
Evolutionary Algorithms for Compiler-Enabled

Program Autotuning

by

Maciej Pacula

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2011

c© Massachusetts Institute of Technology 2011. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 19, 2011

Certified by. .
Una-May O’Reilly

Principal Research Scientist
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Masters of Engineering Thesis Committee

2

Evolutionary Algorithms for Compiler-Enabled Program

Autotuning

by

Maciej Pacula

Submitted to the Department of Electrical Engineering and Computer Science
on May 19, 2011, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

PetaBricks [4, 21, 7, 3, 5] is an implicitly parallel programming language which,
through the process of autotuning, can automatically optimize programs for fast
QoS-aware execution on any hardware. In this thesis we develop and evaluate two
PetaBricks autotuners: INCREA and SiblingRivalry. INCREA, based on a novel
bottom-up evolutionary algorithm, optimizes programs offline at compile time. Sib-
lingRivalry improves on INCREA by optimizing online during a program’s execution,
dynamically adapting to changes in hardware and the operating system. Continuous
adaptation is achieved through racing, where half of available resources are devoted
to always-on learning. We evaluate INCREA and SiblingRivalry on a large number
of real-world benchmarks, and show that our autotuners can significantly speed up
PetaBricks programs with respect to many non-tuned and mis-tuned baselines. Our
results indicate the need for a continuous learning loop that can optimize efficiently
by exploiting online knowledge of a program’s performance. The results leave open
the question of how to solve the online optimization problem on all cores, i.e. without
racing.

Thesis Supervisor: Una-May O’Reilly
Title: Principal Research Scientist

3

4

Acknowledgments

The work presented in this thesis would not have been possible without the help

of many people. I am especially grateful to my advisor, Una-May O’Reilly, who

introduced me to the PetaBricks project before I even knew what autotuning was,

and whose endless enthusiasm and extensive knowledge of Evolutionary Computation

inspired and guided me through my Senior and M.Eng. years at MIT. Many of the

ideas presented in this thesis were a result of our fruitful and engaging discussions.

I would also like to thank Jason Ansel, the original author of PetaBricks, for his

insightful ideas and substantial contributions to many of the sections in this thesis. I

am also grateful to Saman Amarasinghe for his advice and impressive knowledge of

compilers and computer architecture, Marek Olszewski for his help writing some of

the SiblingRivalry sections and running power consumption experiments, and many

other members of the Commit group for their helpful suggestions and work on the

PetaBricks language. In addition, portions of this thesis were originally described

and reported in papers with multiple co-authors, namely [5] and [6].

Finally, I would like to thank my girlfriend Liz, as well as friends and family for

their love, patience and support. This work would not have been possible without

you.

The work presented in this thesis is supported by DOE Award DE-SC0005288.

5

6

Contents

1 Introduction 19

1.1 Contributions . 21

1.2 Thesis Outline . 22

2 Background 23

2.1 Autotuning . 23

2.2 Evolutionary Algorithms . 25

2.2.1 Problem-Specific Components 28

2.2.2 Representation-Dependent Components 30

2.2.3 General Components . 31

2.2.4 Genetic Algorithms . 33

2.2.5 Multi-objective Algorithms . 35

2.3 The PetaBricks Language . 35

2.3.1 Example PetaBricks Program: kmeans 36

2.3.2 Variable Accuracy Algorithms 37

2.4 PetaBricks Autotuning . 41

2.4.1 Properties of the Autotuning Problem 43

2.5 Benchmarks . 44

2.5.1 Fixed Accuracy . 44

2.5.2 Variable Accuracy . 45

3 Offline Autotuning 47

3.1 General-Purpose EA (GPEA) . 48

7

3.1.1 Representation . 48

3.1.2 Initialization . 49

3.1.3 Fitness Evaluation . 49

3.1.4 Variation Operators . 50

3.1.5 Parent and Survivor Selection 51

3.1.6 Termination Condition . 51

3.2 Bottom-Up EA (INCREA) . 51

3.3 Representation . 51

3.3.1 Top level Strategy . 52

3.3.2 Mutation Operators . 53

3.3.3 Dealing with Noisy Fitness . 55

3.4 Experimental Results . 57

3.4.1 Experimental Setup . 57

3.4.2 INCREA vs GPEA . 57

3.4.3 Representative Runs . 60

3.5 Conclusions . 65

4 Online Autotuning 67

4.1 Competition Execution Model . 69

4.1.1 Other Splitting Strategies . 70

4.1.2 Time Multiplexing Races . 70

4.2 SiblingRivalry . 72

4.2.1 High Level Function . 72

4.2.2 Selecting the Safe and Seed Configuration 75

4.2.3 Mutation Operators . 76

4.2.4 Adaptive Mutator Selection (AMS) 77

4.2.5 Credit Assignment . 78

4.2.6 Bandit Mutator Selection . 78

4.2.7 Population Pruning . 79

4.3 Related Work . 80

8

4.4 Experimental Results . 82

4.4.1 Experimental Setup . 82

4.4.2 Sources of Speedups . 82

4.4.3 Load on a System . 83

4.4.4 Migrating Between Microarchitectures 87

4.4.5 Cold Start . 91

4.4.6 Power Consumption . 93

4.4.7 Conclusions . 93

5 Hyperparameter Tuning 95

5.1 Tuning the Tuner . 95

5.2 Hyperparameter Quality . 97

5.2.1 Static System . 98

5.2.2 Dynamic System . 98

5.3 Experimental Results . 99

5.3.1 Sort . 101

5.3.2 Bin Packing . 101

5.3.3 Poisson . 102

5.3.4 Image Compression . 104

5.4 The Big Picture . 104

5.4.1 Globally Optimal Hyperparameters 105

5.5 Conclusions . 105

6 Conclusions and Future Work 115

A Detailed Statistics 123

A.1 Hyperparameters Runs: Normality Testing 123

A.1.1 Xeon8 . 123

A.1.2 AMD48 . 133

A.2 Hyperparameter Runs: Significance Testing 143

A.2.1 Xeon8 . 144

9

A.2.2 AMD48 . 153

10

List of Figures

1-1 The STL std::sort routine. Insertion sort is used for inputs smaller

than 15 elements, and merge sort is used for larger inputs. The 15-

element cutoff is hard-coded into the library. From G++ 4.4 headers

included with Ubuntu 10.10. 20

2-1 A functional diagram of an Evolutionary Algorithm. The algorithm

evaluates candidate solutions using a problem-specific fitness function

f , and produces new solutions using selection and variation operators,

which differ by algorithm (adapted from http://groups.csail.mit.

edu/EVO-DesignOpt/uploads/Site/evoopt.png). 27

2-2 An example run of the kmeans algorithm on a set of 2-D points (Points),

with the number of clusters fixed at 3. The crosshairs mark cluster cen-

ters (Centroids) and different point colors (Assignments) correspond

to different clusters. 38

2-3 PetaBricks pseudocode for kmeans . 39

2-4 Dependency graph for kmeans example. The rules are the vertices

while each edge represents the dependencies of each rule. Each edge

color corresponds to each named data dependence in the pseudocode. 40

2-5 A selector for a sample sorting algorithm where Cs = [150, 106] and

As = [1, 2, 0]. The selector selects the InsertionSort algorithm for

input sizes in the range [0; 150), QuickSort for input sizes in the range

[150, 106) and RadixSort for [106,MAXINT). BitonicSort was sub-

optimal for all input ranges and is not used. 42

11

http://groups.csail.mit.edu/EVO-DesignOpt/uploads/Site/evoopt.png
http://groups.csail.mit.edu/EVO-DesignOpt/uploads/Site/evoopt.png

3-1 A sample genome for m = 2, k = 2 and n = 4. Each gene stores either

a cutoff cs,i, an algorithm αs,i or a tunable value ti. 52

3-2 Top level strategy of INCREA. 54

3-3 Pseudocode of function “fitter”. 56

3-4 Execution time for target input size with best individual of generation.

Mean and standard deviation (shown in error bars) with 30 runs. . . 59

3-5 Time out and population growth statistics of INCREA for 30 runs of

Sort on target input size 220. Error bars are mean plus and minus one

standard deviation. 60

3-6 Representative runs of INCREA and GPEA on each benchmark. The

left graphs plot the execution time (on the target input size) of the best

solution after each generation. The right graph plots the number of

fitness evaluations conducted at the end of each generation. All graphs

use seconds of training time as the x-axis. 61

4-1 High level flow of the runtime system. The data on dotted lines may not

be transmitted for the slower configuration, which can be terminated

before completion. 69

4-2 Pseudocode of how requests are processed by the online learning system 74

4-3 The credit assigned to mutator µ is the area under the curve. Sec-

tion 4.2.5 provides details. Reproduced from [29]. 79

4-4 Speedups (or slowdowns) of each benchmark as the load on a system

changes. Note that the 50% load and 100% load speedups for Cluster-

ing in (b), which were cut off due to the scale, are 4.0x and 3.9x. . . . 84

4-5 Representative graphs for varying system load showing throughput

over time. Benchmark is LU Factorization on AMD48. 85

12

4-6 The scenario with frequent migration modeled by our architecture mi-

gration experiments. We compare a fixed configuration (found with

offline training on a different machine) to SiblingRivalry, to show how

adapting to each architecture can improve throughput. We measure

throughput only between the first and second migration, and include

the cost of all learning in the throughput measurements. 87

4-7 Speedups (or slowdowns) of each benchmark after a migration between

microarchitectures. “Normalized throughput” is the throughput over

the first 10 minutes of execution of SiblingRivalry (including time to

learn), divided by the throughput of the first 10 minutes of an offline

tuned configuration using the entire system. 88

4-8 Representative graphs of throughput over time for fixed accuracy bench-

marks after a migration between microarchitectures. 89

4-9 Representative graphs of throughput over time for variable-accuracy

benchmarks after a migration between microarchitectures. “Target”

is the accuracy target both the offline and online tuners are set to

optimize for. 90

4-10 The effect of using an offline tuned configuration as a starting point

for SiblingRivalry on the Sort benchmark. We compare starting from a

random configuration (“w/o offline”) to configurations found through

offline training on the same and a different architecture. 91

4-11 Average energy use per request for each benchmark after migrate Xeon8

to AMD48. 92

5-1 Best performing hyperparameters and associated score function values

under the Static System and Dynamic System autotuning scenarios on

Xeon8 and AMD48 architectures. 100

13

5-2 Metrics for benchmark Sort on the Xeon8 system evaluated with differ-

ent values of hyperparameters. An asterisk ∗ next to a number means

that the difference from optimum is not statistically significant (p-value

≥ 0.05). 107

5-3 Metrics for benchmark Sort on the AMD48 system evaluated with differ-

ent values of hyperparameters. An asterisk ∗ next to a number means

that the difference from optimum is not statistically significant (p-value

≥ 0.05). 108

5-4 Metrics for benchmark Bin Packing on the Xeon8 system evaluated with

different values of hyperparameters. An asterisk ∗ next to a number

means that the difference from optimum is not statistically significant

(p-value ≥ 0.05). 109

5-5 Metrics for benchmark Bin Packing on the AMD48 system evaluated with

different values of hyperparameters. An asterisk ∗ next to a number

means that the difference from optimum is not statistically significant

(p-value ≥ 0.05). 110

5-6 Metrics for benchmark Poisson on the Xeon8 system evaluated with

different values of hyperparameters. An asterisk ∗ next to a number

means that the difference from optimum is not statistically significant

(p-value ≥ 0.05). 111

5-7 Metrics for benchmark Poisson on the AMD48 system evaluated with

different values of hyperparameters. An asterisk ∗ next to a number

means that the difference from optimum is not statistically significant

(p-value ≥ 0.05). 112

5-8 Metrics for benchmark Image Compression on the Xeon8 system evalu-

ated with different values of hyperparameters. An asterisk ∗ next to

a number means that the difference from optimum is not statistically

significant (p-value ≥ 0.05). 113

14

5-9 Metrics for benchmark Image Compression on the AMD48 system evalu-

ated with different values of hyperparameters. An asterisk ∗ next to

a number means that the difference from optimum is not statistically

significant (p-value ≥ 0.05). 114

15

16

List of Tables

2.1 INCREA and SiblingRivalry compared to state-of-the-art autotuners

from literature. 25

2.2 Listing of benchmarks and their properties. 44

3.1 INCREA and GPEA Parameter Settings. 57

3.2 Comparison of INCREA and GPEA in terms of mean time to conver-

gence in seconds and in terms of execution time of the final configu-

ration. Standard deviation is shown after the ± symbol. The final

column is statistical significance determined by a t-test (lower is better). 58

3.3 Listing of the best genome of each generation for each autotuner for an

example training run. The genomes are encoded as a list of algorithms

(represented by letters), separated by the input sizes at which the

resulting program will switch between them. The possible algorithms

are: I = insertion-sort, Q = quick-sort, R = radix-sort, and Mx =

x-way merge-sort. Algorithms may have a p subscript, which means

they are run in parallel with a work stealing scheduler. For clarity,

unreachable algorithms present in the genome are not shown. 63

3.4 Effective and ineffective mutations when INCREA solves Sort (target

input size 220.) . 63

4.1 Specifications of the test systems used and the acronyms used to dif-

ferentiate them in results. 82

17

5.1 Benchmark scores for the globally optimal values of hyperparameters

normalized with respect to the best score for the given benchmark and

scenario. The hyperparameters were C = 5, W = 5 for the Static

System, and C = 5, W = 100 for the Dynamic System. Mean scores

are 0.8832 and 0.8245 for the Static and Dynamic systems, respectively. 105

18

Chapter 1

Introduction

Despite the ever-increasing processing power of modern computers, high performance

computation remains a commodity. A prime example are cloud services offered by

companies such as Amazon, Google and Microsoft, where the user is billed depend-

ing on the desired CPU resources. The use of such resources also affects energy

consumption, which is important in systems ranging from embedded devices to large

data centers [13]. For these reasons, users of computer software often demand efficient

resource utilization, and a program that can perform the same work in less time, while

also meeting some Quality of Service (QoS) guarantee, is usually considered better.

Unfortunately, optimizing software for optimal performance is a difficult feat and

carries with it multiple caveats [3, 4]. While modern compilers attempt to take some

of the optimization burden off the programmer, they are usually only successful at

optimizing single algorithms and even then the range of possible optimizations is lim-

ited [4]. In many applications, such as sorting, matrix multiplication and multigrid

solvers significant performance boosts can be achieved by constructing hybrid algo-

rithms, where the appropriate algorithm is chosen depending on the size of the input

and hardware characteristics. However, the burden is on the programmer to incor-

porate such hybrid algorithms, manually writing glue code and determining under

what conditions the given algorithm should be invoked. Today’s compilers are unable

to automate this process because of their reliance on traditional, low-level control

structures such as loops and switches [3, 4].

19

What’s worse, it is often impossible to obtain a universal, “one-size-fits-all” solu-

tion that achieves optimal performance on all hardware configurations in all contexts.

As such, software with hard-coded and often suboptimal algorithmic compositions is

commonplace. An example can be found in the popular C++ Standard Template

Library (STL) (Figure 1-1), whose sort routine uses insertion sort for inputs smaller

than 15 elements and merge sort for inputs larger than 15 elements. Tests show that

much larger cutoffs perform better on modern architectures [4].

1 template<typename RandomAccessIterator>
2 void
3 i n p l a c e s t a b l e s o r t (RandomAccessIterator f i r s t ,
4 RandomAccessIterator l a s t)
5 {
6 i f (l a s t − f i r s t < 15)
7 {
8 std : : i n s e r t i o n s o r t (f i r s t , l a s t) ;
9 return ;

10 }
11 RandomAccessIterator midd le = f i r s t + (l a s t − f i r s t)

/ 2 ;
12 std : : i n p l a c e s t a b l e s o r t (f i r s t , midd le) ;
13 std : : i n p l a c e s t a b l e s o r t (middle , l a s t) ;
14 std : : m e r g e w i t h o u t b u f f e r (f i r s t , middle , l a s t ,
15 midd le − f i r s t ,
16 l a s t − midd le) ;
17 }

Figure 1-1: The STL std::sort routine. Insertion sort is used for inputs smaller
than 15 elements, and merge sort is used for larger inputs. The 15-element cutoff is
hard-coded into the library. From G++ 4.4 headers included with Ubuntu 10.10.

Unsurprisingly, automatic optimization of computer programs has been an active

area of research. PetaBricks [4, 21, 7, 3, 5] is a is an implicitly parallel program-

ming language for high performance computing which aims to solve the problems

described above. It provides language constructs to naturally express algorithmic

compositions through the concept of algorithmic choices. The programmer can sim-

ply state what algorithms are applicable at the given point of the program, letting the

compiler generate the necessary glue and decide how the algorithms should be com-

posed. In addition to algorithmic choices, PetaBricks also allows the programmer to

20

define tunable parameters such as blocking sizes and the number of worker threads,

whose optimal value is up to the compiler to select. The process of automatically

determining algorithmic compositions and the values of tunables is called autotuning,

and the autotuning program is called an autotuner. The autotuner’s goal is to find

program configurations which maximize speed while meeting Quality of Service (QoS)

guarantees.

1.1 Contributions

In this thesis we develop, evaluate and compare two PetaBricks autotuners: IN-

CREA and SiblingRivalry. We provide experimental results for a large number of

real-world benchmarks on a number of different architectures under different condi-

tions.

INCREA makes the following contributions:

• It introduces a novel evolutionary algorithm for solving problems where evalu-

ation is expensive and noisy.

• It can take advantage of shortcuts based on problem properties by reusing so-

lutions to smaller problem instances when solving larger problems.

• It demonstrates that incremental solving works well on real-world problems.

In addition, SiblingRivalry makes the following contributions:

• To the best of our knowledge, the first general technique to apply evolutionary

tuning algorithms to the problem of online autotuning of computer programs.

• A new model for online autotuning where the processor resources are divided

and two candidate configurations compete against each other.

• A multi-objective, practical online evolutionary learning algorithm for high-

dimensional, multi-modal, and non-linear configuration search spaces.

21

• A scalable learning algorithm for high-dimensional search spaces, such as those

in our benchmark suite which average 97 search dimensions.

• Support for meeting dynamically changing time or accuracy targets which are

in response to changing load or user requirements.

• Experimental results showing a geometric mean speedup of 1.8x when adapting

to changes in microarchitectures and a 1.3x geometric mean speedup when

adapting to moderate load on the system.

• Experimental results showing how, despite accomplishing more work, Siblin-

gRivalry can actually reduce average power consumption by an average of 30%

after a migration between microarchitectures.

1.2 Thesis Outline

The remainder of the thesis is organized as follows. Chapter 2 provides background

on the PetaBricks language, the autotuning problem, evolutionary algorithms and

the benchmarks used to evaluate autotuners. Chapter 3 presents and experimentally

evaluates the offline autotuner INCREA. Chapter 4 describes the SiblingRivalry on-

line autotuner and evaluates its performance on multiple architectures under different

conditions. Chapter 5 performs an in-depth evaluation of SiblingRivalry’s sensitivity

to hyperparameters. Finally, Chapter 6 draws conclusions.

22

Chapter 2

Background

2.1 Autotuning

For the purposes of this thesis, autotuning is a process of optimizing algorithmic

choices and tunable parameters of a program in order to achieve the fastest possi-

ble execution while meeting desired Quality of Service guarantees. We can classify

different approaches to autotuning with respect to a number of independent criteria:

• generality: algorithm-specific vs. general-purpose

• hardware optimization capability: hardware-aware vs. hardware-oblivious

• number of objectives: single vs. multi-objective

• model dependence: model-based vs. model-free

• tuning process: online vs. offline

Generality of an autotuner specifies whether it can autotune arbitrary programs,

or only a limited set of algorithms. For example, an algorithm-specific autotuner

might be designed to optimize only the matrix multiplication algorithm in a specific

math library. General-purpose autotuners can optimize any program written in a

given language, and the programs that will be autotuned are generally not known

when the autotuner is being implemented.

23

Hardware optimization capability of an autotuner defines whether it can adapt to

different hardware configurations. Hardware-oblivious autotuners perform optimiza-

tions that have a chance of improving performance independent of the machine that

the tuned program runs on, but cannot take advantage of hardware-specific features

such as hyperthreading, high memory bandwidth, or many others. Hardware-aware

autotuners, on the other hand, can exploit both hardware-independent as well as

hardware-specific optimizations.

Single-objective autotuners optimize only the running time of the program, at-

tempting to produce the fastest possible executable, but cannot take advantage of

possible beneficial trade-offs with other objectives inherent in the problem. For exam-

ple, a single-objective autotuner cannot deliberately sacrifice accuracy to gain speed

and vice-versa. Multi-objective autotuners, on the other hand, are built with such

trade-offs in mind and can provide significant speedups by, for example, detecting

when a program exceeds a user-defined accuracy target and decreasing the accuracy

accordingly, saving execution time. While in principle multi-objective autotuners can

deal with any number of objectives, in this thesis we limit ourselves to time and

accuracy.

Model-based autotuners create a model of the program (and sometimes hardware)

they tune and use it to their advantage. For example, a model-based autotuner might

use the model to estimate the running time of a given program without actually run-

ning it, saving computation. However, such models are at best only an approximation

of reality and are designed with a number of assumptions in mind. Whenever those

assumptions do not hold, the autotuner runs the risk of not being able to find the

optimal configuration. Model-free autotuners, on the other hand, do not build models

and instead optimize the tuned program directly. As a result, any execution intrica-

cies, including those not predicted by the autotuner’s designers, can potentially be

exploited.

Offline autotuners optimize their program once, usually at compile time, and

re-use that static configuration throughout the lifetime of the program. Offline auto-

tuning can be burdensome to the deployment of a program, since the tuning process

24

Autotuner General-Purpose Hardware-Aware Multi-Objective Model-Free Online

INCREA Yes Yes No Yes No
SiblingRivalry Yes Yes Yes Yes Yes

ATLAS[53] No Yes No Yes No
FFTW[31] No Yes No No No
Green[13] Yes Yes Yes No Yes

PowerDial[35] Yes Yes Yes No Yes

Table 2.1: INCREA and SiblingRivalry compared to state-of-the-art autotuners from
literature.

can take a long time and should be re-run whenever the program, microarchitecture,

execution environment, or tool chain changes. Failure to re-autotune programs often

leads to widespread use of sub-optimal algorithms. With the growth of cloud com-

puting, where computations can run in environments with unknown load and migrate

between different (possibly unknown) microarchitectures, the problems with offline

autotuners become even more apparent. In contrast, online autotuners are always-

on and can dynamically adapt to changes, automatically re-tuning a program when

necessary.

Table 2.1 compares, along the above criteria, INCREA and SiblingRivalry against

popular state-of-the-art autotuners described in literature.

2.2 Evolutionary Algorithms

The two autotuners presented in this thesis are based on Evolutionary Algorithms

(EAs). Evolutionary Algorithms are stochastic global optimization methods that

mimic Darwinian evolution, utilizing concepts such as inheritance, crossover, mu-

tation and “survival of the fittest” [29]. EAs are a subset of a broader class of

nature-inspired optimization algorithms which also include Artificial Neural Networks

(ANNs), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), and

Simulated Annealing (SA), among others.

Within the domain of Evolutionary Algorithms, seminal work focused on tech-

niques known as Genetic Algorithms (GAs), Evolution Strategies (ES), Evolutionary

Programming (EP) and Genetic Programming (GP). Some other popular techniques

25

were introduced more recently, and include Differential Evolution (DE), and multi-

objective evolutionary algorithms such as NSGA-II [26, 29, 28, 37]. Out of the above,

GAs are described in more detail in Section 2.2.4.

Evolutionary Algorithms have been shown to be an effective optimization method

for many problems where standard approaches failed. They can efficiently deal with

vast search landscapes, landscapes in which the objective function is not differentiable

and/or not well-specified (black box approaches), and can be robust in the face of a

noisy objective function. The success of EAs in many difficult problem domains can

be attributed to the large number of available techniques, and adjustable parameters

in each that can be tailored to particular use cases [29].

Despite their differences, different EA methods follow a similar high-level approach

(Figure 2-1), which can be summarized as follows:

1. A set of candidate solutions (the population) is generated, or reused from the

previous generation (previous run of this loop).

2. The quality of candidate solutions is evaluated by a fitness function, which

provides a numeric quality measure for each candidate (or multiple measures in

the multi-objective case).

3. The fitness information from the previous step is used to select parent solutions

in a process termed selection. In general, the highest the fitness value of a

candidate, the higher its chance of being selected.

4. Parent solutions are then subjected to variation operators such as crossover

and mutation, which modify them slightly and thus generate new candidate

solutions, the offspring. These offspring, and sometimes certain parents, become

the new population.

5. The process is repeated until some stop condition is reached, e.g. a candidate

solution has been found which maximizes the fitness function or a specified

number of generations has elapsed.

26

fitness evaluation

candidate solutions evaluated solutions

new candidate solutions

problem-specific algorithm-specific
(e.g. GA, ES, PSO)

selection variation

Figure 2-1: A functional diagram of an Evolutionary Algorithm. The algorithm
evaluates candidate solutions using a problem-specific fitness function f , and pro-
duces new solutions using selection and variation operators, which differ by al-
gorithm (adapted from http://groups.csail.mit.edu/EVO-DesignOpt/uploads/

Site/evoopt.png).

The variation operators are responsible for exploring the search space by introduc-

ing random variation into the current population [29]. By applying these operators

only to the fittest individuals, we hope to explore only solutions which have the po-

tential to be better than their parents. This is based on the locality assumption:

small variation to a given candidate should produce small variations in its fitness.

The selection component ensures that we do not accept solutions which are much

worse than other candidate solutions in the population.

It is worth noting that Evolutionary Algorithms are most accurately thought of

as high-level frameworks for solving problems, rather than complete and ready-to-use

solutions. An EA expert will thus design variation operators, the fitness function

and other components on a per-problem basis, and combine them into a functional

algorithm using the outline given above.

The remainder of this section is organized as follows. Section 2.2.1 describes EA

components that depend heavily on the problem and/or the particular EA technique

being used to solve it. Section 2.2.2 covers components that depend on representation.

Finally, section 2.2.3 describes universal EA components. This particular breakdown

27

http://groups.csail.mit.edu/EVO-DesignOpt/uploads/Site/evoopt.png
http://groups.csail.mit.edu/EVO-DesignOpt/uploads/Site/evoopt.png

is due to [29].

2.2.1 Problem-Specific Components

We now proceed to describe problem-specific components: fitness function and fitness

evaluation, and representation. The exact form of these components depends heavily

on the problem that they are used to solve.

Fitness Function and Fitness Evaluation

The fitness function, here denoted f , is responsible for providing a numeric quality

measure qi for candidate solution xi:

f(xi) = qi, qi ∈ Rd

where d is the number of objectives in the problem. For example, in the autotuning

setting where d = 2, the fitness function returns a vector qi with two components:

runtime and accuracy. In the special case d = 1, we call f and the problem it

represents single-objective. Otherwise, when d ≥ 2, we call them multi-objective. The

process of computing the fitness value for a given candidate solution is called fitness

evaluation, or evaluation for short. Even though EAs are effective under a variety of

fitness functions (and their geometric interpretation, fitness landscapes), an implicit

requirement is that the fitness function be mostly continuous. If it is not, EAs tend

to act like random search [29].

In some settings, such as program autotuning, the fitness function is stochastic or

noisy. This means that the values of f are samples from some underlying and often

unknown probability distribution F . In such cases we assume that there exists one

true fitness value equal to the mean of the underlying distribution, and the goal is to

approximate it quickly and accurately.

Many EAs use a black-box approach to fitness evaluation, in which the values

f(xi) can be readily computed but little is known about f itself, and no closed form

formulation is available. As such, candidate fitness can rarely be predicted ahead of

28

time without invoking f , which can be problematic if fitness evaluations are costly.

The cost and feasibility of fitness evaluation can be a major factor in the design of

an evolutionary algorithm. Some approaches, such as Genetic Algorithms, often rely

on a sizable population, whose evaluation at each generation might be prohibitive if

f is expensive to compute. In such cases, alternative methods such as Interactive

Evolutionary Computation (IEC) are used [46].

Representation

A crucial issue in Evolutionary Computation is representation, or the low-level en-

coding of candidate solutions [37]. Representation provides a bridge from the original

problem context to the EA context where the actual optimization takes place [28, 29].

Objects in the original problem space are commonly referred to as phenotypes, while

their encodings in the EA context are called genotypes, Formally, representation speci-

fies a two-directional mapping from phenotypes to their corresponding genotypes [28].

The process of mapping phenotypes to genotypes is called encoding, while its inverse

is referred to as decoding. As an example, consider optimizing an integer-valued func-

tion. The algorithm’s user might choose binary representation as the encoding, and

hence the phenotype 42 would be encoded as 101010. Similarly, the phenotype 011111

would be decoded as 31.

While the distinction between phenotypes and genotypes might seem minor, it is

important to understand that EA search happens in the genotype space [28]. The

shape and characteristics of that space might be significantly different from those

of the phenotype space. To that extent, a good representation encodes candidate

solutions in a manner that makes the optimization easier by, for example, creating a

smooth search landscape.

Two representations are of particular importance to the autotuners presented in

this thesis:

• Integer representation: each candidate solution is encoded as a vector of inte-

gers, where each integer is referred to as a gene. A particular gene controls one

or many (or none, in pathological cases) aspects of the individual’s phenotype.

29

• Tree representation: candidates are encoded as trees, which can represent e.g.

decision trees for selecting the appropriate algorithm.

• Hybrid representation: candidate solutions are encoded as a combination of

trees and integer vectors.

2.2.2 Representation-Dependent Components

Two EA components: initialization and variation operators, do not depend directly

on the problem but on the representation [29]. We proceed to describe them in more

detail.

Initialization

Initialization specifies how the initial (first) population gets chosen. In most appli-

cations, it is relatively simple: the first population consists of individuals generated

at random from some probability distribution [28, 29]. In others, a problem-specific

heuristic is used. While in principle such heuristics could be used for any problem,

their relative cost and benefits need to be evaluated on a per-problem basis [28].

Variation Operators

The role of variation operators is to explore the search space by creating new indi-

viduals and thus introducing random variation into the population [28, 29]. We can

classify variation operators into two categories: mutation and crossover, based on

their arity. Arity in the context of variation operators specifies how many candidates

an operator takes as inputs [28].

• Mutation is the name given to unary variation operators. It is applied to the

genotype of one candidate solution, and outputs a slightly modified genotype

commonly called a child or offspring. The modifications are usually stochastic

[28]. The role of mutation varies by EC algorithm - in Evolutionary Program-

ming it is the only operator responsible for search, while in Genetic Program-

ming it is often not used at all [28]. Regardless of the specifics, however, the

30

general role of mutation is to perform small steps in the search space and ensure

that the space is connected, i.e. all the points are reachable given enough time.

Connectedness ensures that a global optimum is theoretically obtainable [28].

• Crossover or recombination is the name given to variation operators of arity

at least 2 [29]. Such operators produce offspring using information from at least

two parent genotypes, and for that reason are often called sexual. The role of

crossover is to combine different parts of parent genotypes into a new offspring

solution, hoping that the offspring will retain and/or improve the good traits of

its parents. Similarly to mutation, crossover is a stochastic process and choosing

the parts to combine usually involves randomness. The role of recombination

varies by EC algorithms - they are often the only variation operator in Genetic

Programming, and an important one in Genetic Algorithms [42, 28]. In contrast,

Evolutionary Programming does not use recombination at all [28].

