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Summary

Besides manual (hand) signs, non-manual signs (facial, head, and body

behaviors) play an important role in sign language communication used

by the deaf. Non-manual signs can be used to convey feelings, linguis-

tic information, etc. In this thesis, we focus on recognizing an important

class of non-manual signals in American Sign Language (ASL): grammatical

markers which are facial expressions composed of facial feature movements

and head motions and are used to convey the structure of a signed sen-

tence. Without satisfactory recognition of grammatical markers, any sign

language recognition system cannot fully reconstruct a signed sentence.

Six common grammatical markers are considered in this thesis: Assertion,

Negation, Rhetorical question, Topic, Wh question, and Yes/no question.

These can be identified by combined analysis of facial feature movements

and head motions. While there have been attempts in the literature to

recognize head movements alone or facial expressions alone, there are few

works which consider recognizing facial expressions with concurrent head

motion. Indeed, in the facial expression recognition literature, most works

assume that the face is frontal with little or no head motion, and most

attention has been focused on recognizing the six universal expressions

(anger, disgust, fear, happiness, sadness, and surprise). However, in fa-
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cial expressions used in sign language, meaning is jointly conveyed through

both channels, facial expression (through facial feature movements), and

head motion.

In this thesis, we address the problem of recognizing the six gram-

matical marker expressions in sign language. We propose to track fa-

cial features through video, and extract suitable features from them for

recognition. We developed a novel tracker which uses spatio-temporal face

shape constraints, learned through probabilistic principal component anal-

ysis (PPCA), within a recursive framework. The tracker has been devel-

oped to yield robust performance in the challenging sign language domain

where facial occlusions (by hand), blur due to fast head motion, rapid head

pose changes and eye blinks are common. We developed a database of

facial video using volunteers from the Deaf and Hard of Hearing Federa-

tion of Singapore The videos were acquired while the subjects were signing

sentences in ASL.

The performance of the tracker has been evaluated on these videos, as

well as on videos randomly picked from the internet, and compared with the

Kanade-Lucas-Tomasi (KLT) tracker and some variants of our proposed

tracker with excellent results. Next, we considered isolated grammatical

marker recognition using an HMM-SVM framework. Several HMMs were

used to provide the likelihoods of different types of head motion (using

features at rigid facial locations) and facial feature movements (using fea-

tures at non-rigid locations). These likelihoods were then input to an SVM

classifier to recognize the isolated grammatical markers. This yielded an

accuracy of 91.76%. We also used our tracker and recognition scheme to

recognize the six universal expressions using the CMU databse, and ob-
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tained 80.9% accuracy.

While this is a significant milestone in recognizing grammatical markers

(or in general recognizing facial expressions in the presence of concurrent

head motion), the ultimate goal is to recognize grammatical markers in

continuously signed sentences. In the latter problem, simultaneous seg-

mentation and recognition is necessary. The problem is made more diffi-

cult due to the presence of coarticulation effects and movement epenthesis

(extra movement that is present from the ending location of previous sign

to the beginning of next sign). Here, we propose to use the discriminative

framework provided by Condition Random Field (CRF) models. Experi-

ments yielded precision and recall rates of 94.19% and 81.36%, respectively.

In comparison, the scheme using single-layer CRF model yielded precision

and recall rates of 84.39% and 52.33%, and the scheme using layered HMM

model yielded precision and recall rates of 32.72% and 84.06% respectively.

In summary, we have advanced the state of the art in facial expression

recognition by considering this problem with concurrent head motion. Be-

sides its utility in sign language analysis, the proposed methods will also

be useful for recognizing facial expressions in unstructured environments.
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Chapter 1

Introduction

1.1 Sign Language Communication

The deaf communicate through sign language which is a visual-gestural lan-

guage. Sign languages are used by deaf communities all over the world, with

each community usually has its own variation of signing which arises from

imitating activities, describing objects, fingerspelling, or making iconic and

symbolic gestures. The signs are expressed using hand gestures, facial ex-

pressions, head motions and body movements. These visual signals can

be cooperatively used at the same time to convey as much information as

speech.

When people using different sign languages communicate, the commu-

nication is much easier than when people use different spoken languages.

However, sign language is not universal, with different countries practis-

ing variations of sign language: Chinese, French, British, American, etc.

American Sign Language (ASL) is the sign language used in the United

States, most of Canada, and also Singapore. ASL is also commonly used
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as a standard for evaluating algorithms by sign language recognition re-

searchers.

Many research works show that ASL is not different from spoken lan-

guages [1]. The similarities have been found in structures and operations in

the signer’s brain, in the way the language is acquired, and in the linguistic

structure. All languages have two components: symbolic and grammatical

components [5]. Symbols represents concepts, and grammatical compo-

nents provide the way to combine symbols together to encode or decode

information. In natural languages, the corresponding analogy is words and

grammar; in programming languages, it is keywords and syntax. ASL has

both symbolic and grammatical components [5], where, symbols are con-

veyed by hand gestures (manual channel), and grammatical signals are ex-

pressed by facial expressions, and head and body movements (non-manual

channel) [5, 1].

For example, consider the sentence

• English: Are you hungry?

• American Sign Language (ASL): YOU [HUNGRY ]Y N

In the notation of the above example, YN stands for the facial expression of

the “yes/no” question; [HUNGRY ]Y N indicates that the facial expression

for the yes/no question occurs simultaneously with the manual sign for

hungry. This expression is basically formed by thrusting the head forward,

widening the eyes, and raising the eyebrows. Without such non-manual

signals, the same sequence of hand gestures can be interpreted differently.

For example, with the hand signs for [BOOK] and [WHERE], a couple of

sentences can be framed as
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• [BOOK]TP [WHERE]WH → Where is the book?

• [BOOK]TP [WHERE]RH → I know where the book is!

The subscripts TP, WH and RH on the words BOOK and WHERE indicate

grammatical non-manual signals conveyed by facial feature movements and

head motions. The facial gesture for Topic (TP) is used to convey that

BOOK is the topic of the sentence. The word WHERE accompanied by a

WH facial expression signals a “where?”. The hand sign for WHERE made

concurrently with the facial gesture for RH indicates the rhetorical nature

of the second sentence. When we speak or write, words appear sequentially;

i.e., natural languages transfer information linearly. However, our eyes can

perceive many visual signals at the same time. Thus the manual and non-

manual channels of sign language can be simultaneously used to express

ideas.

1.2 Manual Signs

Manual signs or hand gestures, are made from combinations of four basic

elements: hand shapes, palm orientations, hand movements, and hand

locations. Each of these elements is claimed to have a limited number of

categories, for example: 30 hand shapes, 8 palm orientations, 40 movement

trajectories, and 20 locations [64].

Signs are created to be visually convenient. During conversation, the

Addressee, who is “listening” by watching, looks at the face of the Signer,

who is “talking” by signing. Thus, signs are often made in the area around

the face so that they are easily seen by the Addressee. From 606 randomly

chosen signs, there are 465 signs which are performed near the face area
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(head, face, neck locations), and only 141 signs in the area from shoulder

to waist [5]. This suggests potential occlusion problems when working with

face videos.

