to focus the search, and as an oracle for testing purposes. As well as discussing the issues that arise when attempting to improve software, we employ rigorous experimental method to provide interesting and practical insights to suggest how to address these issues

    Machine Learning in Compiler Optimization

    Get PDF
    In the last decade, machine learning based compilation has moved from an an obscure research niche to a mainstream activity. In this article, we describe the relationship between machine learning and compiler optimisation and introduce the main concepts of features, models, training and deployment. We then provide a comprehensive survey and provide a road map for the wide variety of different research areas. We conclude with a discussion on open issues in the area and potential research directions. This paper provides both an accessible introduction to the fast moving area of machine learning based compilation and a detailed bibliography of its main achievements

    Doctor of Philosophy

    Get PDF
    dissertationEmerging trends such as growing architectural diversity and increased emphasis on energy and power efficiency motivate the need for code that adapts to its execution context (input dataset and target architecture). Unfortunately, writing such code remains difficult, and is typically attempted only by a small group of motivated expert programmers who are highly knowledgeable about the relationship between software and its hardware mapping. In this dissertation, we introduce novel abstractions and techniques based on automatic performance tuning that enable both experts and nonexperts (application developers) to produce adaptive code. We present two new frameworks for adaptive programming: Nitro and Surge. Nitro enables expert programmers to specify code variants, or alternative implementations of the same computation, together with meta-information for selecting among them. It then utilizes supervised classification to select an optimal code variant at runtime based on characteristics of the execution context. Surge, on the other hand, provides a high-level nested data-parallel programming interface for application developers to specify computations. It then employs a two-level mechanism to automatically generate code variants and then tunes them using Nitro. The resulting code performs on par with or better than handcrafted reference implementations on both CPUs and GPUs. In addition to abstractions for expressing code variants, this dissertation also presents novel strategies for adaptively tuning them. First, we introduce a technique for dynamically selecting an optimal code variant at runtime based on characteristics of the input dataset. On five high-performance GPU applications, variants tuned using this strategy achieve over 93% of the performance of variants selected through exhaustive search. Next, we present a novel approach based on multitask learning to develop a code variant selection model on a target architecture from training on different source architectures. We evaluate this approach on a set of six benchmark applications and a collection of six NVIDIA GPUs from three distinct architecture generations. Finally, we implement support for combined code variant and frequency selection based on multiple objectives, including power and energy efficiency. Using this strategy, we construct a GPU sorting implementation that provides improved energy and power efficiency with less than a proportional drop in sorting throughput

    Doctor of Philosophy

    Get PDF
    dissertationThis dissertation explores three key facets of software algorithms for custom hardware ray tracing: primitive intersection, shading, and acceleration structure construction. For the first, primitive intersection, we show how nearly all of the existing direct three-dimensional (3D) ray-triangle intersection tests are mathematically equivalent. Based on this, a genetic algorithm can automatically tune a ray-triangle intersection test for maximum speed on a particular architecture. We also analyze the components of the intersection test to determine how much floating point precision is required and design a numerically robust intersection algorithm. Next, for shading, we deconstruct Perlin noise into its basic parts and show how these can be modified to produce a gradient noise algorithm that improves the visual appearance. This improved algorithm serves as the basis for a hardware noise unit. Lastly, we show how an existing bounding volume hierarchy can be postprocessed using tree rotations to further reduce the expected cost to traverse a ray through it. This postprocessing also serves as the basis for an efficient update algorithm for animated geometry. Together, these contributions should improve the efficiency of both software- and hardware-based ray tracers

    Evolutionary algorithms for compiler-enabled program autotuning

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2011.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student submitted PDF version of thesis.Includes bibliographical references (p. 116-122).PetaBricks [4, 21, 7, 3, 5] is an implicitly parallel programming language which, through the process of autotuning, can automatically optimize programs for fast QoS-aware execution on any hardware. In this thesis we develop and evaluate two PetaBricks autotuners: INCREA and SiblingRivalry. INCREA, based on a novel bottom-up evolutionary algorithm, optimizes programs offline at compile time. SiblingRivalry improves on INCREA by optimizing online during a program's execution, dynamically adapting to changes in hardware and the operating system. Continuous adaptation is achieved through racing, where half of available resources are devoted to always-on learning. We evaluate INCREA and SiblingRivalry on a large number of real-world benchmarks, and show that our autotuners can significantly speed up PetaBricks programs with respect to many non-tuned and mis-tuned baselines. Our results indicate the need for a continuous learning loop that can optimize efficiently by exploiting online knowledge of a program's performance. The results leave open the question of how to solve the online optimization problem on all cores, i.e. without racing.by Maciej Pacula.M.Eng

    Automatic software generation and improvement through search based techniques

    Get PDF
    Writing software is a difficult and expensive task. Its automation is hence very valuable. Search algorithms have been successfully used to tackle many software engineering problems. Unfortunately, for some problems the traditional techniques have been of only limited scope, and search algorithms have not been used yet. We hence propose a novel framework that is based on a co-evolution of programs and test cases to tackle these difficult problems. This framework can be used to tackle software engineering tasks such as Automatic Refinement, Fault Correction and Improving Non-functional Criteria. These tasks are very difficult, and their automation in literature has been limited. To get a better understanding of how search algorithms work, there is the need of a theoretical foundation. That would help to get better insight of search based software engineering. We provide first theoretical analyses for search based software testing, which is one of the main components of our co-evolutionary framework. This thesis gives the important contribution of presenting a novel framework, and we then study its application to three difficult software engineering problems. In this thesis we also give the important contribution of defining a first theoretical foundation.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optimizing Sorting with Genetic Algorithms

    No full text
    corecore