2.2.3 General Components

Despite differences in fitness function, variation operators and representation, sur-

prisingly many components are common to all EC algorithms. These components are

outlined below.

Population

A population is a set of genotypes which represent candidate solutions currently under

consideration. In a sense, population is the unit of evolution [28], because a standard

EC algorithm operates by adapting and improving its population of solutions, rather

than any single candidate solution. Given the parent population, an EC applies

variation operators to selected individuals and thus produces the offspring population.

There are two important metrics that describe populations: size and diversity.

Size is simply the number of individuals within a population, and is usually constant.

Choosing the right size is an important aspect of EC algorithm design, as it can

affect search time and the algorithm’s robustness in noisy fitness settings [5, 18, 8].

31

Diversity, on the other hand, describes the amount of variation between candidate

solutions. Common diversity metrics are the variance among fitness values, or the

number of unique genotypes. Entropy is also sometimes used [28].

Parent Selection

Parent selection is the process of selecting parent solutions for use in mutation and

recombination. The goal is to select only parents whose offspring have a high chance of

improving their parents’ fitness. This is usually accomplished through some variant

of fitness-proportionate selection, i.e. candidates with higher fitness values have a

higher chance of being selected for reproduction. Low-quality candidates are selected

more rarely, although in many applications they are selected sometimes in order to

prevent the search from getting stuck in local optima [28]. Parent selection is generally

randomized.

Survivor Selection Mechanism

Survivor selection is similar to parent selection in that its purpose is to distinguish

candidates based on their quality. Unlike parent selection, however, it is applied

after offspring solutions have been generated. Since the population size is usually

constant in EC, survivor selection is responsible for deciding which parents and which

offspring are allowed into the next population (next generation). This process is

usually deterministic: a fitness-biased EC might rank both parents and offspring

by fitness and select only the first few, bounded by the preset population size. An

age-biased EC, on the other hand, might select only from the offspring [28].

Termination Condition

Most EC algorithms have no guarantees about finding the optimum solution in some

reasonable bounded time. As such, the algorithm’s user has to specify one or more

heuristic termination conditions. Some common ones include [28]:

• ±ε within optimum: the maximum theoretical value of the fitness function

32

is known, and the search is terminated when it comes to within ±ε of that

optimum.

• time limit: user-defined maximum running time has elapsed. Other related

measures, such as CPU time, the number of generations or the number of fitness

evaluations can be used as well.

• convergence: the search has converged, i.e. fitness improvement in the last few

generations stayed below some small threshold.

• diversity loss: the population diversity drops below a predefined threshold.

In many cases, a combination of the above termination conditions is used. For

example, an algorithm might be terminated either when it comes to within ±ε of

optimum, or a time limit has passed, whichever comes first [28].

2.2.4 Genetic Algorithms

This section provides background on Genetic Algorithms, a variant of Evolutionary

Algorithms implemented by the GPEA (Section 3.1) and thus most relevant to this

thesis. Genetic Algorithms are the most widely know type of evolutionary algorithms,

initially conceived by Holland as a means of studying adaptive behavior [28].

While there is some variation within genetic algorithms, some authors describe a

“classical genetic algorithm” also known as the “simple GA” (SGA) [28]. The simple

GA is single-objective (the fitness function returns a single number) and can be easily

characterized using the component framework outlined in the previous section (2.2.3).

The simple GA uses bit strings as its genotype representation, and maintains

a population of candidates of constant size m [42, 28, 37]. A genotype in GAs is

commonly referred to as the chromosome, and its length d is fixed. Recombination

is achieved through 1-Point bit-wise crossover, where the value of a bit at the given

position is replaced with the value of the corresponding bit in the other parent. The

crossover operator is applied probabilistically with the crossover rate pc. That is,

having selected two parents, an offspring will be created through recombination with

33

probability pc. Otherwise, with probability 1− pc, offspring are created asexually by

copying the parents.

The most common mutation operator, known as uniform, randomly flips bits in

the chromosome [42, 37]. More specifically, given a mutation probability pm, each bit

is independently flipped with probability pm. Thus for a chromosome of length d, an

expected number of pm × d bits are flipped.

Some GA variants, such as the GPEA presented in this thesis, use an integer

representation with integers instead of single bits. The common variation operators

in such a setting are defined analogously - mutation draws a random integer and

crossover swaps corresponding integer values.

The simple GA uses fitness-proportional selection as the parent selection mecha-

nism. That is, if the population consists of the candidates x1, x2, . . . , xm, the proba-

bility of a candidate xi becoming a parent is:

Pr(xi is selected as parent) =
f(xi)∑m
j=1 f(xj)

Another common selection variant is tournament selection. Instead of considering

the entire population, tournament selection picks k individuals at random (with or

without replacement), and adds the most fit one to the mating pool. This process

is repeated until the mating pool has reached the desired size, usually equal to the

population size m [28].

Survival selection in SGA is generational: the set of survivors is selected after

the offspring have been generated. A common technique is age-based replacement,

where the offspring completely replace the parents regardless of their fitness. This is

the approach taken by the SGA. Another technique is fitness-based, where the age

is ignored in favor of fitness. Many schemes that combine the two approaches exist.

The one important to this thesis is elitism, introduced by Kenneth de Jong in 1975.

Elitism works like age-based replacement, but the fittest member (or a fixed number

of the fittest members) are always carried over to the next generation, regardless of

their age [28, 42].

34

2.2.5 Multi-objective Algorithms

A special class of problems solved by Evolutionary Algorithms are multi-objective

problems, i.e. problems where the fitness function f returns a vector with at least 2

components, each component corresponding to a different objective. While in prin-

ciple multiple objectives could be reduced to a single objective through a weighted

sum, in practice such sums may have no easy interpretation. More importantly, the

designer might be interested exactly in how one objective might be traded off against

another, a notion that a collapsed objective does not capture [37]. In such problems,

the job of an EA is to optimize directly with respect to the multiple objectives [28, 37].

In the context of multi-objective optimization, an important notion is that of

Pareto Optimality. A solution is Pareto Optimal if none of its objectives can be

improved without sacrificing at least one other objective [28, 37]. There can exist

multiple Pareto Optimal solutions, corresponding to different objective trade-offs.

We call the set of such solutions the Pareto optimal front, and individual solutions

within that front non-dominated. Similarly, a solution is dominated if there exists

another solution whose all objective values are at least as high, and at least one

objective is strictly higher.

2.3 The PetaBricks Language

The PetaBricks language provides a framework for the programmer to describe mul-

tiple ways of solving a problem while allowing the autotuner to determine which of

those ways is best for the user’s situation [4]. It provides both algorithmic flexibil-

ity (multiple algorithmic choices) as well as coarse-grained code generation flexibility

(synthesized outer control flow).

At the highest level, the programmer can specify a transform, which takes some

number of inputs and produces some number of outputs. In this respect, the PetaBricks

transform is like a function call in a procedural language. The major difference is

that we allow the programmer to specify multiple pathways to convert the inputs

to the outputs for each transform. Pathways are specified in a dataflow manner us-

35

ing a number of smaller building blocks called rules, which encode both the data

dependencies of the rule and C++-like code that converts the rule’s inputs to outputs.

Dependencies are specified by naming the inputs and outputs of each rule, but

unlike in a traditional dataflow programming model, more than one rule can be defined

to output the same data. Thus, the input dependencies of a rule can be satisfied by

the output of one or more rules. It is up to the PetaBricks compiler and autotuner

to decide which rules to use to satisfy such dependencies by determining which are

most computationally efficient for a given architecture and input. For example, on

architectures with multiple processors, the autotuner may find that it is preferable

to use rules that minimize the critical path of the transform, while on sequential

architectures, rules with the lowest computational complexity may fair better. The

following example will help to further illustrate the PetaBricks language.

2.3.1 Example PetaBricks Program: kmeans

Figure 2-3 presents an example PetaBricks program, kmeans, that implements the

k-means clustering algorithm. The input to the algorithm is a set of n points

x1, x2, . . . , xn (Points) and the number of clusters k, k ≤ n. The algorithm’s goal is

to find k cluster centers µ1, µ2, . . . , µk (Centroids) and partition of points between

the clusters S1, S2, . . . , Sk (Assignments) such that the following error function is

minimized [40]:

arg min
µ1,...,µk

k∑
i=1

∑
xj∈Si

||xj − µj||2

Intuitively, the k-means algorithm tries to discover natural clusters in data, where

the number k of clusters is specified beforehand by the user. An example run of

k-means is shown in Figure 2-2.

The PetaBricks implementation of the k-means algorithm works as follows. It

groups the input Points into a number of clusters and writes each points cluster to the

output Assignments. Internally the program uses the intermediate data Centroids

to keep track of the current center of each cluster. The transform header declares each

36

of these data structures as its inputs (Points), outputs (Assignments), and interme-

diate or “through” data structures (Centroids). The rules contained in the body of

the transform define the various pathways to construct Assignments from Points.

The transform can be depicted using the dependence graph shown in Figure 2-4,

which indicates the dependencies of each of the three rules.

The first two rules specify different ways to initialize the Centroids data needed

by the iterative solver in the third rule. Both of these rules require the Points input

data. The third rule specifies how to produce the output Assignments using both the

input Points and intermediate Centroids. Note that since the third rule depends

on the output of either the first or second rule, the third rule will not be executed

until the intermediate data structure Centroids has been computed by one of the

first two rules. Additionally, the first rule provides an example of how the autotuner

can synthesize outer control flow. Instead of explicitly looping over every column

of Centroids 2D array, the programmer can specify a computation that is done for

each column of the output (using the column keyword). The order over which these

columns are iterated, and the amount of parallelism to use, is then synthesized and

tuned by the compiler and autotuner.

To summarize, when our transform is executed, the cluster centroids are initialized

either by the first rule, which performs random initialization on a per-column basis

with synthesized outer control flow, or the second rule, which calls the CenterPlus

algorithm. CenterPlus implements the kmeans++ algorithm (not shown), details of

which can be found in [9]. Once Centroids is generated, the iterative step in the

third rule is called.

2.3.2 Variable Accuracy Algorithms

One of the key features of the PetaBricks programming language is support for vari-

able accuracy algorithms, which can trade output accuracy for computational per-

formance (and vice versa) depending on the needs of the user. Approximating ideal

program outputs is a common technique used for solving computationally difficult

problems, adhering to processing or timing constraints, or optimizing performance in

37

0 1 2 3 4 50.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Figure 2-2: An example run of the kmeans algorithm on a set of 2-D points
(Points), with the number of clusters fixed at 3. The crosshairs mark cluster cen-
ters (Centroids) and different point colors (Assignments) correspond to different
clusters.

38

1 transform kmeans
2 accuracy metric kmeansaccuracy // User - supplied accuracy metric

3 // (invoked automatically by the

4 // autotuner to test the accuracy

5 // of a given k- means

6 // configuration).

7

8 accuracy variable k // Optimal value will be set by

9 // the autotuner .

10

11 from Points [n , 2] // Array of points (each column

12 // stores x and y coordinates).

13 through Centro ids [k , 2]
14 to Assignments [n]
15 {
16 // [Rule 1] First initialization alternative :

17 // Choose a random point as the initial

18 // mean of each cluster

19 to (Centro ids . column(i) c) from(const Points p) {
20 c = p . column(rand (0 , n))
21 }
22

23 // [Rule 2] Second initialization alternative :

24 // use the kmeans ++ approximation algorithm

25 // (implemented by CenterPlus , see [9] for details)

26 to (Centro ids c) from(const Points p) {
27 c = CenterPlus (p) ;
28 }
29

30 // [Rule 3] Iterative refinement

31 to (Assignments a) from(const Points p , Centro ids c) {
32 for enough {
33 int change ;
34 (change , a) = Ass i gnClus t e r s (a , p , c) ;
35 i f (change==0) return ; // Reached fixed point

36 c = NewClusterLocations (c , p , a) ;
37 }
38 }
39 }

Figure 2-3: PetaBricks pseudocode for kmeans

39

Figure 2-4: Dependency graph for kmeans example. The rules are the vertices while
each edge represents the dependencies of each rule. Each edge color corresponds to
each named data dependence in the pseudocode.

situations where perfect precision is not necessary. Algorithmic methods for produc-

ing variable accuracy outputs include approximation algorithms, iterative methods,

data resampling, and other heuristics. A detailed description of the variable accuracy

features of PetaBricks is given in [3].

At a high level, PetaBricks extends the idea of algorithmic choice to include choices

between different accuracies. Language extensions allow users to specify how accuracy

should be measured for their transforms. The autotuner simultaneously optimizes for

both performance and accuracy, producing a set of optimal algorithms that meet a

range of accuracy levels. Users can specify whether they want output accuracy to be

met statistically or guaranteed through the use of run-time accuracy checking.

The kmeans example presented in Figure 2-3 is a variable accuracy algorithm. We

briefly describe the variable accuracy features used in this example. The accuracy metric

keyword on line 2 points to the user-defined transform, kmeansaccuracy, which com-

putes the accuracy of a given input/output pair to kmeans. PetaBricks uses this

transform during autotuning (and optionally at runtime) to test the accuracy of a

given configuration of kmeans. The variable k (lines 8 and 13) controls the num-

ber of clusters the algorithm generates by changing the size of the array Centroids.

Since k can have different optimal values for different input sizes and accuracy levels,

declaring k an accuracy variable (line 8) instructs the autotuner to automatically

find assignments of this variable during training to satisfy various levels of accuracy.

40

The for enough loop on line 32 is a loop where the compiler can pick the number of

iterations needed for each accuracy level and input size.

During training the autotuner will explore different assignments of k, algorithmic

choices of how to initialize the Centroids, and iteration counts for the for enough

loop to discover efficient algorithms for various levels of accuracy.

2.4 PetaBricks Autotuning

The autotuner must identify selectors that will determine which choice of an algorithm

will be used during a program execution so that the program executes as fast as

possible while meeting a user-defined QoS target. PetaBricks uses the accuracy of

the program as the QoS, and hence that target is called the accuracy target. Formally,

a selector s consists of Cs = [cs,1, . . . , cs,m−1] ∪ As = [αs,1, . . . , αs,m] where Cs are the

ordered interval boundaries (cutoffs) associated with algorithms As. During program

execution the runtime function SELECT chooses an algorithm depending on the

current input size by referencing the selector as follows:

SELECT (input, s) = αs,i s.t. cs,i > size(input) ≥ cs,i−1

where

cs,0 = min(size(input)) and cs,m = max(size(input)).

The components of As are indices into a discrete set of applicable algorithms

available to s, which we denote Algorithmss. The maximum number of intervals

is fixed by the PetaBricks compiler. An example of a selector for a sample sorting

algorithm is shown in Figure 2-5. In addition to algorithmic choices, the autotuner

also tunes user-defined integer parameters (tunables) such as accuracy variables (see

Section 2.3.1), blocking sizes, sequential/parallel cutoffs and the number of worker

threads. Each tuned parameter is thus either an index into a small discrete set or an

integer in some positive bounded range.

Formally, given a program P , hardware H and input size n, the autotuner must

41

!s,1 = 1

!"#$
%&

$'()*+,-./01234(

!"#5
%

$(6

2-./0&"234

(7 RadixSort

$7 InsertionSort

57 QuickSort

87 BitonicSort

!s,2 = 2 !s,3 = 0

!"#$%&'()**+

Figure 2-5: A selector for a sample sorting algorithm where Cs = [150, 106] and
As = [1, 2, 0]. The selector selects the InsertionSort algorithm for input sizes in the
range [0; 150), QuickSort for input sizes in the range [150, 106) and RadixSort for
[106,MAXINT). BitonicSort was suboptimal for all input ranges and is not used.

identify the vector of selectors S and vector of tunables T such that the following

objective function φ is maximized:

φ (S,T, P,H, n) =

 runtime (S,T, P,H, n)−1 if acc (S,T, P,H, n) ≥ acctarget

0 otherwise

In other words, the autotuner attempts to find a set of selectors S and tunables

T which maximize program throughput (inverse of the running time) while meeting

the user-specified target accuracy acctarget.

For each compiled program, the PetaBricks compiler produces a binary executable

and a configuration file. The configuration file contains selector parameters As and

Cs for each algorithmic choice, as well as the vector of tunables T = [t1, . . . , tl]. Each

PetaBricks program contains a randomized generator of sample input data, and can

be automatically benchmarked for any given input size n without having to explicitly

specify the input itself.

42

2.4.1 Properties of the Autotuning Problem

Three properties of autotuning influence the design of an autotuner. First, the cost

of fitness evaluation depends heavily on the input data size used when testing the

candidate solution. The autotuner does not necessarily have to use the target input

size. For efficiency it could use smaller sizes to help it find a solution to the target size

because is generally true that smaller input sizes are cheaper to test on than larger

sizes, though exactly how much cheaper depends on the algorithm. For example,

when tuning matrix multiply one would expect testing on a 1024 × 1024 matrix to

be about 8 times more expensive than a 512 × 512 matrix because the underlying

algorithm has O(n3) performance. While solutions on input sizes smaller than the

target size sometimes are different from what they would be when they are evolved on

the target input size, it can generally be expected that relative rankings are robust to

relatively small changes in input size. This naturally points to “bottom-up” tuning

methods that incrementally reuse smaller input size tests or seed them into the initial

population for larger input sizes.

Second, in autotuning the fitness of a solution is measured in terms of how long it

takes to run. Therefore the cost of fitness evaluation is dependent on the quality of

a candidate algorithm. A highly tuned and optimized program will run more quickly

than a randomly generated one and it will thus be fitter. This implies that fitness

evaluations become cheaper as the overall fitness of the population improves.

Third, significant to autotuning well is recognizing the fact that fitness evaluation

is noisy due to details of the parallel micro-architecture being run on and artifacts of

concurrent activity in the operating system. The noise can come from many sources,

including: caches and branch prediction; races between dependent threads to com-

plete work; operating system artifacts such as scheduling, paging, and I/O; and,

finally, other competing load on the system. This leads to a design conflict: an au-

totuner can run fewer tests, risking incorrectly evaluating relative performance but

finishing quickly, or it can run many tests, likely be more accurate but finish too

slowly. An appropriate strategy is to run more tests on less expensive (i.e. smaller)

43

input sizes.

The INCREA exploits incremental structure and handles the noise exemplified in

autotuning. We now proceed to describe a INCREA for autotuning.

2.5 Benchmarks

We show results from eight PetaBricks benchmarks to demonstrate the effectiveness

of our online autotuning framework. Table 2.2 lists various attributes of each bench-

mark, including which are variable and which are fixed accuracy. A brief description

of our benchmarks follows.

Benchmark name Variable accuracy Search space dimensions

Sort No 33
Eigenproblem No 35

Matrix Multiply No 108
LU Factorization No 140

Bin Packing Yes 117
Clustering Yes 91
Helmholtz Yes 61

Image Compression Yes 163
Poisson Yes 64

Table 2.2: Listing of benchmarks and their properties.

2.5.1 Fixed Accuracy

Sort recursively sorts an array of integers utilizing various sorting algorithms (inser-

tion, quick, merge, and radix).

Eigenproblem computes the eigenvalues and eigenvectors of a symmetric matrix using

various numerical algorithms (divide and conquer, QR, and bisection).

Matrix Multiply performs multiplication of two dense matrices using various meth-

ods including recursive decompositions and Strassen’s algorithm.

44

LU Factorization performs a factorization of a dense square matrix A = LU , com-

monly used to solve linear systems.

2.5.2 Variable Accuracy

Bin Packing is an NP-hard problem that finds an assignment of items to unit sized

bins such that the number of bins used is minimized, all bins are within capacity, and

every item is assigned to a bin.

Clustering, or kmeans, is an NP-hard problem that divides a set of data into clus-

ters based on similarity, which is a common technique for statistical data analysis

in areas including machine learning, pattern recognition, image segmentation and

computational biology.

Helmholtz solves the 3D variable-coefficient Helmholtz equation, a partial differential

equation that describes physical systems that vary through time and space, such as

combustion and wave propagation.

Image Compression performs Singular Value Decomposition (SVD) on an m × n

matrix, which is a major component found in some image compression algorithms [52].

Poisson solves the 2D Poisson’s equation, an elliptic partial differential equation that

describes heat transfer, electrostatics, fluid dynamics, and various other engineering

problems.

The benchmarks Sort and Matrix Multiply are described in more detail in [4]. The

benchmarks Bin Packing, Clustering, Helmholtz Image Compression, and Poisson

are described in more detail in [3]. Additionally an extensive study of the Poisson

benchmark can be found in [21].

45

46

Chapter 3

Offline Autotuning

An off-the-shelf evolutionary algorithm (EA) does not typically take advantage of

short cuts based on problem properties and this can sometimes make it impractical

because it takes too long to run. A general short cut is to solve a small instance

of the problem first then reuse the solution in a compositional manner to solve the

large instance which is of interest. Usually solving a small instance is both simpler

(because the search space is smaller) and and less expensive (because the evaluation

cost is lower). Reusing a sub-solution or using it as a starting point makes finding a

solution to a larger instance quicker. This short cut is particularly advantageous if

solution evaluation cost starts high and grows proportionally with instance size. It

becomes more advantageous if the evaluation result is noisy or highly variable which

requires additional evaluation sampling.

This short cut is vulnerable to local optima: a small instance solution might

become entrenched in the larger solution but not be part of the global optimum. Or,

non-linear effects between variables of the smaller and larger instances may imply

the small instance solution is not reusable. However, because EAs are stochastic and

population-based they are able to avoid potential local optima arising from small

instance solutions and address the potential non-linearity introduced by the newly

active variables in the genome.

In this chapter, we describe the EA and associated offline autotuner called IN-

CREA which incorporates into its search strategy the aforementioned short cut through

47

incremental solving. It solves increasingly larger problem instances by first activating

only the variables in its genome relevant to the smallest instance, then extending

the active portion of its genome and problem size whenever an instance is solved. It

shrinks and grows its population size adaptively to populate a gene pool that focuses

on high performing solutions in order to avoid risky, excessively expensive, explo-

ration. It assumes that fitness evaluation is noisy and addresses the noise early when

a lot of resampling is less expensive because smaller instances are being solved.

We will exemplify INCREA by solving the problem known as offline autotuning.

Offline autotuning arises as a final task of program compilation in PetaBricks, and

its goal is to select tunables and algorithmic choices for the program to make it run

as fast as possible. Because a program can have varying size inputs, INCREA tunes

the program for small input sizes before incrementing them up to the point of the

maximum expected input sizes.

3.1 General-Purpose EA (GPEA)

We compare the performance of INCREA to that of an off-the shelf evolutionary

algorithm that we call the General-Purpose EA or GPEA. We now proceed to describe

GPEA in terms of the standard framework outlined in Section 2.2.

3.1.1 Representation

The GA represents configuration files as fixed-length chromosomes of length (2m +

1)k + n, where k is the number of selectors, m the number of interval cutoffs within

each selector and n the number of tunables defined for the PetaBricks program. We

keep the number of intervals fixed across selectors, but retain the ability to have fewer

effective ones by allowing intervals of length 0.

Each gene can assume any value in the range [0,MAXINT), and encodes either

a cutoff, an algorithm or a tunable value with a one-to-one correspondence (Figure

3-1). The respective decoding functions, φc, φα and φt are defined as follows:

48

cs,i = φc(c
∗
s,i) =

⌊(∑i
j=1 c

∗
s,j∑m

j=1 c
∗
s,j

)
MAXINT

⌋

αs,j = φα(α∗s,j) =

⌊(
α∗s,j

MAXINT

)
||Algorithmss||

⌋

tj = φt(t
∗
j) = loj +

⌊(
t∗j

MAXINT

)
(hij − loj)

⌋
The decoding functions φα and φt scale the encoded genes linearly to within their

allowed ranges - [loj, hij) for tunables and [0, ||Algorithmss||) for algorithms. The

cutoff decoder φc treats the encoded cutoffs as interval lengths, which it normal-

izes and sums to get the decoded cutoffs. This formulation of φc also ensures that

consecutive cutoffs are non-decreasing.

3.1.2 Initialization

Initial population consists of a fixed number of configuration files generated by ran-

domizing all cutoff, algorithm and tunable values. The values are drawn from the

same distributions which are used by the mutation operator.

3.1.3 Fitness Evaluation

We define the fitness of a genome as the inverse of the runtime. The runtime is

obtained by timing the PetaBricks program for some input size n, with the decoded

genome as its configuration file. The exact value of the input size is specified by the

user.

Dealing with Noisy Fitness

Fitness variance is inherent in the autotuning process due to a varying system load.

As a result, reported runtimes can be longer than the true ones, and cause inaccurate

fitness values. To mitigate this problem, our GA can time genomes multiple times

and use the minimum runtime. Since for large inputs evaluations can dominate the

49

GA’s runtime, we perform multiple timings only for small input sizes. The GPEA

further deals with fitness noise by maintaining a large (100) population of candidate

solutions. For a discussion on how population size can help in noisy settings, see

[8, 18].

3.1.4 Variation Operators

The GA relies on single-gene crossover and mutation to generate successive popu-

lations of configuration files. An offspring is generated by first crossing-over two

parent configuration files, and then possibly mutating the result. The probability of

a crossover is fixed at 1, i.e. all offspring are obtained through crossover, but the

mutation probability P (mutation) is adjustable.

Crossover

Given two parents, the crossover operator chooses uniformly at random a single gene

in both parents. If the gene encodes an algorithm αs,i, the offspring is then equal

to the first parent with αs,i substituted from the second. If, on the other hand, the

gene encodes a cutoff or a tunable, we either perform a similar substitution or choose

a random value in between the two parents’ gene values, with a probability of the

substitution vs. random choice equal P (substitution).

Mutation

After the crossover operator has been applied to two parents to produce an offspring,

the offspring is mutated with probability P (mutation). The mutation operator se-

lects, uniformly at random, a single gene from the offspring. The new value for that

gene is then drawn from a different probability distribution depending on whether

the gene encodes a cutoff, an algorithm or a tunable.

If the gene encodes an algorithm, the new value is drawn from a uniform proba-

bility distribution 0−||Algorithmss||. If it encodes a cutoff, the new value is a power

of 2 drawn from a log-uniform distribution, i.e. 20, 21, . . . , 2W−1 are equally likely (W

50

denotes the word size). However, if the gene is a tunable, then the distribution is

chosen depending on the range of allowed values: uniform if the range is smaller than

some constant R, i.e. hii − loi < R, and log-uniform otherwise.

3.1.5 Parent and Survivor Selection

Parents are selected using tournament selection with a fixed tournament size. Survivor

selection is age-biased with elitism, where 95% of best offspring are carried over to

the next generation, while the bottom 5% are replaced by the best candidates from

the parent population.

3.1.6 Termination Condition

The GPEA terminates after a hard limit of 100 generations; there are no other ter-

mination conditions.

3.2 Bottom-Up EA (INCREA)

3.3 Representation

The INCREA genome, see Figure 3-1, encodes a list of selectors and tunables as

integers each in the range [0,MaxV al) where MaxV al is equal to the cardinality of

each algorithmic choice’s set for algorithms, and equal to MaxInputSize for cutoffs.

Each tunable has a MaxV al which is the cardinality of its value set or a bounded

integer depending on what it represents.

In order to tune programs of different input sizes the genome represents a solution

for maximum input size and throughout the run increases the “active” portion of

it starting from the selectors and tunables relevant to the smallest input size. It

has length (2m + 1)k + n, where k is the number of selectors, m the number of

interval cutoffs within each selector and n the number of other tunables defined for

the PetaBricks program. As the algorithm progresses the number of “active” cutoff

51

and algorithm pairs, which we call “choices” for each selector in the genome starts at

1 and then is incremented in step with the algorithm doubling the current input size

each generation.

s
e
le
c
to
r
2

c α c α α c α c α α t t t t

2m+1 2m+1 n

s
e
le
c
to
r
1

0 c1,1 c1,2 MaxInputSizeα1,1 α1,2 α1,3

0 c2,1 c2,2 MaxInputSizeα2,1 α2,2 α2,3

tu
n
a
b
le
s

t
1
, t

2
, t

3
, t

4[

[

Figure 3-1: A sample genome for m = 2, k = 2 and n = 4. Each gene stores either a
cutoff cs,i, an algorithm αs,i or a tunable value ti.

Fitness evaluation

The fitness of a genome is the inverse of the corresponding program’s execution time.

The execution time is obtained by timing the PetaBricks program for a specified input

size.

3.3.1 Top level Strategy

Figure 3-2 shows top level pseudocode for INCREA. The algorithm starts with a

“parent” population and an input size of 1 for testing each candidate solution. All

choices and tunables are initially set to algorithm 0 and cutoff of MAXINT. The

choice set is grown through mutation on a per candidate basis. The input size used

for fitness evaluation doubles each generation.

A generation consists of 2 phases: exploration, and downsizing. During explo-

ration, a random parent is used to generate a child via mutation. Only active choices

and tunables are mutated in this process. The choice set may be enlarged. The child

52

is added to the population only if it is determined to be fitter than its parent. The

function “fitter” which tests for this condition increases trials of the parent or child

to improve confidence in their relative fitnesses. Exploration repeatedly generates a

child and tests it against its parent for some fixed number of MutationAttempts or

until the population growth reaches some hard limit.

During downsizing, the population, which has potentially grown during explo-

ration, is pruned down to its original size once it is ranked. The “rankThenPrune”

function efficiently performs additional fitness tests only as necessary to determine a

ranking of which it is reasonably certain.

This strategy is reminiscent but somewhat different from a (µ + λ)ES [12]. The

(µ + λ)ES creates a pool of λ offspring each generation by random draws from the

parent population of size µ. Then both offspring and parents are combined and ranked

for selection into the next generation. The subtle differences in INCREA are that

1) in a “steady state” manner, INCREA inserts any child which is better than its

parent immediately into the population while parents are still being drawn, and 2)

a child must be fitter than its parent before it gains entry into the population. The

subsequent ranking and pruning of the population matches the selection strategy of

(µ+ λ)ES.

Doubling the input size used for fitness evaluation at each generation allows the

algorithm to learn good selectors for smaller ranges before it has to find ones for bigger

ranges. It supports subsolution reuse and going forward from a potentially good, non-

random starting point. Applying mutation to only the active choice set and tunables

while input size is doubling brings additional efficiency because this narrows down

the search space while concurrently saving on the cost of fitness evaluations because

testing solutions on smaller inputs sizes is cheaper.

3.3.2 Mutation Operators

The mutators perform different operations based on the type of value being mutated.