Besides, an ASL sentence is also constructed to be suitable for percep-

tion by the human visual system. ASL tends to use 3D space as a medium

to express the relationship between elements, which can be places, people

or things, in a sentence, or even a discourse [1]. At first, the element will

be established in space by pointing at some location. This location will

later be pointed to when the Signer wants to refer to the corresponding

element. Time is also represented spatially in ASL. Space in front of the

body represents the future, the right front of the body represents present

time, and space at the back represents the past.

The visual characteristic of ASL heavily influences on its grammar. In

English, the order of words in a sentence is very important because it

decides the grammatical role (subject, object, verb, . . . ) of symbols, for

example:

[Peter]subject likes [Mary]object

However, ASL does not depend on word order to show the relationship

among signs. Using 3D space and non-manual signals, ASL can naturally

illustrate roles of symbols in a sentence, a paragraph, or a conversation:

Example 1:

[P − E − T − E −R− rt] peter -LIKE-lf [M − A−R− Y − lf],

Example 2:

[M − A−R− Y − lf]t, [P − E − T − E −R− rt] peter -LIKE-mary
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In Example 1, the name “Peter” is fingerspelled on the right side. Then,

the verb “like” is signed at the middle. After that, the signer points to the

left (this sign is denoted by lf after the word “LIKE”). Finally, the name

“Mary” is fingerspelled on the left side.

In Example 2, the name “Mary” is fingerspelled on the left side together

with a topic expression, which is indicated by the small “t” above the name.

The comma represents a pause. Following this, the name “Peter” is finger-

spelled on the right side, and finally, the verb “like” is signed.

1.3 Non-Manual Signs (NMS)

Linguistic research starting in the 1970’s discovered the importance of the

non-manual channel in ASL. Researchers have found that non-manual signs

not only play the role of modifiers (such as adverbs) but also the role

of grammatical markers to differentiate sentence types like questions or

negation. Besides, this channel can also be used to show feelings along

with signs, as a form of visual intonation analogous to vocal pitch in spoken

languages. Non-manual signals arise from face, head and body:

• Facial expressions: eyelids (raise, squint, . . . ), eyebrows (raise, lower),

eye gaze, cheek (puff, suck, . . . ), lip (pucker, tighten, . . . ) .

• Head motion: turn left, turn right, move up, move down, . . .

• Body movements: forward, backward, . . .

Bridges and Metzger [15] mentioned six types of non-manual signals

used in sign language:
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Reflected universal expressions of emotion: the Signer can express one of

the universal expressions (angry, disgust, sad, happy, fear, surprise)

as his own feeling or somebody else’s feeling which he is referring to.

Constructed action: the Signer imitates action and dialog of others from

another time or place. For example, when telling a story, the Signer

can mimic action in the story.

Conversation regulators: the Signer uses some techniques, usually eye

contact or eye gaze, to confirm who he is addressing when there is a

group of people.

Grammatical markers: the Signer uses expressions to confirm the type of

sentence, or the role of an element.

Modifiers: the Signer uses expressions to add in the quality or quantity

to the meaning of a sign.

Lexical mouthing: the signer uses mouth to replace hands for specific

signs.

These expressions can be classified into three general types:

• Unstructured expressions: includes reflected expressions and con-

structed actions. These non-manual signs are used to describe ex-

pressions and actions from the past that the signer wants to repeat

during a conversation. These expressions do not play a formal lin-

guistic role.

• Lexical expressions: includes lexical mouthing which occurs either

with a particular sign, or in place of that sign in a sentence.

6



• Linguistic expressions: includes conversation regulators, grammatical

markers, and modifiers. These non-manual signs provide grammatical

and semantic information for the signed sentence.

Since linguistic expressions are non-manual signs that are directly in-

volved in the construction of signed sentences, their recognition is impor-

tant for computed-based understanding of sign language, and hence they

are described in more detail in the following sections.

1.4 Linguistic Expressions in Sign Language

1.4.1 Conversation Regulators

In ASL, specific locations in the signing space (around the signer) called

phi-features are used to refer to particular objects or persons during a

conversation. While signers use eye contact to refer to people they are

talking to, they usually use head tilt and eye gaze to mark object or subject

agreements in the signed sentence. This non-manual agreement marking

commonly occurs right before the manually signed verb phrase [4].

For example:

Sign: Y OU t eye gaze to another person LIKE.

English: He/She likes you.

In the above example, the eye gaze plays the role of she/he in the

sentence.

1.4.2 Grammatical Markers

According to [1] and [5], there are eight types of non-manual markers which

convey critical syntactic information together with hand signs.
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Wh-question: questions that cannot be answered by ‘yes’ or ‘no’; this

marker is performed by lowered brows, squinted eyes, tilted or forward

head.

Yes/no question: questions that can be answered as ‘yes’ or ‘no’; this

marker consists of raised brows, widened eyes, and head thrust for-

ward.

Rhetorical question: questions that need not be answered; marked by

raised brows and tilted or turned head.

Topic: topic marker usually appears at the beginning of the signed sen-

tence, or its subordinate clause; consists of raised brows, and single

head nod or backward tilt of the head.

Relative clause: Relative clause is used to identify particular things, events

or people that the Signer wants to mention. Relative clause marker

occurs with all the signs in the relative clause; consists of raised brows,

raised cheek and upper lip, and a backward tilt of the head. However,

this expression is not common in ASL ([5] page 163).

Negation: negation marker confirms negative sentence; consists of side-

to-side head shake and optional lowered brows.

Assertion: assertion marker confirms an affirmative sentence and consists

of head nods.

Condition: This type of sentence has two parts: the first part declares the

situation, the second part describes the consequence. There are two

different markers for the two parts: raised brows and tilted head for
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the first part, a pause in the middle, and lowered brows and tilted

head in a different direction.

1.4.3 Modifiers

Mouthing is usually used in ASL to modify manual signs. Certain identified

mouthings are listed in [15]. Each mouthing type has a certain meaning

that is associated with particular manual signs.

For example [15]:

• Type: MM.

• Description: lips pressed together.

• Link with: verbs like DRIVE, LOOK, SHOP, WRITE, and GOING-

STEADY.

• Meaning : something happening normally or regularly.

1.5 Motivation

Our literature review in Chapter 2 shows that most current works in rec-

ognizing facial expressions have focused on recognizing the six universal

facial expressions under restrictive assumptions. The common assumptions

of these works are isolated expressions, frontal face, and little head motion.

These assumptions are inappropriate in the sign language context where

the multiple non-manual signs in a signed sentence are usually shown by

facial expressions concurrently with head motions. Thus, the recognition

of non-manual signs in sign language will extend the current works in facial

expression recognition.
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Moreover, as extensively reviewed in [85] and Chapter 2, most of the

current works on sign language recognition focus on recognizing manual

signs while ignoring non-manual signs, with recent exceptions being [108,

79]. Without recognizing non-manual signs, the best system that could

perfectly recognize manual signs still would not be able to reconstruct the

signed sentence without ambiguity. A system that can recognize NMS

will bridge the gap between the current state-of-the-art in manual sign

recognition and its practical applications for facilitating communication

with the deaf.

