3,111 research outputs found

    Analysis of diverse optimisation algorithms for pump scheduling in water supply systems

    Get PDF
    Nowadays, the major expenses with water supply systems (WSS) correspond to energy consumption. The number of scientific works dealing with operational optimisation in WSS has been increasing over the past years, demonstrating significant reductions on energy costs and consumption. Pump stations usually represent the major portion of total energy costs in WSS. Consequently, in this work, it is pretended to give a contribution for energy efficiency improvement in pump stations. Generally, in WSS, the pumps are switched on when the reservoirs, responsible for supplying certain populations, reach their minimum levels. These pumps are only switched off when the reservoirs reach their maximum levels. The introduction of an operational pump pattern adapted to the energy tariff variation and the consumption patterns of the populations can optimise pump stations operations, minimising energy costs significantly. However, the process of finding the best pattern can present difficulties due to the complexity of some WSS (multiple pumps, multiple reservoirs, nonlinear behaviour of the systems, etc). In this work, an interface was developed with the aim of applying different optimisation algorithms for pump scheduling in WSS. The interface makes an automatic connection between a hydraulic simulator (EPANET 2.0) and the different optimisation algorithms selected, providing, after multiple iterations and evaluations, an optimal pump pattern for a certain water supply network represented. Two different examples of water supply networks are introduced in this study in order to validate the developed methodology. For both WSS, classic and meta-heuristic optimisation algorithms are tested and analysed.publishe

    Multi-stage linear programming optimization for pump scheduling

    Get PDF
    Open Access journalCopyright © 2013 The Authors. Published by Elsevier Ltd.12th International Conference on Computing and Control for the Water Industry, CCWI2013This study presents a methodology based on Linear Programming for determining the optimal pump schedule on a 24-hour basis, considering as decision variables the continuous pump flow rates which are subsequently transformed into a discrete schedule. The methodology was applied on a case study derived from the benchmark Anytown network. To evaluate the LP reliability, a comparison was made with solutions generated by a Hybrid Discrete Dynamically Dimensioned Search (HD-DDS) algorithm. The cost associated with the result derived from the LP initial solution was shown to be lower than that obtained with repeated HD-DDS runs with differing random seeds

    A simulation-based multi-criteria management system for optimal water supply under uncertainty

    Get PDF
    For cost and reliability efficiency, optimal design and operation of pressurized water distribution networks is highly important. However, optimizing such networks is still a challenge since it requires an appropriate determination of: (1) dimension of pipe / pump / tank - decision variables (2) cost / network reliability - objective functions and (3) limits or restrictions within which the network must operate - a given set of constraints. The costs mentioned here consist in general of capital, construction, and operation costs. The reliability of a network mainly refers to the intrinsic capability of providing water with adequate volume and a certain pressure to consumers under normal and extreme conditions. These contradicting objective functions are functions of network configuration regarding component sizes and network layout. Because considerable uncertainties finally render the overall task to a highly complex problem, most recent approaches mainly focus only on finding a trade-off between minimizing cost and maximizing network reliability. To overcome these limitations, a novel model system that simultaneously considers network configuration, its operation and the relevant uncertainties is proposed in this study. For solving this multi-objective design problem, a simulation-based optimization approach has been developed and applied. The approach couples a hydraulic model (Epanet) with the covariance matrix adaptation evolution strategy (CMA-ES) and can be operated in two different modes. These modes are (1) simulation–based Single-objective optimization and (2) simulation-based multi-objective optimization. Single-objective optimization yields the single best solution with respect to cost or network reliability, whereas multi-objective optimization produces a set of non-dominated solutions called Pareto optimal solutions which are trade-offs between cost and reliability. In addition, to prevent a seriously under-designed network, demand uncertainties was also taken into account through a so called “robustness probability” of the network. This consideration may become useful for a more reliable water distribution network. In order to verify the performance of the proposed approach, it was systematically tested on a number of different benchmark water distribution networks ranging from simple to complex. These benchmark networks are either gravity-fed or pumped networks which need to be optimally designed to supply urban or irrigation water demand under specific constraints. The results show that the new approach is able: • to solve optimization problems of pressurized water distribution network design and operation regarding cost and network reliability; • to directly determine the pumping discharge and head, thus allowing to select pumps more adequately; • to simulate time series of tank water level; • to eliminate redundant pipes and pumps to generate an optimal network layout; • to respond well to complex networks other than only to simple networks; • to perform with multiple demand loading; • to produce reliable Pareto optimal solutions regarding multi-objective optimization. In conclusion, the new technique can be successfully applied for optimization problems in pressurized water distribution network design and operation. The new approach has been demonstrated to be a powerful tool for optimal network design not only for irrigation but also for an urban water supply

    Lost in optimisation of water distribution systems? A literature review of system operation