For an algorithmic choice, the new value is drawn from a uniform probability distribu-

tion 0−||Algorithmss||. For an cutoff, the existing value is scaled by a random value

53

1 popu la t i onS i z e = popLowSize
2 i n p u t S i z e s = [1 , 2 , 4 , 8 , 16 , , maxInputSize]
3 i n i t i a l i z e populat ion (maxGenomeLength)
4 for gen = 1 to log (maxInputSize)
5 /* exploration phase : population and active

6 choices may increase */

7 i nputS i z e = i n p u t S i z e s [gen]
8 for j = 1 to mutationAttempts
9 parent = random draw from populat ion (w/ replacement)

10 ac t i v eCho i c e s = getAct iveCho ices (parent)
11 /* active choices could grow */

12 c h i l d = mutate (parent , a c t i v eCho i c e s)
13 /* requires fitness evaluations */

14 i f f i t t e r (ch i ld , parent , i nputS i z e)
15 populat ion = add (populat ion , c h i l d)
16 i f l ength (populat ion) >= popHighSize
17 e x i t e x p l o r a t i o n phase
18 end /* exploration phase */

19 /* more testing */

20 populat ion = rankThenPrune (populat ion ,
21 popLowSize ,
22 i nputS i z e)
23 /* discard all past fitness evaluations */

24 c l e a r R e s u l t s (populat ion)
25 end /* generation loop */

26 return f i t t e s t populat ion member

Figure 3-2: Top level strategy of INCREA.

drawn from a log-normal distribution, i.e. doubling and halving the existing value are

equally likely. The intuition for a log-normal distribution is that small changes have

larger effects on small values than large values in autotuning. We have confirmed this

intuition experimentally by observing much faster convergence times with this type

of scaling.

The INCREA mutation operator is only applied to choices that are in the active

choice list for the genome. INCREA has one specialized mutation operator that adds

another choice to the active choice list of the genome and sets the cutoff to 0.75

times the current input size while choosing the algorithm randomly. This leaves the

behavior for smaller inputs the same, while changing the behavior for the current set

of inputs being tested. It also does not allow a new algorithm to be the same as the

54

one for the next lower cutoff.

3.3.3 Dealing with Noisy Fitness

Because INCREA must also contend with noisy feedback on program execution times,

it is bolstered to evaluate candidate solutions multiple times when it is ranking any

pair. Because care must be taken not to test too frequently, especially if the input

data size is large, it uses an adaptive sampling strategy [1, 19, 20, 47] . The boolean

function “fitter”, see Figure 3-3, takes care of this concern by running more fitness

trials for candidates s1 and s2 under two criteria. The first criterion is a t-test [41].

When the t-test result has a confidence, i.e. p-value less than 0.05, s1 and s2 are

considered different and trials are halted. If the t-test cannot confirm difference, least

squares is used to fit a normal distribution to the percentage difference in the mean

execution time of the two algorithms. If this distribution estimates there is a 95%

probability of less than a 1% difference, the two candidates’ fitnesses are considered

to be the same. There is also a parametrized hard upper limit on trials.

The parent ranking before pruning, in function “rankThenPrune”, is optimized

to minimize the number of additional fitness evaluations. First, it ranks the entire

population by mean performance without running any additional trials. It then splits

the ranking at the populationLowSize element into a KEEP list and a DISCARD

list. Next, it sorts the KEEP list by calling the “fitter” function (which may execute

more fitness trials). Next, it compares each candidate in the DISCARD list to the

populationLowSize element in the KEEP list by calling the “fitter” function. If any

of these candidates are faster, they are moved to the KEEP list. Finally, the KEEP

list is sorted again by calling “fitter” and the first populationLowSize candidates are

the result of the pruning.

This strategy avoids completely testing the elements of the population that will

be discarded. It allocates more testing time to the candidate that will be kept in the

population. It also exploits the fact that comparing algorithms with larger differences

in performance is cheaper than comparing algorithms with similar performance.

55

1 f unc t i on f i t t e r (s1 , s2 , i nputS i z e)
2 while s1 . evalCount < evalsLowerLimit
3 e v a l u a t e F i t n e s s (s1 , i nputS i z e)
4 end
5 while s2 . evalCount < evalsLowerLimit
6 e v a l u a t e F i t n e s s (s2 , i nputS i z e)
7 end
8 while true
9 /* Single tailed T- test assumes each sample ’s mean is

normally distributed .

10 It reports probability that sample means are same under

this assumption */

11 i f t t e s t (s1 . eva l sResu l t s , s2 . eva lRe su l t s) < PvalueLimit /*

statistically different */

12 return mean(s1 . eva lR e su l t s) > mean(s2 . eva lR e su l t s)
13 end
14 /* Test2Equality : Use least squares to fit a normal

distribution to the percentage

15 difference in the mean performance of the two algorithms .

If this

16 distribution estimates there is a 95% probability of less

than a 1%

17 difference in true means , consider the two algorithms the

same . */

18 i f Test2Equal i ty (s1 . eva lResu l t s , s2 . ev a lRe su l t s)
19 return fa l se
20 end
21 /* need more information , choose s1 or s2 based on the

highest expected

22 reduction in standard error */

23 whoToTest = mostInformative (s1 , s2) ;
24 i f whoToTest == s1 and s1 . testCount < evalsUpperLimit
25 e v a l u a t e F i t n e s s (s1 , i nputS i z e)
26 e l i f s2 . testCount < evalsUpperLimit
27 e v a l u a t e F i t n e s s (s2 , i nputS i z e)
28 else
29 /* inconclusive result , no more evals left */

30 return fa l se
31 end
32 end /* while */

33 end /* fitter */

Figure 3-3: Pseudocode of function “fitter”.

56

3.4 Experimental Results

3.4.1 Experimental Setup

(a) INCREA

Parameter Value

confidence required 70%
max trials 5
min trials 1
population high size 10
population low size 2
MutationAttempts 6
standard deviation prior 15%

(b) GPEA

Parameter Value

mutation rate 0.5
crossover rate 1.0
population size 100
tournament size 10
generations 100
evaluations per candidate 1

Table 3.1: INCREA and GPEA Parameter Settings.

We performed all tests on multiple identical 8-core, dual-Xeon X5460, systems

clocked at 3.16 GHz with 8 GB of RAM. The systems were running Debian GNU/Linux

5.0.3 with kernel version 2.6.26. For each test, we chose a target input size large

enough to allow parallelism, and small enough to converge on a solution within a

reasonable amount of time. Parameters such as the mutation rate, population size

and the number of generations were determined experimentally and kept constant

between benchmarks. Parameter values we used are listed in Table 3.1.

3.4.2 INCREA vs GPEA

In practice we might choose parameters of either INCREA or GPEA to robustly

ensure good autotuning or allow the programmer to vary them while tuning a partic-

ular problem and architecture. In the latter case, considering how quickly the tuner

converges to the final solution is important. To more extensively compare the two

tuners, we ran each tuner 30 times for each benchmark.

Table 3.2 compares the tuners mean performance with 30 runs based on time to

convergence and the performance of the final solution. To account for noise, time to

convergence is calculated as the first time that a candidate was found that was within

57

5% of the best fitness achieved. For all of the benchmarks except for Eigenproblem,

both tuners arrive a solutions are nearly the same, while for Eigenproblem INCREA

finds a slightly better solution. For Eigenproblem and Matrix Multiply, INCREA con-

verges an order of magnitude faster than GPEA. For Sort, GPEA converges faster on

the small input size while INCREA converges faster on the larger input size. If one

extrapolates convergences times to larger input sizes, it is clear that INCREA scales

a lot better than GPEA for Sort.

INCREA GPEA SS?

Sort-220 Convergence 1464.7± 1992.0 599.2± 362.9 YES (p = 0.03)
Performance 0.037± 0.004 0.034± 0.014 NO

Sort-223 Convergence 2058.2± 2850.9 2480.5± 1194.5 NO
Performance 0.275± 0.010 0.276± 0.041 NO

Matrix Multiply
Convergence 278.5± 185.8 2394.2± 1931.0 YES (p = 10−16)
Performance 0.204± 0.001 0.203± 0.001 NO

Eigenproblem
Convergence 92.1± 66.4 627.4± 530.2 YES (p = 10−15)
Performance 1.240± 0.025 1.250± 0.014 YES (p = 0.05)

Table 3.2: Comparison of INCREA and GPEA in terms of mean time to conver-
gence in seconds and in terms of execution time of the final configuration. Standard
deviation is shown after the ± symbol. The final column is statistical significance
determined by a t-test (lower is better).

Figure 3-4 shows aggregate results from 30 runs for both INCREA and GPEA

on each benchmark. INCREA generally has a large amount of variance in its early

generations, because those generations are based on smaller input sizes that may

have different optimal solutions than the largest input size. However, once INCREA

reaches its final generation it exhibits lower variance than than GPEA. GPEA tends

to converge slowly with gradually decreasing variance. Note that the first few gener-

ations for INCREA are not shown because, since it was training on extremely small

input sizes, it finds candidates candidates that exceed the timeout set by our testing

framework when run on the largest input size. These early generations account for a

only a small amount of the total training time.

In 3-4(a) the INCREA’s best candidate’s execution time displays a “hump” that

is caused because it finds optima for smaller input sizes that are not reused in the

optimal solution for the target input size.

58

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 5 10 15 20 25 30

B
es

t C
an

di
da

te
 (s

)

Generation Number

INCREA
GPEA

(a) Sort 220

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30
B

es
t C

an
di

da
te

 (s
)

Generation Number

INCREA
GPEA

(b) Sort 223

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30

B
es

t C
an

di
da

te
 (s

)

Generation Number

INCREA
GPEA

(c) Matrix Multiply

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30

B
es

t C
an

di
da

te
 (s

)

Generation Number

INCREA
GPEA

(d) Eigenproblem

Figure 3-4: Execution time for target input size with best individual of generation.
Mean and standard deviation (shown in error bars) with 30 runs.

59

Using Sort-220, in Figure 3-5(a) we examine how many tests are halted by each

tuner, indicating very poor solutions. The timeout limit for both algorithms is set

to be the same factor of the time of the current best solution. However, in GPEA

this will always be a test with the target input size whereas with INCREA it is the

current input size (which is at least half the time, half as large). Almost half of

GPEA’s initial population were stopped for timing out, while INCREA experiences

most of its timeouts in the later generations where the difference between good and

bad solutions grows with the larger input sizes. We also examine in Figure 3-5(b) how

much the population grew each generation during the exploration phase. For INCREA

the population expansion during exploration is larger in the middle generations as it

converges to a final solution.

-50

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30

Te
st

 T
im

eo
ut

s

Generation Number

INCREA
GPEA

(a) Tests Halted due to Time Out

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

A
dd

ed
 c

an
di

da
te

s

Generation Number

INCREA
GPEA

(b) Population Growth

Figure 3-5: Time out and population growth statistics of INCREA for 30 runs of Sort
on target input size 220. Error bars are mean plus and minus one standard deviation.

3.4.3 Representative Runs

We now select a representative run for each benchmark to focus on run dynamics.

Sort: Sorting

Figures 3-6(a) and 3-6(b) show results from a representative run of each autotuner

with two different target input sizes respectively. The benchmark consists of insertion-

60

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 60 120 240 480 960 1920

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

 100

 1000

 10000

 60 120 240 480 960 1920

Te
st

s
C

on
du

ct
ed

Training Time

INCREA
GPEA

(a) Sort 220

 0

 0.2

 0.4

 0.6

 0.8

 1

 60 180 540 1620 4860 14580

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

 100

 1000

 10000

 60 180 540 1620 4860 14580
Te

st
s

C
on

du
ct

ed

Training Time

INCREA
GPEA

(b) Sort 223

 0

 0.5

 1

 1.5

 2

 2.5

 3

 60 120 240 480 960 1920 3840 7680

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

 100

 1000

 10000

 60 120 240 480 960 1920 3840 7680

Te
st

s
C

on
du

ct
ed

Training Time

INCREA
GPEA

(c) Matrix Multiply 1024× 1024

 1

 1.5

 2

 2.5

 3

 60 240 960 3840 15360

B
es

t C
an

di
da

te
 (s

)

Training Time

INCREA
GPEA

 100

 1000

 10000

 60 240 960 3840 15360

Te
st

s
C

on
du

ct
ed

Training Time

INCREA
GPEA

(d) Eigenproblem 1024× 1024

Figure 3-6: Representative runs of INCREA and GPEA on each benchmark. The left
graphs plot the execution time (on the target input size) of the best solution after
each generation. The right graph plots the number of fitness evaluations conducted
at the end of each generation. All graphs use seconds of training time as the x-axis.

61

sort, quick-sort, radix sort, and 2/4/8/16/32-way merge-sorts. On this Xeon system,

Sort is relatively easy to tune because the optimal solution is relatively simple and

the relative costs of the different algorithms are similar.

For the 220 benchmark, both INCREA and GPEA consistently converge to a very

similar solution which consists of small variations of quick-sort switching to insertion-

sort at somewhere between 256 and 512. Despite arriving at a similar place, the two

tuners get there in a very different way. Table 3.3, lists the best algorithm for each

tuner at each generation in the run first shown in Figure 3-6(a). INCREA starts with

small input sizes, where insertion-sort alone performs well, and for generations 0 to

7 is generating algorithms that primarily use insertion-sort for the sizes being tested.

From generations 8 to 16, it creates variants of radix-sort and quicksort that are

sequential for the input sizes being tested. In generation 17 it switches to a parallel

quick sort and proceeds to optimize the cutoff constants on that for the remaining

rounds. The first two of these major phases are locally optimal for the smaller input

sizes they are trained on.

GPEA starts with the best of a set of random solutions, which correctly chooses

insertion-sort for small input sizes. It then finds, in generation 3, that quick-sort,

rather than the initially chosen radix-sort, performs better on large input sizes within

the tested range. In generation 6, it refines its solution by parallelizing quick-sort. The

remainder of the training time is spent looking for the exact values of the algorithmic

cutoffs, which converge to their final values in generation 29.

We classified the possible mutation operations of INCREA and counted how fre-

quently each was used in creating an offspring fitter than its parent. We identified

specialized classes of operations that target specific elements of the genome. Table 3.4

lists statistics on each for the run first shown in Figure 3-6(a). The class most likely

to generate an improved child scaled both algorithm and parallelism cutoffs. The

he class that changed just algorithms were less likely to cause improvement. Overall

only 3.7% of mutations improved candidate fitness.

Figure 3-6(c) shows comparative results on Matrix Multiply. The program choices

are a naive matrix multiply and five different parallel recursive decompositions, in-

62

INCREA: Sort
Input Training

Genome
size Time (s)

20 6.9 Q 64 Qp

21 14.6 Q 64 Qp

22 26.6 I
23 37.6 I
24 50.3 I
25 64.1 I
26 86.5 I
27 115.7 I
28 138.6 I 270 R 1310 Rp

29 160.4 I 270 Q 1310 Qp

210 190.1 I 270 Q 1310 Qp

211 216.4 I 270 Q 3343 Qp

212 250.0 I 189 R 13190 Rp

213 275.5 I 189 R 13190 Rp

214 307.6 I 189 R 17131 Rp

215 341.9 I 189 R 49718 Rp

216 409.3 I 189 R 124155 M2

217 523.4 I 189 Q 5585 Qp

218 642.9 I 189 Q 5585 Qp

219 899.8 I 456 Q 5585 Qp

220 1313.8 I 456 Q 5585 Qp

GPEA: Sort

Gen
Training

Genome
Time (s)

0 91.4 I 448 R
1 133.2 I 413 R
2 156.5 I 448 R
3 174.8 I 448 Q
4 192.0 I 448 Q
5 206.8 I 448 Q
6 222.9 I 448 Q 4096 Qp

7 238.3 I 448 Q 4096 Qp

8 253.0 I 448 Q 4096 Qp

9 266.9 I 448 Q 4096 Qp

10 281.1 I 371 Q 4096 Qp

11 296.3 I 272 Q 4096 Qp

12 310.8 I 272 Q 4096 Qp

...
27 530.2 I 272 Q 4096 Qp

28 545.6 I 272 Q 4096 Qp

29 559.5 I 370 Q 8192 Qp

30 574.3 I 370 Q 8192 Qp

...

Table 3.3: Listing of the best genome of each generation for each autotuner for an
example training run. The genomes are encoded as a list of algorithms (represented
by letters), separated by the input sizes at which the resulting program will switch
between them. The possible algorithms are: I = insertion-sort, Q = quick-sort,
R = radix-sort, and Mx = x-way merge-sort. Algorithms may have a p subscript,
which means they are run in parallel with a work stealing scheduler. For clarity,
unreachable algorithms present in the genome are not shown.

Mutation Class Count
Times Effect on fitness
Tried Positive Negative None

Make an algorithm active 8 586 2.7% 83.8% 13.5%
Log-normally scale a cutoff 11 1535 4.4% 50.4% 45.1%
Randomly switch an algorithm 12 1343 2.5% 50.4% 25.7%
Log-normally change a parallelism cutoff 2 974 5.2% 38.7% 56.1%

Table 3.4: Effective and ineffective mutations when INCREA solves Sort (target input
size 220.)

63

cluding Strassen’s Algorithm and a cache-oblivious decomposition. A tunable allows

both autotuners to transpose combinations of inputs and outputs to the problem. To

generate a valid solution, the autotuner must learn to put a base case in the lowest

choice of the selector, otherwise it will create an infinite loop. Because many ran-

dom mutations will create candidate algorithms that never terminate when tested,

we impose a time limit on execution.

Both INCREA and GPEA converge to the same solution for Matrix Multiply. This

solution consists of transposing the second input and then doing a parallel cache-

oblivious recursive decomposition down to 64 × 64 blocks which are processed se-

quentially.

While both tuners converge to same solution, INCREA arrives at it much more

quickly. This is primarily due to the n3 complexity of matrix multiply, which makes

running small input size tests extremely cheap compared to larger input sizes and

the large gap between fast and slow configurations. INCREA converges to the final

solution in 88 seconds, using 935 trials, before GPEA has evaluated even 20% of its

initial population of 100 trials. INCREA converges to a final solution in 9 generations

when the input size has reached 256, while GPEA requires 45 generations at input size

1024. Overall, INCREA converges 32.8 times faster than GPEA for matrix multiply.

Eigenproblem: Symmetric Eigenproblem

Figure 3-6(d) shows results for Eigenproblem. Similar to Matrix Multiply here INCREA

performs much better because of the fast growth in cost of running tests. This

benchmark is unique in that its timing results have higher variance due to locks

and allocation in the underlying libraries used to implement certain mathematical

functions. This high variance makes it difficult to autotune well, especially for GPEA

which only runs a single test for each candidate algorithm. Both solutions found

were of same structure, but INCREA was able to find better cutoffs values than the

GPEA.

64

3.5 Conclusions

INCREA is an evolutionary algorithm that is efficiently designed for problems which

are suited to incremental shortcuts and require them because of they have large search

spaces and expensive solution evaluation. It also efficiently handles problems which

have noisy candidate solution quality. In the so called “real world”, problems of

this sort abound. A general purpose evolutionary algorithm ignores the incremen-

tal structure that exists in these problems and, while it may identify a solution, it

wastes computation, takes too long and produces error prone results. INCREA solves

smaller to larger problem instances as generations progress and it expands and shrinks

its genome and population each generation. For further efficiency, it cuts off work

that doesn’t appear to promise a fruitful result. It addresses noisy solution quality

efficiently by focusing on resolving it for small solutions which have a much lower cost

of evaluation.

We have demonstrated and evaluated INCREA by solving the offline PetaBricks au-

totuning problem for multi-scale architectures. INCREA automatically determines

user-defined tunables and algorithmic choices that result in the fastest execution for

the given hardware. We found that INCREA and a general purpose EA both achieve

significant speedups on 3 benchmarks but INCREA is much more efficient because of

its exploitation of the problem’s bottom up structure and its greedy efficiencies.

65

66

Chapter 4

Online Autotuning

While offline autotuning provides great performance gains, it has two major problems.

First, it adds an additional step to the software installation and upgrade process. Sec-

ond, offline autotuning is unable to construct programs that respond to dynamically

changing conditions. As we will show, changes to machine load can substantially de-

grade an application’s performance. When such changes occur, an offline autotuned

algorithm may no longer be the best choice. This situation is further exacerbated

in the emerging cloud and data center computing environments, where in addition

to sharing a machine with varying load, applications may be transparently migrated

between machines, and thus potentially between microarchitectures. Such changes to

computer architectures and microarchitectures have been shown to lead to significant

performance loss for autotuned applications [4].

In response to some of these challenges, there is a growing body of work [35, 34, 38,

15, 22, 13] focused on creating applications that can monitor and automatically tune

themselves to optimize a particular objective (e.g. meeting response time goals by

trading quality of service (QoS) for increased performance or lower power usage).

In order to provide stability, convergence and predictability guarantees, many of

these systems construct (either by hand, or automatically) a linear model of their

application and employ control theory techniques to perform dynamic tuning. The

success of such techniques depends on the degree to which the configurable choices

can be mapped to a linear system, a task that can be difficult when tuning large

67

complex applications with interdependent configuration choices.

In contrast, offline evolutionary (a.k.a. genetic) autotuning techniques, such as

the one used in PetaBricks [4, 5], are model-free. They adaptively sample the search

space of candidate solutions and take advantage of both large and small moves in the

search space. Thus, they are able to find global optima regardless of how non-linear

or interdependent the choice space and can do so without a model. Their selection

component allows them to improve execution time even though they generate random

variations on current solutions with unpredictable performance. When a specific

variation is extremely slow, in an offline setting, it can be killed and prevent a sampling

bottleneck. Unfortunately, this characteristic has meant that evolutionary techniques

are generally considered to be unsuitable for use in the online setting. Executing

multiple generations of a sizable population at runtime (even at periodic intervals)

is too costly to be feasible. Additionally, the alternative approach of continuously

replacing the components being executed by different experimental variations, offered

by an autotuner, is also a poor choice as there is no execution standard to compare

the variation against. Thus, the learning system has no way of knowing whether a

particular variation is performing particularly poorly and thus should be aborted.

In this thesis, we take a novel approach to online learning that enables the appli-

cation of evolutionary tuning techniques to online autotuning. Our technique, called

SiblingRivalry, divides the available processor resources in half and runs the current

best algorithm on one half and a variation on the other half. If the current best

finishes first, the variation is killed, the failure of the variation is reported to the

online learning algorithm which controls the selection of both configurations for such

“competitions” and the application continues to the next stage. If the variation fin-

ishes first, we have found a better solution than the current best. Thus, the current

best is killed and the results from the variation are used as the program continues to

the next stage. Using this technique, SiblingRivalry produces predictable and stable

executions, while still exploiting an evolutionary tuning approach. The online learn-

ing algorithm is capable of adapting to changes in the environment and progressively

identifies better configurations over time without resorting to experiments that might

68

deliver extremely slow performance. As we will show, despite the loss of resources,

this technique can produce speedups over fixed configurations when the dynamic exe-

cution environment changes. To the best of our knowledge, SiblingRivalry is the first

attempt at employing evolutionary tuning techniques to online autotuning computer

programs.

We have implemented a prototype of the SiblingRivalry algorithm within the

context of the PetaBricks language [4, 3]. Our results show that SiblingRivalry’s

always-on racing technique can lead to an autotuned algorithm that uses only half

the machine resources (as the other half is used for learning) but that is often faster

and more energy efficient than an optimized algorithm that uses the entire processing

resources of the machine. Furthermore, we show that SiblingRivalry dynamically

responds and adapts to changes in the runtime environment such as system load.

4.1 Competition Execution Model

Online Autotuner

Population

Mutation
Operators

N/2 Cores
(Experimental)First Result

Request Safe Config

Experimental Config

Measurement

N/2 Cores
(Safe) Measurement

Figure 4-1: High level flow of the runtime system. The data on dotted lines may not be
transmitted for the slower configuration, which can be terminated before completion.

Figure 4-1 shows the high level flow of how requests are processed by the PetaBricks

runtime system. The cores on our system are split in half into two groups. One group

of cores is designated to run safe configurations, while the other group runs exper-

imental configurations. When a request is received, the autotuner runs the same

request on both groups of cores in parallel using a safe configuration on one group

and an experimental configuration on the other group. When the first configuration

completes (and provides a satisfactory answer) the system terminates the slower one.

The output of the better algorithm is returned to the user, and timing and quality of

69

service measurements are sent to the autotuner so that it may update its population

of configurations and mutation operator priorities.

4.1.1 Other Splitting Strategies

Our racing execution model requires that there be two groups of cores, one that

executes an experimental configuration, while the other executes a safe configuration.

While we have chosen to divide our resources in a 50/50 split, other divisions (such

as 60/40 or 75/25) are possible.

We do not consider splits where we devote fewer cores to the experimental group

than the safe group since doing so would prevent some superior configurations from

completing (they would be killed immediately after the safe strategy completes).

Further, tuning for fewer than half of the cores limits the potential benefits from

autotuning.

One of the reasons we chose a 50/50 split over other possible splits was to minimize

the gap between best-case and worst-case overheads that result from splitting. Splits

that devote very few resources to the safe configuration will incur extremely large

costs when the experimental configuration fails compared to when it succeeds.

Another major advantage of the 50/50 split is that it provides more data to the

autotuner, since it receives measurements from two configurations, with at least lower-

bound data, per request. In uneven configurations, very little is learned about the

configuration on the smaller part of the chip, since even if it is a better configuration

it still may be aborted before completion. This means that the online learner is

expected to converge more quickly in the 50/50 case.

4.1.2 Time Multiplexing Races

Another racing strategy is to run the experimental configuration and the safe con-

figuration in sequence rather than in parallel. This allows both algorithms to utilize

the entire machine. It also provides a way to, in some cases, avoid running the safe

configuration entirely. These types of techniques are also the most amenable to at

70

some point switching off online learning, if one knows that the dynamic execution

environment has stabilized and the learner has converged.

There are two variants to this type of technique:

• Safe configuration first. In this variant, the safe configuration is run first, and

is always allowed to complete, using the entire machine. Then the experimental

configuration is allowed an equal amount of time to run, to see if it would have

completed faster. Unfortunately, this method will incur a 2x overhead in the

steady state, which is in practice far more than the overhead of running the

races in parallel. For this reason this technique is only desirable if one plans to

disable online learning part way through an execution.

• Experimental configuration first. In this variant, a model is required to pre-

dict the performance of a configuration given a specific input and current dy-

namic system environment. The model predicts the upper bound performance

of the safe configuration. The experimental configuration is given this predicted

amount of time to produce an answer before being terminated. If the experi-

mental configuration produces an acceptable answer, then the safe configuration

is never run, otherwise the system falls back to the safe configuration.

The efficacy of this technique depends a lot on the quality of the model used

and the probability of the learning system producing bad configurations. In

the best case, this technique can have close to zero overhead. However, in the

worst case, this technique could both fail to converge and produce overheads

exceeding 2x. If the performance model under-predicts execution time, superior

configurations will be terminated prematurely and autotuning will fail to make

improvements. If the performance model over-predicts execution time, then the

cost of exploring bad configurations will grow. For our problem, the probability

of a bad configuration is high enough that this type of technique is not desirable,

however, with search spaces with more safer configurations this technique may

become more appealing.

71

4.2 SiblingRivalry

The online learner is an evolutionary algorithm (EA) that is specially designed for

the purpose of identifying, online, the best configuration for the program. It has a

multitude of exacting requirements: It must be lightweight because it is always run-

ning. It cannot add significant computational or memory overhead to the application

or it will diminish the overall value of autotuning. It must conduct its search in accor-

dance with the structure of the pairwise competition execution model as described in

Section 4.1. Accordingly, it must effectively search and adapt candidate solutions by

offering competition configurations and integrating the feedback from their measure-

ment results. Because the competition execution model is processing real requests,

it must provide at least one configuration that is sufficiently safe to ensure quality of

service. Despite the search space of candidate configurations being very large, it must

converge to a high quality configuration quickly. It must not assume the underlying

environment is stationary. It must converge in the face of high execution time vari-

ability (due to load variance) and react to system changes in a timely way without

being notified of them.

To meet its convergence goals, the online learner, in effect, must ideally balance

exploration and exploitation in its search strategy. Exploitation should investigate

candidates in the “neighborhood” of currently high performing configurations. Ex-

ploration should investigate candidates that are very different from the current pop-

ulation to ensure no route to the optimum has been overlooked by the greedy nature

of exploitation. This final required property of the online learner motivates one of its

key capabilities. The online learner performs “adaptive mutator selection” which we

explain in more detail in Section 4.2.4.

4.2.1 High Level Function

In the process of tuning a program, the online learner maintains a population of candi-

date configurations. The population is relatively small to minimize the computational

and memory overhead of learning.

72

The online learner keeps two types of performance logs: per-configuration and

per-mutator. Per-configuration logs record runtime, accuracy, and confidence for a

given candidate, and are used by the learner to select the “safe” configuration for each

competition, and to prune configurations which are demonstrably suboptimal. Per-

mutator logs record performance along the three objectives for candidates generated

by a given mutator. This information allows the online learner to select mutators

which have a record of producing improved solutions, using a process called Adaptive

Mutator Selection (see Section 4.2.4 for more information).

Whenever the program being tuned receives a request, the online learner selects

two configurations to handle it: “safe” and “experimental”. The safe configuration

is the configuration with the highest value of the fitness function (see Section 4.2.2)

in the current population, computed using per-configuration logs. The fitness value

captures how well the configuration has performed in the past, and thus the safe

configuration represents the best candidate found by the online learner so far. The

experimental configuration is produced by drawing a “seed” configuration from the

current population and transforming it using a mutator. The probability of a config-

uration being selected as a seed is proportional to its fitness.

Once the safe and experimental configurations have been selected, the online

learner uses both to process the request in parallel, and returns the result from the

candidate that finishes first and meets the accuracy target (the “winner”). The slower

candidate (the “loser”) is terminated. If the experimental configuration is the winner,

it is added to the online learner’s population. Otherwise, it is discarded. The safe

configuration is added back to the population regardless of the result of the race, but

might be pruned later if the new result makes it worse than any other candidate.

Details are provided in the pseudocode of Figure 4-2.

The online learner optimizes three objectives with respect to its candidate config-

urations:

• Execution time: the expected execution time of the algorithm.

• Accuracy: the expected value of a programmer metric measuring the quality

73

1 populat ion = [i n i t i a l c o n f i g u r a t i o n]
2 mutators = [operator1 , operator2 , . . .]
3 mutat ion weights t ime = [1 . 0 , 1 . 0 , . . .]
4 mutat ion we ights accuracy = [1 . 0 , 1 . 0 , . . .]
5 per fo rmance h i s to ry = . . .
6

7 while True :
8

9 i f meet ing ac cu racy ta rg e t s (pe r f o rmance h i s to ry) :
10 mutat ion operator = s e l e c t m u t a t o r (mutators ,

mutat ion weights t ime)
11 else
12 mutat ion operator = s e l e c t m u t a t o r (mutators ,

mutat ion we ights accuracy)
13

14 s a f e c f g = s e l e c t s a f e c o n f i g (populat ion , pe fo rmance h i s to ry)
15 s e e d c f g = s e l e c t s e e d c o n f i g (populat ion , pe fo rmance h i s to ry)
16 expe r imenta l c f g = apply mutator (s e e d c o n f i g , mutat ion operator

)
17

18 r eque s t = w a i t f o r r e q u e s t ()
19 r e s u l t , measurements = compete (request , s a f e c f g ,

expe r imenta l c f g)
20 r e s p o n d t o r e q u e s t (request , r e s u l t)
21

22 record measurements (measurements , per fo rmance h i s to ry , s a f e c f g
, ex pe r imen ta l c f g)

23 update mutat ion weights (measurements , mutat ion operator ,
mutat ion weights t ime , mutat ion we ights accuracy)

24 i f not measurements . expe r iment a l c f g abo r t ed :
25 populat ion . add (ex pe r imen ta l c f g)
26 populat ion . prune (pe r f o rmance h i s to ry)

Figure 4-2: Pseudocode of how requests are processed by the online learning system

74

of the solution found.