In this thesis, we address the challenge of recognizing NMS in sign

language and propose schemes for tracking facial features, and recogniz-

ing isolated facial expression as well as continuous facial expression. Our

focus has been on recognizing six grammatical markers: Assertion, Nega-

tion, Rhetorical question, Topic, Wh-question, and Yes/no-question. These

grammatical markers have been chosen because they are commonly used

to convey the structure of simple signed sentences and deserve to be the

next target of sign language recognition after hand sign recognition.

1.5.1 Tracking Facial Feature

Facial expressions in sign language are performed simultaneously with head

motions and hand signs. The dynamic head pose and potential occlusions

of the face caused by the hand during signing require a robust method for

tracking facial information. Based on the analysis in Chapter 2, we propose

to track facial features and derive suitable descriptions from them for fa-

cial gesture recognition. However, methods like the Kanade-Lucas-Tomasi

(KLT) tracker, which are based on intensity matching between consecutive

10



frames, are vulnerable to fast head motions and temporary occlusions. In

Chapter 3, we propose a novel method for robustly tracking facial features

using a combination of shape constraints learned by Probabilistic Princi-

pal Component Analysis (PPCA) , frame-based matching, and a Bayesian

framework. This method has shown robust performance against eye blinks,

motion blurs, fast head pose changes, and temporary occlusions.

1.5.2 Recognizing Isolated Grammatical Markers

As described above, grammatical markers are a subset of facial expressions

in sign language and consist of facial feature movements and head motions.

These two channels have been observed in our data to be uncorrelated

and somewhat asynchronous. To address this problem, in Chapter 3, we

propose a framework which combines multi-channel Hidden Markov Models

(HMM) and a Support Vector Machine (SVM) . This framework analyzes

facial feature movements and head motions separately using HMMs and

deduces the grammatical marker using an SVM classifier.

1.5.3 Recognizing Continuous Grammatical Markers

Even in a simple signed sentence, multiple grammatical markers appear

continuously in sequence. As explained in Chapter 4, beside asynchroniza-

tion effect between head motions and facial feature movements, continuous

grammatical marker recognition also needs to deal with movement epenthe-

sis and co-articulation which affect the appearance of grammatical markers

and create unidentified expressions between them. This presents a difficult

scenario for generative models such as HMMs. In Chapter 4, we propose a

layered Conditional Random Field (CRF) framework which is discrimina-
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tive for recognizing continuous grammatical markers. This scheme includes

two CRF layers, the first layer to model head motions and the second layer

to model grammatical markers. Decomposing the recognition into layers

has shown better results than with a single layer.

1.6 Thesis Organization

The rest of the thesis is organized as follow. Chapter 2 provides a liter-

ature review of works on facial expression recognition and concludes with

a motivation for developing new methods for extracting features and rec-

ognizing facial expressions, the essential part of non-manual signs, in sign

language. Chapter 3 presents our algorithms for robustly tracking facial

features in the presence of head motions and occlusions, and a method for

recognizing six common isolated grammatical markers: Assertion, Nega-

tion, Rhetorical question, Topic, Wh question, and Yes/No question. This

recognition method is also generalized and tested on the six universal facial

expressions. Chapter 4 presents our method for recognizing continuously

signed grammatical markers (or grammatical marker chains). Chapter 5

completes the thesis with conclusions and possibilities for future works.
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Chapter 2

Background

2.1 Facial Expression Analysis

A facial expression is made by movement of facial muscles. Darwin [30]

suggested that many facial expressions in humans, and also animals, were

universal and had instinctive or inherited relationships with certain states

of the mind. Following Darwin’s work, Ekman and Friesen [35] found

six emotions having universal facial expressions: anger, happiness, sur-

prise, disgust, sadness, and fear. These findings motivated many studies

on recognizing facial expressions, especially the six universal emotions, us-

ing computer.

Currently, there are many useful applications for facial expression recog-

nition, such as: image understanding, video-indexing, virtual reality, etc.

Automatic facial expression analysis methods exploit appearances of hu-

man face, using facial textures, and locations, shapes, and movements of

facial features to recognize expressions. The relationship between a facial

expression and its appearance on a face can be coded by human experts
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using some facial coding system like FACS [37] or MPEG4-SNHC [58], or

it can be learned by a computer from images.

Ekman and Friesen were interested in the relationship between muscle

contractions and facial appearance changes. They proposed the Facial Ac-

tion Coding System (FACS) [37] for representing and describing facial ex-

pressions. FACS includes definitions and methods for detecting and scoring

64 Action Units (AU) which are observable changes in facial textures and

head pose. Due to the usefulness of FACS in coding and identifying facial

expressions, many efforts are being made to recognize AUs automatically,

e.g. [6, 65, 88, 62]. Commonly, a subset of AUs are chosen for recognition.

In the training phase, certified FACS experts are required for coding AUs

in training images. To overcome differing coding decisions caused by hu-

man observations, some agreement among these FACS experts is usually

needed. In the testing phase, AUs in each image are recognized, and they

are combined to identify the facial expression.

There are many works which analyze facial information. These works

can be categorized into: image-based approaches, model-based approaches,

and motion-based approaches. Image-based approaches [9, 88] make use of

pixel intensities to recognize facial expressions. Tasks in this approach

involve facial feature detection, and identifying changes in intensities com-

pared with the neutral expression. The image can be filtered, for exam-

ple, using Gabor wavelets which have responses similar to cells in the pri-

mary visual cortex [42]. Model-based works utilize face models to capture

changes on the face. These models are built using the exterior facial struc-

ture [3, 23, 17, 44, 39], or internal muscle structure [99]. During an expres-

sion, a model-based system tries to deform the model to match with facial
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features being observed, possibly using a predefined set of deformations.

The matched model is then used to classify the expression. Motion-based

facial expression analysis research exploits motion cues to recognize ex-

pressions. These motion cues can be obtained by computing dense optical

flow or tracking markers on a face in a video sequence [13, 62, 53]. Here,

Hidden Markov Models (HMMs) are usually used to recognize facial ex-

pressions from motion features.

2.1.1 Image Analysis

Image-based methods utilize appearance information to analyze facial ex-

pressions on face images. There are two general approaches: local and holis-

tic. Works following the holistic approach consider face images as a whole.

Each n-pixel face image is regarded as a point in n-dimensional space, and

face images in training data will form a cluster in high-dimensional space.

