8,233 research outputs found

    Combining mobile-health (mHealth) and artificial intelligence (AI) methods to avoid suicide attempts: the Smartcrises study protocol

    Get PDF
    The screening of digital footprint for clinical purposes relies on the capacity of wearable technologies to collect data and extract relevant information’s for patient management. Artificial intelligence (AI) techniques allow processing of real-time observational information and continuously learning from data to build understanding. We designed a system able to get clinical sense from digital footprints based on the smartphone’s native sensors and advanced machine learning and signal processing techniques in order to identify suicide risk. Method/design: The Smartcrisis study is a cross-national comparative study. The study goal is to determine the relationship between suicide risk and changes in sleep quality and disturbed appetite. Outpatients from the Hospital Fundación Jiménez Díaz Psychiatry Department (Madrid, Spain) and the University Hospital of Nimes (France) will be proposed to participate to the study. Two smartphone applications and a wearable armband will be used to capture the data. In the intervention group, a smartphone application (MEmind) will allow for the ecological momentary assessment (EMA) data capture related with sleep, appetite and suicide ideations. Discussion: Some concerns regarding data security might be raised. Our system complies with the highest level of security regarding patients’ data. Several important ethical considerations related to EMA method must also be considered. EMA methods entails a non-negligible time commitment on behalf of the participants. EMA rely on daily, or sometimes more frequent, Smartphone notifications. Furthermore, recording participants’ daily experiences in a continuous manner is an integral part of EMA. This approach may be significantly more than asking a participant to complete a retrospective questionnaire but also more accurate in terms of symptoms monitoring. Overall, we believe that Smartcrises could participate to a paradigm shift from the traditional identification of risks factors to personalized prevention strategies tailored to characteristics for each patientThis study was partly funded by Fundación Jiménez Díaz Hospital, Instituto de Salud Carlos III (PI16/01852), Delegación del Gobierno para el Plan Nacional de Drogas (20151073), American Foundation for Suicide Prevention (AFSP) (LSRG-1-005-16), the Madrid Regional Government (B2017/BMD-3740 AGES-CM 2CM; Y2018/TCS-4705 PRACTICO-CM) and Structural Funds of the European Union. MINECO/FEDER (‘ADVENTURE’, id. TEC2015–69868-C2–1-R) and MCIU Explora Grant ‘aMBITION’ (id. TEC2017–92552-EXP), the French Embassy in Madrid, Spain, The foundation de l’avenir, and the Fondation de France. The work of D. Ramírez and A. Artés-Rodríguez has been partly supported by Ministerio de Economía of Spain under projects: OTOSIS (TEC2013–41718-R), AID (TEC2014–62194-EXP) and the COMONSENS Network (TEC2015–69648-REDC), by the Ministerio de Economía of Spain jointly with the European Commission (ERDF) under projects ADVENTURE (TEC2015– 69868-C2–1-R) and CAIMAN (TEC2017–86921-C2–2-R), and by the Comunidad de Madrid under project CASI-CAM-CM (S2013/ICE-2845). The work of P. Moreno-Muñoz has been supported by FPI grant BES-2016-07762

    Learning to run a Power Network Challenge: a Retrospective Analysis

    Get PDF
    Power networks, responsible for transporting electricity across large geographical regions, are complex infrastructures on which modern life critically depend. Variations in demand and production profiles, with increasing renewable energy integration, as well as the high voltage network technology, constitute a real challenge for human operators when optimizing electricity transportation while avoiding blackouts. Motivated to investigate the potential of Artificial Intelligence methods in enabling adaptability in power network operation, we have designed a L2RPN challenge to encourage the development of reinforcement learning solutions to key problems present in the next-generation power networks. The NeurIPS 2020 competition was well received by the international community attracting over 300 participants worldwide. The main contribution of this challenge is our proposed comprehensive Grid2Op framework, and associated benchmark, which plays realistic sequential network operations scenarios. The framework is open-sourced and easily re-usable to define new environments with its companion GridAlive ecosystem. It relies on existing non-linear physical simulators and let us create a series of perturbations and challenges that are representative of two important problems: a) the uncertainty resulting from the increased use of unpredictable renewable energy sources, and b) the robustness required with contingent line disconnections. In this paper, we provide details about the competition highlights. We present the benchmark suite and analyse the winning solutions of the challenge, observing one super-human performance demonstration by the best agent. We propose our organizational insights for a successful competition and conclude on open research avenues. We expect our work will foster research to create more sustainable solutions for power network operations