• Confidence: a metric representing the online learner’s confidence in the first

two metrics. This metric is 0 if there is only one sample and

Confidence =
1

stderr(timings)
+

1

stderr(accuracies)

if there are multiple samples. This takes into account any observed variance

in the objective. If the observed variance were constant, the metric would be

proportional to sqrt(T) where T is the number of times the candidate has been

used.

Confidence is an objective because we expect the variance in the execution times

and accuracies of a configuration (as it performs more and more competitions) to be

significant. Confidence allows configurations with reliable performance to be differ-

entiated from those with highly variable performance. It prevents an “outlier run”

from making a suboptimal configuration temporarily dominate better configurations

and forcing them out of the population.

Taken together, these objectives create a 3-dimensional space in which each can-

didate algorithm in the population occupies a point. In this 3-dimensional space, the

online learner’s goal is to push the current population towards the Pareto optimal

front.

4.2.2 Selecting the Safe and Seed Configuration

Each configuration of the population is assigned a fitness, m, that is updated every

time it competes against another configuration. Fitness depends upon how well the

configuration is meeting a target accuracy, ma, and its execution time, mt:

mconfig =


−mt∑
n∈P nt

− z g−ma∑
n∈P na

if ma < g

−mt∑
n∈P nt

if ma ≥ g

where g is a target accuracy and z is scalar weight set based on how often the

75

online learner has been meeting its goals in the past. Fitness prioritizes meeting the

accuracy target, but gives no reward for accuracy exceeding the target.

To select the safe configuration, the online learner picks the algorithm in the

population that has the highest fitness. When the online learner is not producing

configurations that meet the targets, the weight of z is adaptively incremented to put

more importance on accuracy targets when it calculates m.

To select a seed configuration, the online learner first eliminates any configuration

that has an expected running time that is below the 65th percentile running time of

the safe configuration. Then, it randomly draws a configuration from the remaining

population using the fitness of each configuration to weight the draw. In evolutionary

algorithm terminology, this type of draw is called “fitness-proportional selection”.

4.2.3 Mutation Operators

The online learner changes configurations of candidate algorithms though a pool of

mutation operators that are generated automatically from information outputted by

the PetaBricks compiler. Mutators create a new algorithm configuration from an

existing configuration by randomly making changes to a specific target region of the

configuration.

One can divide the mutators used by our online learner into the following categories:

• Decision tree manipulation mutators randomly either add, remove, or

change levels of a decision tree. A decision tree is an abstract hierarchically

ordered representation of the selector parameters in the configuration file. It

enables the dynamic determination of which algorithm to use at a specific dy-

namic point in program execution. Each level of the tree has a cutoff value

and an algorithmic choice. Each decision tree in the configuration results in 5

mutation operators: one operator to add a level, one operator to remove a level,

one operator to make large random changes, and two operators to make small

random changes.

• Log-normal random scaling mutators scale a configuration value by a ran-

76

dom number taken from a log-normal distribution with scale of 1. This type of

mutator is used to change cutoff values that are compared to data sizes. For

example, blocking sizes, cutoffs in decision trees, and cutoffs to switch between

sequential and parallel code.

• Uniform random mutators replace an existing configuration value with a

new value taken from a discrete uniform random distribution containing all

legal values for the configuration item. This type of mutator is used for choices

where there are a relatively small number of possibilities. An example of this

is deciding the scheduling strategy for a specific block of code or algorithmic

choices.

• Function manipulation mutators change the underlying parameter of a

function that is used to decide a value that must change dynamically based on

input size. For example, the number of iterations in a for enough loop. These

functions are represented by lg n points in the configuration value with runtime

interpolation to find values lying between the specified points.

4.2.4 Adaptive Mutator Selection (AMS)

The evolutionary algorithm of the online learner uses different mutators. This pro-

vides it with flexibility to generate experimental configurations that range from being

close to the seed configuration to far from it, thus controlling its exploration and

exploitation. However, the efficiency of the search process is sensitive to which mu-

tators are applied and when. These decisions cannot be hard-coded because they are

dependent on what program is being autotuned. Furthermore, even for a specific pro-

gram, they might need to change over the course of racing history as the population

changes and converges. Mutators that cause larger seed-experiment configuration

differences should be favored in early competitions to explore while ones that cause

smaller differences should be favored when the search is close to the best configuration

to exploit.

For this reason, the online tuner has a specific strategy for selecting mutators

77

on the basis of how well they have performed. The performance of mutators is the

extent to which they have generated experimental configurations of better fitness than

others. In general, this is called “Adaptive Operator Selection” (AOS) [25, 48, 24]

and our version is called “Adaptive Mutator Selection” (AMS).

There are two parts to AMS: credit assignment to a mutator, and mutator se-

lection. AMS uses Fitness-based Area-Under-Curve for its credit assignment and a

Bandit decision process for mutator selection. We use Fitness-based Area-Under-

Curve because it is appropriate for the comparison (racing) approach taken by the

online learner. We use the AUC version of the Dynamic Multi-Armed Bandit decision

process because it matches up with the online learner’s dynamic environment. Our

descriptions are adapted and implemented directly from [30].

4.2.5 Credit Assignment

After each competition the AOS stops and assigns credit to operators based on their

performance over a time interval. Fitness-based Area-Under-Curve adapts the Area

Under the ROC Curve criteria [17] to assign credit to comparison-based assessment of

mutators by first creating a ranked list of the experimental configurations generated

in any time window according to a fitness objective. The ROC (Receiver Operator

Curve) associated to a given mutator, µ, is then drawn by scanning the ordered list,

starting from the origin: a vertical segment is drawn when the current configuration

has been generated by µ, a horizontal segment is drawn otherwise, and a diagonal

one is drawn in case of ties (see Figure 4-3, reproduced from [29]). Finally, the credit

assigned to mutator µ is the area under this curve (AUC).

4.2.6 Bandit Mutator Selection

The bandit-based mutator selection deterministically selects the mutator based on a

variant of the Upper Confidence Bound (UCB) algorithm [10]:

Select arg max
i

(
AUCi,t + C

√
2 log

∑
k nk,t

ni,k

)
(4.1)

78

Figure 4-3: The credit assigned to mutator µ is the area under the curve. Section 4.2.5
provides details. Reproduced from [29].

where AUCi,t denotes the empirical quality of the i-th mutator during a user-defined

time-window W (exploitation term), ni,t the total number of times it has been used

since the beginning of the process (the right term corresponding to the exploration

term), and C is a user defined constant that controls the balance between exploration

and exploitation. We collectively refer to the constants C and W as hyperparam-

eters. For the rest of this chapter, we assume hyperparameters are fixed by the

user at C = 1 and W = 50, and provide an in-depth analysis of their influence in

Chapter 5. Bandit algorithms have been proven to optimally solve the exploration

vs. exploitation dilemma in a stationary context. The dynamic context is addressed

in this formulation by using AUC as the exploitation term. See [45] for more details.

4.2.7 Population Pruning

Each time the population has an experimental configuration added, it is pruned.

Pruning is a means of ensuring the experimental configuration should appropriately

stay in the population and removing any configuration wholly inferior to the experi-

mental configuration. The experimental configuration should stay if, for any weighting

of its objectives, it is better than any other configuration under the same weighting.

79

This condition is expressed as:

arg max
m∈P

(
wa∑
n∈P na

ma −
wt∑
n∈P nt

mt +
wc∑
n∈P nc

mc)

where P is the population and w defines a weight. The subscripts a, t, and c of w

represent the accuracy, time, and confidence objectives for each configuration.

If the experimental configuration results in an extant configuration no longer being

non-dominated, the extant configuration is pruned. We set wt = 1− wa and sample

values of wa and wc in the range [0, 1]. We sample the time-accuracy trade-off space

more densely than the confidence space, with approximately 100 different weight

combinations total.

4.3 Related Work

A number of offline empirical autotuning frameworks have been developed for build-

ing efficient, portable libraries in specific domains. PHiPAC [16] is an autotuning

system for dense matrix multiply, generating portable C code and search scripts to

tune for specific systems. ATLAS [53, 54] utilizes empirical autotuning to produce

a cache-contained matrix multiply, which is then used in larger matrix computa-

tions in BLAS and LAPACK. FFTW [31, 32] uses empirical autotuning to combine

solvers for FFTs. Other autotuning systems include SPARSITY [36] for sparse ma-

trix computations, SPIRAL [44] for digital signal processing, UHFFT [2] for FFT on

multicore systems, OSKI [51] for sparse matrix kernels, and autotuning frameworks

for optimizing sequential [39] and parallel [43] sorting algorithms.

In the dynamic autotuning space, there have been a number of systems developed

[35, 34, 38, 15, 22, 13] that focus on creating applications that can monitor and

automatically tune themselves to optimize a particular objective. Many of these

systems employ a control systems based autotuner that operates on a linear model of

the application being tuned. For example, PowerDial [35] converts static configuration

parameters that already exist in a program into dynamic knobs that can be tuned at

80

runtime, with the goal of trading QoS guarantees for meeting performance and power

usage goals. The system uses an offline learning stage to construct a linear model of

the choice configuration space which can be subsequently tuned using a linear control

system. The system employs the heartbeat framework [33] to provide feedback to the

control system. A similar technique is employed in [34], where a simpler heuristic-

based controller dynamically adjusts the degree of loop perforation performed on a

target application to trade QoS for performance.

Our work also bears similarities to the Green system [13], whose primary goal is

to lower the power requirements of programs. Green uses pragma-like annotations

to allow multiple versions of a function that have different power requirements and

resulting accuracies. Green uses a global quality of service metric to monitor the

impact of running the various approximate versions of the code. PetaBricks differs

from Green in that it supports multiple accuracy metrics per program, allows the

definition of a much larger class of algorithmic choices and has parallelism integrated

with its choice model. We also employ a robust genetic autotuner which does not need

a detailed model of the program being tuned, thus avoiding the expensive exploration

of the search space. Furthermore, through the use of competitions, our autotuner

can effectively deal with highly non-linear configuration spaces without the risk of

significantly degrading QoS at any time.

Additionally, there has been a large amount of work [11, 27, 49, 50] in the dy-

namic optimization space, where information available at runtime is used combined

with static compilation techniques to generate higher performing code. Such dynamic

optimizations differ from dynamic autotuning because each of the optimizations is

hand crafted in a way that makes it likely that it will lead to an improvement in per-

formance when applied. Conversely, autotuning searches the space of many available

program variations without a priori knowledge of which configurations will perform

better.

81

Acronym Processor Type Operating System Processors

Xeon8 Intel Xeon X5460 3.16GHz Debian 5.0 2 (×4 cores)
Xeon32 Intel Xeon X7560 2.27GHz Ubuntu 10.4 4 (×8 cores)
AMD48 AMD Opteron 6168 1.9GHz Debian 5.0 4 (×12 cores)

Table 4.1: Specifications of the test systems used and the acronyms used to differen-
tiate them in results.

4.4 Experimental Results

We evaluate SiblingRivalry with two experimental scenarios. In the first scenario, we

use a single system and vary the load on the system. In the second scenario we vary

the underling architecture, to represent the effects of a computation being migrated

between machines. In both cases we compare to a fixed configuration found with

offline tuning that utilizes all cores of the underlying machine.

4.4.1 Experimental Setup

We performed our experiments on three systems described in Table 4.1. We refer

to these three systems using the acronyms Xeon8, Xeon32, and AMD48. Power

measurements were performed on the AMD48 system, using a WattsUp device that

samples and stores the consumed power at 1 second intervals.

4.4.2 Sources of Speedups

The speedups achieved for different benchmarks can come from a variety of sources.

Some of these sources of speedup can apply even to the case where the environment

does not change dynamically. Different benchmarks obtained speedups for different

reasons in different tests.

• Algorithmic improvements are a large source of speedup, and the motivation

for this work. When the dynamic environment changes, the optimal algorith-

mic choices may be different and SiblingRivalry can discover better algorithms

dynamically.

82

• For the variable accuracy benchmarks, additional speedup can be obtained since

the online tuner receives runtime feedback on how well it is meeting its accuracy

targets. If it observes that it is over-delivering on its quality of service target

it can opportunistically change algorithms, enabling it to be less conservative

than offline tuning. For all tests, both SiblingRivalry and the baseline met the

required quality of service requirements.

• SiblingRivalry benefits from a “dice effect,” since it is running two copies of the

algorithm it has an increased chance of getting lucky and having one config-

uration complete faster than its mean performance. External events, like I/O

interrupts, have a lower chance of affecting both algorithms. This leads to a

small speedup, which is a function of the variance in the performance of each

algorithm.

• As the number of processing cores continues to grow exponentially, the amount

of per core memory bandwidth is decreasing dramatically since per-chip mem-

ory bandwidth is growing only at a linear rate [14]. This fact, coupled with

Amdahl’s law, makes it particularly difficult to write applications with scalable

performance. On our AMD48 machine, we found that some benchmarks with

high degree of available parallelism exhibit limited scalability, preventing them

from fully utilizing all available processors. In cases where the performance

leveled off before half of the available processors, the cost of our competition

strategy becomes close to zero.

4.4.3 Load on a System

To test how SiblingRivalry adapts to load on the system, we simulated system load by

running concurrently with a synthetic CPU-bound benchmark competing for system

resources. We allowed the operating system to assign cores to this benchmark and did

not bind it to specific cores. For the different tests, we varied the number of threads

in this benchmark to utilize between 0 and 100% of the processors on the system.

Combined with the PetaBricks benchmarks, this creates an overloaded system where

83

 0

 0.5

 1

 1.5

 2

 2.5

Bin Packing

Clustering

Helm
holtz

Im
age Com

pression

Poisson

LU Factorization

M
atrix M

ultiply

Sort
GeoM

ean

S
pe

ed
up

 (
vs

 o
ffl

in
e

tu
ne

d)

 0% load
 25% load

 50% load
 75% load

100% load

(a) Xeon8

 0

 0.5

 1

 1.5

 2

 2.5

Bin Packing

Clustering

Helm
holtz

Im
age Com

pression

Poisson

LU Factorization

M
atrix M

ultiply

Sort
GeoM

ean

S
pe

ed
up

 (
vs

 o
ffl

in
e

tu
ne

d)

 0% load
 25% load

 50% load
 75% load

100% load

(b) AMD48

Figure 4-4: Speedups (or slowdowns) of each benchmark as the load on a system
changes. Note that the 50% load and 100% load speedups for Clustering in (b),
which were cut off due to the scale, are 4.0x and 3.9x.

84

 3.25

 3.3

 3.35

 3.4

 3.45

 3.5

 3.55

 3.6

 0 20 40 60 80 100 120 140 160 180

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry
Baseline

(a) 0% load

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 20 40 60 80 100 120 140 160 180

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry
Baseline

(b) 50% load

Figure 4-5: Representative graphs for varying system load showing throughput over
time. Benchmark is LU Factorization on AMD48.

85

the number of active threads is double the number of cores. In all cases we compared

SiblingRivalry to a baseline of a fixed configuration found with offline tuning on the

same machine, without the additional load. We measure average throughput over 10

minutes of execution, which includes all of the learning costs.

We observed different trends of speedups on the two machines tested. On the

Xeon8 (Figure 4-4(a)), the geometric mean cost of running SiblingRivalry (under zero

new load) was 16%. This cost is largest for Matrix Multiply, which scales linearly on

this system. For other benchmarks, the overheads are lower for two reasons. For the

non-variable accuracy benchmarks, some benchmarks do not scale perfectly (These

benchmarks exhibit an average speedup of 5.4x when running with 8 threads [4]). For

variable accuracy benchmarks, the online autotuner is able to improve performance by

taking advantage of using a number of candidate algorithms to construct an aggregate

QoS that is closer to the target accuracy level than would be otherwise possible with

a single algorithm.

Figure 4-4(b) shows the performance results on the AMD48 machine. In the zero

load case, SiblingRivalry achieves a geometric mean speedup of 1.12x. This speedup

comes primarily because of the way the autotuner can dynamically adapt the variable

accuracy benchmarks (the same way it did on Xeon8). Additionally, while AMD48

and Xeon8 have very similar memory systems, AMD48 has six times as many cores,

and thus 6 times less bandwidth per core. Thus, we found that in some cases, using

additional cores on this system did not always translate to better performance. For

example, while some fixed configurations of our matrix multiply benchmark scale well

to 48 cores, our autotuner is able to find a less scalable configuration that provides

the same performance using only 20 cores. Once load is introduced, SiblingRivalry is

able to further adapt the benchmarks, providing geometric speedups of up to 1.53x.

Figure 4-5 shows an example execution comparing how SiblingRivalry adapts to

load on the system. In the zero load case, both system provide roughly the same

throughput, with SiblingRivalry being somewhat more noisy. In the 50% load case,

both systems initially drop to about 40% of the zero-load throughput. SiblingRivalry

recovers quickly (within the first 10 generations) from this initial drop, and settles at

86

Offline Training

Machine 1

Deploy tuned
application

Production

Machine 1
Migrate

Production

Machine 2
Migrate

Production

Machine 3

1 hour 10 minutes 10 minutes 10 minutes

Compare throughput
of both techniques

Figure 4-6: The scenario with frequent migration modeled by our architecture mi-
gration experiments. We compare a fixed configuration (found with offline training
on a different machine) to SiblingRivalry, to show how adapting to each architecture
can improve throughput. We measure throughput only between the first and second
migration, and include the cost of all learning in the throughput measurements.

around 60% of the original throughput. In contrast, the offline tuned baseline does

not recover. The other load levels show similar patterns as the 50% load case.

4.4.4 Migrating Between Microarchitectures

In a second group of experiments we test how SiblingRivalry can adapt to changes in

microarchitecture. Figure 4-6 shows the scenario modeled by our experiments. We

first train offline on a initial machine and then move this trained configuration to a

different machine. We compare SiblingRivalry to a baseline configuration found with

offline tuning on the original machine. The offline configuration is given one thread

per core on the system. Figure 4-7 shows the speedups for each benchmark after such

a migration. SiblingRivalry shows a geometric mean speedup of 1.8x in this migration

experiment.

Figures 4-8 and 4-9 expand on Figure 4-7 by showing a number of representative

executions in cases where the autotuner made significant changes over the execution.

The figures graph how throughput (and accuracy in Figure 4-9) change over time for

both SiblingRivalry and the baseline algorithm. The results show how SiblingRivalry

is able to make changes to the benchmark configurations to dynamically adapt them

over time to improve their throughputs.

Additionally, Figure 4-9(a) shows an example of where the SiblingRivalry dynam-

ically switches to lower accuracy algorithms that are closer to the quality of service

87

Figure 4-7: Speedups (or slowdowns) of each benchmark after a migration between
microarchitectures. “Normalized throughput” is the throughput over the first 10 min-
utes of execution of SiblingRivalry (including time to learn), divided by the through-
put of the first 10 minutes of an offline tuned configuration using the entire system.

88

 2

 2.2

 2.4

 2.6

 2.8

 3

 0 50 100 150 200 250 300

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry
Baseline

(a) Matrix Multiply, migrate Xeon8 to AMD48

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry
Baseline

(b) Sort, migrate AMD48 to Xeon32

Figure 4-8: Representative graphs of throughput over time for fixed accuracy bench-
marks after a migration between microarchitectures.

89

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry
Baseline

 6

 7

 8

 9

 10

 11

 12

 0 100 200 300 400 500 600

A
ve

ra
ge

 a
cc

ur
ac

y

Time (s)

SiblingRivalry
Baseline

Target

(a) Helmholtz, migrate Xeon8 to AMD48

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 0.28

 0 100 200 300 400 500 600

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry
Baseline

 10

 12

 14

 16

 18

 20

 0 100 200 300 400 500 600

A
ve

ra
ge

 a
cc

ur
ac

y

Time (s)

SiblingRivalry
Baseline

Target

(b) Matrix Approximation, migrate AMD48 to Xeon32

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

 0 50 100 150 200 250 300

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry
Baseline

-1.102

-1.101

-1.1

-1.099

-1.098

-1.097

-1.096

-1.095

-1.094

 0 50 100 150 200 250 300

A
ve

ra
ge

 a
cc

ur
ac

y

Time (s)

SiblingRivalry
Baseline

Target

(c) Bin Packing, migrate AMD48 to Xeon32

Figure 4-9: Representative graphs of throughput over time for variable-accuracy
benchmarks after a migration between microarchitectures. “Target” is the accuracy
target both the offline and online tuners are set to optimize for.

90

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 100 200 300 400 500 600

R
eq

ue
st

 p
er

 s
ec

on
d

Time (s)

SiblingRivalry (w/o offline)
SiblingRivalry (w/ offline on Xeon8)

SiblingRivalry (w/ offline on AMD48)

Figure 4-10: The effect of using an offline tuned configuration as a starting point
for SiblingRivalry on the Sort benchmark. We compare starting from a random
configuration (“w/o offline”) to configurations found through offline training on the
same and a different architecture.

target. Since the online learner can notice when it is failing to achieve target accuracy

and dynamically adjust itself, it can operate closer to the accuracy targets safely. Two

other runs exhibit similar behavior: Bin Packing (migrate Xeon8 to AMD48) and Im-

age Compression (migrate Xeon8 to AMD48). Average accuracy did not change by

a significant amount for any other benchmark.

4.4.5 Cold Start

Figure 4-10 shows how using an offline tuned configuration affects the rate of con-

vergence of SiblingRivalry. We show three starting configurations: a random config-

uration, a configuration tuned on a different machine, and a configuration tuned on

the same machine. As one would expect, convergence time increases as the starting

point becomes less optimal. Convergence times are roughly 5 minutes, 1 minute, and

0 for the configurations tried, though since changes are constantly being made it is

difficult to mark a point of convergence.

91

 0

 500

 1000

 1500

Bin Packing

Clustering

Helm
holtz

Im
age Com

pression

Poisson

LU Factorization

M
atrix M

ultiply

Sort
M

ean

E
ne

rg
y

pe
r

re
qu

es
t (

jo
ul

es
)

Benchmark

3.9

Baseline
SiblingRivalry

Figure 4-11: Average energy use per request for each benchmark after migrate Xeon8
to AMD48.

92

4.4.6 Power Consumption

Figure 4-11 shows the energy used per request for each of our benchmarks. While

one might initially think that the techniques proposed would increase energy usage

since up to twice the amount of work is performed, SiblingRivalry actually reduces

energy usage by an average of 30% for our benchmarks. The primary reason for this

decreased energy usage is the increased throughput of SiblingRivalry, which results

in the machine being used for a shorter period of time. The benchmarks that saw

increased throughput also saw decreased power consumption per request.

4.4.7 Conclusions

We demonstrated that it can sometimes be more effective to devote resources to learn-

ing the smart thing to do, than to simple throw resources at a potentially suboptimal

configuration. Our technique devotes half of the system resources to trying something

different, to enable online adaption to the system environment. The geometric mean

speedup of SiblingRivalry was 1.8x after a migration between microarchitectures.

Even in comparison to an offline-optimized version on the same microarchitecture

that uses the full resources, SiblingRivalry showed a geometric mean performance

increase of 1.3x when moderate load was introduced on the machine. SiblingRivalry,

while performing close to twice the amount of work, consumed on average 30% less

power compared to running a well tuned algorithm after a migration. These results

show that continuously adapting the program to the environment can provide a huge

boost in performance that easily overcame the cost of splitting the available resources

in half.

In addition, we have showed that an intelligent machine learning system can

rapidly find a good solution even when the search space is extremely large. Fur-

thermore, we demonstrated that it is important to provide many algorithmic and

optimization choices to the online learner as done by the PetaBricks language and

compiler. While these choices increase the search space, they make it possible for the

autotuner to obtain the performance gains observed.

93

SiblingRivalry is able to fully eliminate the offline learning step, making the pro-

cess fully transparent to users, which is the biggest impediment to the acceptance of

autotuning. For example, while Feedback Directed Optimization (FDO) can provide

substantial performance gains, the extra step involved in the programmers workflow

has stopped this promising technique from being widely adopted [23]. By elimi-

nating any extra steps, we believe that SiblingRivalry can bring autotuning to the

mainstream program optimization. As we keep increasing the core counts of our

processors, autotuning via SiblingRivalry help exploit them in a purposeful way.

94

Chapter 5

Hyperparameter Tuning

The behavior and efficacy of SiblingRivalry is intimately tied to the selection rule in

Equation 4.1, which in turn relies on the hyperparameters C and W . It is likely that

different values of these hyperparameters can have a significant impact on the quality

of autotuned programs, and it is therefore important that we use the appropriate

hyperparameters for each tuned program. In the previous chapter, we delegated the

problem of selecting such appropriate hyperparameter values to the user, without

investigating how difficult they are to find or what impact they have on autotuning.

In this chapter, we provide such analysis, which proceeds as follows. In Section 5.1

we discuss the difficulties of selecting optimal hyperparameter values. In Section 5.2,

we describe the evaluation metrics we use to formally assess the quality of a given set

of a hyperparameter values. Finally, Section 5.3 provides experimental evaluation of

SiblingRivalry’s hyperparameter robustness.

5.1 Tuning the Tuner

The hyperparameters C (exploration/exploitation trade-off) and W (window size)

can have a significant impact on the efficacy of SiblingRivalry. For example, if C is

set too high, it might dominate the exploitation term and all operators will be applied

approximately uniformly, regardless of their past performance. If, on the other hand,

C is set too low, it will be dominated by the exploitation term AUCi,t and new,

95

possibly better operators will rarely be applied in favor of operators which made only

marginal improvements in the past.

The problem is further complicated by the fact that the relative magnitude of the

exploration and exploitation terms is highly problem-dependent [29]. For example,

programs with a lot of algorithmic choices are likely to benefit from a relatively high

exploration rate. This is because algorithmic changes create discontinuities in the

program’s fitness, and operator scores calculated for a given set of algorithms will

not be accurate when those algorithms suddenly change. When such changes occur,

exploration should become the dominant behavior. For other programs, e.g. those

where only a few mutators improve performance, sacrificing exploration in favor of

exploitation might be optimal. This is especially true for programs with few algo-

rithmic choices - once the optimal algorithmic choices have been made, the autotuner

should focus on adjusting cutoffs and tunables using an exploitative strategy with a

comparatively low C.

The optimal value of C is also closely tied to the optimal value of W , which

controls the size of the history window. The autotuner looks at operator applications

in the past W races, and uses the outcome of those applications to assign a quality

score to each operator. This is based on the assumption that an operator’s past

performance is a predictor of its future performance, which may not always be true.

For example, changes in algorithms can create discontinuities in the fitness landscape,

making past operator performance largely irrelevant. However, if W is large, this past

performance will still be taken into account for quite some time. In such situations,

a small W might be preferred.

Furthermore, optimal values of C and W are not independent. Due to the way

AUCi,t is computed, the value of the exploitation term grows with W (see Section

4.2.5). Thus by changing W , which superficially controls only the size of the history

window, one might accidentally alter the exploration/exploitation balance. For this

reason, C and W should be tuned together.

Finally, the task of selecting hyperparameters is complicated by the fact that

different hyperparameter values might be optimal at different stages of the autotun-

96

ing process. As described earlier, a larger C might be favorable following algorithm

changes, with a smaller C when optimal algorithmic choices have already been made.

Currently, however, SiblingRivalry does not allow dynamically adjusting hyperpa-

rameters throughout the run, which have to be statically set before the autotuning

begins.

5.2 Hyperparameter Quality

There is no single metric that will suffice to evaluate SiblingRivalry’s performance

under different hyperparameter values. For example, if we only look at the aver-

age throughput during some fixed time window, we might miss the fact that some

initially low-throughput configurations can find optimal solutions but take longer to

converge. Likewise, the quality of the best solution might not be very informative if

we do not know how long it takes to find that solution, especially if the execution

system is dynamic and requires frequent adaptation. For these reasons, we propose

five metrics to evaluate SiblingRivalry on a given benchmark program with different

hyperparameters:

1. Mean throughput: the number of requests processed per second, averaged

over the entire duration of the run. Equal to the average number of races per

second.

2. Best candidate throughput: inverse of the runtime of the fastest candidate

found during the duration of the run. For variable accuracy benchmarks, only

candidates that met the accuracy target are considered.

3. Accuracy Root Mean Square Error (RMSE): square root of the mean

squared distance between the current best candidate’s accuracy and the accu-

racy target. Applies only to variable accuracy benchmarks.

4. Fraction of races that met accuracy target: percentage of races that met

(to within ±5%) or exceeded the accuracy target. Applies only to variable

accuracy benchmarks.

97

5. Time to convergence: number of races until a candidate has been found

that has a throughput within 5% of the best candidate for the given run. For

variable accuracy benchmarks, only candidates that met the accuracy target

are considered.

Furthermore, we consider two different evaluation scenarios: static and dynamic

system, which correspond to common autotuning setups. In order to enable a fair

comparison between SiblingRivalry’s performance under different hyperparameter val-

ues, we define a single objective metric for each scenario that combines one or more

of the five metrics outlined above. We call this metric the score function fb for each

benchmark b, and its output the score. A detailed description of the static and

dynamic scenarios follows.

5.2.1 Static System

In the Static System scenario, the execution system is mostly unchanging - there are

no migrations between architectures and the load varies marginally. This scenario

corresponds to dedicated hardware that executes the user’s program. In this setting,

the user cares mostly about the quality of the best candidate. Convergence time

is of little concern, as the autotuner only has to learn once and then adapt very

infrequently. For the sake of comparison, let’s assume in this scenario the user assigns

a weight of 80% to the best candidate’s throughput, and only 20% to the convergence

time. Hence the score function for the static system:

fb(C,W) = 0.8× best throughputb(C,W) + 0.2× convergence time−1b (C,W)

5.2.2 Dynamic System

In the Dynamic System scenario, the user’s program might migrate between architec-

tures and/or the load changes considerably and frequently. This scenario corresponds

to a shared cloud system with other programs competing for resources. In this set-

ting, the user cares both about average throughput and the convergence time. The

98

convergence time is a major consideration since execution conditions change often in

a dynamic system and necessitate frequent adaptation. Ideally, the autotuner would

converge very quickly to a very fast configuration. However, the user is willing sac-

rifice some of the speed for improved convergence time. We can capture this notion

using the following score function:

fb(C,W) = 0.5×mean throughputb(C,W) + 0.5× convergence time−1b (C,W)

While the weights in the score functions might seem arbitrary, they flexibly ex-

press the different priorities of the static and dynamic autotuning scenarios. A given

set of weights also enables us to find the best-performing values of C and W for

each benchmark, and hence provide a way to check how close a particular set of hy-

perparameters is to that goal. Furthermore, note that if convergence times, mean

throughputs and best throughputs are normalized with respect to their best value,

then the scores will assume a value in the range [0; 1], with 0 and 1 being the worst

and best possible, respectively, empirical qualities of hyperparameters.

5.3 Experimental Results

We evaluated the hyperparameter sensitivity of SiblingRivalry by running the auto-

tuner on a set of four benchmarks: Sort, Bin Packing, Image Compression and Poisson,

with twenty different combinations of C and W values each. For each run, we mea-

sured the metrics described in Section 5.2. We performed the tests on the Xeon8

and AMD48 systems (see Table 4.1). The reported numbers for Xeon8 have been av-

eraged over 30 runs, and the numbers for AMD48 over 20 runs. All experiments were

performed in a “cold start” scenario, where the initial configuration was not tuned

offline before invoking SiblingRivalry.

All results for a given metric have been normalized with respect to the best mean

value of that metric. If the metric is positive, i.e. if higher values are better (e.g.

