699 research outputs found

    An altruistic cross-layer recovering mechanism for ad hoc wireless networks

    Full text link
    Video streaming services have restrictive delay and bandwidth constraints. Ad hoc networks represent a hostile environment for this kind of real-time data transmission. Emerging mesh networks, where a backbone provides more topological stability, do not even assure a high quality of experience. In such scenario, mobility of terminal nodes causes link breakages until a new route is calculated. In the meanwhile, lost packets cause annoying video interruptions to the receiver. This paper proposes a new mechanism of recovering lost packets by means of caching overheard packets in neighbor nodes and retransmit them to destination. Moreover, an optimization is shown, which involves a video-aware cache in order to recover full frames and prioritize more significant frames. Results show the improvement in reception, increasing the throughput as well as video quality, whereas larger video interruptions are considerably reduced. Copyright © 2014 John Wiley & Sons, Ltd.Arce Vila, P.; Guerri Cebollada, JC. (2015). An altruistic cross-layer recovering mechanism for ad hoc wireless networks. Wireless Communications and Mobile Computing. 15(13):1744-1758. doi:10.1002/wcm.2459S174417581513Li J Blake C De Couto DSJ Lee HI Morris R Capacity of ad hoc wireless networks Proceedings of the 7th Annual International Conference on Mobile Computing and Networks (MobiCom) 2001 61 69Akyildiz, I. F., & Xudong Wang. (2005). A survey on wireless mesh networks. IEEE Communications Magazine, 43(9), S23-S30. doi:10.1109/mcom.2005.1509968Hsu, C.-J., Liu, H.-I., & Seah, W. K. G. (2011). Opportunistic routing – A review and the challenges ahead. Computer Networks, 55(15), 3592-3603. doi:10.1016/j.comnet.2011.06.021Huang, X., Zhai, H., & Fang, Y. (2008). Robust cooperative routing protocol in mobile wireless sensor networks. IEEE Transactions on Wireless Communications, 7(12), 5278-5285. doi:10.1109/t-wc.2008.060680Wieselthier, J. E., Nguyen, G. D., & Ephremides, A. (2001). Mobile Networks and Applications, 6(3), 251-263. doi:10.1023/a:1011478717164Clausen T Jacquet P Optimized Link State Routing Protocol (OLSR), IETF RFC 3626 2003 http://www.rfc-editor.org/rfc/rfc3626.txtMarina, M. K., & Das, S. R. (2006). Ad hoc on-demand multipath distance vector routing. Wireless Communications and Mobile Computing, 6(7), 969-988. doi:10.1002/wcm.432Zhou X Lu Y Ma HG Routing improvement using multiple disjoint paths for ad hoc networks International Conference on Wireless and Optical Communications Networks (IFIP) 2006 1 5Fujisawa H Minami H Yamamoto M Izumi Y Fujita Y Route selection using retransmission packets for video streaming on ad hoc networks IEEE Conference on Radio and Wireless Symposium (RWS) 2006 607 610Badis H Agha KA QOLSR multi-path routing for mobile ad hoc networks based on multiple metrics: bandwidth and delay IEEE 59th Vehicular Technology Conference (VTC) 2004 2181 2184Wu Z Wu J Cross-layer routing optimization for video transmission over wireless ad hoc networks 6th International Conference on Wireless Communications Networks and Mobile Computing (WiCOM) 2010 1 6Schier, M., & Welzl, M. (2012). Optimizing Selective ARQ for H.264 Live Streaming: A Novel Method for Predicting Loss-Impact in Real Time. IEEE Transactions on Multimedia, 14(2), 415-430. doi:10.1109/tmm.2011.2178235Nikoupour M Nikoupour A Dehghan M A cross-layer framework for video streaming over wireless ad-hoc networks 3rd International Conference on Digital Information Management (ICDIM) 2008 340 345Yamamoto R Miyoshi T Distributed retransmission method using neighbor terminals for ad hoc networks Proceedings of the 14th Asia-Pacific Conference on Communications (APCC) 2008 1 5Gravalos I Kokkinos P Varvarigos EA Multi-criteria cooperative energy-aware routing in wireless ad-hoc networks Proceedings of the 9th International Wireless Communications and Mobile Computing Conference (IWCMC) 2013 387 393Abid, R. M., Benbrahim, T., & Biaz, S. (2010). IEEE 802.11s Wireless Mesh Networks for Last-Mile Internet Access: An Open-Source Real-World Indoor Testbed Implementation. Wireless Sensor Network, 02(10), 725-738. doi:10.4236/wsn.2010.210088Yen, Y.-S., Chang, R.-S., & Wu, C.-Y. (2011). A seamless handoff scheme for IEEE 802.11 wireless networks. Wireless Communications and Mobile Computing, 13(2), 157-169. doi:10.1002/wcm.1102Liangzhong Yin, & Guohong Cao. (2006). Supporting cooperative caching in ad hoc networks. IEEE Transactions on Mobile Computing, 5(1), 77-89. doi:10.1109/tmc.2006.15Biswas S Morris R ExOR: opportunistic multi-hop routing for wireless networks Proceedings of ACM SIGCOMM 2005 133 144Chachulski S Jennings M Katti S Katabi D Trading structure for randomness in wireless opportunistic routing Proceedings of ACM SIGCOMM 2007 169 180Kohler E Handley M Floyd S Datagram Congestion Control Protocol (DCCP), IETF RFC 4340 2006 http://www.rfc-editor.org/rfc/rfc4340.txtSchierl, T., Ganger, K., Hellge, C., Wiegand, T., & Stockhammer, T. (2006). SVC-based multisource streaming for robust video transmission in mobile ad hoc networks. IEEE Wireless Communications, 13(5), 96-103. doi:10.1109/wc-m.2006.250365Iera, A., Molinaro, A., Paratore, S. Y., Ruggeri, G., & Zurzolo, A. (2011). Making a mesh router/gateway from a smartphone: Is that a practical solution? Ad Hoc Networks, 9(8), 1414-1429. doi:10.1016/j.adhoc.2011.03.00