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Optimisation of the operation of water distribution systems has been an active research field for almost half a century. It has focused mainly on optimal pump operation to minimise pumping costs and optimal water quality management to ensure that standards at customer nodes are met. This paper provides a systematic review by bringing together over two hundred publications from the past three decades, which are relevant to operational optimisation of water distribution systems, particularly optimal pump operation, valve control and system operation for water quality purposes of both urban drinking and regional multiquality water distribution systems. Uniquely, it also contains substantial and thorough information for over one hundred publications in a tabular form, which lists optimisation models inclusive of objectives, constraints, decision variables, solution methodologies used and other details. Research challenges in terms of simulation models, optimisation model formulation, selection of optimisation method and postprocessing needs have also been identified

    Pump Scheduling for Optimised Energy Cost and Water Quality in Water Distribution Networks

    Get PDF
    Delivering water to customers in sufficient quantity and quality and at low cost is the main driver for many water utilities around the world. One way of working toward this goal is to optimize the operation of a water distribution system. This means scheduling the operation of pumps in a way that results in minimal cost of energy used. It is not an easy process due to nonlinearity of hydraulic system response to different schedules and complexity of water networks in general. This thesis reviewed over 250 papers about pump scheduling published in the last 5 decades. The review revealed that, despite a lot of good work done in the past, the existing pump scheduling methods have several drawbacks revolving mainly around the ability to find globally optimal pump schedules and in a computationally efficient manner whilst dealing with water quality and other complexities of large pipe networks. A new pump scheduling method, entitled iterative Extended Lexicographic Goal Programming (iELGP) method, is developed and presented in this thesis with aim to overcome above drawbacks. The pump scheduling problem is formulated and solved as an optimisation problem with objectives being the electricity cost and the water age (used as a surrogate for water quality). The developed pump scheduling method is general and can be applied to any water distribution network configuration. Moreover, the new method can optimize the operation of fixed and variable speed pumps. The new method was tested on three different case studies. Each case study has different topography, demand patterns, number of pumps and number of tanks. The objective in the first and second case studies is to minimise energy cost only, whereas in the third case study, energy cost and water age are minimized simultaneously. The results obtained by using the new method are compared with results obtained from other pump scheduling methods that were applied to the same case studies. The results obtained demonstrate that the iELGP method is capable of determining optimal, low cost pump schedules whilst trading-off energy costs and water quality. The optimal schedules can be generated in a computationally very efficient manner. Given this, the iELGP method has potential to be applied in real-time scheduling of pumps in larger water distribution networks and without the need to simplify the respective hydraulic models or replace these with surrogate models

    Enhanced Pump Schedule Optimization For Large Water Distribution Networks To Maximize Environmental And Economic Benefits

    Get PDF
    For more than four decades researchers tried to develop optimization method and tools to reduce electricity consumption of pump stations of water distribution systems. Based on this ongoing research trend, about a decade ago, some commercial pump operation optimization software introduced to the market. Using metaheuristic and evolutionary techniques (e.g. Genetic Algorithm) make some commercial and research tools able to optimize the electricity cost of small water distribution systems (WDS). Still reducing the environmental footprint of these systems and dealing with large and complicated water distribution system is a challenge. In this study, we aimed to develop a multiobjective optimization tool (PEPSO) for reducing electricity cost and pollution emission (associated with energy consumption) of pump stations of WDSs. PEPSO designed to have a user-friendly graphical interface besides the state of art internal functions and procedures that lets users define and run customized optimization scenarios for even medium and large size WDSs. A customized version of non-dominated sorting genetic algorithm II is used as the core optimizer algorithm. EPANET toolkit is used as the hydraulic solver of PEPSO. In addition to the EPANET toolkit, a module is developed for training and using an artificial neural network instead of the high fidelity hydraulic model to speed up the optimization process. A unique measure that is called “Undesirability” is also introduced and used to help PEPSO in finding the promising path of optimization and making sure that the final results are desirable and practical. PEPSO is tested for optimizing the detailed hydraulic model of WDS of Monroe city, MI, USA and skeletonized hydraulic model of WDS of Richmond, UK. The various features of PEPSO are tested under 8 different scenarios, and its results are compared with results of Darwin Scheduler (a well-known commercial software in this field). The test results showed that in a reasonable amount of time, PEPSO is able to optimize and provide logical results for a medium size WDS model with 13 pumps and thousands of system components under different scenarios. It also is concluded that this tool in many aspects can provide better results in comparison with the famous commercial optimization tool in the market

    Water Supply Infrastructure Modeling and Control under Extreme Drought and/or Limited Power Availability