99

Static System Dynamic System
Xeon8 AMD48 Xeon8 AMD48

C W C W C W C W

Sort 50.00 5 5.00 5 5.00 5 5.00 5
Bin Packing 0.01 5 0.10 5 5.00 500 5.00 500

Poisson 50.00 500 50.00 500 0.01 500 5.00 5
Image Compression 0.10 100 50.00 50 0.01 100 50.00 50

(a) Best performing values of the hyperparameters C and W over an empirical sample.

Static System Dynamic System
Xeon8 AMD48 Xeon8 AMD48

Sort 0.8921 0.8453 0.9039 0.9173
Bin Packing 0.8368 0.8470 0.9002 0.9137

Poisson 0.8002 0.8039 0.8792 0.6285
Image Compression 0.9538 0.9897 0.9403 0.9778

(b) Scores of the best performing hyperparameters.

Figure 5-1: Best performing hyperparameters and associated score function values
under the Static System and Dynamic System autotuning scenarios on Xeon8 and
AMD48 architectures.

throughput), then the best configuration will have a mean of 1 and the suboptimal

configurations will be in the range [0; 1). If the metric is negative, i.e. if lower values

are better (e.g. RMSE), the best configuration will have a mean of 1 and the subop-

timal configurations will be in the range (1; +∞). The constant by which the metrics

have been divided for normalization is reported as the “normalization factor”. We ad-

ditionally performed a significance test, for each metric, to find configurations which

were not significantly different from the best (p-value ≥ 0.05). Such configurations

are marked with an asterisk ∗. We used a Wilcoxon signed-rank non-parametric test

for this purpose, since the majority of our data was not normally distributed (see

Sections A.1 and A.2 for details).

In Sections 5.3.1, 5.3.2, 5.3.3 and 5.3.4 we evaluate the four benchmarks along

individual metrics, with Figure 5-1 listing optimal hyperparameter values under the

score functions of the Static and Dynamic System scenarios. Finally, in Section 5.4

we discuss the feasibility and attempt to find globally optimal hyperparameters that

work reasonably well for all the benchmarks.

100

5.3.1 Sort

Figure 5-2 shows the performance of the Sort benchmark on the Xeon8 system. Mean

throughput is maximized for the configuration (C,W) = (50, 100) (Table 5-2(a)).

It appears throughput increases with the value of C, with the value of W having

little effect. For example, the configuration (C,W) = (50, 5) performs within 4% of

the optimal (C,W) = (50, 100) despite having a W an order of magnitude smaller.

Best candidate throughput looks similar (Table 5-2(b), with best candidate found at

(C,W) = (50, 500). The strong dependence on C and lack of dependence on W is

also evident, and suggests that Sort benefits from a highly exploitative behavior over

a short window size. This dependency trend is reversed in the convergence times

(Table 5-2(c)). Smaller values of W result in faster convergence with an optimum at

(C,W) = (5, 5).

The trends on the AMD48 system appear similar. While the mean and best candi-

date throughputs have different optima (both at (C,W) = (50, 50), see Table 5-3(a)),

had we used Xeon8’s optima instead we would get a performance degradation of only

1%. The convergence time optimum is the same on both architectures, (C,W) = (5, 5)

(Tables 5-2(c) 5-3(c)). The optima with respect to the Static and Dynamic System

scores are shown in Figure 5-1.

5.3.2 Bin Packing

The behavior of the Bin Packing benchmark on both the Xeon8 and AMD48 system is

similar, especially with respect to suboptimal hyperparameter configurations (Figures

5-4 and 5-5).

On the Xeon8, average throughput is maximized for (C,W) = (0.5, 50) (Table

5-4(a)) while on the AMD48 the optimum is at (C,W) = (5, 500) (Table 5-5(a)).

However, we could have confidently used any of those configurations on both systems

and gotten a mean throughput within 4% of optimum. Other throughput patterns

were evident as well. For example, on both systems configurations with a large C

and/or small W had the lowest mean throughput.

101

Surprisingly, configurations with a very low mean throughput were the ones for

which the fastest candidates were found (Tables 5-4(b) and 5-5(b)). For example,

while (C,W) = (0.1, 5) found the fastest candidate on the AMD48 system, and a

candidate within 8% of fastest on the Xeon8, the average throughputs were below

10% of optimum on both systems. This is due to the relatively slow convergence

of those configurations (Tables 5-4(e) and 5-5(e)). In fact, all of the configurations

with the best candidate within 20% of optimum, corresponding to W = 5 on both

the Xeon8 and AMD48, had convergence times at least twice as slow as optimum, with

some up to 7x slower.

Configurations with the best candidates performed worst with respect to meeting

their accuracy target, which is to be expected due to long convergence. However, the

RMSE (Tables 5-4(c) and 5-5(c)) was relatively low for those configurations, which

suggests that while they were not meeting the target exactly, they managed to stay

close to it for most of the run. This is in contrast to configuration with a high average

throughput, which demonstrated very large values of RMSE.

The optima with respect to the Static and Dynamic System scores are shown in

Figure 5-1.

5.3.3 Poisson

Figure 5-6 shows the performance of the Poisson benchmark on the Xeon8 system.

Mean throughput is maximized for the configuration (C,W) = (5, 50), although due

to the large variance many other configurations could be optimal (Table 5-6(a)).

Configurations with a high value of W , while slower than optimum, demonstrate

a relatively consistent throughput across runs. (C,W) = (50, 500), for example, is

within 35% of optimum with a standard deviation of only 20%. This is also the

configuration for which the best candidate was found (Table 5-6(b)). The quality of

the best candidate seems to increase with the value of C and W , and suggests that

Poisson benefits from a highly exploratory behavior, with occasional exploitation over

a long mutator window.

The accuracy error for the Poisson benchmark on the Xeon8 remains large but

102

relatively stable across all the tested hyperparameter configurations, with an optimum

at (C,W) = (50, 500) (Table 5-6(c)). Likewise, over 99% of generations met the

accuracy target, regardless of C and W (Table 5-6(d)).

Xeon8 convergence times displayed a significantly greater variation across hyper-

parameter values (Table 5-6(e). Smaller values of C and W seemed to perform much

better overall (up to a factor of over 900x), with an optimum at (C,W) = (5, 100).

However, their faster convergence was at a noticeable expense of throughput and

best candidate’s quality: the optimal configuration in terms of convergence had over

40% slower overall throughput and best candidate that was over 50% slower. This

behavior suggests that estimating proper mutator weights for the Poisson benchmark

on the Xeon8 is a difficult task which takes a very long time, but which eventually

results in better quality candidates.

Performance on the AMD48 system (Figure 5-7) was similar in terms of accuracy,

with over 97% of all candidates meeting the accuracy target across different hyperpa-

rameter values (Table 5-7(d). The RMSE error was slightly larger compared to the

Xeon8 system (Table 5-7(c)). In term of throughput, while the AMD48 had optimal

average throughput at (C,W) = (5, 500) compared to Xeon8’s (C,W) = (5, 50) (5-

7(a) and Table 5-6(a)), a significant variance of measurements on both systems could

potentially account for the difference.

The autotuner on the AMD48 system found a candidate with the best throughput at

(C,W) = (50, 500) (Table 5-7(b)), which is the same as on the Xeon8 system. AMD48’s

convergence times displayed a significant variation, with the fastest convergence at

(C,W) = (5, 5), and ≈51x slower at (C,W) = (50, 500) (Table 5-7(e)). However, the

fast convergence of the former configuration meant that worse overall candidates were

found, with mean throughput only at about 25% of optimum. Note that compared

to the Xeon8 there are significantly more slow-converging configurations.

The optima with respect to the score functions are shown in Figure 5-1.

103

5.3.4 Image Compression

Image Compressionis a relatively easy benchmark to autotune, and the data for both

the Xeon8 (Figure 5-8) and the AMD48 systems (Figure 5-9) reflects that: all configura-

tions perform well regardless of hyperparameter values. The only (slight) exception is

the convergence time on the Xeon8 system, where the slowest configuration (C,W) =

(5, 5) takes about 85% longer to converge than the optimal (C,W) = (0.01, 100)

(Table 5-8(e)). When one looks at absolute instead of relative values, however, this

amounts to only abound 2-3 races, which in most use cases would not be significant.

Based on the data, the user could confidently choose most of the configuration

we evaluated in both the static and dynamic system scenarios and get good average

performance on all the metrics. The optima with respect to the score functions are

shown in Figure 5-1.

5.4 The Big Picture

Ideally, the user would be able to repeat our sampling experiments for different hy-

perparameter configurations, and select values of C and W based on their actual

performance on the given program. This requirement is, however, unrealistic. Ac-

curately evaluating a single program by testing many configurations averaged over a

considerable number of runs could take hours, if not days. This high upfront cost

could make the use of SiblingRivalry infeasible in many settings.

There are many solutions to this problem. First, SiblingRivalry could automati-

cally derive a fast model of the tuned program, and optimize hyperparameters based

on that model. While intriguing, building such a model would require substantial

changes to SiblingRivalry, and might be highly suboptimal due to inaccuracies of the

model. A second solution, which we adopt, is to find “globally optimal” values of

hyperparameters, i.e. hyperparameters with a track record of performing well across

benchmarks. One might think this feat impossible, since the optima for different

benchmarks differ significantly (see Figure 5-1). However, as we will soon demon-

strate, by sacrificing only a little performance on each benchmark, we can indeed find

104

globally optimal hyperparameters.

5.4.1 Globally Optimal Hyperparameters

We used the score functions from the Static and Dynamic scenarios to find hyperpa-

rameters that maximized the mean score on all the benchmarks. We found that the

hyperparameters (C,W) = (5, 5) for the Static System and (C,W) = (5, 100) for the

Dynamic System maximized this score. The results are shown in Table 5.1. For the

sake of illustration, we normalized each score with respect to the optimum for the

given benchmark and scenario (Table 5-1(b)). Despite fixing hyperparameter values

across benchmarks, we got a mean score of 0.8832 for the Static and 0.8245 for the

Dynamic System, which means that we only sacrificed less than 20% of the perfor-

mance by not tuning hyperparameters on a per-benchmark basis. This result implies

that the hyperparameters we found are likely to generalize to other benchmarks, thus

providing sensible defaults and removing the need to optimize them on a per-program

basis.

Static System Dynamic System
Xeon8 AMD48 Xeon8 AMD48

Sort 0.9571 1.0000 0.7416 0.6112
Bin Packing 0.8561 0.9472 0.6742 0.8874

Poisson 0.7064 0.7109 0.9077 0.9607
Image Compression 0.9244 0.9635 0.8992 0.9142

Table 5.1: Benchmark scores for the globally optimal values of hyperparameters nor-
malized with respect to the best score for the given benchmark and scenario. The
hyperparameters were C = 5, W = 5 for the Static System, and C = 5, W = 100 for
the Dynamic System. Mean scores are 0.8832 and 0.8245 for the Static and Dynamic
systems, respectively.

5.5 Conclusions

We performed a detailed experimental investigation of hyperparameter values on Sib-

lingRivalry’s autotuning performance. We evaluated four benchmarks with respect

105

to five metrics, and demonstrated that optimal hyperparameter values differ signifi-

cantly between benchmarks. We also showed how two possible autotuning scenarios

can affect the optimal hyperparameter values. We further demonstrated that a single

choice of hyperparameters across many benchmarks is possible, with only a small

performance degradation. Such a choice provides sensible defaults for SiblingRivalry,

removing the need for the user to tune them per-program, and thus making our

approach more feasible in a real-world setting.

106

C
W

5 50 100 500

0.01 0.7022 ±0.1625 0.7892 ±0.1459 0.7411 ±0.1667 0.7682 ±0.1532
0.10 0.7512 ±0.1320 0.7538 ±0.1558 0.7829 ±0.1249 0.7680 ±0.1677
0.50 0.7398 ±0.1776 0.7958 ±0.1278 0.7956 ±0.1605 0.7579 ±0.1521
5.00 0.8077 ±0.1609 0.9319 ±0.0932 0.9521 ±0.0779 0.9562 ±0.0653
50.00 0.9671 ±0.0371 ∗ 0.9976 ±0.0104 1.0000 ±0.0076 ∗ 0.9961 ±0.0154

(a) Mean throughput (races/s) normalized to the fastest configuration. Normalization factor: 5.4741.

C
W

5 50 100 500

0.01 0.7171 ±0.1467 0.7981 ±0.1318 0.7594 ±0.1469 0.7870 ±0.1416
0.10 0.7627 ±0.1077 0.7624 ±0.1458 0.7917 ±0.1174 0.7914 ±0.1506
0.50 0.7577 ±0.1506 0.7997 ±0.1149 0.8023 ±0.1494 0.7867 ±0.1341
5.00 0.8174 ±0.1347 0.9295 ±0.0882 0.9479 ±0.0706 0.9619 ±0.0652
50.00 0.9602 ±0.0334 0.9968 ±0.0057 ∗ 0.9981 ±0.0034 1.0000 ±0.0041

(b) Best candidate throughput (races/s) normalized to the fastest candidate. Normalization
factor: 6.2435.

C
W

5 50 100 500

0.01 ∗ 1.4980 ±1.4224 2.3441 ±2.8144 2.9156 ±2.1436 6.9268 ±6.9161
0.10 2.2189 ±3.1541 2.5787 ±2.3936 3.5260 ±2.1447 4.1217 ±3.8916
0.50 ∗ 1.6790 ±2.4116 1.6802 ±1.2014 2.2744 ±1.5285 6.7082 ±5.2096
5.00 1.0000 ±1.0748 2.0503 ±1.1397 2.5746 ±1.8791 6.6426 ±5.6713
50.00 1.6134 ±0.8930 3.7238 ±2.5726 3.0304 ±1.7031 4.9711 ±5.2824

(c) Time to convergence (number of races) normalized to the lowest one achieved. Normalization
factor: 115.2667.

Figure 5-2: Metrics for benchmark Sort on the Xeon8 system evaluated with different
values of hyperparameters. An asterisk ∗ next to a number means that the difference
from optimum is not statistically significant (p-value ≥ 0.05).

107

C
W

5 50 100 500

0.01 0.7634 ±0.1949 0.8859 ±0.0900 0.8881 ±0.1452 0.8478 ±0.0841
0.10 0.7759 ±0.1291 0.8034 ±0.1279 0.7601 ±0.1965 0.8827 ±0.0795
0.50 0.7576 ±0.1890 0.7951 ±0.1692 0.8482 ±0.0935 0.8683 ±0.0941
5.00 0.8346 ±0.0923 0.9426 ±0.0685 ∗ 0.9841 ±0.0536 ∗ 0.9831 ±0.0291
50.00 0.9732 ±0.0143 1.0000 ±0.0154 ∗ 0.9926 ±0.0132 0.9798 ±0.0290

(a) Mean throughput (races/s) normalized to the fastest configuration. Normalization factor: 3.4538.

C
W

5 50 100 500

0.01 0.7631 ±0.1738 0.8648 ±0.0947 0.8723 ±0.1451 0.8367 ±0.1007
0.10 0.7596 ±0.1172 0.7899 ±0.1227 0.7484 ±0.1833 0.8746 ±0.0894
0.50 0.7625 ±0.1704 0.7851 ±0.1563 0.8415 ±0.0745 0.8541 ±0.0988
5.00 0.8067 ±0.0948 0.9284 ±0.0773 ∗ 0.9750 ±0.0573 0.9698 ±0.0352
50.00 0.9600 ±0.0231 1.0000 ±0.0200 ∗ 0.9950 ±0.0170 0.9838 ±0.0120

(b) Best candidate throughput (races/s) normalized to the fastest candidate. Normalization
factor: 3.8713.

C
W

5 50 100 500

0.01 ∗ 4.9463 ±9.3636 2.4251 ±3.8180 6.0850 ±8.0789 ∗ 4.5145 ±8.4378
0.10 ∗ 3.4564 ±7.5355 ∗ 2.8098 ±6.5613 ∗ 1.7271 ±1.9581 8.4430 ±13.9749
0.50 ∗ 5.6018 ±9.9619 3.6242 ±5.3498 ∗ 4.4474 ±8.8197 4.5727 ±7.4949
5.00 1.0000 ±0.8090 5.7069 ±10.2162 7.2841 ±8.9958 7.3154 ±8.7998
50.00 4.8658 ±2.5240 16.0716 ±16.1863 12.9374 ±10.9121 6.9687 ±5.3936

(c) Time to convergence (number of races) normalized to the lowest one achieved. Normalization
factor: 22.3500.

Figure 5-3: Metrics for benchmark Sort on the AMD48 system evaluated with different
values of hyperparameters. An asterisk ∗ next to a number means that the difference
from optimum is not statistically significant (p-value ≥ 0.05).

108

C
W

5 50 100 500

0.01 0.0467 ±0.0173 ∗ 0.5949 ±0.3913 ∗ 0.5839 ±0.4003 ∗ 0.6476 ±0.3909
0.10 0.0509 ±0.0198 ∗ 0.7642 ±0.9978 ∗ 0.5285 ±0.3681 ∗ 0.6368 ±0.3433
0.50 0.0451 ±0.0158 1.0000 ±1.8869 ∗ 0.6154 ±0.3043 ∗ 0.8782 ±1.0515
5.00 0.0445 ±0.0182 ∗ 0.5796 ±0.5914 ∗ 0.9183 ±1.1676 0.9796 ±1.0238
50.00 0.1153 ±0.0511 0.2661 ±0.1583 0.3333 ±0.2218 0.2504 ±0.0695

(a) Mean throughput (races/s) normalized to the fastest configuration. Normalization
factor: 48.0584.

C
W

5 50 100 500

0.01 1.0000 ±0.0295 0.6268 ±0.2227 0.5813 ±0.2001 0.4972 ±0.0140
0.10 ∗ 0.9285 ±0.1854 0.5983 ±0.2154 0.5439 ±0.1461 0.4963 ±0.0139
0.50 ∗ 0.9062 ±0.2038 0.5598 ±0.1717 0.4938 ±0.0134 0.4969 ±0.0133
5.00 ∗ 0.8120 ±0.2546 0.6827 ±0.2451 0.6235 ±0.2142 0.5114 ±0.0088
50.00 ∗ 0.8444 ±0.2495 0.5327 ±0.0940 0.5162 ±0.0027 0.5163 ±0.0029

(b) Best candidate throughput (races/s) normalized to the fastest candidate. Normalization
factor: 3.8151.

C
W

5 50 100 500

0.01 1.0000 ±0.1467 2.7451 ±0.9020 2.6741 ±0.9574 2.9507 ±0.8128
0.10 ∗ 1.0548 ±0.1710 2.8627 ±0.9703 2.7011 ±0.8725 3.0573 ±0.8367
0.50 ∗ 1.0156 ±0.1620 2.7960 ±1.1384 3.0342 ±1.0395 2.9594 ±1.0789
5.00 ∗ 1.0190 ±0.1604 3.0010 ±1.2843 3.0041 ±1.2071 3.6437 ±1.2162
50.00 1.5095 ±0.2146 2.1523 ±0.3023 2.4795 ±0.5332 2.1054 ±0.1756

(c) Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved. Normalization
factor: 0.0408.

C
W

5 50 100 500

0.01 0.3207 ±0.5332 0.8553 ±0.2299 0.8068 ±0.2435 0.7804 ±0.1866
0.10 0.5514 ±0.5944 0.8192 ±0.2390 0.8461 ±0.2151 0.7987 ±0.1907
0.50 0.3636 ±0.5170 0.7839 ±0.3415 0.6935 ±0.2701 0.6685 ±0.3585
5.00 0.3719 ±0.5280 0.7332 ±0.3096 0.7156 ±0.3169 0.5623 ±0.2938
50.00 1.0000 ±0.2889 ∗ 0.9681 ±0.1159 0.9380 ±0.1239 0.9804 ±0.1273

(d) Percentage of races that met accuracy target normalized to the highest one achieved. Normal-
ization factor: 5.7006.

C
W

5 50 100 500

0.01 5.4381 ±3.1205 ∗ 3.5652 ±5.0255 ∗ 1.6026 ±2.7460 ∗ 1.3418 ±2.0867
0.10 3.6426 ±2.8052 2.9784 ±4.0732 ∗ 1.9122 ±3.0710 ∗ 1.2129 ±1.7783
0.50 6.2328 ±4.2491 ∗ 10.8195 ±49.485 1.0000 ±0.6316 ∗ 5.7735 ±16.4545
5.00 2.9953 ±2.5389 4.4862 ±5.8300 3.3855 ±4.8506 ∗ 1.2183 ±1.3415
50.00 7.0258 ±4.8670 ∗ 1.4899 ±1.7110 ∗ 1.0042 ±0.7444 ∗ 1.2749 ±0.9714

(e) Time to convergence (number of races) normalized to the lowest one achieved. Normalization
factor: 74.7500.

Figure 5-4: Metrics for benchmark Bin Packing on the Xeon8 system evaluated with
different values of hyperparameters. An asterisk ∗ next to a number means that the
difference from optimum is not statistically significant (p-value ≥ 0.05).

109

C
W

5 50 100 500

0.01 0.0831 ±0.0364 0.6379 ±0.4622 ∗ 0.8305 ±0.3674 ∗ 0.7695 ±0.5082
0.10 0.0844 ±0.0330 ∗ 0.8128 ±0.3908 ∗ 0.9066 ±0.9946 ∗ 0.8326 ±0.5185
0.50 0.0803 ±0.0354 ∗ 0.9794 ±1.1818 ∗ 0.7285 ±0.4457 ∗ 0.7268 ±0.4810
5.00 0.1057 ±0.0395 ∗ 0.8514 ±0.7817 ∗ 0.7541 ±0.4020 1.0000 ±0.6079
50.00 0.2465 ±0.1100 0.3234 ±0.1043 0.3109 ±0.0782 0.3255 ±0.0692

(a) Mean throughput (races/s) normalized to the fastest configuration. Normalization
factor: 13.9339.

C
W

5 50 100 500

0.01 ∗ 0.8448 ±0.2431 0.6802 ±0.2673 0.4688 ±0.1304 0.4404 ±0.0125
0.10 1.0000 ±0.0186 0.5427 ±0.2076 0.4723 ±0.1164 0.4378 ±0.0137
0.50 ∗ 0.8996 ±0.2226 ∗ 0.5856 ±0.2359 0.4934 ±0.1624 0.4351 ±0.0105
5.00 ∗ 0.9479 ±0.1480 ∗ 0.5683 ±0.2190 0.4564 ±0.0071 0.4575 ±0.0080
50.00 ∗ 0.6503 ±0.2625 0.4606 ±0.0016 0.4595 ±0.0035 0.4590 ±0.0035

(b) Best candidate throughput (races/s) normalized to the fastest candidate. Normalization
factor: 2.0105.

C
W

5 50 100 500

0.01 ∗ 1.0209 ±0.1538 2.3683 ±0.8644 3.0144 ±0.5231 2.7324 ±0.8927
0.10 ∗ 1.0083 ±0.1280 2.8437 ±0.7947 2.6830 ±1.0425 2.7739 ±0.9000
0.50 1.0000 ±0.1384 2.3480 ±1.0114 2.5601 ±0.8720 2.5438 ±0.8733
5.00 ∗ 1.1011 ±0.1719 2.0680 ±0.9162 3.0481 ±1.0211 2.7223 ±0.7398
50.00 1.6999 ±0.3230 1.9277 ±0.1941 1.9621 ±0.1563 1.9383 ±0.1063

(c) Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved. Normalization
factor: 0.0431.

C
W

5 50 100 500

0.01 0.3984 ±0.5581 0.8056 ±0.2371 0.6592 ±0.1896 0.7184 ±0.2518
0.10 0.2532 ±0.4398 0.7751 ±0.2169 0.7691 ±0.3175 0.6256 ±0.2530
0.50 0.2736 ±0.4794 0.7882 ±0.3089 0.7443 ±0.3214 0.7162 ±0.2481
5.00 ∗ 0.6646 ±0.5495 0.6791 ±0.3632 0.6800 ±0.2176 0.7191 ±0.2569
50.00 ∗ 0.9611 ±0.1635 ∗ 0.9066 ±0.2240 ∗ 0.9639 ±0.2143 1.0000 ±0.1567

(d) Percentage of races that met accuracy target normalized to the highest one achieved. Normal-
ization factor: 5.9188.

C
W

5 50 100 500

0.01 ∗ 2.7844 ±1.9587 3.5227 ±3.2427 ∗ 1.4105 ±1.3325 ∗ 1.7656 ±2.9000
0.10 4.2545 ±2.3638 ∗ 2.4973 ±3.7407 ∗ 1.2115 ±1.6913 1.8967 ±2.1635
0.50 3.3455 ±1.4152 ∗ 3.9990 ±9.0836 ∗ 1.8344 ±1.9539 1.0000 ±0.6515
5.00 4.5455 ±2.2751 ∗ 2.2498 ±2.7134 ∗ 1.1527 ±0.6035 ∗ 1.2086 ±0.6339
50.00 2.6691 ±2.2855 ∗ 1.4236 ±1.3947 ∗ 1.1727 ±0.9371 ∗ 1.1400 ±0.4892

(e) Time to convergence (number of races) normalized to the lowest one achieved. Normalization
factor: 55.0000.

Figure 5-5: Metrics for benchmark Bin Packing on the AMD48 system evaluated with
different values of hyperparameters. An asterisk ∗ next to a number means that the
difference from optimum is not statistically significant (p-value ≥ 0.05).

110

C
W

5 50 100 500

0.01 0.4411 ±0.0083 ∗ 0.4941 ±0.0703 ∗ 0.5321 ±0.1314 0.9875 ±0.7413
0.10 ∗ 0.4419 ±0.0077 ∗ 0.7453 ±1.2946 ∗ 0.5312 ±0.1390 ∗ 0.7656 ±0.5697
0.50 ∗ 0.4419 ±0.0059 ∗ 0.4663 ±0.0529 ∗ 0.4746 ±0.0819 ∗ 0.6493 ±0.4313
5.00 0.4416 ±0.0051 1.0000 ±2.0439 ∗ 0.5961 ±0.7323 ∗ 0.5783 ±0.4994
50.00 ∗ 0.5059 ±0.1776 0.5312 ±0.1409 0.8636 ±0.7448 0.6529 ±0.1996

(a) Mean throughput (races/s) normalized to the fastest configuration. Normalization
factor: 11.5018.

C
W

5 50 100 500

0.01 0.4753 ±0.0005 0.4756 ±0.0006 0.4757 ±0.0006 0.4761 ±0.0007
0.10 0.4754 ±0.0005 0.4755 ±0.0007 0.5035 ±0.1497 0.5376 ±0.2456
0.50 0.4753 ±0.0005 0.4754 ±0.0005 0.4755 ±0.0005 0.5697 ±0.2898
5.00 0.4753 ±0.0004 0.4755 ±0.0006 0.4755 ±0.0006 0.5254 ±0.2672
50.00 0.4774 ±0.0101 0.5602 ±0.2333 0.6241 ±0.3894 1.0000 ±0.5139

(b) Best candidate throughput (races/s) normalized to the fastest candidate. Normalization
factor: 11.6923.

C
W

5 50 100 500

0.01 1.2947 ±0.0000 1.2939 ±0.0013 1.2939 ±0.0012 1.2884 ±0.0081
0.10 1.2947 ±0.0001 1.2920 ±0.0118 1.2646 ±0.1587 1.2420 ±0.1848
0.50 1.2947 ±0.0000 1.2945 ±0.0005 1.2942 ±0.0018 1.2286 ±0.1929
5.00 1.2947 ±0.0001 1.2896 ±0.0185 1.2921 ±0.0127 1.2592 ±0.1803
50.00 1.2937 ±0.0021 1.2563 ±0.1785 1.1897 ±0.2504 1.0000 ±0.3300

(c) Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved. Normalization
factor: 18.5365.

C
W

5 50 100 500

0.01 ∗ 1.0000 ±0.0001 0.9985 ±0.0021 0.9986 ±0.0020 0.9897 ±0.0131
0.10 ∗ 1.0000 ±0.0001 0.9956 ±0.0189 0.9988 ±0.0017 0.9946 ±0.0097
0.50 1.0000 ±0.0001 0.9996 ±0.0008 0.9991 ±0.0029 0.9967 ±0.0080
5.00 ∗ 1.0000 ±0.0001 0.9918 ±0.0295 0.9958 ±0.0204 0.9967 ±0.0134
50.00 0.9986 ±0.0031 0.9968 ±0.0045 0.9836 ±0.0261 0.9982 ±0.0023

(d) Percentage of races that met accuracy target normalized to the highest one achieved. Normal-
ization factor: 99.9989.

C
W

5 50 100 500

0.01 1.2432 ±0.4555 1.1622 ±0.4531 1.1081 ±0.3907 1.2973 ±0.7130
0.10 1.1622 ±0.4991 1.2703 ±0.6843 25.4324 ±130.94 89.1351 ±378.01
0.50 1.0811 ±0.4358 1.1081 ±0.4433 1.1892 ±0.5013 144.2973 ±446.11
5.00 1.0811 ±0.3822 1.4324 ±0.8291 1.0000 ±0.3429 195.2162 ±1044.50
50.00 8.8378 ±40.5218 158.6486 ±522.98 174.4324 ±506.73 967.9730 ±1087.86

(e) Time to convergence (number of races) normalized to the lowest one achieved. Normalization
factor: 1.2333.

Figure 5-6: Metrics for benchmark Poisson on the Xeon8 system evaluated with dif-
ferent values of hyperparameters. An asterisk ∗ next to a number means that the
difference from optimum is not statistically significant (p-value ≥ 0.05).

111

C
W

5 50 100 500

0.01 0.2558 ±0.0057 ∗ 0.3311 ±0.1063 ∗ 0.6048 ±0.9884 ∗ 0.7500 ±0.6350
0.10 0.2548 ±0.0029 ∗ 0.5237 ±0.9201 ∗ 0.3042 ±0.0883 ∗ 0.6913 ±0.7247
0.50 0.2562 ±0.0048 0.2798 ±0.0771 ∗ 0.3175 ±0.1334 0.3584 ±0.3642
5.00 0.2570 ±0.0072 ∗ 0.7374 ±1.4427 0.2794 ±0.0644 1.0000 ±1.4595
50.00 0.2717 ±0.0172 ∗ 0.4783 ±0.2569 ∗ 0.4395 ±0.2083 ∗ 0.3819 ±0.1225

(a) Mean throughput (races/s) normalized to the fastest configuration. Normalization
factor: 11.5793.

C
W

5 50 100 500

0.01 0.4705 ±0.0074 0.5314 ±0.2673 0.4685 ±0.0081 ∗ 0.5422 ±0.3107
0.10 0.4664 ±0.0080 0.4670 ±0.0078 ∗ 0.4698 ±0.0061 0.6097 ±0.4197
0.50 0.4655 ±0.0085 0.4683 ±0.0075 0.5001 ±0.1500 0.4688 ±0.0059
5.00 0.4644 ±0.0076 0.4688 ±0.0070 0.4656 ±0.0074 0.4762 ±0.0215
50.00 0.4661 ±0.0085 ∗ 0.6705 ±0.4763 0.4683 ±0.0073 1.0000 ±0.6763

(b) Best candidate throughput (races/s) normalized to the fastest candidate. Normalization
factor: 6.8888.