    Content storage and retrieval mechanisms for vehicular delay-tolerant networks

    Get PDF
    Vehicular delay-tolerant networks (VDTNs) were proposed as a novel disruptive network concept based on the delay tolerant networking (DTN) paradigm. VDTN architecture uses vehicles to relay messages, enabling network connectivity in challenging scenarios. Due to intermittent connectivity, network nodes carry messages in their buffers, relaying them only when a proper contact opportunity occurs. Thus, the storage capacity and message retrieving of intermediate nodes directly affects the network performance. Therefore, efficient and robust caching and forwarding mechanisms are needed. This dissertation proposes a content storage and retrieval (CSR) solution for VDTN networks. This solution consists on storage and retrieval control labels, attached to every data bundle of aggregated network traffic. These labels define cacheable contents, and apply cachecontrol and forwarding restrictions on data bundles. The presented mechanisms gathered several contributions from cache based technologies such as Web cache schemes, ad-hoc and DTN networks. This solution is fully automated, providing a fast, safe, and reliable data transfer and storage management, while improves the applicability and performance of VDTN networks significantly. This work presents the performance evaluation and validation of CSR mechanisms through a VDTN testbed. Furthermore it presents several network performance evaluations and results using the well-known DTN routing protocols, Epidemic and Spray and Wait (including its binary variant). The comparison of the network behavior and performance on both protocols, with and without CSR mechanisms, proves that CSR mechanisms improve significantly the overall network performance

    A Search Strategy of Level-Based Flooding for the Internet of Things

    Full text link
    This paper deals with the query problem in the Internet of Things (IoT). Flooding is an important query strategy. However, original flooding is prone to cause heavy network loads. To address this problem, we propose a variant of flooding, called Level-Based Flooding (LBF). With LBF, the whole network is divided into several levels according to the distances (i.e., hops) between the sensor nodes and the sink node. The sink node knows the level information of each node. Query packets are broadcast in the network according to the levels of nodes. Upon receiving a query packet, sensor nodes decide how to process it according to the percentage of neighbors that have processed it. When the target node receives the query packet, it sends its data back to the sink node via random walk. We show by extensive simulations that the performance of LBF in terms of cost and latency is much better than that of original flooding, and LBF can be used in IoT of different scales