    Get PDF
    abstract: The phrase water-energy nexus is commonly used to describe the inherent and critical interdependencies between the electric power system and the water supply systems (WSS). The key interdependencies between the two systems are the power plant’s requirement of water for the cooling cycle and the water system’s need of electricity for pumping for water supply. While previous work has considered the dependency of WSS on the electrical power, this work incorporates into an optimization-simulation framework, consideration of the impact of short and long-term limited availability of water and/or electrical energy. This research focuses on the water supply system (WSS) facet of the multi-faceted optimization and control mechanism developed for an integrated water – energy nexus system under U.S. National Science Foundation (NSF) project 029013-0010 CRISP Type 2 – Resilient cyber-enabled electric energy and water infrastructures modeling and control under extreme mega drought scenarios. A water supply system (WSS) conveys water from sources (such as lakes, rivers, dams etc.) to the treatment plants and then to users via the water distribution systems (WDS) and/or water supply canal systems (WSCS). Optimization-simulation methodologies are developed for the real-time operation of water supply systems (WSS) under critical conditions of limited electrical energy and/or water availability due to emergencies such as extreme drought conditions, electric grid failure, and other severe conditions including natural and manmade disasters. The coupling between WSS and the power system was done through alternatively exchanging data between the power system and WSS simulations via a program control overlay developed in python. A new methodology for WDS infrastructural-operational resilience (IOR) computation was developed as a part of this research to assess the real-time performance of the WDS under emergency conditions. The methodology combines operational resilience and component level infrastructural robustness to provide a comprehensive performance assessment tool. The optimization-simulation and resilience computation methodologies developed were tested for both hypothetical and real example WDS and WSCS, with results depicting improved resilience for operations of the WSS under normal and emergency conditions.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201

    Pumping Station Design in Water Distribution Networks Considering the Optimal Flow Distribution between Sources and Capital and Operating Costs

    Full text link
    [EN] The investment and operating costs of pumping stations in drinking water distribution networks are some of the highest public costs in urban sectors. Generally, these systems are designed based on extreme scenarios. However, in periods of normal operation, extra energy is produced, thereby generating excess costs. To avoid this problem, this work presents a new methodology for the design of pumping stations. The proposed technique is based on the use of a setpoint curve to optimize the operating and investment costs of a station simultaneously. According to this purpose, a novel mathematical optimization model is developed. The solution output by the model includes the selection of the pumps, the dimensions of pipelines, and the optimal flow distribution among all water sources for a given network. To demonstrate the advantages of using this technique, a case study network is presented. A pseudo-genetic algorithm (PGA) is implemented to resolve the optimization model. Finally, the obtained results show that it is possible to determine the full design and operating conditions required to achieve the lowest cost in a multiple pump station network.This work was supported by the Program Fondecyt Regular (Project N. 1210410) of the Agencia Nacional de Investigación y Desarrollo (ANID), Chile. It is also supported by CONICYT PFCHA/DOCTORADO BECAS CHILE/2018-21182013.Gutiérrez-Bahamondes, JH.; Mora-Meliá, D.; Iglesias Rey, PL.; Martínez-Solano, FJ.; Salgueiro, Y. (2021). Pumping Station Design in Water Distribution Networks Considering the Optimal Flow Distribution between Sources and Capital and Operating Costs. Water. 13(21):1-14. https://doi.org/10.3390/w13213098S114132

    Intelligent Approaches For Modeling And Optimizing Hvac Systems

    Get PDF
    Advanced energy management control systems (EMCS), or building automation systems (BAS), offer an excellent means of reducing energy consumption in heating, ventilating, and air conditioning (HVAC) systems while maintaining and improving indoor environmental conditions. This can be achieved through the use of computational intelligence and optimization. This research will evaluate model-based optimization processes (OP) for HVAC systems utilizing MATLAB, genetic algorithms and self-learning or self-tuning models (STM), which minimizes the error between measured and predicted performance data. The OP can be integrated into the EMCS to perform several intelligent functions achieving optimal system performance. The development of several self-learning HVAC models and optimizing the process (minimizing energy use) will be tested using data collected from the HVAC system servicing the Academic building on the campus of NC A&T State University. Intelligent approaches for modeling and optimizing HVAC systems are developed and validated in this research. The optimization process (OP) including the STMs with genetic algorithms (GA) enables the ideal operation of the building’s HVAC systems when running in parallel with a building automation system (BAS). Using this proposed optimization process (OP), the optimal variable set points (OVSP), such as supply air temperature (Ts), supply duct static pressure (Ps), chilled water supply temperature (Tw), minimum outdoor ventilation, reheat (or zone supply air temperature, Tz), and chilled water differential pressure set-point (Dpw) are optimized with respect to energy use of the HVAC’s cooling side including the chiller, pump, and fan. HVAC system component models were developed and validated against both simulated and monitored real data of an existing VAV system. The optimized set point variables minimize energy use and maintain thermal comfort incorporating ASHRAE’s new ventilation standard 62.1-2013. The proposed optimization process is validated on an existing VAV system for three summer months (May, June, August). This proposed research deals primarily with: on-line, self-tuning, optimization process (OLSTOP); HVAC design principles; and control strategies within a building automation system (BAS) controller. The HVAC controller will achieve the lowest energy consumption of the cooling side while maintaining occupant comfort by performing and prioritizing the appropriate actions. Recent technological advances in computing power, sensors, and databases will influence the cost savings and scalability of the system. Improved energy efficiencies of existing Variable Air Volume (VAV) HVAC systems can be achieved by optimizing the control sequence leading to advanced BAS programming. The program’s algorithms analyze multiple variables (humidity, pressure, temperature, CO2, etc.) simultaneously at key locations throughout the HVAC system (pumps, cooling coil, chiller, fan, etc.) to reach the function’s objective, which is the lowest energy consumption while maintaining occupancy comfort
    • …
    corecore