C
W

5 50 100 500

0.01 1.1459 ±0.0001 1.1078 ±0.1597 1.1366 ±0.0270 ∗ 1.1115 ±0.0944
0.10 1.1460 ±0.0001 1.1390 ±0.0238 1.1447 ±0.0023 1.1052 ±0.1035
0.50 1.1459 ±0.0001 1.1453 ±0.0020 1.1067 ±0.1663 1.1431 ±0.0091
5.00 1.1459 ±0.0002 1.1346 ±0.0335 1.1435 ±0.0095 1.1194 ±0.0426
50.00 1.1455 ±0.0004 ∗ 1.0301 ±0.2605 ∗ 1.1367 ±0.0126 1.0000 ±0.2382

(c) Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved. Normalization
factor: 20.9425.

C
W

5 50 100 500

0.01 ∗ 0.9999 ±0.0002 0.9973 ±0.0036 0.9833 ±0.0478 0.9768 ±0.0305
0.10 1.0000 ±0.0001 0.9874 ±0.0422 0.9976 ±0.0042 0.9803 ±0.0349
0.50 ∗ 0.9999 ±0.0002 ∗ 0.9988 ±0.0037 0.9979 ±0.0047 ∗ 0.9948 ±0.0166
5.00 ∗ 0.9999 ±0.0003 0.9799 ±0.0593 0.9955 ±0.0171 0.9610 ±0.0712
50.00 0.9991 ±0.0008 0.9896 ±0.0136 0.9831 ±0.0230 0.9965 ±0.0032

(d) Percentage of races that met accuracy target normalized to the highest one achieved. Normal-
ization factor: 99.9971.

C
W

5 50 100 500

0.01 4.8419 ±7.0167 4.3787 ±8.7464 5.7390 ±13.6597 7.0000 ±16.1657
0.10 ∗ 2.4154 ±5.4030 ∗ 2.3676 ±5.6973 ∗ 5.1875 ±11.9706 14.3309 ±31.7173
0.50 ∗ 1.7794 ±3.5586 ∗ 5.1838 ±10.1641 ∗ 1.8272 ±5.5271 ∗ 3.5919 ±5.7688
5.00 1.0000 ±1.8098 3.7243 ±5.5670 ∗ 1.0772 ±2.1406 6.0441 ±12.0280
50.00 ∗ 4.6176 ±11.1570 23.2390 ±50.5314 6.7941 ±12.5596 50.9118 ±60.2539

(e) Time to convergence (number of races) normalized to the lowest one achieved. Normalization
factor: 13.6000.

Figure 5-7: Metrics for benchmark Poisson on the AMD48 system evaluated with dif-
ferent values of hyperparameters. An asterisk ∗ next to a number means that the
difference from optimum is not statistically significant (p-value ≥ 0.05).

112

C
W

5 50 100 500

0.01 ∗ 0.9341 ±0.2195 ∗ 0.9657 ±0.1600 ∗ 0.8805 ±0.3002 1.0000 ±0.0158
0.10 ∗ 0.7971 ±0.3753 0.8172 ±0.3513 ∗ 0.9929 ±0.0290 ∗ 0.9347 ±0.2201
0.50 ∗ 0.9998 ±0.0143 ∗ 0.9679 ±0.1584 ∗ 0.9647 ±0.1591 0.8469 ±0.3268
5.00 ∗ 0.9733 ±0.1604 0.9052 ±0.2626 0.8500 ±0.3287 0.8771 ±0.2984
50.00 0.9626 ±0.1578 ∗ 0.9628 ±0.1573 0.9347 ±0.2192 0.9319 ±0.2190

(a) Mean throughput (races/s) normalized to the fastest configuration. Normalization factor: 0.1514.

C
W

5 50 100 500

0.01 ∗ 0.9363 ±0.2217 ∗ 0.9646 ±0.1596 ∗ 0.8789 ±0.3021 ∗ 0.9995 ±0.0114
0.10 ∗ 0.7923 ±0.3770 0.8166 ±0.3539 ∗ 0.9969 ±0.0143 0.9330 ±0.2205
0.50 1.0000 ±0.0099 0.9627 ±0.1588 ∗ 0.9678 ±0.1599 0.8461 ±0.3296
5.00 ∗ 0.9668 ±0.1596 0.9033 ±0.2649 ∗ 0.8508 ±0.3316 ∗ 0.8787 ±0.3020
50.00 0.9628 ±0.1594 ∗ 0.9651 ±0.1592 ∗ 0.9381 ±0.2217 ∗ 0.9361 ±0.2216

(b) Best candidate throughput (races/s) normalized to the fastest candidate. Normalization
factor: 0.1732.

C
W

5 50 100 500

0.01 ∗ 1.0023 ±0.0101 ∗ 1.0015 ±0.0066 1.0017 ±0.0126 ∗ 1.0010 ±0.0053
0.10 ∗ 1.0001 ±0.0038 ∗ 1.0031 ±0.0106 ∗ 1.0039 ±0.0124 ∗ 1.0029 ±0.0097
0.50 ∗ 1.0007 ±0.0038 ∗ 1.0010 ±0.0045 ∗ 1.0021 ±0.0095 ∗ 1.0023 ±0.0095
5.00 ∗ 1.0004 ±0.0042 1.0021 ±0.0050 1.0000 ±0.0034 ∗ 1.0010 ±0.0040
50.00 ∗ 1.0024 ±0.0058 ∗ 1.0017 ±0.0046 ∗ 1.0017 ±0.0052 1.0042 ±0.0074

(c) Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved. Normalization
factor: 0.1017.

C
W

5 50 100 500

0.01 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000
0.10 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000
0.50 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000
5.00 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000
50.00 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000

(d) Percentage of races that met accuracy target normalized to the highest one achieved. Normal-
ization factor: 100.0000.

C
W

5 50 100 500

0.01 1.2432 ±0.8066 1.3333 ±0.9413 1.0000 ±0.4942 1.3604 ±0.8032
0.10 1.1802 ±0.6490 1.0270 ±0.7496 1.2793 ±0.7080 ∗ 1.1982 ±0.8277
0.50 1.6396 ±2.1073 1.3243 ±0.7264 1.5045 ±0.9959 ∗ 1.2162 ±0.8792
5.00 1.8468 ±1.4217 ∗ 1.2162 ±0.7311 1.1892 ±0.6419 1.4775 ±0.9961
50.00 1.4865 ±1.0297 1.3153 ±0.7540 1.6036 ±1.5304 1.7027 ±3.0194

(e) Time to convergence (number of races) normalized to the lowest one achieved. Normalization
factor: 3.7000.

Figure 5-8: Metrics for benchmark Image Compression on the Xeon8 system evaluated
with different values of hyperparameters. An asterisk ∗ next to a number means that
the difference from optimum is not statistically significant (p-value ≥ 0.05).

113

C
W

5 50 100 500

0.01 ∗ 0.9566 ±0.1929 ∗ 0.9960 ±0.0123 ∗ 0.9540 ±0.1929 ∗ 0.9521 ±0.1920
0.10 ∗ 0.9923 ±0.0264 ∗ 0.9377 ±0.1928 ∗ 0.9989 ±0.0125 ∗ 0.8600 ±0.3135
0.50 ∗ 0.9940 ±0.0378 ∗ 0.9929 ±0.0262 ∗ 0.9991 ±0.0103 ∗ 0.9488 ±0.1920
5.00 ∗ 0.9938 ±0.0276 0.9522 ±0.1916 ∗ 0.9102 ±0.2650 ∗ 0.9101 ±0.2642
50.00 ∗ 0.9803 ±0.0480 1.0000 ±0.0097 0.9054 ±0.2630 ∗ 0.9496 ±0.1918

(a) Mean throughput (races/s) normalized to the fastest configuration. Normalization factor: 0.1305.

C
W

5 50 100 500

0.01 ∗ 0.9555 ±0.1930 0.9967 ±0.0053 0.9538 ±0.1927 0.9525 ±0.1924
0.10 ∗ 0.9974 ±0.0079 0.9528 ±0.1923 0.9971 ±0.0031 0.8647 ±0.3151
0.50 ∗ 0.9975 ±0.0079 ∗ 0.9979 ±0.0029 0.9970 ±0.0024 0.9518 ±0.1921
5.00 1.0000 ±0.0040 0.9535 ±0.1925 0.9093 ±0.2651 ∗ 0.9106 ±0.2655
50.00 0.9969 ±0.0020 ∗ 0.9983 ±0.0035 ∗ 0.9101 ±0.2653 ∗ 0.9538 ±0.1922

(b) Best candidate throughput (races/s) normalized to the fastest candidate. Normalization
factor: 0.1363.

C
W

5 50 100 500

0.01 ∗ 1.0005 ±0.0023 ∗ 1.0019 ±0.0032 ∗ 1.0008 ±0.0022 1.0018 ±0.0039
0.10 ∗ 1.0011 ±0.0031 ∗ 1.0045 ±0.0132 ∗ 1.0006 ±0.0021 ∗ 1.0032 ±0.0096
0.50 ∗ 1.0029 ±0.0133 ∗ 1.0009 ±0.0027 ∗ 1.0008 ±0.0023 ∗ 1.0010 ±0.0026
5.00 ∗ 1.0001 ±0.0009 1.0010 ±0.0020 ∗ 1.0009 ±0.0021 ∗ 1.0008 ±0.0021
50.00 1.0079 ±0.0198 ∗ 1.0012 ±0.0025 1.0000 ±0.0005 ∗ 1.0026 ±0.0061

(c) Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved. Normalization
factor: 0.1015.

C
W

5 50 100 500

0.01 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000
0.10 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000
0.50 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000
5.00 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000
50.00 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000 1.0000 ±0.0000

(d) Percentage of races that met accuracy target normalized to the highest one achieved. Normal-
ization factor: 100.0000.

C
W

5 50 100 500

0.01 1.1628 ±0.4766 1.1163 ±0.2712 1.1163 ±0.3418 1.0698 ±0.2590
0.10 1.3256 ±0.6623 1.2558 ±0.5116 1.0698 ±0.2131 1.1163 ±0.4966
0.50 1.0930 ±0.2662 1.1395 ±0.4527 1.0930 ±0.2662 1.1163 ±0.5179
5.00 1.3023 ±0.6512 1.0000 ±0.2218 1.1395 ±0.3442 1.0465 ±0.3247
50.00 1.0698 ±0.2590 1.0465 ±0.2494 1.1395 ±0.3743 1.1395 ±0.3743

(e) Time to convergence (number of races) normalized to the lowest one achieved. Normalization
factor: 2.1500.

Figure 5-9: Metrics for benchmark Image Compression on the AMD48 system evaluated
with different values of hyperparameters. An asterisk ∗ next to a number means that
the difference from optimum is not statistically significant (p-value ≥ 0.05).

114

Chapter 6

Conclusions and Future Work

PetaBricks [4, 21, 7, 3, 5] is an implicitly parallel programming language which,

though a process called autotuning, can automatically optimize programs for fast,

QoS-aware execution on any hardware. In this thesis, we presented and evaluated

two PetaBricks autotuners: INCREA and SiblingRivalry.

INCREA is an offline autotuner based on a novel evolutionary algorithm. The

EA is designed for problems such as autotuning, which are suited to incremental

shortcuts, and which require such shortcuts because of their large search spaces and

expensive solution evaluation. Furthermore, INCREA efficiently handles other prob-

lems inherent in autotuning, such as noisy fitness evaluation. We found that INCREA

achieved significant speedups on 3 benchmarks.

With the SiblingRivalry online autotuner, we demonstrated that it can sometimes

be more effective to devote resources to learning the smart thing to do, than to simply

throw resources at a potentially suboptimal configuration. Our technique devoted

half of the system resources to a search for better configurations, enabling online

adaption to the system environment. We demonstrated how, despite doing more work,

SiblingRivalry actually increased the performance and improved power consumption

of the tuned programs in the face of dynamically changing execution conditions.

SiblingRivalry was also able to fully eliminate the offline learning step, making the

process fully transparent to users, which is the biggest impediment to the acceptance

of autotuning. By eliminating any extra steps, we believe that SiblingRivalry can

115

bring autotuning to the mainstream program optimization. As we keep increasing

the core counts of our processors, autotuning via SiblingRivalry can help exploit them

in a purposeful way.

We also investigated the influence of hyperparameters on SiblingRivalry’s auto-

tuning performance. We demonstrated that the optimal choice of hyperparameters

differs between programs and autotuning scenarios, but there exist “sensible defaults”

that perform well across many programs. These defaults eliminate the need, in most

cases, for the user to manually tweak SiblingRivalry for each autotuned program, thus

making our approach more feasible in a real-world setting.

Future work includes evaluating our autotuners on large, real-world applications,

as opposed to single benchmarks presented in this thesis. We would also like to see

SiblingRivalry applied in a cloud setting, where architecture migrations occur live

and are not simulated. We believe such tests would reveal more benefits of program

autotuning, as well as show areas where the autotuners could improve. Furthermore,

we would like to make our autotuners more aware of the distinction between algorith-

mic choices and cutoffs/tunables. While these types of parameters have significantly

different tuning characteristics, they are currently treated equally by the autotuners.

Moreover, we would like to investigate online autotuning without racing, where all

available cores can be devoted to the autotuned program. This is especially important

as the number of multicore-aware, highly parallelizable programs increases.

Finally, we would like to completely eliminate the need for tweaking hyperparam-

eters in SiblingRivalry, perhaps by tuning them automatically using a model or by

dynamically adjusting them during the autotuner’s execution. We especially expect

the ability to dynamically adjust hyperparameters during a run to bring tangible

performance benefits, as different exploitation/exploration trade-offs could be best at

different points in the autotuning process.

116

Bibliography

[1] A. N. Aizawa and B. W. Wah. Scheduling of genetic algorithms in a noisy

environment. Evolutionary Computation, 2(2):97–122, 1994.

[2] A. Ali, L. Johnsson, and J. Subhlok. Scheduling FFT computation on SMP and

multicore systems. In Supercomputing, New York, NY, 2007.

[3] J. Ansel, Y. L. W. ans Cy Chan, M. Olszewski, A. Edelman, and S. Amarasinghe.

Language and compiler support for auto-tuning variable-accuracy algorithms. In

CGO, Chamonix, France, Apr 2011.

[4] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman, and S. Ama-

rasinghe. PetaBricks: A language and compiler for algorithmic choice. In PLDI,

Dublin, Ireland, Jun 2009.

[5] J. Ansel, M. Pacula, S. Amarasinghe, and U.-M. O’Reilly. An efficient evolution-

ary algorithm for solving bottom up problems. In Annual Conference on Genetic

and Evolutionary Computation, Dublin, Ireland, July 2011.

[6] J. Ansel, M. Pacula, Y. L. Wong, C. Chan, M. Olszewski, U.-M. O’Reilly, and

S. Amarasinghe. SiblingRivalry: Online autotuning through local competitions

(under review).

[7] J. Ansel, Y. L. Won, C. Chan, M. Olszewski, A. Edelman, and S. Amaras-

inghe. Language and compiler support for auto-tuning variable-accuracy algo-

rithms. Technical Report MIT/CSAIL Technical Report MIT-CSAIL-TR-2010-

032, Massachusetts Institute of Technology, Cambridge, MA, Jul 2010.

117

[8] D. V. Arnold and H.-G. Beyer. On the benefits of populations for noisy opti-

mization. Evolutionary Computation, 11(2):111–127, 2003.

[9] D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding.

In SODA ’07: Proceedings of the eighteenth annual ACM-SIAM symposium on

Discrete algorithms, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for

Industrial and Applied Mathematics.

[10] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E. Schapire. The nonstochastic

multiarmed bandit problem. SIAM Journal on Computing, 32(1), 2003.

[11] J. Auslander, M. Philipose, C. Chambers, S. J. Eggers, and B. N. Bershad. Fast,

effective dynamic compilation. In PLDI, 1996.

[12] T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,

Evolutionary Programming, Genetic Algorithms. Oxford University Press, New

York NY, 1996.

[13] W. Baek and T. Chilimbi. Green: A framework for supporting energy-conscious

programming using controlled approximation. In PLDI, June 2010.

[14] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau,

P. Franzon, W. Harrod, J. Hiller, S. Karp, S. Keckler, D. Klein, R. Lucas,

M. Richards, A. Scarpelli, S. Scott, A. Snavely, T. Sterling, S. Williams, and

K. Yelick. Exascale computing study: Technology challenges in achieving exas-

cale systems, 2008.

[15] V. Bhat, M. Parashar, . Hua Liu, M. Khandekar, N. Kandasamy, and S. Ab-

delwahed. Enabling self-managing applications using model-based online control

strategies. In International Conference on Autonomic Computing, Washington,

DC, 2006.

[16] J. Bilmes, K. Asanovic, C.-W. Chin, and J. Demmel. Optimizing matrix multiply

using PHiPAC: a portable, high-performance, ANSI C coding methodology. In

Supercomputing, New York, NY, 1997.

118

[17] A. P. Bradley. The use of the area under the ROC curve in the evaluation of

machine learning algorithms. Pattern Recognition, 30(7), 1997.

[18] J. Branke. Creating robust solutions by means of evolutionary algorithms. In

A. Eiben, T. Baeck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Prob-

lem Solving from Nature, PPSN V, volume 1498 of Lecture Notes in Computer

Science, pages 119–. Springer Berlin / Heidelberg, 1998.

[19] J. Branke, C. Schmidt, and H. Schmec. Efficient fitness estimation in noisy

environments. In Proceedings of Genetic and Evolutionary Computation, pages

243–250, 2001.

[20] E. Cantu-Paz. Adaptive sampling for noisy problems. In Genetic and Evolu-

tionary Computation, GECCO 2004, volume 3102 of Lecture Notes in Computer

Science, pages 947–958. Springer Berlin / Heidelberg, 2004.

[21] C. Chan, J. Ansel, Y. L. Wong, S. Amarasinghe, and A. Edelman. Autotuning

multigrid with PetaBricks. In Supercomputing, Portland, OR, Nov 2009.

[22] F. Chang and V. Karamcheti. A framework for automatic adaptation of tunable

distributed applications. Cluster Computing, 4, March 2001.

[23] D. Chen, N. Vachharajani, R. Hundt, S.-w. Liao, V. Ramasamy, P. Yuan,

W. Chen, and W. Zheng. Taming hardware event samples for FDO compila-

tion. In CGO, New York, NY, 2010.

[24] L. DaCosta, A. Fialho, M. Schoenauer, and M. Sebag. Adaptive operator selec-

tion with dynamic multi-armed bandits. In GECCO, New York, NY, 2008.

[25] L. Davis. Adapting operator probabilities in genetic algorithms. In ICGA, San

Francisco, CA, 1989.

[26] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multiob-

jective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Compu-

tation, 6:182–197, 2002.

119

[27] P. C. Diniz and M. C. Rinard. Dynamic feedback: an effective technique for

adaptive computing. In PLDI, New York, NY, 1997.

[28] A. E. Eiben and J. E. Smith. Introduction to Evolutionary Computing. Springer-

Verlag, 2003.

[29] A. Fialho. Adaptive Operator Selection for Optimization. PhD thesis, Université

Paris-Sud XI, Orsay, France, December 2010.

[30] A. Fialho, R. Ros, M. Schoenauer, and M. Sebag. Comparison-based adaptive

strategy selection with bandits in differential evolution. In R. S. et al., editor,

PPSN’10: Proc. 11th International Conference on Parallel Problem Solving from

Nature, volume 6238 of LNCS, pages 194–203. Springer, September 2010.

[31] M. Frigo and S. G. Johnson. FFTW: An adaptive software architecture for

the FFT. In IEEE International Conference on Acoustics Speech and Signal

Processing, volume 3, 1998.

[32] M. Frigo and S. G. Johnson. The design and implementation of FFTW3. IEEE,

93(2), February 2005. Invited paper, special issue on “Program Generation,

Optimization, and Platform Adaptation”.

[33] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E. Miller, and A. Agarwal.

Application heartbeats: a generic interface for specifying program performance

and goals in autonomous computing environments. In ICAC, New York, NY,

2010.

[34] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal, and M. Rinard. Using code

perforation to improve performance, reduce energy consumption, and respond to

failures. Technical Report MIT-CSAIL-TR-2209-042, Massachusetts Institute of

Technology, Sep 2009.

[35] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal, and M. Rinard.

Power-aware computing with dynamic knobs. In ASPLOS, 2011.

120

[36] E. Im and K. Yelick. Optimizing sparse matrix computations for register reuse

in SPARSITY. In International Conference on Computational Science, 2001.

[37] K. A. D. Jong. Evolutionary computation - a unified approach. MIT Press, 2006.

[38] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli, G. Simon, and T. Kovacs-

hazy. An approach to self-adaptive software based on supervisory control. In

International Workshop in Self-adaptive software, 2001.

[39] X. Li, M. J. Garzarn, and D. Padua. Optimizing sorting with genetic algorithms.

In CGO, 2005.

[40] J. B. MacQueen. Some methods for classification and analysis of multivariate

observations. In L. M. L. Cam and J. Neyman, editors, Proc. of the fifth Berkeley

Symposium on Mathematical Statistics and Probability, volume 1, pages 281–297.

University of California Press, 1967.

[41] C. A. Markowski and E. P. Markowski. Conditions for the effectiveness of a

preliminary test of variance. 1990.

[42] M. Mitchell. An introduction to genetic algorithms. MIT Press, 1998.

[43] M. Olszewski and M. Voss. Install-time system for automatic generation of

optimized parallel sorting algorithms. In PDPTA, 2004.

[44] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. R. Johnson, D. A. Padua,

M. M. Veloso, and R. W. Johnson. Spiral: A generator for platform-adapted

libraries of signal processing alogorithms. IJHPCA, 18(1), 2004.

[45] R. Schaefer, C. Cotta, J. Kolodziej, and G. Rudolph, editors. Parallel Problem

Solving from Nature, volume 6238 of Lecture Notes in Computer Science, 2010.

[46] H. Takagi. Interactive evolutionary computation: fusion of the capabilities of

EC optimization and human evaluation. In Proceedings of the IEEE, volume 89,

pages 1275–1296, September 2001.

121

[47] A. Teller and D. Andre. Automatically choosing the number of fitness cases:

The rational allocation of trials. In J. R. Koza, K. Deb, M. Dorigo, D. B. Fogel,

M. Garzon, H. Iba, and R. L. Riolo, editors, Genetic Programming 1997: Pro-

ceedings of the Second Annual Conference, pages 321–328, Stanford University,

CA, USA, 13-16 July 1997. Morgan Kaufmann.

[48] D. Thierens. Adaptive strategies for operator allocation. In F. G. Lobo, C. F.

Lima, and Z. Michalewicz, editors, Parameter Setting in Evolutionary Algo-

rithms, volume 54 of Studies in Computational Intelligence. 2007.

[49] M. Voss and R. Eigenmann. Adapt: Automated de-coupled adaptive program

transformation. In International Conference on Parallel Processing, 2000.

[50] M. Voss and R. Eigenmann. High-level adaptive program optimization with

adapt. ACM SIGPLAN Notices, 36(7), 2001.

[51] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of automatically

tuned sparse matrix kernels. In Scientific Discovery through Advanced Computing

Conference, Journal of Physics: Conference Series, San Francisco, CA, June 2005.

[52] P. Waldemar and T. Ramstad. Hybrid KLT-SVD image compression. In IEEE

International Conference on Acoustics, Speech, and Signal Processing, Washing-

ton, DC, 1997.

[53] R. C. Whaley and J. J. Dongarra. Automatically tuned linear algebra software.

In Supercomputing, Washington, DC, 1998.

[54] R. C. Whaley and A. Petitet. Minimizing development and maintenance costs

in supporting persistently optimized BLAS. Software: Practice and Experience,

35(2), February 2005.

122

Appendix A

Detailed Statistics

A.1 Hyperparameters Runs: Normality Testing

All normality tests were performed using the Anderson-Darling test from the Python

SciPy library included with Ubuntu 11.04 (scipy.stats.anderson). In the tables

below, A2 is the test statistic, and the percentages correspond to A2 thresholds for the

given significance level. An A2 value of inf means that the standard deviation of the

samples was 0. The NORMAL? column specifies whether we can reject the normality

hypothesis with 1% significance level.

A.1.1 Xeon8

Sort

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.284314 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 1.228355 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 1.508193 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 1.560355 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 1.534702 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 2.100498 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 3.441434 0.521 0.593 0.712 0.830 0.988

0.10 500 MAY BE NORMAL 0.831769 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 1.368860 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 2.374129 0.521 0.593 0.712 0.830 0.988

123

0.50 100 NORMALITY REJECTED 1.685954 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 1.787032 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 1.163137 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 3.058326 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 2.727096 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 3.071712 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 1.358510 0.521 0.593 0.712 0.830 0.988

50.00 50 MAY BE NORMAL 0.611514 0.521 0.593 0.712 0.830 0.988

50.00 100 MAY BE NORMAL 0.816525 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 1.030630 0.521 0.593 0.712 0.830 0.988

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.101815 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 1.226720 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 1.463621 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 1.417161 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 1.620384 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 2.210501 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 3.945761 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 1.144354 0.521 0.593 0.712 0.830 0.988

0.50 5 MAY BE NORMAL 0.894749 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 2.409091 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 1.741366 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 2.360866 0.521 0.593 0.712 0.830 0.988

5.00 5 MAY BE NORMAL 0.962929 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 3.053767 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 2.622177 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 3.742517 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 1.309038 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 1.198756 0.521 0.593 0.712 0.830 0.988

50.00 100 MAY BE NORMAL 0.623742 0.521 0.593 0.712 0.830 0.988

50.00 500 MAY BE NORMAL 0.186557 0.521 0.593 0.712 0.830 0.988

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.244822 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 3.276607 0.521 0.593 0.712 0.830 0.988

0.01 100 MAY BE NORMAL 0.733010 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 1.526122 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 4.499189 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 1.587559 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 1.839714 0.521 0.593 0.712 0.830 0.988

124

0.10 500 NORMALITY REJECTED 1.355015 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 3.425307 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 1.728002 0.521 0.593 0.712 0.830 0.988

0.50 100 MAY BE NORMAL 0.922450 0.521 0.593 0.712 0.830 0.988

0.50 500 MAY BE NORMAL 0.833637 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 3.035571 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 1.093509 0.521 0.593 0.712 0.830 0.988

5.00 100 MAY BE NORMAL 0.838164 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 1.237738 0.521 0.593 0.712 0.830 0.988

50.00 5 MAY BE NORMAL 0.928063 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 1.386931 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 1.227667 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 2.445985 0.521 0.593 0.712 0.830 0.988

Matrix Approximation

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 8.252833 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 7.713824 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 7.504382 0.521 0.593 0.712 0.830 0.988

0.01 500 MAY BE NORMAL 0.408905 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 6.578900 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 6.729593 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 2.160410 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 8.649129 0.521 0.593 0.712 0.830 0.988

0.50 5 MAY BE NORMAL 0.279776 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 8.521536 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 7.852097 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 7.325877 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 8.844623 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 8.254022 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 7.607129 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 8.182801 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 8.613488 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 8.376068 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 8.905095 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 8.834549 0.521 0.593 0.712 0.830 0.988

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 8.852926 0.521 0.593 0.712 0.830 0.988

125

0.01 50 NORMALITY REJECTED 8.661892 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 8.161498 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 1.423275 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 6.868272 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 7.231154 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 1.003293 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 9.095262 0.521 0.593 0.712 0.830 0.988

0.50 5 MAY BE NORMAL 0.607329 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 8.946796 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 9.098551 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 7.641659 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 9.245544 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 8.523992 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 7.835793 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 8.290691 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 8.727063 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 9.108300 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 9.111395 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 8.918689 0.521 0.593 0.712 0.830 0.988

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 5.349325 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 4.752627 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 8.764931 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 3.895148 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 4.482589 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 4.869248 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 4.760775 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 4.628927 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 3.703395 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 2.936389 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 6.072103 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 5.275254 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 4.625427 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 1.866134 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 3.763328 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 3.258102 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 2.549410 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 2.586148 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 2.447889 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 2.437531 0.521 0.593 0.712 0.830 0.988

126

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED inf 0.521 0.593 0.712 0.830 0.988

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.788978 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 2.816785 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 1.014054 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 1.360587 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 1.305490 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 2.299307 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 2.046253 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 2.863391 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 5.122732 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 1.208050 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 2.011122 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 1.189583 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 2.115248 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 2.059417 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 1.093626 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 1.138205 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 1.723931 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 1.318870 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 3.591802 0.521 0.593 0.712 0.830 0.988

127

50.00 500 NORMALITY REJECTED 7.677452 0.521 0.593 0.712 0.830 0.988

Poisson

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 5.063804 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 2.456555 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 2.873244 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 2.529990 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 4.291440 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 9.710037 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 3.451451 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 4.357392 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 4.205766 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 6.329573 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 6.970498 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 6.034668 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 3.649729 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 9.968898 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 10.040293 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 8.355336 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 6.073488 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 4.246614 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 4.374201 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 2.012314 0.521 0.593 0.712 0.830 0.988

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.983814 0.521 0.593 0.712 0.830 0.988

0.01 50 MAY BE NORMAL 0.385748 0.521 0.593 0.712 0.830 0.988

0.01 100 MAY BE NORMAL 0.865270 0.521 0.593 0.712 0.830 0.988

0.01 500 MAY BE NORMAL 0.820785 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 1.942145 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 2.982168 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 10.973696 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 10.020671 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 1.092976 0.521 0.593 0.712 0.830 0.988

0.50 50 MAY BE NORMAL 0.760534 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 1.192934 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 9.375558 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 2.065992 0.521 0.593 0.712 0.830 0.988

128

5.00 50 NORMALITY REJECTED 1.853904 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 1.516659 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 11.039467 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 9.853828 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 8.411827 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 8.530623 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 3.230526 0.521 0.593 0.712 0.830 0.988

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 11.090074 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 2.747284 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 2.971172 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 2.487303 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 10.467762 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 9.722765 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 10.950510 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 9.854671 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 11.090074 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 6.413800 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 7.437294 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 9.357809 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 10.465672 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 10.104409 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 10.432942 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 10.656293 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 5.337664 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 10.164875 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 7.524575 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 3.103251 0.521 0.593 0.712 0.830 0.988

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 11.090074 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 2.738447 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 2.971044 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 2.477289 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 10.467762 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 9.709353 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 3.737506 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 5.100753 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 11.090074 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 6.413796 0.521 0.593 0.712 0.830 0.988

129

0.50 100 NORMALITY REJECTED 7.427301 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 7.030439 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 10.465672 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 10.096426 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 10.416650 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 9.184163 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 5.775978 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 3.006555 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 4.863690 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 3.221718 0.521 0.593 0.712 0.830 0.988

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 4.104363 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 4.512714 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 5.743497 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 3.429277 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 4.407744 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 3.626448 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 11.019354 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 9.983349 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 5.477307 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 5.092620 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 4.096573 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 9.314761 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 6.035728 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 2.890074 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 7.306340 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 11.076543 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 10.741350 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 8.904896 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 8.159161 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 1.986158 0.521 0.593 0.712 0.830 0.988

Binpacking

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 MAY BE NORMAL 0.511441 0.521 0.593 0.712 0.830 0.988

0.01 50 MAY BE NORMAL 0.899195 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 1.910947 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 1.105331 0.521 0.593 0.712 0.830 0.988