Statistical methods like Principal Component Analysis (PCA) [27] or Inde-

pendent Component Analysis (ICA) [6] are commonly chosen to analyze the

training data to find subspaces for expressions. A new face image can then

be projected into all subspaces, and the nearest subspace can be found to

assign the test image to the corresponding expression. A common method

used to preprocess face images is to compute the difference image from the

peak expressive image and the neutral image of the same person. Another

common and effective method is to filter the peak expressive image with

Gabor filters which are considered to have similar response properties to

cortical cells [42]. Using similar analysis methods as the holistic approach,

works using local approach try to apply them on local parts of the face

instead of the whole face to avoid sensitivity to identity of person [86].
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PCA is used to obtain second-order dependencies among pixels in the

image. Applying PCA on a data set of face images gives a set of ghost-

like face images called “eigenfaces” [106] or “holons” [27] which are principal

components, or axes, of that data set. Any face image can be represented as

a linear combination of these principal components. When an image is rep-

resented using PCA, it is approximated by projecting to and reconstructing

from a space spanned by these axes. After representation by PCA, a face

image can be used for person identification or facial expression recognition

using recognition methods like nearest neighbors [106], linear discriminant

analysis [16], or neural networks [27]. This approach requires high stan-

dardization of face images, as any differences in head pose, lighting, or ex-

pressive intensity can cause a wrong classification. Calder et al. [16] did a

comparison between two approaches for recognizing six universal emotions

using two types of preprocessed input data: full-image and shape-free data.

Full-image data had been preprocessed so that all face images had the same

eye positions and the same distance between eyes. To form shape-free data,

input face images were warped to the same average face shape so that facial

features were located at standard positions. The approach using full-image

data obtained 67% recognition rate while the other achieved 95%. The

large difference between these two approaches may come from the higher

correspondence among facial features in face images of the shape-free data

set.

Bartlett [6, 9] proposed holistically analyzing faces using ICA. Her

method aims to separate statistically independent components using infor-

mation maximization approach. Bartlett stated that ICA can capture the

high-order statistical relationship among pixels, while PCA can only cap-
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ture the second-order relationship. Moreover, she also mentioned that high-

order statistics captured the phase spectrum of the image which was more

informative than amplitude spectrum captured by second-order statistics.

Data used in Bartlett’s work was frontal face images which were cropped,

centered, and normalized. Locations of eyes and mouth were used as refer-

ences for centering and cropping. Neural networks were used for unsuper-

vised learning of ICA parameters. Bartlett reported that her system was

able to recognize 12 Action Units with 95% accuracy which was claimed to

be better than recognition rates of both naive and expert humans.

Further, Barlett et al. [66] presented detailed comparative results for

recognizing the six universal expressions with various types and combina-

tions of classifiers. Though the database consisted of frontal face videos,

the experiments were performed on the peak expressive frames. The best

recognition accuracy of 93.8% was obtained with an RBF kernel SVM, with

optimal Gabor features selected by Adaboost. The classifier was applied

on video sequences for classifying each frame. The 7-way classifier outputs

(including the neutral expression) plotted as a function of time were found

to closely match the expression that appeared in the video. Generalization

to an unseen dataset lowered the accuracy to 60%, suggesting that a large

training corpus may be needed to generalize across different environments.

Moreover, pose variations were not considered.

Padgett and Cottrell [86] compared different feature representations:

whole face image, local patches at main facial features (mouth and eyes),

and local patches at random locations on the face. As with Cottrell’s previ-

ous work [27], they used PCA on these features and performed classification

using neural networks. They found that the representation using local ran-
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dom patches obtained 86% recognition rate which was better than local

patches (80%) and whole face image (72%). However, their experiment

was based on manually locating facial features on the face. When facial

features were manually located approriately, the feature representation be-

came almost noise-free which might be the reason for the good classification

result of local patch-based representations. Donato et al. [33] also reported

that there was hardly any difference in recognition result between holistic

and local features.

Gabor wavelet filters [31] can extract specific spatial frequency and ori-

entation by using a Gaussian function modulated by a sinusoid. Gabor

filters can be used to preprocess face images to remove most of the vari-

abilities due to lighting changes and reveal local spatial characteristics of

facial features. Bartlett [6] claimed that face images filtered using Gabor

wavelets gave outputs similar to ICA, and both representations led to high

facial expression recognition rate, of more than 90% [9, 70].

Pantic [88, 87] followed the local approach, though feature represen-

tation in these works was based on geometrical characteristics of facial

features instead of pixel-based statistics or Gabor wavelet responses. Her

work aimed to recognize all 44 Action Units using frontal and profile images.

Pantic heavily relied on facial feature detectors to locate facial features on

neutral and expressive face images. Geometrical measurements were per-

formed on facial features and a rule-based classifier was used to identify

Action Units. Then another rule-based classifier was used to recognize the

six universal emotions using the recognized Action Units. This method may

not be able to deal with natural head motions because it will be difficult

to correctly locate facial features.
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Image-based facial expression analysis works usually use static and stan-

dardized face images. Extracting features is not a big challenge with this

approach. However, image-based methods are highly sensitive to head pose

and do not consider temporal characteristics of facial expressions for recog-

nition.

2.1.2 Model-based Analysis

Along with using pixel intensities of face images, model-based facial ex-

pression analysis works also exploit face shape and structural constraints.

In this approach, the first task is to build the face model. Face models

can be 3D meshes [99, 39, 32, 21], 2D meshes [23, 59], 2D point distri-

bution models [51], etc. These models can be deformed using physical

parameters [32, 59, 21], anatomical structures [99, 39], principal shape and

texture components [23]. Face models are usually used to track a face in

a video sequence and capture its expressions, so initializing a model on a

face image becomes the next significant task. Many works currently rely

on manual initialization to initially align the model, even though there

are many methods to automatically detect the face [93, 114, 107] and lo-

cate facial features [29, 74, 43]. Faces and facial features are tracked using

active contours [99], image templates [21], optical flow [39, 32], or linear

regression computations on matching errors between the model and the

face image [23]. Tracking results are then utilized to create parameters for

deforming the model. Deformations of face models are later employed to

analyze or synthesize facial expressions.

Terzopoulos and Waters [99] combined physically-based 3D mesh with

anatomically-based facial control process to form a realistic 3D dynamic

19



model of the face, which had three layers to simulate muscle, dermis and

skin tissue layers. The final model had 6 representation levels: images,

geometry, physics, muscles, control and expression. To express an emotion

(expression level), corresponding muscles (muscle level) were stimulated

by an activating mechanism (control level) using predefined knowledge,

through a simplified form of FACS; contractions of simulated muscles de-

formed the simulated dermis layer physically (physics level); deformations

at dermis layer caused distortions on the geometrical mesh simulating skin

tissue (geometry level); the model’s surface was rendered from these distor-

tions to form the output appearance (image level). To learn control param-

eters for the model, facial expressions were analyzed using active contours.