    Type determination in an optimizing compiler for APL

    Get PDF
    This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target " for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or dupUcate copy. Unless we meant to delete copyrighted materials that should not have been filmed, you will find

    When to Show a Suggestion? Integrating Human Feedback in AI-Assisted Programming

    Full text link
    AI powered code-recommendation systems, such as Copilot and CodeWhisperer, provide code suggestions inside a programmer's environment (e.g., an IDE) with the aim to improve their productivity. Since, in these scenarios, programmers accept and reject suggestions, ideally, such a system should use this feedback in furtherance of this goal. In this work we leverage prior data of programmers interacting with Copilot to develop interventions that can save programmer time. We propose a utility theory framework, which models this interaction with programmers and decides when and which suggestions to display. Our framework Conditional suggestion Display from Human Feedback (CDHF) is based on predictive models of programmer actions. Using data from 535 programmers we build models that predict the likelihood of suggestion acceptance. In a retrospective evaluation on real-world programming tasks solved with AI-assisted programming, we find that CDHF can achieve favorable tradeoffs. Our findings show the promise of integrating human feedback to improve interaction with large language models in scenarios such as programming and possibly writing tasks.Comment: arXiv admin note: text overlap with arXiv:2210.1430

    The Artificial Intelligence Workbench: a retrospective review

    Get PDF
    Last decade, biomedical and bioinformatics researchers have been demanding advanced and user-friendly applications for real use in practice. In this context, the Artificial Intelligence Workbench, an open-source Java desktop application framework for scientific software development, emerged with the goal of provid-ing support to both fundamental and applied research in the domain of transla-tional biomedicine and bioinformatics. AIBench automatically provides function-alities that are common to scientific applications, such as user parameter defini-tion, logging facilities, multi-threading execution, experiment repeatability, work-flow management, and fast user interface development, among others. Moreover, AIBench promotes a reusable component based architecture, which also allows assembling new applications by the reuse of libraries from existing projects or third-party software. Ten years have passed since the first release of AIBench, so it is time to look back and check if it has fulfilled the purposes for which it was conceived to and how it evolved over time

    Multiobjective strategies for New Product Development in the pharmaceutical industry

    Get PDF
    New Product Development (NPD) constitutes a challenging problem in the pharmaceutical industry, due to the characteristics of the development pipeline. Formally, the NPD problem can be stated as follows: select a set of R&D projects from a pool of candidate projects in order to satisfy several criteria (economic profitability, time to market) while coping with the uncertain nature of the projects. More precisely, the recurrent key issues are to determine the projects to develop once target molecules have been identified, their order and the level of resources to assign. In this context, the proposed approach combines discrete event stochastic simulation (Monte Carlo approach) with multiobjective genetic algorithms (NSGAII type, Non-Sorted Genetic Algorithm II) to optimize the highly combinatorial portfolio management problem. In that context, Genetic Algorithms (GAs) are particularly attractive for treating this kind of problem, due to their ability to directly lead to the so-called Pareto front and to account for the combinatorial aspect. This work is illustrated with a study case involving nine interdependent new product candidates targeting three diseases. An analysis is performed for this test bench on the different pairs of criteria both for the bi- and tricriteria optimization: large portfolios cause resource queues and delays time to launch and are eliminated by the bi- and tricriteria optimization strategy. The optimization strategy is thus interesting to detect the sequence candidates. Time is an important criterion to consider simultaneously with NPV and risk criteria. The order in which drugs are released in the pipeline is of great importance as with scheduling problems
    corecore