130

0.10 5 NORMALITY REJECTED 1.213818 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 4.525793 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 1.196611 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 1.400306 0.521 0.593 0.712 0.830 0.988

0.50 5 MAY BE NORMAL 0.530477 0.521 0.593 0.712 0.830 0.988

0.50 50 NORMALITY REJECTED 6.633089 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 1.327616 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 3.863110 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 1.369369 0.521 0.593 0.712 0.830 0.988

5.00 50 NORMALITY REJECTED 2.708605 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 2.988649 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 4.452346 0.521 0.593 0.712 0.830 0.988

50.00 5 MAY BE NORMAL 0.710471 0.521 0.593 0.712 0.830 0.988

50.00 50 NORMALITY REJECTED 3.563654 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 3.183385 0.521 0.593 0.712 0.830 0.988

50.00 500 MAY BE NORMAL 0.526345 0.521 0.593 0.712 0.830 0.988

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 MAY BE NORMAL 0.525013 0.519 0.591 0.709 0.827 0.984

0.01 50 NORMALITY REJECTED 5.716674 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 7.112779 0.520 0.592 0.710 0.828 0.985

0.01 500 NORMALITY REJECTED 3.015718 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 2.879481 0.497 0.566 0.680 0.793 0.943

0.10 50 NORMALITY REJECTED 7.055436 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 7.802653 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 3.383823 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 1.782785 0.501 0.570 0.684 0.798 0.950

0.50 50 NORMALITY REJECTED 7.479624 0.520 0.592 0.710 0.828 0.985

0.50 100 NORMALITY REJECTED 3.149358 0.518 0.590 0.708 0.826 0.983

0.50 500 NORMALITY REJECTED 2.244974 0.518 0.590 0.708 0.826 0.983

5.00 5 NORMALITY REJECTED 1.351623 0.501 0.570 0.684 0.798 0.950

5.00 50 NORMALITY REJECTED 4.950733 0.520 0.592 0.710 0.828 0.985

5.00 100 NORMALITY REJECTED 6.225737 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 3.524882 0.518 0.590 0.708 0.826 0.983

50.00 5 NORMALITY REJECTED 4.906516 0.518 0.590 0.708 0.826 0.983

50.00 50 NORMALITY REJECTED 10.153597 0.521 0.593 0.712 0.830 0.988

50.00 100 MAY BE NORMAL 0.308988 0.521 0.593 0.712 0.830 0.988

50.00 500 MAY BE NORMAL 0.615155 0.521 0.593 0.712 0.830 0.988

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 3.866812 0.521 0.593 0.712 0.830 0.988

131

0.01 50 NORMALITY REJECTED 1.741488 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 1.933980 0.521 0.593 0.712 0.830 0.988

0.01 500 NORMALITY REJECTED 1.337884 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 3.665543 0.521 0.593 0.712 0.830 0.988

0.10 50 NORMALITY REJECTED 1.163981 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 1.168991 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 1.274428 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 3.173595 0.521 0.593 0.712 0.830 0.988

0.50 50 MAY BE NORMAL 0.884278 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 0.997943 0.521 0.593 0.712 0.830 0.988

0.50 500 MAY BE NORMAL 0.680962 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 3.092460 0.521 0.593 0.712 0.830 0.988

5.00 50 MAY BE NORMAL 0.816055 0.521 0.593 0.712 0.830 0.988

5.00 100 NORMALITY REJECTED 1.259281 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 1.668342 0.521 0.593 0.712 0.830 0.988

50.00 5 MAY BE NORMAL 0.986628 0.521 0.593 0.712 0.830 0.988

50.00 50 MAY BE NORMAL 0.552315 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 1.140900 0.521 0.593 0.712 0.830 0.988

50.00 500 MAY BE NORMAL 0.689430 0.521 0.593 0.712 0.830 0.988

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 6.486885 0.521 0.593 0.712 0.830 0.988

0.01 50 NORMALITY REJECTED 1.117620 0.521 0.593 0.712 0.830 0.988

0.01 100 MAY BE NORMAL 0.572489 0.521 0.593 0.712 0.830 0.988

0.01 500 MAY BE NORMAL 0.702000 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 4.150259 0.521 0.593 0.712 0.830 0.988

0.10 50 MAY BE NORMAL 0.597753 0.521 0.593 0.712 0.830 0.988

0.10 100 MAY BE NORMAL 0.860399 0.521 0.593 0.712 0.830 0.988

0.10 500 MAY BE NORMAL 0.514595 0.521 0.593 0.712 0.830 0.988

0.50 5 NORMALITY REJECTED 5.448775 0.521 0.593 0.712 0.830 0.988

0.50 50 MAY BE NORMAL 0.871365 0.521 0.593 0.712 0.830 0.988

0.50 100 NORMALITY REJECTED 1.227693 0.521 0.593 0.712 0.830 0.988

0.50 500 NORMALITY REJECTED 1.097267 0.521 0.593 0.712 0.830 0.988

5.00 5 NORMALITY REJECTED 5.525108 0.521 0.593 0.712 0.830 0.988

5.00 50 MAY BE NORMAL 0.709451 0.521 0.593 0.712 0.830 0.988

5.00 100 MAY BE NORMAL 0.644917 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 2.025630 0.521 0.593 0.712 0.830 0.988

50.00 5 NORMALITY REJECTED 3.506765 0.521 0.593 0.712 0.830 0.988

50.00 50 MAY BE NORMAL 0.308338 0.521 0.593 0.712 0.830 0.988

50.00 100 MAY BE NORMAL 0.479827 0.521 0.593 0.712 0.830 0.988

50.00 500 MAY BE NORMAL 0.257110 0.521 0.593 0.712 0.830 0.988

132

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 MAY BE NORMAL 0.424494 0.519 0.591 0.709 0.827 0.984

0.01 50 NORMALITY REJECTED 4.299974 0.521 0.593 0.712 0.830 0.988

0.01 100 NORMALITY REJECTED 5.615916 0.520 0.592 0.710 0.828 0.985

0.01 500 NORMALITY REJECTED 5.818405 0.521 0.593 0.712 0.830 0.988

0.10 5 NORMALITY REJECTED 0.995555 0.497 0.566 0.680 0.793 0.943

0.10 50 NORMALITY REJECTED 4.422117 0.521 0.593 0.712 0.830 0.988

0.10 100 NORMALITY REJECTED 5.958142 0.521 0.593 0.712 0.830 0.988

0.10 500 NORMALITY REJECTED 4.876148 0.521 0.593 0.712 0.830 0.988

0.50 5 MAY BE NORMAL 0.276588 0.501 0.570 0.684 0.798 0.950

0.50 50 NORMALITY REJECTED 9.940640 0.520 0.592 0.710 0.828 0.985

0.50 100 MAY BE NORMAL 0.900687 0.518 0.590 0.708 0.826 0.983

0.50 500 NORMALITY REJECTED 8.029892 0.518 0.590 0.708 0.826 0.983

5.00 5 MAY BE NORMAL 0.423961 0.501 0.570 0.684 0.798 0.950

5.00 50 NORMALITY REJECTED 3.468877 0.520 0.592 0.710 0.828 0.985

5.00 100 NORMALITY REJECTED 4.899663 0.521 0.593 0.712 0.830 0.988

5.00 500 NORMALITY REJECTED 2.451779 0.518 0.590 0.708 0.826 0.983

50.00 5 MAY BE NORMAL 0.956576 0.518 0.590 0.708 0.826 0.983

50.00 50 NORMALITY REJECTED 3.017714 0.521 0.593 0.712 0.830 0.988

50.00 100 NORMALITY REJECTED 1.754383 0.521 0.593 0.712 0.830 0.988

50.00 500 NORMALITY REJECTED 1.910622 0.521 0.593 0.712 0.830 0.988

A.1.2 AMD48

Sort

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.089637 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 1.651235 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 1.411876 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 2.021908 0.506 0.577 0.692 0.807 0.960

0.10 5 MAY BE NORMAL 0.563654 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 2.502121 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 1.726439 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 2.339012 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 1.147831 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 1.185928 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 2.281348 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 1.566918 0.506 0.577 0.692 0.807 0.960

5.00 5 MAY BE NORMAL 0.841590 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 0.998077 0.506 0.577 0.692 0.807 0.960

133

5.00 100 NORMALITY REJECTED 2.040994 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 1.363133 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.634215 0.506 0.577 0.692 0.807 0.960

50.00 50 MAY BE NORMAL 0.225983 0.506 0.577 0.692 0.807 0.960

50.00 100 MAY BE NORMAL 0.186687 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 3.158217 0.506 0.577 0.692 0.807 0.960

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 0.975432 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 1.368368 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 1.221460 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 2.325712 0.506 0.577 0.692 0.807 0.960

0.10 5 MAY BE NORMAL 0.537387 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 2.700307 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 1.449773 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 2.933374 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 1.398640 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 1.053361 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 2.548517 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 2.063891 0.506 0.577 0.692 0.807 0.960

5.00 5 MAY BE NORMAL 0.857102 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 0.968675 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 1.719031 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 0.965637 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.379293 0.506 0.577 0.692 0.807 0.960

50.00 50 MAY BE NORMAL 0.457801 0.506 0.577 0.692 0.807 0.960

50.00 100 MAY BE NORMAL 0.274088 0.506 0.577 0.692 0.807 0.960

50.00 500 MAY BE NORMAL 0.438109 0.506 0.577 0.692 0.807 0.960

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 3.554670 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 3.545934 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 2.556568 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 3.782695 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 4.239544 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 5.069045 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 1.891674 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 3.434625 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 3.571500 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 2.864744 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 3.557405 0.506 0.577 0.692 0.807 0.960

134

0.50 500 NORMALITY REJECTED 3.395737 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 1.195812 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 3.813249 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 2.618921 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 2.580556 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.507667 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 1.777829 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 1.498423 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 0.985673 0.506 0.577 0.692 0.807 0.960

Matrix Approximation

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 6.471845 0.506 0.577 0.692 0.807 0.960

0.01 50 MAY BE NORMAL 0.787854 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 6.278897 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 6.195502 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 2.312002 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 4.900069 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 2.408656 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 4.916105 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 5.163870 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 2.858056 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 1.490699 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 5.784569 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 3.425115 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 6.456761 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 5.934514 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 6.104563 0.506 0.577 0.692 0.807 0.960

50.00 5 NORMALITY REJECTED 3.471913 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 1.962627 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 5.913393 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 6.085765 0.506 0.577 0.692 0.807 0.960

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 6.914236 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 1.972320 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 6.948895 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 6.793023 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 1.386557 0.506 0.577 0.692 0.807 0.960

135

0.10 50 NORMALITY REJECTED 6.816205 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 1.003870 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 5.740119 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 2.993490 0.506 0.577 0.692 0.807 0.960

0.50 50 MAY BE NORMAL 0.269584 0.506 0.577 0.692 0.807 0.960

0.50 100 MAY BE NORMAL 0.491067 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 6.853773 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 1.001114 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 7.022443 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 6.400443 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 6.329968 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.717650 0.506 0.577 0.692 0.807 0.960

50.00 50 MAY BE NORMAL 0.356491 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 6.360595 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 6.969796 0.506 0.577 0.692 0.807 0.960

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 4.828264 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 3.077410 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 3.891065 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 3.418851 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 4.227304 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 4.768180 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 4.503351 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 5.061175 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 6.611483 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 4.128878 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 4.355959 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 4.324321 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 3.527708 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 2.508644 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 3.605618 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 3.444852 0.506 0.577 0.692 0.807 0.960

50.00 5 NORMALITY REJECTED 4.595070 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 3.563231 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 1.017475 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 3.654126 0.506 0.577 0.692 0.807 0.960

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

136

0.01 100 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

50.00 5 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED inf 0.506 0.577 0.692 0.807 0.960

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 2.767464 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 3.110145 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 3.396807 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 4.005008 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 3.376279 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 1.888039 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 4.212349 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 1.585284 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 3.507387 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 3.969521 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 3.507387 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 4.020303 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 3.654465 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 3.691324 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 1.842899 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 1.944847 0.506 0.577 0.692 0.807 0.960

50.00 5 NORMALITY REJECTED 4.005008 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 4.608751 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 2.007202 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 3.335577 0.506 0.577 0.692 0.807 0.960

137

Poisson

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.792714 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 1.722617 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 4.956789 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 1.913765 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 1.252561 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 5.856768 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 3.280718 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 3.099851 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 1.678140 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 5.005080 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 3.639688 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 5.981053 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 3.266817 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 6.229375 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 4.698265 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 4.625570 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.741342 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 1.563511 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 1.693622 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 1.786646 0.506 0.577 0.692 0.807 0.960

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.135881 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 6.716379 0.506 0.577 0.692 0.807 0.960

0.01 100 MAY BE NORMAL 0.442883 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 6.800512 0.506 0.577 0.692 0.807 0.960

0.10 5 MAY BE NORMAL 0.638555 0.506 0.577 0.692 0.807 0.960

0.10 50 MAY BE NORMAL 0.758763 0.506 0.577 0.692 0.807 0.960

0.10 100 MAY BE NORMAL 0.388328 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 6.156075 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 1.040755 0.506 0.577 0.692 0.807 0.960

0.50 50 MAY BE NORMAL 0.390502 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 6.401159 0.506 0.577 0.692 0.807 0.960

0.50 500 MAY BE NORMAL 0.904336 0.506 0.577 0.692 0.807 0.960

5.00 5 MAY BE NORMAL 0.457849 0.506 0.577 0.692 0.807 0.960

5.00 50 MAY BE NORMAL 0.608555 0.506 0.577 0.692 0.807 0.960

5.00 100 MAY BE NORMAL 0.466239 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 4.163870 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.568534 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 5.523935 0.506 0.577 0.692 0.807 0.960

138

50.00 100 MAY BE NORMAL 0.560662 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 2.901978 0.506 0.577 0.692 0.807 0.960

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 5.186767 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 7.000291 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 5.106165 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 4.934784 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 7.176183 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 5.841794 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 3.436117 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 4.393460 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 5.181042 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 5.198230 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 7.009655 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 5.818682 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 5.331403 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 6.314007 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 6.684910 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 3.566855 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.934914 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 5.436100 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 2.081637 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 3.278293 0.506 0.577 0.692 0.807 0.960

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 5.186768 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 2.059319 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 5.045847 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 2.183706 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 7.176183 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 5.786595 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 3.435604 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 3.435375 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 5.181044 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 5.195923 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 3.946034 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 5.814134 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 5.331465 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 6.310959 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 6.669256 0.506 0.577 0.692 0.807 0.960

139

5.00 500 NORMALITY REJECTED 4.080386 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.938337 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 2.458384 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 2.062167 0.506 0.577 0.692 0.807 0.960

50.00 500 MAY BE NORMAL 0.893809 0.506 0.577 0.692 0.807 0.960

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 2.487122 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 3.788360 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 5.187950 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 4.333114 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 4.071960 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 4.423899 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 4.758829 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 4.243521 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 3.940009 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 3.543860 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 5.493728 0.506 0.577 0.692 0.807 0.960

0.50 500 NORMALITY REJECTED 2.498127 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 3.830711 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 2.616884 0.506 0.577 0.692 0.807 0.960

5.00 100 NORMALITY REJECTED 4.075290 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 3.988676 0.506 0.577 0.692 0.807 0.960

50.00 5 NORMALITY REJECTED 5.142796 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 4.108465 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 3.165549 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 1.880216 0.506 0.577 0.692 0.807 0.960

Binpacking

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 MAY BE NORMAL 0.515913 0.506 0.577 0.692 0.807 0.960

0.01 50 MAY BE NORMAL 0.667907 0.506 0.577 0.692 0.807 0.960

0.01 100 MAY BE NORMAL 0.345994 0.506 0.577 0.692 0.807 0.960

0.01 500 MAY BE NORMAL 0.430656 0.506 0.577 0.692 0.807 0.960

0.10 5 MAY BE NORMAL 0.733656 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 1.392133 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 1.545454 0.506 0.577 0.692 0.807 0.960

0.10 500 MAY BE NORMAL 0.341793 0.506 0.577 0.692 0.807 0.960

0.50 5 MAY BE NORMAL 0.490482 0.506 0.577 0.692 0.807 0.960

140

0.50 50 NORMALITY REJECTED 1.898467 0.506 0.577 0.692 0.807 0.960

0.50 100 MAY BE NORMAL 0.856558 0.506 0.577 0.692 0.807 0.960

0.50 500 MAY BE NORMAL 0.674900 0.506 0.577 0.692 0.807 0.960

5.00 5 MAY BE NORMAL 0.192859 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 1.166367 0.506 0.577 0.692 0.807 0.960

5.00 100 MAY BE NORMAL 0.418981 0.506 0.577 0.692 0.807 0.960

5.00 500 MAY BE NORMAL 0.591486 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.907837 0.506 0.577 0.692 0.807 0.960

50.00 50 MAY BE NORMAL 0.290021 0.506 0.577 0.692 0.807 0.960

50.00 100 MAY BE NORMAL 0.467232 0.506 0.577 0.692 0.807 0.960

50.00 500 MAY BE NORMAL 0.326396 0.506 0.577 0.692 0.807 0.960

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 1.205326 0.543 0.618 0.742 0.865 1.029

0.01 50 NORMALITY REJECTED 2.931485 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 5.550726 0.505 0.575 0.690 0.804 0.957

0.01 500 NORMALITY REJECTED 1.721769 0.505 0.575 0.690 0.804 0.957

0.10 5 MAY BE NORMAL 0.377386 0.720 0.820 0.984 1.148 1.365

0.10 50 NORMALITY REJECTED 4.604009 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 5.275814 0.505 0.575 0.690 0.804 0.957

0.10 500 NORMALITY REJECTED 2.783210 0.505 0.575 0.690 0.804 0.957

0.50 5 MAY BE NORMAL 1.069728 0.720 0.820 0.984 1.148 1.365

0.50 50 NORMALITY REJECTED 3.664560 0.505 0.575 0.690 0.804 0.957

0.50 100 NORMALITY REJECTED 5.209623 0.505 0.575 0.690 0.804 0.957

0.50 500 NORMALITY REJECTED 2.861428 0.505 0.575 0.690 0.804 0.957

5.00 5 NORMALITY REJECTED 2.938824 0.497 0.566 0.679 0.792 0.942

5.00 50 NORMALITY REJECTED 4.452127 0.505 0.575 0.690 0.804 0.957

5.00 100 NORMALITY REJECTED 1.624272 0.506 0.577 0.692 0.807 0.960

5.00 500 NORMALITY REJECTED 2.649097 0.505 0.575 0.690 0.804 0.957

50.00 5 NORMALITY REJECTED 3.607776 0.506 0.577 0.692 0.807 0.960

50.00 50 MAY BE NORMAL 0.616544 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 2.445417 0.506 0.577 0.692 0.807 0.960

50.00 500 MAY BE NORMAL 0.506259 0.506 0.577 0.692 0.807 0.960

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 MAY BE NORMAL 0.925886 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 1.124714 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 2.108852 0.506 0.577 0.692 0.807 0.960

0.01 500 NORMALITY REJECTED 0.980711 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 1.005198 0.506 0.577 0.692 0.807 0.960

0.10 50 NORMALITY REJECTED 2.324642 0.506 0.577 0.692 0.807 0.960

141

0.10 100 MAY BE NORMAL 0.484641 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 1.203023 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 1.395352 0.506 0.577 0.692 0.807 0.960

0.50 50 NORMALITY REJECTED 1.301472 0.506 0.577 0.692 0.807 0.960

0.50 100 NORMALITY REJECTED 2.121076 0.506 0.577 0.692 0.807 0.960

0.50 500 MAY BE NORMAL 0.907868 0.506 0.577 0.692 0.807 0.960

5.00 5 MAY BE NORMAL 0.717962 0.506 0.577 0.692 0.807 0.960

5.00 50 NORMALITY REJECTED 1.075917 0.506 0.577 0.692 0.807 0.960

5.00 100 MAY BE NORMAL 0.883520 0.506 0.577 0.692 0.807 0.960

5.00 500 MAY BE NORMAL 0.957092 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.352204 0.506 0.577 0.692 0.807 0.960

50.00 50 MAY BE NORMAL 0.617013 0.506 0.577 0.692 0.807 0.960

50.00 100 MAY BE NORMAL 0.242287 0.506 0.577 0.692 0.807 0.960

50.00 500 MAY BE NORMAL 0.217710 0.506 0.577 0.692 0.807 0.960

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 NORMALITY REJECTED 3.047013 0.506 0.577 0.692 0.807 0.960

0.01 50 NORMALITY REJECTED 1.065901 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 1.152731 0.506 0.577 0.692 0.807 0.960

0.01 500 MAY BE NORMAL 0.569835 0.506 0.577 0.692 0.807 0.960

0.10 5 NORMALITY REJECTED 4.444035 0.506 0.577 0.692 0.807 0.960

0.10 50 MAY BE NORMAL 0.543990 0.506 0.577 0.692 0.807 0.960

0.10 100 MAY BE NORMAL 0.461665 0.506 0.577 0.692 0.807 0.960

0.10 500 NORMALITY REJECTED 1.051307 0.506 0.577 0.692 0.807 0.960

0.50 5 NORMALITY REJECTED 4.254145 0.506 0.577 0.692 0.807 0.960

0.50 50 MAY BE NORMAL 0.546880 0.506 0.577 0.692 0.807 0.960

0.50 100 MAY BE NORMAL 0.932822 0.506 0.577 0.692 0.807 0.960

0.50 500 MAY BE NORMAL 0.405789 0.506 0.577 0.692 0.807 0.960

5.00 5 NORMALITY REJECTED 2.422840 0.506 0.577 0.692 0.807 0.960

5.00 50 MAY BE NORMAL 0.753084 0.506 0.577 0.692 0.807 0.960

5.00 100 MAY BE NORMAL 0.356659 0.506 0.577 0.692 0.807 0.960

5.00 500 MAY BE NORMAL 0.432178 0.506 0.577 0.692 0.807 0.960

50.00 5 MAY BE NORMAL 0.535021 0.506 0.577 0.692 0.807 0.960

50.00 50 MAY BE NORMAL 0.853794 0.506 0.577 0.692 0.807 0.960

50.00 100 MAY BE NORMAL 0.525790 0.506 0.577 0.692 0.807 0.960

50.00 500 MAY BE NORMAL 0.310162 0.506 0.577 0.692 0.807 0.960

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W NORMAL? A2 15% 10% 5% 2.5% 1%

0.01 5 MAY BE NORMAL 0.327279 0.543 0.618 0.742 0.865 1.029

0.01 50 NORMALITY REJECTED 1.347578 0.506 0.577 0.692 0.807 0.960

0.01 100 NORMALITY REJECTED 2.505134 0.505 0.575 0.690 0.804 0.957

142

0.01 500 NORMALITY REJECTED 3.774588 0.505 0.575 0.690 0.804 0.957

0.10 5 MAY BE NORMAL 0.459079 0.720 0.820 0.984 1.148 1.365

0.10 50 NORMALITY REJECTED 3.321063 0.506 0.577 0.692 0.807 0.960

0.10 100 NORMALITY REJECTED 2.585089 0.505 0.575 0.690 0.804 0.957

0.10 500 NORMALITY REJECTED 2.749053 0.505 0.575 0.690 0.804 0.957

0.50 5 MAY BE NORMAL 0.459141 0.720 0.820 0.984 1.148 1.365

0.50 50 NORMALITY REJECTED 4.102456 0.505 0.575 0.690 0.804 0.957

0.50 100 NORMALITY REJECTED 1.626919 0.505 0.575 0.690 0.804 0.957

0.50 500 NORMALITY REJECTED 2.091247 0.505 0.575 0.690 0.804 0.957

5.00 5 MAY BE NORMAL 0.153680 0.497 0.566 0.679 0.792 0.942

5.00 50 NORMALITY REJECTED 2.907449 0.505 0.575 0.690 0.804 0.957

5.00 100 MAY BE NORMAL 0.449190 0.506 0.577 0.692 0.807 0.960

5.00 500 MAY BE NORMAL 0.278148 0.505 0.575 0.690 0.804 0.957

50.00 5 NORMALITY REJECTED 1.100984 0.506 0.577 0.692 0.807 0.960

50.00 50 NORMALITY REJECTED 1.970365 0.506 0.577 0.692 0.807 0.960

50.00 100 NORMALITY REJECTED 1.002109 0.506 0.577 0.692 0.807 0.960

50.00 500 NORMALITY REJECTED 1.003541 0.506 0.577 0.692 0.807 0.960

A.2 Hyperparameter Runs: Significance Testing

All significance tests were performed using the Wilcoxon signed-rank test from the

Python SciPy library included with Ubuntu 11.04 (scipy.stats.wilcoxon). n is the

number of samples (separate runs of the autotuner). SS? is yes if the configuration

was significantly different from the best one with respect to the current metric (p-

value < 0.05), or no otherwise. The OPTIMAL? column marks which configuration

was optimal. z-stat and p-val are the z-statistic and the p-value, respectively.

Whenever samples for the given C,W configuration are exactly the same as best, the

phrase equal appears instead of z and p values.

Note that the Wilcoxon signed-rank test requires the two samples to be of the same

length, which is not always true in our setting. For example, some C,W configurations

might not always converge, in which case not all runs will provide a “convergence

time” sample. Whenever the optimal and current configurations do not have equal-

length samples, we trim the extra tail samples from one or the other and invoke the

Wilcoxon test on such trimmed samples.