Human subjects were heavily made up to intensify nine high gradient facial

contours including hairline, eyebrows, nasolabial furrows, tip of the nose,

upper and lower lips, and chin. Active contours, or snakes [57], were man-

ually initialized and used to track these intensified facial features over a

video sequence of the subject’s performance of a required expression. Non-

rigrid shapes and motions of contours provided quantitative information

to compute parameters used to rescale the model and rebuild the expres-

sion. The authors claimed that the analyze-and-synthesize process could

be done in real-time. There are also some drawbacks to this work. Firstly,

heavy make up and manual initialization are required to help snakes track

better. Secondly, the system works with frontal face and static head only,

and there is no guarantee that snakes will appropriately work with natural

head motions which cause 3D movements of facial features. Besides, a lot

of work is required to fully construct muscles on the model.

Essa et al.[38, 39] also used a geometrical, physical, anatomical, and
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control-based dynamic model to synthesize and analyze the six universal

expressions. The model, which had only one layer, was built using finite el-

ements and could simulate not only the stiffness and the damping but also

the inertia which was missing from Terzopoulous’s model. Simoncelli’s op-

tical flow estimation method [95] was used to analyze facial expressions. In

each frame of a video sequence containing a facial expression, dense optical

flows were computed at every pixel. The face image in each frame was di-

vided into 80 regions, and the flow in each region was averaged and located

at its centroid. The synthesis process accepted this optical flow as input,

and a feedback loop employing Kalman filter was used to obtain parame-

ters, considered as muscle actuations, to optimally deform the model. The

movement of chosen shape control points on the model was called FACS+,

i.e. FACS with temporal information. This work also required frontal view

of the face and static head to correctly compute dense optical flows, and

required heavy computations. In an effort to make the system work in real

time, the author used image matching instead of optical flow to compute

deformation parameters. At first, normalized peak expressive images for

expressions and corresponding deformation parameters are stored. With

each frame, the smallest difference value between the stored expressive im-

ages and the current frame was obtained. This difference value was fed into

a RBF network to find the corresponding deformation parameters. These

parameters were optimized using a framework based on Kalman filter. Sim-

ilar to works using the image-based approach, this modification relied on

particular face pose, was person dependent, and assumed static head.

Cohen et al. [21] used the Piecewise Bezier Volume Deformation (PBVD)

tracker developed by Tao and Huang [98] for face tracking and feature ex-
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traction. A 3D model used by the PBVD tracker was built using the finite

element method and owned physical (but not anatomical) characteristics

like Essa’s. The model was composed of 16 planar patches connected by

hinges, and each patch was modeled as a polygonal mesh resembling an

elastic membrane. The deformation of each patch could be done by a lin-

ear combination of vibration modes defined to maintain the smoothness of

patches and low computational cost. In the tracking stage, salient facial

feature points were manually chosen in the first frame of a video sequence

to initialize the model. Nodes of each mesh were tracked using an image

matching method. After that, weighted parameters for vibration modes

were estimated using least squares method to minimize the difference be-

tween the deformation of the patch and nodal displacements. Recovered

motions were used to form Motion Units which were motion vectors con-

taining numeric magnitudes of predefined motions of facial features. Mo-

tion Units were claimed to represent not only motions of facial features but

also the intensity and the direction of the motion. Motion Units were used

both to recognize the six emotional universal expression and to segment

these expressions which are continuously recorded in a video sequence [21].

The PBVD tracker worked well with in-plane but not with out-of-plane

movements [98].

A 2D elastic mesh called Potential Net was used by Kimura [59] to

recognize three expressions: happy, anger, and surprise. The mesh was a

rectangular grid, where each node was connected to four other nodes by

simulated springs. Nodes on the boundary were fixed, while interior nodes

could be moved by combined forces from elastic springs and gradients of the

image. In each frame of a video sequence, the face and facial features were
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manually detected, the face area was then extracted and normalized; there

is also an effort to automatically detect the face area using the Potential Net

itself [11]. Differential filter and Gaussian filter were sequentially applied

on the face area. After alignment on the face area, the Potential Net

will be deformed by the force computed from the image gradient and the

internal elastic force. Motion vectors formed from displacements of nodes

are used for later classification. However, the author just reported a simple

investigation of feature vectors. It aappears difficult to extend this kind of

model to cope with head motions because it relies on frontal view and 2D

mesh.

Instead of using elastic models, Cootes [24] proposed the Point Distri-

bution Model (PDM) which can both represent typical shape of an object

and permit variability. The model was built from a training image data set

which represented varying shapes of an object. At first, in each image, a

set of labeled points was marked along edges best representing the object.

The mean shape of the object and its deviations were then computed from

these training sets to form training shapes. Principal component analysis

was applied on these training shapes to find main modes of shape variations.

Deformations of the model were later done by adding a linear combination

of main modes to the mean shape. Parameters associated with main modes

were also interpreted as shape control parameters. During tracking of the

object in a video sequence, shape control parameters can be iteratively ad-

justed to minimize the error computed by some matching function. PDM

can be used to track face and facial features, and parameters found in

tracking can be used to classify facial expressions such as the six univer-

sal emotions [51]. Head motions were required to be minor to avoid 3D
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distortions of facial features.

The Active Appearance Model (AAM) suggested by Cootes [23] was

a more extensive version of PDM which combined both shape model and

texture model. Like building a shape model, a texture model was also built

from training image data. Mean gray-level texture was obtained, and main

modes of gray-level texture were learned. New texture was then synthesized

by adding a linear combination of main texture modes to the mean texture.

The search process with AAM aims to reduce error between synthesized

2D face image and the input image. Much effort is being made to overcome

drawbacks of AAM like limited head motions [34, 110], occlusions [46], per-

son dependence [45], etc. Cristinacce and Cootes [28] propose an automatic

template selection method for facial feature detection and tracking. This

uses a PCA-based shape model and a set of feature templates learned from

training face images. During tracking, the method iteratively selects a set

of local feature templates to fit an image, while constraining the search by

the global shape model.

In general, model-based works follow an analysis-by-synthesis scheme.

The learned models have constrained variances which helps the classifica-

tion of certain expressions with less ambiguity. However, most of the works

focus on recognizing six universal expressions with frontal view, and static

head or with minor head motions. None of them makes an effort to identify

facial expressions occurring with natural head motions.

2.1.3 Motion Analysis

Motion-based works try to detect and analyze facial expressions based on

analyzing movements of face pixels in consecutive frames of a video se-
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quence. An essential motivation for this approach is based on the work

done by Bassili [10] who showed that moving dots on a face provided

significant information for emotion recognition. Two common methods

in the literature are used to capture motion cues on the face: optical

flow [71, 13, 112, 113, 63, 3] or tracking facial features [65, 62, 53, 116, 47].

Mase [71] inspired other researchers by using optical flow to analyze

facial expressions on frontal face. He computed dense optical flow on video

frames to recognize facial muscle actions and recognized four emotions:

happiness, anger, disgust, and surprise. At first, a dense optical flow was

computed using Horn and Schunck’s gradient based algorithm. The author

used two recognition approaches based on optical flow. In his top-down

approach, a set of windows corresponding to underlying facial muscle struc-

ture was then placed on the face, and optical flow field inside each window

was averaged and assigned at its center. These averaged optical flow vec-

tors were considered as signatures of muscle movements and were claimed

to be related to Action Units. Emotional expressions were identified based

on these muscle movements using FACS-based descriptions. In his bottom-

up approach, the original dense optical flow was divided into rectangular

regions. After that, feature vectors were formed using averaged PCA on

the first and second moments of the optical flow fields in each region. K-

nearest-neighbor was then used to recognize four emotional expressions.