    A Taxonomy of Self-configuring Service Discovery Systems

    Get PDF
    We analyze the fundamental concepts and issues in service discovery. This analysis places service discovery in the context of distributed systems by describing service discovery as a third generation naming system. We also describe the essential architectures and the functionalities in service discovery. We then proceed to show how service discovery fits into a system, by characterizing operational aspects. Subsequently, we describe how existing state of the art performs service discovery, in relation to the operational aspects and functionalities, and identify areas for improvement

    Clustering algorithms for sensor networks and mobile ad hoc networks to improve energy efficiency

    Get PDF
    Includes bibliographical references (leaves 161-172).Many clustering algorithms have been proposed to improve energy efficiency of ad hoc networks as this is one primary challenge in ad hoc networks. The design of these clustering algorithms in sensor networks is different from that in mobile ad hoc networks in accordance with their specific characteristics and application purposes. A typical sensor network, which consists of stationary sensor nodes, usually has a data sink because of the limitation on processing capability of sensor nodes. The data traffic of the entire network is directional towards the sink. This directional traffic burdens the nodes/clusters differently according to their distance to the sink. Most clustering algorithms assign a similar number of nodes to each cluster to balance the burden of the clusters without considering the directional data traffic. They thus fail to maximize network lifetime. This dissertation proposes two clustering algorithms. These consider the directional data traffic in order to improve energy efficiency of homogeneous sensor networks with identical sensor nodes and uniform node distribution. One algorithm is for sensor networks with low to medium node density. The other is for sensor networks with high node density. Both algorithms organize the clusters in such a way that the cluster load is proportional to the cluster energy stored, thereby equalizing cluster lifetimes and preventing premature node/cluster death. Furthermore, in a homogeneous sensor network with low to medium node density, the clusterhead is maintained in the central area of the cluster through re-clustering without ripple effect to save more energy. The simulation results show that the proposed algorithms improve both the lifetime of the networks and performance of data being delivered to the sink. A typical mobile ad hoc network, which usually consists of moveable nodes, does not have a data sink. Existing energy-efficient clustering algorithms maintain clusters by periodically broadcasting control messages. In a typical mobile ad hoc network, a greater speed of node usually needs more frequent broadcasting. To efficiently maintain the clusters, the frequency of this periodic broadcasting needs to meet the requirement of the potentially maximum speed of node. When the node speed is low, the unnecessary broadcasting may waste significant energy. Furthermore, some clustering algorithms limit the maximum cluster size to moderate the difference in cluster sizes. Unfortunately, the cluster sizes in these algorithms still experience significant difference. The larger clusters will have higher burdens. Some clustering algorithms restrict the cluster sizes between the maximum and minimum limits. The energy required to maintain these clusters within the maximum and minimum sizes is quite extensive, especially when the nodes are moving quickly. Thus, energy efficiency is not optimized

    Enhancing Performance by Salvaging Route Reply Messages in On-Demand Routing Protocols for MANETs

    Get PDF
    Researchers prefer on-demand routing protocols in mobile ad hoc networks where resources such as energy and bandwidth are constrained. In these protocols, a source discovers a route to a destination typically by flooding the entire or a part of the network with a route request (RREQ) message. The destination responds by sending a route reply (RREP) message to the source. The RREP travels hop by hop on the discovered route in the reverse direction or on another route to the source. Sometimes the RREP can not be sent to the intended next hop by an intermediate node due to node mobility or network congestion. Existing on-demand routing protocols handle the undeliverable RREP as a normal data packet - discard the packet and initiate a route error message. This is highly undesirable because a RREP message has a lot at stake – it is obtained at the cost of a large number of RREQ transmissions, which is an expensive and timeconsuming process. In this paper, we propose the idea of salvaging route reply (SRR) to improve the performance of on-demand routing protocols. We present two schemes to salvage an undeliverable RREP. Scheme one actively sends a one-hop salvage request message to find an alternative path to the source, while scheme two passively maintains a backup path to the source. Furthermore, we present the design of two SRR schemes in AODV and prove that routes are loop-free after a salvaging. We conduct extensive simulations to evaluate the performance of SRR, and the simulation results confirm the effectiveness of the SRR approach

    Optimized mobile thin clients through a MPEG-4 BiFS semantic remote display framework