143

A.2.1 Xeon8

Sort

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 1.000000 0.000002

0.01 50 30 yes 8.000000 0.000004

0.01 100 30 yes 11.000000 0.000005

0.01 500 30 yes 4.000000 0.000003

0.10 5 30 yes 1.000000 0.000002

0.10 50 30 yes 3.000000 0.000002

0.10 100 30 yes 7.000000 0.000004

0.10 500 30 yes 7.000000 0.000004

0.50 5 30 yes 4.000000 0.000003

0.50 50 30 yes 11.000000 0.000005

0.50 100 30 yes 25.000000 0.000020

0.50 500 30 yes 13.000000 0.000006

5.00 5 30 yes 6.000000 0.000003

5.00 50 30 yes 65.000000 0.000571

5.00 100 30 yes 87.000000 0.002765

5.00 500 30 yes 53.000000 0.000222

50.00 5 30 yes 45.000000 0.000115

50.00 50 30 no 199.000000 0.490798

50.00 100 30 n/a * equal equal

50.00 500 30 no 193.000000 0.416534

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 1.000000 0.000002

0.01 50 30 yes 8.000000 0.000004

0.01 100 30 yes 1.000000 0.000002

0.01 500 30 yes 5.000000 0.000003

0.10 5 30 yes 0.000000 0.000002

0.10 50 30 yes 5.000000 0.000003

0.10 100 30 yes 6.000000 0.000003

0.10 500 30 yes 11.000000 0.000005

0.50 5 30 yes 0.000000 0.000002

0.50 50 30 yes 0.000000 0.000002

0.50 100 30 yes 12.000000 0.000006

0.50 500 30 yes 14.000000 0.000007

5.00 5 30 yes 0.000000 0.000002

5.00 50 30 yes 30.000000 0.000031

5.00 100 30 yes 37.000000 0.000058

5.00 500 30 yes 80.000000 0.001709

144

50.00 5 30 yes 2.000000 0.000002

50.00 50 30 yes 132.000000 0.038723

50.00 100 30 no 151.000000 0.093676

50.00 500 30 n/a * equal equal

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 no 138.000000 0.051931

0.01 50 30 yes 88.000000 0.002957

0.01 100 30 yes 46.000000 0.000126

0.01 500 30 yes 58.000000 0.000332

0.10 5 30 yes 141.500000 0.049494

0.10 50 30 yes 78.000000 0.001484

0.10 100 30 yes 14.000000 0.000010

0.10 500 30 yes 83.000000 0.002105

0.50 5 30 no 188.500000 0.207195

0.50 50 30 yes 104.500000 0.004825

0.50 100 30 yes 87.000000 0.002765

0.50 500 30 yes 20.000000 0.000012

5.00 5 30 n/a * equal equal

5.00 50 30 yes 57.500000 0.000282

5.00 100 30 yes 57.000000 0.000306

5.00 500 30 yes 26.000000 0.000042

50.00 5 30 yes 101.000000 0.011765

50.00 50 30 yes 21.000000 0.000014

50.00 100 30 yes 24.000000 0.000018

50.00 500 30 yes 54.000000 0.000241

Matrix Approximation

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 no 161.000000 0.141390

0.01 50 30 no 191.000000 0.393334

0.01 100 30 no 172.000000 0.213358

0.01 500 30 n/a * equal equal

0.10 5 30 no 169.000000 0.191522

0.10 50 30 yes 120.000000 0.020671

0.10 100 30 no 176.000000 0.245190

0.10 500 30 no 162.000000 0.147040

0.50 5 30 no 224.000000 0.861213

0.50 50 30 no 200.000000 0.503833

145

0.50 100 30 no 173.000000 0.221022

0.50 500 30 yes 135.000000 0.044919

5.00 5 30 no 219.000000 0.781264

5.00 50 30 yes 137.000000 0.049498

5.00 100 30 yes 137.000000 0.049498

5.00 500 30 yes 129.000000 0.033269

50.00 5 30 yes 121.000000 0.021827

50.00 50 30 no 142.000000 0.062683

50.00 100 30 yes 135.000000 0.044919

50.00 500 30 yes 121.000000 0.021827

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 no 166.000000 0.171376

0.01 50 30 no 150.000000 0.089718

0.01 100 30 no 144.000000 0.068714

0.01 500 30 no 225.000000 0.877403

0.10 5 30 no 138.000000 0.051931

0.10 50 30 yes 101.000000 0.006836

0.10 100 30 no 186.000000 0.338856

0.10 500 30 yes 104.000000 0.008217

0.50 5 30 n/a * equal equal

0.50 50 30 yes 116.000000 0.016566

0.50 100 30 no 183.000000 0.308615

0.50 500 30 yes 97.000000 0.005320

5.00 5 30 no 175.000000 0.236936

5.00 50 30 yes 110.000000 0.011748

5.00 100 30 no 159.000000 0.130592

5.00 500 30 no 142.000000 0.062683

50.00 5 30 yes 134.000000 0.042767

50.00 50 30 no 138.000000 0.051931

50.00 100 30 no 154.000000 0.106394

50.00 500 30 no 146.000000 0.075213

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 no 196.000000 0.452807

0.01 50 30 no 157.000000 0.120445

0.01 100 30 yes 111.000000 0.012453

0.01 500 30 no 224.000000 0.861213

0.10 5 30 no 184.000000 0.318491

0.10 50 30 no 164.000000 0.158855

0.10 100 30 no 200.000000 0.503833

146

0.10 500 30 no 164.000000 0.158855

0.50 5 30 no 211.000000 0.658331

0.50 50 30 no 224.000000 0.861213

0.50 100 30 no 226.000000 0.893644

0.50 500 30 no 208.000000 0.614315

5.00 5 30 no 225.000000 0.877403

5.00 50 30 yes 136.000000 0.047162

5.00 100 30 n/a * equal equal

5.00 500 30 no 141.000000 0.059836

50.00 5 30 no 151.000000 0.093676

50.00 50 30 no 155.000000 0.110926

50.00 100 30 no 174.000000 0.228880

50.00 500 30 yes 92.000000 0.003854

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 n/a * equal equal

0.01 50 30 n/a equal equal

0.01 100 30 n/a equal equal

0.01 500 30 n/a equal equal

0.10 5 30 n/a equal equal

0.10 50 30 n/a equal equal

0.10 100 30 n/a equal equal

0.10 500 30 n/a equal equal

0.50 5 30 n/a equal equal

0.50 50 30 n/a equal equal

0.50 100 30 n/a equal equal

0.50 500 30 n/a equal equal

5.00 5 30 n/a equal equal

5.00 50 30 n/a equal equal

5.00 100 30 n/a equal equal

5.00 500 30 n/a equal equal

50.00 5 30 n/a equal equal

50.00 50 30 n/a equal equal

50.00 100 30 n/a equal equal

50.00 500 30 n/a equal equal

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 108.500000 0.027917

0.01 50 30 yes 83.500000 0.000000

0.01 100 30 n/a * equal equal

0.01 500 30 yes 100.500000 0.008155

147

0.10 5 30 yes 176.000000 0.003466

0.10 50 30 yes 184.000000 0.000000

0.10 100 30 yes 93.500000 0.003195

0.10 500 30 no 117.000000 0.058527

0.50 5 30 yes 160.000000 0.010778

0.50 50 30 yes 94.000000 0.003421

0.50 100 30 yes 100.500000 0.002696

0.50 500 30 no 129.500000 0.067406

5.00 5 30 yes 71.500000 0.000805

5.00 50 30 no 143.500000 0.126748

5.00 100 30 yes 90.000000 0.011113

5.00 500 30 yes 98.500000 0.009864

50.00 5 30 yes 131.500000 0.012225

50.00 50 30 yes 98.000000 0.000000

50.00 100 30 yes 128.500000 0.033744

50.00 500 30 yes 115.000000 0.000000

Poisson

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 128.000000 0.031603

0.01 50 30 no 183.000000 0.308615

0.01 100 30 no 165.000000 0.165027

0.01 500 30 yes 128.000000 0.031603

0.10 5 30 no 153.000000 0.102011

0.10 50 30 no 213.000000 0.688359

0.10 100 30 no 180.000000 0.280214

0.10 500 30 no 220.000000 0.797098

0.50 5 30 no 141.000000 0.059836

0.50 50 30 no 218.000000 0.765519

0.50 100 30 no 212.000000 0.673280

0.50 500 30 no 226.000000 0.893644

5.00 5 30 yes 131.000000 0.036826

5.00 50 30 n/a * equal equal

5.00 100 30 no 183.000000 0.308615

5.00 500 30 no 222.000000 0.829013

50.00 5 30 no 203.000000 0.544006

50.00 50 30 yes 123.000000 0.024308

50.00 100 30 yes 90.000000 0.003379

50.00 500 30 yes 83.000000 0.002105

148

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 6.000000 0.000003

0.01 50 30 yes 14.000000 0.000007

0.01 100 30 yes 22.000000 0.000015

0.01 500 30 yes 57.000000 0.000306

0.10 5 30 yes 15.000000 0.000008

0.10 50 30 yes 0.000000 0.000002

0.10 100 30 yes 25.000000 0.000020

0.10 500 30 yes 40.000000 0.000075

0.50 5 30 yes 2.000000 0.000002

0.50 50 30 yes 1.000000 0.000002

0.50 100 30 yes 9.000000 0.000004

0.50 500 30 yes 36.000000 0.000053

5.00 5 30 yes 2.000000 0.000002

5.00 50 30 yes 2.000000 0.000002

5.00 100 30 yes 17.000000 0.000009

5.00 500 30 yes 50.000000 0.000174

50.00 5 30 yes 27.000000 0.000024

50.00 50 30 yes 39.000000 0.000069

50.00 100 30 yes 77.000000 0.001382

50.00 500 30 n/a * equal equal

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 0.000000 0.000002

0.01 50 30 yes 37.000000 0.000058

0.01 100 30 yes 8.000000 0.000004

0.01 500 30 yes 100.000000 0.006424

0.10 5 30 yes 0.000000 0.000002

0.10 50 30 yes 1.000000 0.000002

0.10 100 30 yes 39.000000 0.000069

0.10 500 30 yes 103.000000 0.007731

0.50 5 30 yes 0.000000 0.000002

0.50 50 30 yes 11.000000 0.000005

0.50 100 30 yes 35.000000 0.000049

0.50 500 30 yes 69.000000 0.000771

5.00 5 30 yes 0.000000 0.000002

5.00 50 30 yes 1.000000 0.000002

5.00 100 30 yes 27.000000 0.000024

5.00 500 30 yes 55.000000 0.000261

50.00 5 30 yes 21.000000 0.000014

50.00 50 30 yes 96.000000 0.004992

50.00 100 30 yes 117.000000 0.017518

149

50.00 500 30 n/a * equal equal

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 no 1.000000 0.654721

0.01 50 30 yes 2.000000 0.000276

0.01 100 30 yes 1.000000 0.001225

0.01 500 30 yes 1.000000 0.000352

0.10 5 30 no 1.000000 0.285049

0.10 50 30 yes 1.000000 0.017290

0.10 100 30 yes 0.000000 0.000982

0.10 500 30 yes 1.000000 0.004439

0.50 5 30 n/a * equal equal

0.50 50 30 yes 3.000000 0.012515

0.50 100 30 yes 1.000000 0.027992

0.50 500 30 yes 1.000000 0.017290

5.00 5 30 no 1.000000 0.285049

5.00 50 30 yes 5.000000 0.002865

5.00 100 30 yes 4.000000 0.002329

5.00 500 30 yes 2.000000 0.000276

50.00 5 30 yes 0.000000 0.000038

50.00 50 30 yes 0.000000 0.000012

50.00 100 30 yes 0.000000 0.000002

50.00 500 30 yes 0.000000 0.000004

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 45.000000 0.000000

0.01 50 30 yes 26.000000 0.000000

0.01 100 30 yes 51.000000 0.000000

0.01 500 30 yes 35.000000 0.000000

0.10 5 30 yes 16.500000 0.000000

0.10 50 30 yes 19.500000 0.000000

0.10 100 30 yes 37.500000 0.000000

0.10 500 30 yes 42.000000 0.000000

0.50 5 30 yes 20.000000 0.000000

0.50 50 30 yes 26.000000 0.000000

0.50 100 30 yes 15.000000 0.000000

0.50 500 30 yes 30.000000 0.000000

5.00 5 30 yes 24.000000 0.000000

5.00 50 30 yes 18.000000 0.000000

5.00 100 30 n/a * equal equal

5.00 500 30 yes 9.000000 0.000000

150

50.00 5 30 yes 37.500000 0.000000

50.00 50 30 yes 35.000000 0.000000

50.00 100 30 yes 24.000000 0.000000

50.00 500 30 yes 0.000000 0.000047

Binpacking

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 12.000000 0.000006

0.01 50 30 no 226.000000 0.893644

0.01 100 30 no 230.000000 0.958990

0.01 500 30 no 229.000000 0.942611

0.10 5 30 yes 12.000000 0.000006

0.10 50 30 no 214.000000 0.703564

0.10 100 30 no 212.000000 0.673280

0.10 500 30 no 199.000000 0.490798

0.50 5 30 yes 12.000000 0.000006

0.50 50 30 n/a * equal equal

0.50 100 30 no 209.000000 0.628843

0.50 500 30 no 203.000000 0.544006

5.00 5 30 yes 3.000000 0.000002

5.00 50 30 no 182.000000 0.298944

5.00 100 30 no 193.000000 0.416534

5.00 500 30 yes 130.000000 0.035009

50.00 5 30 yes 34.000000 0.000044

50.00 50 30 yes 67.000000 0.000664

50.00 100 30 yes 95.000000 0.004682

50.00 500 30 yes 45.000000 0.000115

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 8 n/a * equal equal

0.01 50 30 yes 0.000000 0.011719

0.01 100 29 yes 1.000000 0.017290

0.01 500 30 yes 0.000000 0.011719

0.10 5 14 no 11.000000 0.326989

0.10 50 30 yes 0.000000 0.011719

0.10 100 30 yes 0.000000 0.011719

0.10 500 30 yes 0.000000 0.011719

0.50 5 10 no 10.000000 0.262618

0.50 50 29 yes 0.000000 0.011719

151

0.50 100 28 yes 0.000000 0.011719

0.50 500 28 yes 0.000000 0.011719

5.00 5 10 no 6.000000 0.092892

5.00 50 29 yes 4.000000 0.049950

5.00 100 30 yes 1.000000 0.017290

5.00 500 28 yes 0.000000 0.011719

50.00 5 28 no 15.000000 0.674424

50.00 50 30 yes 0.000000 0.011719

50.00 100 30 yes 0.000000 0.011719

50.00 500 30 yes 0.000000 0.011719

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 n/a * equal equal

0.01 50 30 yes 0.000000 0.000002

0.01 100 30 yes 4.000000 0.000003

0.01 500 30 yes 0.000000 0.000002

0.10 5 30 no 190.000000 0.382034

0.10 50 30 yes 0.000000 0.000002

0.10 100 30 yes 0.000000 0.000002

0.10 500 30 yes 0.000000 0.000002

0.50 5 30 no 230.000000 0.958990

0.50 50 30 yes 7.000000 0.000004

0.50 100 30 yes 2.000000 0.000002

0.50 500 30 yes 3.000000 0.000002

5.00 5 30 no 232.000000 0.991795

5.00 50 30 yes 3.000000 0.000002

5.00 100 30 yes 0.000000 0.000002

5.00 500 30 yes 1.000000 0.000002

50.00 5 30 yes 0.000000 0.000002

50.00 50 30 yes 0.000000 0.000002

50.00 100 30 yes 0.000000 0.000002

50.00 500 30 yes 0.000000 0.000002

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 30 yes 33.000000 0.000108

0.01 50 30 yes 104.000000 0.008217

0.01 100 30 yes 82.000000 0.001965

0.01 500 30 yes 80.000000 0.001709

0.10 5 30 yes 74.000000 0.003309

0.10 50 30 yes 88.000000 0.002957

0.10 100 30 yes 105.000000 0.008730

152

0.10 500 30 yes 82.000000 0.001965

0.50 5 30 yes 45.000000 0.000191

0.50 50 30 yes 101.000000 0.006836

0.50 100 30 yes 57.000000 0.000306

0.50 500 30 yes 74.000000 0.001114

5.00 5 30 yes 36.000000 0.000143

5.00 50 30 yes 80.000000 0.001709

5.00 100 30 yes 67.000000 0.000664

5.00 500 30 yes 41.000000 0.000082

50.00 5 30 n/a * equal equal

50.00 50 30 no 163.000000 0.152861

50.00 100 30 yes 112.000000 0.013194

50.00 500 30 yes 135.000000 0.044919

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 8 yes 1.000000 0.017290

0.01 50 30 no 162.000000 0.335713

0.01 100 29 no 185.500000 0.513149

0.01 500 30 no 178.500000 0.389474

0.10 5 14 yes 6.000000 0.004451

0.10 50 30 yes 129.500000 0.047519

0.10 100 30 no 184.500000 0.491624

0.10 500 30 no 185.000000 0.923441

0.50 5 10 yes 4.000000 0.016605

0.50 50 29 no 197.000000 0.799749

0.50 100 28 n/a * equal equal

0.50 500 28 no 165.000000 0.379495

5.00 5 10 yes 4.000000 0.028402

5.00 50 29 yes 101.000000 0.020196

5.00 100 30 yes 126.500000 0.040749

5.00 500 28 no 189.500000 0.596802

50.00 5 28 yes 12.000000 0.000014

50.00 50 30 no 145.000000 0.095697

50.00 100 30 no 181.500000 0.742895

50.00 500 30 no 165.000000 0.224598

A.2.2 AMD48

Sort

Metric: Mean throughput (races/s) normalized to the fastest configuration.

153

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 0.000000 0.000089

0.01 50 20 yes 18.000000 0.001162

0.01 100 20 yes 34.000000 0.008034

0.01 500 20 yes 3.000000 0.000140

0.10 5 20 yes 0.000000 0.000089

0.10 50 20 yes 1.000000 0.000103

0.10 100 20 yes 3.000000 0.000140

0.10 500 20 yes 11.000000 0.000449

0.50 5 20 yes 1.000000 0.000103

0.50 50 20 yes 9.000000 0.000338

0.50 100 20 yes 5.000000 0.000189

0.50 500 20 yes 13.000000 0.000593

5.00 5 20 yes 0.000000 0.000089

5.00 50 20 yes 28.000000 0.004045

5.00 100 20 no 93.000000 0.654159

5.00 500 20 no 71.000000 0.204330

50.00 5 20 yes 4.000000 0.000163

50.00 50 20 n/a * equal equal

50.00 100 20 no 62.000000 0.108427

50.00 500 20 yes 24.000000 0.002495

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 1.000000 0.000103

0.01 50 20 yes 13.000000 0.000593

0.01 100 20 yes 20.000000 0.001507

0.01 500 20 yes 6.000000 0.000219

0.10 5 20 yes 0.000000 0.000089

0.10 50 20 yes 1.000000 0.000103

0.10 100 20 yes 0.000000 0.000089

0.10 500 20 yes 12.000000 0.000517

0.50 5 20 yes 1.000000 0.000103

0.50 50 20 yes 3.000000 0.000140

0.50 100 20 yes 5.000000 0.000189

0.50 500 20 yes 12.000000 0.000517

5.00 5 20 yes 0.000000 0.000089

5.00 50 20 yes 19.000000 0.001325

5.00 100 20 no 61.000000 0.100458

5.00 500 20 yes 32.000000 0.006425

50.00 5 20 yes 4.000000 0.000163

50.00 50 20 n/a * equal equal

50.00 100 20 no 88.000000 0.525653

50.00 500 20 yes 32.000000 0.006425

154

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 no 61.000000 0.061360

0.01 50 20 yes 58.000000 0.049374

0.01 100 20 yes 35.500000 0.007955

0.01 500 20 no 78.000000 0.327265

0.10 5 20 no 100.500000 0.753137

0.10 50 20 no 54.500000 0.110449

0.10 100 20 no 66.000000 0.087121

0.10 500 20 yes 21.000000 0.002902

0.50 5 20 no 72.000000 0.122732

0.50 50 20 yes 34.000000 0.006545

0.50 100 20 no 68.000000 0.099859

0.50 500 20 yes 42.500000 0.024955

5.00 5 20 n/a * equal equal

5.00 50 20 yes 21.000000 0.001713

5.00 100 20 yes 8.000000 0.000293

5.00 500 20 yes 8.000000 0.000382

50.00 5 20 yes 1.500000 0.000155

50.00 50 20 yes 0.000000 0.000129

50.00 100 20 yes 0.000000 0.000089

50.00 500 20 yes 0.000000 0.000125

Matrix Approximation

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 no 96.000000 0.736875

0.01 50 20 no 75.000000 0.262722

0.01 100 20 no 91.000000 0.601213

0.01 500 20 no 67.000000 0.156004

0.10 5 20 no 98.000000 0.793839

0.10 50 20 no 65.000000 0.135357

0.10 100 20 no 99.000000 0.822760

0.10 500 20 no 68.000000 0.167184

0.50 5 20 no 102.000000 0.910825

0.50 50 20 no 77.000000 0.295878

0.50 100 20 no 103.000000 0.940481

0.50 500 20 no 80.000000 0.350656

5.00 5 20 no 103.000000 0.940481

5.00 50 20 yes 50.000000 0.040044

155

5.00 100 20 no 77.000000 0.295878

5.00 500 20 no 79.000000 0.331723

50.00 5 20 no 67.000000 0.156004

50.00 50 20 n/a * equal equal

50.00 100 20 yes 47.000000 0.030365

50.00 500 20 no 62.000000 0.108427

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 no 88.000000 0.525653

0.01 50 20 yes 47.000000 0.030365

0.01 100 20 yes 51.000000 0.043804

0.01 500 20 yes 46.000000 0.027621

0.10 5 20 no 73.000000 0.232226

0.10 50 20 yes 51.000000 0.043804

0.10 100 20 yes 35.000000 0.008968

0.10 500 20 yes 20.000000 0.001507

0.50 5 20 no 73.000000 0.232226

0.50 50 20 no 53.000000 0.052222

0.50 100 20 yes 36.000000 0.009996

0.50 500 20 yes 31.000000 0.005734

5.00 5 20 n/a * equal equal

5.00 50 20 yes 47.000000 0.030365

5.00 100 20 yes 45.000000 0.025094

5.00 500 20 no 67.000000 0.156004

50.00 5 20 yes 34.000000 0.008034

50.00 50 20 no 78.000000 0.313463

50.00 100 20 no 59.000000 0.085924

50.00 500 20 no 57.000000 0.073138

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 no 103.000000 0.940481

0.01 50 20 no 60.000000 0.092963

0.01 100 20 no 81.000000 0.370261

0.01 500 20 yes 52.000000 0.047858

0.10 5 20 no 81.000000 0.370261

0.10 50 20 no 59.000000 0.085924

0.10 100 20 no 100.000000 0.851925

0.10 500 20 no 92.000000 0.627446

0.50 5 20 no 98.000000 0.793839

0.50 50 20 no 104.000000 0.970220

0.50 100 20 no 82.000000 0.390533

156

0.50 500 20 no 91.000000 0.601213

5.00 5 20 no 79.000000 0.331723

5.00 50 20 yes 43.000000 0.020633

5.00 100 20 no 64.000000 0.125859

5.00 500 20 no 100.000000 0.851925

50.00 5 20 yes 51.000000 0.043804

50.00 50 20 no 53.000000 0.052222

50.00 100 20 n/a * equal equal

50.00 500 20 no 58.000000 0.079322

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 n/a * equal equal

0.01 50 20 n/a equal equal

0.01 100 20 n/a equal equal

0.01 500 20 n/a equal equal

0.10 5 20 n/a equal equal

0.10 50 20 n/a equal equal

0.10 100 20 n/a equal equal

0.10 500 20 n/a equal equal

0.50 5 20 n/a equal equal

0.50 50 20 n/a equal equal

0.50 100 20 n/a equal equal

0.50 500 20 n/a equal equal

5.00 5 20 n/a equal equal

5.00 50 20 n/a equal equal

5.00 100 20 n/a equal equal

5.00 500 20 n/a equal equal

50.00 5 20 n/a equal equal

50.00 50 20 n/a equal equal

50.00 100 20 n/a equal equal

50.00 500 20 n/a equal equal

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 25.000000 0.000000

0.01 50 20 yes 3.000000 0.000000

0.01 100 20 yes 7.000000 0.000000

0.01 500 20 yes 9.000000 0.000000

0.10 5 20 yes 2.000000 0.011719

0.10 50 20 yes 15.500000 0.000000

0.10 100 20 yes 8.000000 0.000000

0.10 500 20 yes 14.000000 0.000000

157

0.50 5 20 yes 10.500000 0.000000

0.50 50 20 yes 7.000000 0.000000

0.50 100 20 yes 5.000000 0.000000

0.50 500 20 yes 16.000000 0.000000

5.00 5 20 yes 13.500000 0.000000

5.00 50 20 n/a * equal equal

5.00 100 20 yes 8.000000 0.000000

5.00 500 20 yes 18.000000 0.000000

50.00 5 20 yes 6.000000 0.000000

50.00 50 20 yes 7.500000 0.000000

50.00 100 20 yes 13.500000 0.000000

50.00 500 20 yes 13.500000 0.000000

Poisson

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 1.000000 0.000103

0.01 50 20 no 84.000000 0.433048

0.01 100 20 no 82.000000 0.390533

0.01 500 20 no 101.000000 0.881293

0.10 5 20 yes 1.000000 0.000103

0.10 50 20 no 70.000000 0.191334

0.10 100 20 no 66.000000 0.145400

0.10 500 20 no 94.000000 0.681322

0.50 5 20 yes 5.000000 0.000189

0.50 50 20 yes 33.000000 0.007189

0.50 100 20 no 65.000000 0.135357

0.50 500 20 yes 36.000000 0.009996

5.00 5 20 yes 14.000000 0.000681

5.00 50 20 no 60.000000 0.092963

5.00 100 20 yes 52.000000 0.047858

5.00 500 20 n/a * equal equal

50.00 5 20 yes 43.000000 0.020633

50.00 50 20 no 74.000000 0.247145

50.00 100 20 no 89.000000 0.550292

50.00 500 20 no 85.000000 0.455273

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 49.000000 0.036561

0.01 50 20 yes 46.000000 0.027621

158

0.01 100 20 yes 36.000000 0.009996

0.01 500 20 no 63.000000 0.116888

0.10 5 20 yes 21.000000 0.001713

0.10 50 20 yes 30.000000 0.005111

0.10 100 20 no 56.000000 0.067355

0.10 500 20 yes 51.000000 0.043804

0.50 5 20 yes 4.000000 0.000163

0.50 50 20 yes 34.000000 0.008034

0.50 100 20 yes 27.000000 0.003592

0.50 500 20 yes 35.000000 0.008968

5.00 5 20 yes 19.000000 0.001325

5.00 50 20 yes 49.000000 0.036561

5.00 100 20 yes 26.000000 0.003185

5.00 500 20 yes 40.000000 0.015240

50.00 5 20 yes 34.000000 0.008034

50.00 50 20 no 69.000000 0.178956

50.00 100 20 yes 40.000000 0.015240

50.00 500 20 n/a * equal equal

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 0.000000 0.000089

0.01 50 20 yes 43.000000 0.020633

0.01 100 20 yes 36.000000 0.009996

0.01 500 20 no 68.000000 0.167184

0.10 5 20 yes 0.000000 0.000089

0.10 50 20 yes 25.000000 0.002821

0.10 100 20 yes 13.000000 0.000593

0.10 500 20 yes 50.000000 0.040044

0.50 5 20 yes 0.000000 0.000089

0.50 50 20 yes 15.000000 0.000780

0.50 100 20 yes 35.000000 0.008968

0.50 500 20 yes 13.000000 0.000593

5.00 5 20 yes 0.000000 0.000089

5.00 50 20 yes 27.000000 0.003592

5.00 100 20 yes 14.000000 0.000681

5.00 500 20 yes 40.000000 0.015240

50.00 5 20 yes 0.000000 0.000089

50.00 50 20 no 83.000000 0.411465

50.00 100 20 no 76.000000 0.278965

50.00 500 20 n/a * equal equal

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

159

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 no 5.000000 0.500184

0.01 50 20 yes 0.000000 0.005062

0.01 100 20 yes 2.000000 0.005847

0.01 500 20 yes 2.000000 0.005847

0.10 5 20 n/a * equal equal

0.10 50 20 yes 0.000000 0.007686

0.10 100 20 yes 2.000000 0.025062

0.10 500 20 yes 0.000000 0.005062

0.50 5 20 no 5.000000 0.351076

0.50 50 20 no 0.000000 0.067889

0.50 100 20 yes 2.000000 0.025062

0.50 500 20 no 1.000000 0.079616

5.00 5 20 no 3.000000 0.465209

5.00 50 20 yes 6.000000 0.028417

5.00 100 20 yes 5.000000 0.004649

5.00 500 20 yes 0.000000 0.000196

50.00 5 20 yes 1.000000 0.001140

50.00 50 20 yes 0.000000 0.000129

50.00 100 20 yes 0.000000 0.000089

50.00 500 20 yes 0.000000 0.000132

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 28.000000 0.005143

0.01 50 20 yes 46.000000 0.013828

0.01 100 20 yes 63.000000 0.040437

0.01 500 20 yes 26.500000 0.009243

0.10 5 20 no 68.500000 0.294692

0.10 50 20 no 72.500000 0.151243

0.10 100 20 no 75.000000 0.412056

0.10 500 20 yes 50.000000 0.039583

0.50 5 20 no 53.000000 0.508737

0.50 50 20 no 43.000000 0.071637

0.50 100 20 no 83.000000 0.828995

0.50 500 20 no 50.500000 0.080834

5.00 5 20 n/a * equal equal

5.00 50 20 yes 56.500000 0.039641

5.00 100 20 no 76.000000 0.490595

5.00 500 20 yes 44.000000 0.037965

50.00 5 20 no 70.000000 0.330914

50.00 50 20 yes 0.000000 0.000185

50.00 100 20 yes 37.000000 0.043336

50.00 500 20 yes 25.500000 0.004982

160

Binpacking

Metric: Mean throughput (races/s) normalized to the fastest configuration.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 1.000000 0.000103

0.01 50 20 yes 51.000000 0.043804

0.01 100 20 no 63.000000 0.116888

0.01 500 20 no 74.000000 0.247145

0.10 5 20 yes 1.000000 0.000103

0.10 50 20 no 84.000000 0.433048

0.10 100 20 no 90.000000 0.575486

0.10 500 20 no 82.000000 0.390533

0.50 5 20 yes 0.000000 0.000089

0.50 50 20 no 79.000000 0.331723

0.50 100 20 no 71.000000 0.204330

0.50 500 20 no 74.000000 0.247145

5.00 5 20 yes 1.000000 0.000103

5.00 50 20 no 87.000000 0.501591

5.00 100 20 no 62.000000 0.108427

5.00 500 20 n/a * equal equal

50.00 5 20 yes 7.000000 0.000254

50.00 50 20 yes 11.000000 0.000449

50.00 100 20 yes 12.000000 0.000517

50.00 500 20 yes 11.000000 0.000449

Metric: Best candidate throughput (races/s) normalized to the fastest candidate.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 7 no 3.000000 0.224916

0.01 50 20 yes 0.000000 0.043114

0.01 100 19 yes 0.000000 0.043114

0.01 500 19 yes 0.000000 0.043114

0.10 5 5 n/a * equal equal

0.10 50 20 yes 0.000000 0.043114

0.10 100 19 yes 0.000000 0.043114

0.10 500 19 yes 0.000000 0.043114

0.50 5 5 no 6.000000 0.685830

0.50 50 19 no 2.000000 0.138011

0.50 100 19 yes 0.000000 0.043114

0.50 500 19 yes 0.000000 0.043114

5.00 5 12 no 6.000000 0.685830

5.00 50 19 no 1.000000 0.079616

161

5.00 100 20 yes 0.000000 0.043114

5.00 500 19 yes 0.000000 0.043114

50.00 5 20 no 3.000000 0.224916

50.00 50 20 yes 0.000000 0.043114

50.00 100 20 yes 0.000000 0.043114

50.00 500 20 yes 0.000000 0.043114

Metric: Accuracy Root Mean Square Error (RMSE) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 no 94.000000 0.681322

0.01 50 20 yes 0.000000 0.000089

0.01 100 20 yes 0.000000 0.000089

0.01 500 20 yes 0.000000 0.000089

0.10 5 20 no 94.000000 0.681322

0.10 50 20 yes 0.000000 0.000089

0.10 100 20 yes 2.000000 0.000120

0.10 500 20 yes 3.000000 0.000140

0.50 5 20 n/a * equal equal

0.50 50 20 yes 0.000000 0.000089

0.50 100 20 yes 0.000000 0.000089

0.50 500 20 yes 3.000000 0.000140

5.00 5 20 no 59.000000 0.085924

5.00 50 20 yes 0.000000 0.000089

5.00 100 20 yes 0.000000 0.000089

5.00 500 20 yes 0.000000 0.000089

50.00 5 20 yes 0.000000 0.000089

50.00 50 20 yes 0.000000 0.000089

50.00 100 20 yes 0.000000 0.000089

50.00 500 20 yes 0.000000 0.000089

Metric: Percentage of races that met accuracy target normalized to the highest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 20 yes 24.000000 0.002495

0.01 50 20 yes 35.000000 0.008968

0.01 100 20 yes 5.000000 0.000189

0.01 500 20 yes 15.000000 0.000780

0.10 5 20 yes 12.000000 0.000517

0.10 50 20 yes 23.000000 0.002204

0.10 100 20 yes 36.000000 0.009996

0.10 500 20 yes 3.000000 0.000140

0.50 5 20 yes 10.000000 0.000390

0.50 50 20 yes 44.000000 0.022769

0.50 100 20 yes 39.000000 0.013741

162

0.50 500 20 yes 11.000000 0.000449

5.00 5 20 no 69.000000 0.178956

5.00 50 20 yes 27.000000 0.003592

5.00 100 20 yes 8.000000 0.000293

5.00 500 20 yes 15.000000 0.000780

50.00 5 20 no 77.000000 0.295878

50.00 50 20 no 81.000000 0.370261

50.00 100 20 no 103.000000 0.940481

50.00 500 20 n/a * equal equal

Metric: Time to convergence (number of races) normalized to the lowest one achieved.

C W n SS? OPTIMAL? z-stat p-val

0.01 5 7 no 3.000000 0.062979

0.01 50 20 yes 23.000000 0.003762

0.01 100 19 no 55.000000 0.067149

0.01 500 19 no 93.000000 0.877421

0.10 5 5 yes 0.000000 0.043114

0.10 50 20 no 64.000000 0.126504

0.10 100 19 no 80.000000 0.546088

0.10 500 19 yes 40.000000 0.047531

0.50 5 5 yes 0.000000 0.043114

0.50 50 19 no 70.500000 0.202373

0.50 100 19 no 63.500000 0.124936

0.50 500 19 n/a * equal equal

5.00 5 12 yes 0.000000 0.002218

5.00 50 19 no 41.000000 0.052624

5.00 100 20 no 71.000000 0.211264

5.00 500 19 no 64.500000 0.233256

50.00 5 20 yes 33.500000 0.011088

50.00 50 20 no 79.500000 0.368853

50.00 100 20 no 74.500000 0.261956

50.00 500 20 no 67.000000 0.270185

163

	Introduction
	Contributions
	Thesis Outline

	Background
	Autotuning
	Evolutionary Algorithms
	Problem-Specific Components
	Representation-Dependent Components
	General Components
	Genetic Algorithms
	Multi-objective Algorithms

	The PetaBricks Language
	Example PetaBricks Program: kmeans
	Variable Accuracy Algorithms

	PetaBricks Autotuning
	Properties of the Autotuning Problem

	Benchmarks
	Fixed Accuracy
	Variable Accuracy

	Offline Autotuning
	General-Purpose EA (GPEA)
	Representation
	Initialization
	Fitness Evaluation
	Variation Operators
	Parent and Survivor Selection
	Termination Condition

	Bottom-Up EA (INCREA)
	Representation
	Top level Strategy
	Mutation Operators
	Dealing with Noisy Fitness

	Experimental Results
	Experimental Setup
	INCREA vs GPEA
	Representative Runs

	Conclusions

	Online Autotuning
	Competition Execution Model
	Other Splitting Strategies
	Time Multiplexing Races

	SiblingRivalry
	High Level Function
	Selecting the Safe and Seed Configuration
	Mutation Operators
	Adaptive Mutator Selection (AMS)
	Credit Assignment
	Bandit Mutator Selection
	Population Pruning

	Related Work
	Experimental Results
	Experimental Setup
	Sources of Speedups
	Load on a System
	Migrating Between Microarchitectures
	Cold Start
	Power Consumption
	Conclusions

	Hyperparameter Tuning
	Tuning the Tuner
	Hyperparameter Quality
	Static System
	Dynamic System

	Experimental Results
	Sort
	Bin Packing
	Poisson
	Image Compression

	The Big Picture
	Globally Optimal Hyperparameters

	Conclusions

	Conclusions and Future Work
	Detailed Statistics
	Hyperparameters Runs: Normality Testing
	Xeon8
	AMD48

	Hyperparameter Runs: Significance Testing
	Xeon8
	AMD48