His work did not address problems like head motion and consecutive ex-

pressions.

Yacoob and Davis [112, 113] worked toward computing optical flow to

analyze feature movements to recognize six universal emotions. The au-

thors aimed to describe basic motions of regions corresponding to facial fea-

25



tures. At first, facial features (mouth, nose, eyes, eyebrows) were detected

and rectangles around these features were located. Next, ways or directions

these rectangles deformed during a facial expression were identified by com-

puting optical flow using Abdel-Mottaleb’s method [2]. A dictionary for

facial dynamics was also developed. Each entry of the dictionary involved

three parts: facial component, basic action of that component, and motion

cue. A motion cue was identified from the optical flow. Every facial ex-

pression was considered to involve three temporal periods: the beginning,

peak and ending. A facial expression was recognized from the basic actions

of facial components in corresponding temporal parts. The work was done

on video sequences of frontal faces and static heads.

Black and Yacoob’s work [13] was an improvement of Yacoob and Davis’

work above. Black also identified temporal moments of facial expressions

by optical flow computation. Emotional expressions were recognized based

on a facial motion dictionary. There were two developments in Black’s

work. First, optical flows of non-rigid facial features, mouth and eyes, were

computed separately from the rest of the face. This separation provided a

way to differentiate between non-rigid and rigid motions on face. Second,

optical flows were characterized by affine parameters. It helped to capture

better the facial motions caused by non-rigid movements and 3D head mo-

tions. Regions of non-rigid facial features for computing optical flow was

also deformed based on computed optical flow’s affine parameters. The

final system could recognize local facial feature movements, six emotions,

and 14 head motions (rightward, leftward, upward, downward, expansion,

contraction, horizontal deformation, vertical deformation, clockwise rota-

tion, counter clockwise rotation, rotate right about neck, rotate left about
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neck, rotate forward, rotate backward). Planar assumption of the face to

use affine parameters, heavy computation for dense optical flow, and the

sensitiveness of optical flow computation with lighting changes and occlu-

sions are drawbacks of this work.

Anderson [3] and Liao [63] are recent works which use optical flow for

recognizing facial expressions. They both analyzed optical flow on local

facial regions to recognize six emotions. While Anderson focused on planar

analysis, Liao approximated the head as a 3D cylinder to estimate 3D

motions. Anderson’s was optimized on the image size and the number of

frames precessed per second to work in real time while natural head motions

was not considered. In Liao’s work, 3D head pose was recognized using

Xiao’s approach [111] to remove the effect of head movement in optical

flow computation. Optical flow was described by affine parameters. Local

regions were defined on the surface of the 3D cylinder, and a predefined

interdependence among regions was used in the classification phase. Even

though his system could classify facial expressions with head motions, head

motions themselves were not well addressed, nor was occlusion.

Optical flow analysis can capture subtle movements on the whole face,

and estimate head motions. However, heavy computation is always a prob-

lem with applications using optical flow.

Lien [65] tried and compared three methods for facial expression analy-

sis: image analysis, optical flow analysis, and facial feature points tracking.

He analyzed images to capture wrinkles appearing during an expression,

computed the optical flow to estimate movements of both smooth or tex-

tured regions on face, and tracked facial features to identify facial actions

on high texture regions: brows, eyes, nose and mouth, which are also highly
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related to muscle activations. His work aimed to recognize three upper and

six lower facial expressions described using Action Units. The averaged

recognition rates of all three methods were quite high: 92%, 86%, and 83%

for dense optical flow analysis, feature points tracking and image analy-

sis, respectively. He found that feature representation from facial feature

points tracking was fast, accurate, and could cope with large head mo-

tions. Cohn [22] also states that feature point movements are good enough

to analyze facial expressions.

Tian [62] used Multi-state Component Models for tracking facial fea-

tures to recognize Action Units. These models exploited geometrical char-

acteristics of facial features at different states for tracking in cases where

one or more feature points were missing due to facial actions like eye blink-

ing or lip sucking. Feature points were manually marked on the first frame

around brows, eyes, and mouth. They were automatically tracked over sub-

sequent frames using the KLT algorithm. In each frame, relative positions

of feature points were used to estimate current states of facial features.

From the estimated state and positions of feature points, appropriate pre-

built 2D models were chosen corresponding to current states of tracked

facial features. The input video sequence stopped at the peak of the ex-

pression. Parameters measured on facial features’ shapes at the first and

final frame were fed into feed forward neural networks to identify presented

Action Units. Due to the advantage of feature points tracking method,

her system can cope with head motions as long as the face is still frontal.

However, head motion recognition was not considered.

Kaliouby [53] used a similar method to Tian’s to recognize six cognitive

mental states (agreement, concentrating, disagreement, interested, think-
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ing, unsure). Twenty four facial landmarks were automatically located in

the first frame and tracked across the video sequence. Displacements of

these landmarks were used with left-to-right HMM to recognize head mo-

tions and facial feature movements. His system could recognize four head

motions (head nod, head shake, tilt display, turn display) and two facial

displays (lip pull, lip pucker) at above 95% recognition rate. Outputs of

HMMs were fed into Dynamic Bayesian Networks (DBN) to identify men-

tal states. The approach of this work is quite similar to ours, except that

it aims to apply it as an “emotional hearing aid”. Tracking techniques are

not developed to cope with occlusions or lost facial features. Besides, facial

expression segmentation is also not considered.

Ji et al. consider facial feature tracking and expression recognition

in [117, 104, 103, 116]. In [117], a set of 28 facial features are automati-

cally detected with Gabor filters and tracked under varying pose and facial

expressions using Kalman fillters at the 28 locations. Pose is estimated

using feature points at rigid facial locations, the weak perspective model,

and a PCA-based shape constraint is used. In [104], a multi-state hierar-

chical facial feature model is used to handle facial expression changes, with

tracking implemented by a Switching Hypothesized Measurements (SHM)

filter. 3D pose is estimated from tracked feature points to constrain the

feature search. In [103], a mixture PPCA model is proposed to model

shape variations due to pose, and constrain the (Gabor) feature matching

process during tracking. Here, no dynamics of the transitions between the

mixture components is used. In [116], Dynamic Bayesian Networks (DBN)

are used for modeling facial expressions from video. IR illumination is used

to reliably locate the pupils, after which several feature points on the face
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are detected and tracked by Kalman filtering. The motion of the feature

points are manually associated with FACS action units and represented by

a DBN. Plots of the probabilities of the six universal expressions vs. time

indicated good agreement with the facial expressions, even with changing

head poses. A useful feature of their method is the integration of temporal

information to induce robustness with respect to occlusions.

