7,114 research outputs found

    Head Tracking via Robust Registration in Texture Map Images

    Full text link
    A novel method for 3D head tracking in the presence of large head rotations and facial expression changes is described. Tracking is formulated in terms of color image registration in the texture map of a 3D surface model. Model appearance is recursively updated via image mosaicking in the texture map as the head orientation varies. The resulting dynamic texture map provides a stabilized view of the face that can be used as input to many existing 2D techniques for face recognition, facial expressions analysis, lip reading, and eye tracking. Parameters are estimated via a robust minimization procedure; this provides robustness to occlusions, wrinkles, shadows, and specular highlights. The system was tested on a variety of sequences taken with low quality, uncalibrated video cameras. Experimental results are reported

    The multimodal nature of communicative efficiency in social interaction

    Get PDF
    How does communicative efficiency shape language use? We approach this question by studying it at the level of the dyad, and in terms of multimodal utterances. We investigate whether and how people minimize their joint speech and gesture efforts in face-to-face interactions, using linguistic and kinematic analyses. We zoom in on other-initiated repair—a conversational microcosm where people coordinate their utterances to solve problems with perceiving or understanding. We find that efforts in the spoken and gestural modalities are wielded in parallel across repair turns of different types, and that people repair conversational problems in the most cost-efficient way possible, minimizing the joint multimodal effort for the dyad as a whole. These results are in line with the principle of least collaborative effort in speech and with the reduction of joint costs in non-linguistic joint actions. The results extend our understanding of those coefficiency principles by revealing that they pertain to multimodal utterance design

    Classroom Interpreting and Visual Information Processing in Mainstream Education for Deaf Students: Live or Memorex?

    Get PDF
    This study examined visual information processing and learning in classrooms including both deaf and hearing students. Of particular interest were the effects on deaf students’ learning of live (threedimensional) versus video-recorded (two-dimensional) sign language interpreting and the visual attention strategies of more and less experienced deaf signers exposed to simultaneous, multiple sources of visual information. Results from three experiments consistently indicated no differences in learning between three-dimensional and two-dimensional presentations among hearing or deaf students. Analyses of students’ allocation of visual attention and the influence of various demographic and experimental variables suggested considerable flexibility in deaf students’ receptive communication skills. Nevertheless, the findings also revealed a robust advantage in learning in favor of hearing students

    RECOGNIZING LINGUISTIC NON-MANUAL SIGNS IN SIGN LANGUAGE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A multicue Bayesian state estimator for gaze prediction in open signed video

    Get PDF

    Event segmentation and biological motion perception in watching dance

    Get PDF
    We used a combination of behavioral, computational vision and fMRI methods to examine human brain activity while viewing a 386 s video of a solo Bharatanatyam dance. A computational analysis provided us with a Motion Index (MI) quantifying the silhouette motion of the dancer throughout the dance. A behavioral analysis using 30 naïve observers provided us with the time points where observers were most likely to report event boundaries where one movement segment ended and another began. These behavioral and computational data were used to interpret the brain activity of a different set of 11 naïve observers who viewed the dance video while brain activity was measured using fMRI. Results showed that the Motion Index related to brain activity in a single cluster in the right Inferior Temporal Gyrus (ITG) in the vicinity of the Extrastriate Body Area (EBA). Perception of event boundaries in the video was related to the BA44 region of right Inferior Frontal Gyrus as well as extensive clusters of bilateral activity in the Inferior Occipital Gyrus which extended in the right hemisphere towards the posterior Superior Temporal Sulcus (pSTS)

    Speeding up the detection of non-iconic and iconic gestures (SPUDNIG): A toolkit for the automatic detection of hand movements and gestures in video data

    No full text
    In human face-to-face communication, speech is frequently accompanied by visual signals, especially communicative hand gestures. Analyzing these visual signals requires detailed manual annotation of video data, which is often a labor-intensive and time-consuming process. To facilitate this process, we here present SPUDNIG (SPeeding Up the Detection of Non-iconic and Iconic Gestures), a tool to automatize the detection and annotation of hand movements in video data. We provide a detailed description of how SPUDNIG detects hand movement initiation and termination, as well as open-source code and a short tutorial on an easy-to-use graphical user interface (GUI) of our tool. We then provide a proof-of-principle and validation of our method by comparing SPUDNIG’s output to manual annotations of gestures by a human coder. While the tool does not entirely eliminate the need of a human coder (e.g., for false positives detection), our results demonstrate that SPUDNIG can detect both iconic and non-iconic gestures with very high accuracy, and could successfully detect all iconic gestures in our validation dataset. Importantly, SPUDNIG’s output can directly be imported into commonly used annotation tools such as ELAN and ANVIL. We therefore believe that SPUDNIG will be highly relevant for researchers studying multimodal communication due to its annotations significantly accelerating the analysis of large video corpora

    Multi-Sensory Emotion Recognition with Speech and Facial Expression

    Get PDF
    Emotion plays an important role in human beings’ daily lives. Understanding emotions and recognizing how to react to others’ feelings are fundamental to engaging in successful social interactions. Currently, emotion recognition is not only significant in human beings’ daily lives, but also a hot topic in academic research, as new techniques such as emotion recognition from speech context inspires us as to how emotions are related to the content we are uttering. The demand and importance of emotion recognition have highly increased in many applications in recent years, such as video games, human computer interaction, cognitive computing, and affective computing. Emotion recognition can be done from many sources including text, speech, hand, and body gesture as well as facial expression. Presently, most of the emotion recognition methods only use one of these sources. The emotion of human beings changes every second and using a single way to process the emotion recognition may not reflect the emotion correctly. This research is motivated by the desire to understand and evaluate human beings’ emotion from multiple ways such as speech and facial expressions. In this dissertation, multi-sensory emotion recognition has been exploited. The proposed framework can recognize emotion from speech, facial expression, and both of them. There are three important parts in the design of the system: the facial emotion recognizer, the speech emotion recognizer, and the information fusion. The information fusion part uses the results from the speech emotion recognition and facial emotion recognition. Then, a novel weighted method is used to integrate the results, and a final decision of the emotion is given after the fusion. The experiments show that with the weighted fusion methods, the accuracy can be improved to an average of 3.66% compared to fusion without adding weight. The improvement of the recognition rate can reach 18.27% and 5.66% compared to the speech emotion recognition and facial expression recognition, respectively. By improving the emotion recognition accuracy, the proposed multi-sensory emotion recognition system can help to improve the naturalness of human computer interaction
    corecore