    Get PDF
    According to the thin client computing principle, the user interface is physically separated from the application logic. In practice only a viewer component is executed on the client device, rendering the display updates received from the distant application server and capturing the user interaction. Existing remote display frameworks are not optimized to encode the complex scenes of modern applications, which are composed of objects with very diverse graphical characteristics. In order to tackle this challenge, we propose to transfer to the client, in addition to the binary encoded objects, semantic information about the characteristics of each object. Through this semantic knowledge, the client is enabled to react autonomously on user input and does not have to wait for the display update from the server. Resulting in a reduction of the interaction latency and a mitigation of the bursty remote display traffic pattern, the presented framework is of particular interest in a wireless context, where the bandwidth is limited and expensive. In this paper, we describe a generic architecture of a semantic remote display framework. Furthermore, we have developed a prototype using the MPEG-4 Binary Format for Scenes to convey the semantic information to the client. We experimentally compare the bandwidth consumption of MPEG-4 BiFS with existing, non-semantic, remote display frameworks. In a text editing scenario, we realize an average reduction of 23% of the data peaks that are observed in remote display protocol traffic

    Design and evaluation of a peer-to-peer MANET crosslayer approach: OneHopOverlay4MANET

    Get PDF
    Peer-to-Peer overlay networks can be deployed over Mobile Ad hoc Networks (MANET) to address content discovery issues. However, previous research has shown that deploying P2P systems straight over MANET do not exhibit satisfactory performance. Bandwidth limitation, limited resources and node mobility are some of the key constraints. OneHopOverlay4MANET exploits the synergies between MANET and P2P overlays through cross-layering. It combines Distributed Hash Table (DHT) based structured P2P overlays with MANET underlay routing protocols to achieve one logical hop between any pair of overlay nodes. In this paper, we present OneHopOverlay4MANET and evaluate its performance when combined with different underlay routing protocols. We evaluate OneHopOverlay4MANET with two proactive underlay (OLSR and BATMAN) and with three reactive underlay routing protocols (DSR, AODV and DYMO). Through simulation we show that the use of OLSR in OneHopOverlay4MANET yields the best performance. In addition, we compare the performance of the proposed system over OLSR to two recent structured P2P over MANET systems (MA-SP2P and E-SP2P) that adopted OLSR as the routing protocol. As simulation result shows, better performance can be achieved using OneHopOverlay4MANET

    ROUTING IN MOBILE AD-HOC NETWORKS: SCALABILITY AND EFFICIENCY

    Get PDF
    Mobile Ad-hoc Networks (MANETs) have received considerable research interest in recent years. Because of dynamic topology and limited resources, it is challenging to design routing protocols for MANETs. In this dissertation, we focus on the scalability and efficiency problems in designing routing protocols for MANETs. We design the Way Point Routing (WPR) model for medium to large networks. WPR selects a number of nodes on a route as waypoints and divides the route into segments at the waypoints. Waypoint nodes run a high-level inter-segment routing protocol, and nodes on each segment run a low-level intra-segment routing protocol. We use DSR and AODV as the inter-segment and the intra-segment routing protocols, respectively. We term this instantiation the DSR Over AODV (DOA) routing protocol. We develop Salvaging Route Reply (SRR) to salvage undeliverable route reply (RREP) messages. We propose two SRR schemes: SRR1 and SRR2. In SRR1, a salvor actively broadcasts a one-hop salvage request to find an alternative path to the source. In SRR2, nodes passively learn an alternative path from duplicate route request (RREQ) packets. A salvor uses the alternative path to forward a RREP when the original path is broken. We propose Multiple-Target Route Discovery (MTRD) to aggregate multiple route requests into one RREQ message and to discover multiple targets simultaneously. When a source initiates a route discovery, it first tries to attach its request to existing RREQ packets that it relays. MTRD improves routing performance by reducing the number of regular route discoveries. We develop a new scheme called Bilateral Route Discovery (BRD), in which both source and destination actively participate in a route discovery process. BRD consists of two halves: a source route discovery and a destination route discovery, each searching for the other. BRD has the potential to reduce control overhead by one half. We propose an efficient and generalized approach called Accumulated Path Metric (APM) to support High-Throughput Metrics (HTMs). APM finds the shortest path without collecting topology information and without running a shortest-path algorithm. Moreover, we develop the Broadcast Ordering (BO) technique to suppress unnecessary RREQ transmissions
    corecore