Feature tracking is a promising approach for analyzing facial expressions

occurring with head motions. More work needs to be done to develop a

reliable tracking method when there are head motion and occlusions.

2.2 Recognizing Continuous Facial Expressions

In sign language sentences, more than one facial expression may be used

together with hand signs. As mentioned in Chapter 1, facial expressions

and head motions, which form the non-manual channel, provide linguistic

information to the hand sign channel. Segmenting facial expressions cap-

tured in a video sequence is necessary for fusing this with information from

the manual channel to achieve complete recognition of signed sentences.

Black and Yacoob’s work [13] is a pioneering work in recognizing contin-

uous facial expressions with head motion. Affine-like parameters of facial

feature movements and head motions were extracted from dense optical

flow. Rule-based discriminative models classified facial feature movements

and head motions separately. They obtained an average recognition rate

of 88% and 73% on laboratory data, and real life data (from television

programs), respectively. Their method required a short neutral expression

between different facial expressions.
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Chang [20] used a low-dimensional manifold for modeling and tracking a

face, segmenting and recognizing six facial expressions in video sequences.

In the training stage, Active Shape Models were used for detecting and

tracking 2D facial landmarks in video sequences. One ASM was built for

each type of expression. Shapes of 2D facial features tracked by ASM in

each frame were normalized and projected into a low-dimensional manifold

using a nonlinear dimensionality reduction method [52] which can maintain

the main geometrical structure of the data. In the low-dimensional mani-

fold, projected face shape changes during a facial expression formed a path

starting from the center corresponding to the neutral face. In the testing

stage, ICondensation method was used to control the tracking process by

predicting the deformation of an ASM or choosing another one which better

matched with the current facial expression. At every frame, the ASM of the

expression being used was considered as the recognized facial expression;

the change to another ASM would mark the end of the previous expression.

Their system performed well in tracking faces with different expressions in

long video sequences. However, head motions were not addressed in this

work.

De la Torre et al. [60] proposed a framework for detecting rare facial ges-

tures. Personalized AAM [72] was used for tracking subjects’ faces during

an interview. The neutral facial gesture was automatically detected by ap-

plying spectral clustering on dynamic feature vectors combining shape and

appearance. A greedy approach was used for detecting segments of facial

behaviors by hierarchically matching with predefined patterns. Quantita-

tive assessment of the detection was not reported.

Hoey [50] considered the problem of unsupervised classification and seg-
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mentation of facial expressions in video sequences. A multilevel dynamic

Bayesian network (DBN) was used to learn models characterizing facial ex-

pressions and their high-level syntactic relationships simultaneously. They

worked with video sequences of five emotional expressions appearing in a

predefined order: disgust, fear, happy, sad, and surprise. Training and test-

ing data were generated using a simulation model which combined isolated

facial expressions in the predefined order, which may be not appropriate

in realistic cases. The accuracy was more than 88%, however they were

evaluated in a very constrained manner where facial expressions in video

sequences were shown in the same order and separated by a short pause.

Cohen et al. [21] used a piecewise 3D wire frame model-based approach

developed in [98] for tracking 16 facial features (selected manually in the

first video frame), and estimated their 3D motions. These were mapped to

“motion units” and used as the basic features in a multi-level HMM scheme

for classifying the six universal expressions and the neutral expression. The

classifier provides implicit segmentation and recognition of video sequences

containing multiple expressions. They reported 82.46% and 58.63% accu-

racy for person dependent and person independent tests, respectively, on

their database of 5 persons. The experimental results were reported on

sequences where expressions transited through the neutral expression. The

training and testing data were constructed to conform to this constraint.

As generative models, HMMs suffer from two weaknesses: the statisti-

cal independence assumption of observations and the difficulty in modeling

their complicated underlying distributions. On the other hand, the Condi-

tional Random Field (CRF) proposed by Lafferty et al. [61] is a discrimina-

tive model which avoids these weaknesses. Kanaujia and Metaxas [56] used
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the CRF to recognize the six universal expressions and obtained promising

results. Quattoni et al.[90] proposed Hidden-state CRF (HCRF) models

and obtained an accuracy of 85.25% for recognizing head shakes and head

nods.

Chang et al. [19] proposed a modified HCRF called Partially-Observed

HCRF (PO-HCRF) which allowed observations of hidden states to be as-

signed to selected frames. It was demonstrated that PO-HCRF performed

better than HCRF on recognizing the six universal facial expressions and an

SVM-AdaBoost scheme [8] on recognizing 15 Action Units. The PO-HCRF

achieved an accuracy of 80.1% with 9.18% false alarm rate for recognizing

“continuous” facial expressions in simulated sequences created by concate-

nating sequences of isolated expressions.

2.3 Recognizing Facial Gestures in Sign Lan-

guage

As extensively reviewed in [67, 85], most of the current works on recognizing

sign language still focus on recognizing manual signs while non-manual

sign recognition has by and large neglected. In recent works, Von Agris et

al. [109] propose a user adapted AAM model to identify areas of interest

such as the eyes and mouth region, and suggest processing steps to estimate

head pose, gaze direction and lip outline along with other distances between

facial features. A simple scheme is proposed to detect facial occlusions by

hand. However, no tracking or detailed non-manual classification results

were reported.

Vogler and Goldenstein [108] proposed a tracker based on a 3D de-
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formable model. Tracking using these models is sensitive to facial occlu-

sions by the hand during signing, and hence, an outlier rejection mechanism

is proposed to deal with the occlusions. Good tracking results during oc-

clusions have been shown. A qualitative comparison of head pose angles

extracted from the tracker, with discrete ground truth labels showed good

agreement. However, the 3D face model needs to be fitted to each subject,

which can be a laborious process.

Recently, Neidle et al. [79] considered recognition of Wh question (WH )

and negation (NEG) facial expressions in ASL signed sentences. The ASM-

based tracking scheme proposed in [55] is used to track face and facial

feature movements, and to estimate head pose (pitch, yaw, and tilt) in each

frame. A video sequence is labeled as either WH or not, by classifying each

frame and using majority voting. A stacked SVM formed by three SVMs

is used to classify each frame. The presence of WH expression is evaluated

separately by two SVMs based on the appearance of the eye and eyebrow

region and the pitch angle of the head. The third SVM is used to confirm

the presence of WH using the scores output by the other two SVMs. A

similar approach is used for the NEG expression. They reported recognition

accuracies of 100% and 95% for WH and NEG, respectively.

2.4 Remarks

Most works in the facial expression recognition literature focus on recogniz-

ing six universal emotions: happy, anger, sad, disgust, surprise, and fear.

Most considered video sequences where the heads are relatively stationary

or only static images. Works using model-based approaches may not cope
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well with subtle facial feature movements and head motions. Motion-based

approaches using frame-based tracking algorithms like KLT are vulnera-

ble to fast eye blinks, head motions and temporary occlusions as shown

in Chapter 3. Besides, attempts for recognizing continuous facial expres-

sions usually assume little head motion while head motions are not only

required but also an important cue for recognizing facial expressions in sign

language. The assumption of a neutral state between facial expressions is

also not applicable in sign language where there are natural transitions

between facial gestures. Finally, works in recognizing non-manual signs in

sign language, are still at an early stage, and we hope that our work will

be a useful contribution in this direction.
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Chapter 3

Robustly Tracking Facial

Features and Recognizing

Isolated Grammatical Markers

3.1 Introduction

Many works on facial expression recognition in the literature [88, 41] are not

suitable for direct application to sign language, as they commonly assume

frontal face, stationary head, and no occlusions, e.g. [27, 7, 88, 16]. Dense

optical flow analysis was used for identifying facial expressions and head

motions [13] but this approach is computationally heavy and is sensitive

to fast head motions and occlusions. As the movements of facial features

are regulated by facial muscles and communicative customs [36], the face

shape and its deformations during an expression can be modeled. Tracking

facial features using face models provides the flexibility of representing

facial feature movements with head motions and robustness to noise. 3D
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models [100, 39, 32, 21] provide a mechanism for estimating head pose.

However, they are computationally intensive for tracking and adaptation.

2D models [115, 25, 62] are simpler in this respect and many works have

been presented to cope with different head poses by using multiple linear

models modeled by Principal Component Analysis (PCA) [92], using non-

linear 2D models [20], or by combining with a 3D model [105].

In this chapter, we address the problem of tracking facial features ro-

bustly and recognizing isolated facial expressions in ASL. We propose and

investigate the performance of two algorithms for tracking facial features

exhibiting facial expressions, possibly with concurrent head notion, and

occlusion, using spatio-temporal shape constraints. These constraints are

provided by a learned mixture of Probabilistic Principal Component Anal-

ysis (PPCA) [102] model and integrated with recursive tracking schemes.

In one scheme, a textural match measure is optimized in every frame with

a penalty term for face shape deviation from a recursively predicted PPCA

subspace. In the other scheme, observations obtained from a Kanade-

Lucas-Tomasi (KLT) tracker [69] are refined by projection and reconstruc-

tion from a recursively predicted PPCA subspace. An update scheme called

Incremental PPCA suggested in [81] is adopted to improve the robustness

of tracking to face shapes of different people.

For recognizing facial expressions in ASL, appropriate distance mea-

sures are derived from tracked facial features to minimize the effects of

head motion, and are input to a set of Hidden Markov Models (HMM) to

evaluate the likelihoods of characteristic facial feature motions. The likeli-

hoods of head motions are evaluated by another set of HMMs using motion

vectors of facial features at non-deformable facial feature locations. These
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likelihoods are all input to a Support Vector Machine (SVM) to identify

six common grammatical expressions: Yes/no question (YN ), Wh ques-

tion (WH ), Topic (TP), Negation (NEG), Assertion (AS ), and Rhetorical

(RH ). Since the conditional clause marker has complex structure and the

relative clause marker is uncommon in ASL, we will consider these markers

in our future works.

In the following, in Section 3.2, we briefly describe PPCA and develop

two algorithms for robust tracking. In Section 3.3, we consider expression

recognition using the tracked features and describe the features derived for

input to a set of multichannel HMMs, whose output likelihoods are then

used in an SVM for recognition. Section 3.4 gives extensive experimental

results, comparisons and discussion, and Section 3.5 concludes this chapter.

3.2 Robust Facial Feature Tracking

Facial expressions in sign language occur concurrently with head pose

changes and hand signs. Head motion can be quite fast resulting in motion

blur in the acquired video, and the face can also be occluded by the hands

during signing. This is a challenging situation for tracking facial features; a

simple tracker based only on differences between adjacent frames can easily

drift away from the facial features. A robust tracker for this scenario needs

to be constrained appropriately; a natural constraint is to require that the

tracked feature points conform to a model of face shape. We propose to

model face shape by learning a mixture PPCA model from training video.

The mixture components or subspaces represent homogeneous clusters of

head pose and facial expressions. The advantage of PPCA is the probabilis-

38



tic interpretation that it allows for the PCA subspaces, and for evaluating

the likelihood of face shapes. During training, the dynamics of the face

shape transitions between subspaces are also learned.

Based on the learned face shape and transition models, we propose

and experiment with two facial feature tracking algorithms. In Algorithm

1, we use the learned face shape transition dynamics to predict the face

shape subspace at the next time instant. An iterative optimization scheme

is then used to minimize an objective function which consists of a match

measure for the feature points and a penalty term for face shape devia-

tion from the predicted face subspace. In Algorithm 2, we incorporate the

KLT tracker [69] into a recursive Bayesian scheme, which also uses the

learned face shape model and transition dynamics. Though the KLT algo-

rithm works well in simple situations, natural head motions and temporary

facial occlusions are inevitable in sign language communication. In such

situations, gradients in the vicinity of tracked feature points can change

abruptly, causing the KLT algorithm to track incorrectly. Thus we use the

KLT tracker to provide raw observations for track propagation and smooth

it in the Bayesian scheme to be consistent with face shape.

3.2.1 Construction of Face Shape Subspaces

We chose the N = 21 facial feature points on the eyebrows, eyes, nose, and

mouth as shown in Fig. 3.1 to represent face shapes and classify facial ex-

pressions. Minor variations of these points have been used in the literature,

but we have found this set of feature points to be useful to discriminate

among the sign language (SL) expressions of interest as well as the six uni-

versal expressions. The eye corners and the points around the nose are good
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Figure 3.1: Feature points of interest.

indicators of rigid head motions, while the others are indicators of facial fea-

ture deformation. A small w×w window of pixels centered on each of these

feature points is used for intensity matching. Let face shape in a frame be

represented by a vector of the N feature points, Z̃ = [z̃T
1 z̃T

2 . . . z̃T
N ]T ,

where z̃k = [x̃k ỹk]T represents the coordinates of the kth feature point.

Correspondingly, I(z̃k) denotes the vector of concatenated intensity values

from the w × w window centered on z̃k in the image, and I(Z̃) is a vector

formed by stacking I(z̃k) vectors, I(Z̃) = [I(z̃1)
T I(z̃2)

T . . . I(z̃N)T ]T .

We manually mark these facial feature points on training video frames to

obtain a set of face shapes {Z̃} and the corresponding intensity vectors

{I(Z̃)}.

For each face shape Z̃t marked in image space, a normalized face shape

Zt is obtained by using a similarity transformation,

Zt = AtZ̃t + bt (3.1)

These normalized training face shapes are grouped into subspaces using
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a mixture PPCA model. Our motivation for using PPCA to represent

and partition the face shapes is the associated probability density which is

lacking in PCA. This provides the likelihood for face shape which we use

in our tracking schemes.

The PPCA Model [101]

A Gaussian latent variable model for Z can be written as

Z = Wα + µ + ε (3.2)

where ε ∼ N (0, σ2I) is the noise model and α ∼ N (0, I) is a q-dimensional

vector of latent variables; µ is the mean and W is the d× q loading matrix

relating the d-dimensional observation Z (d = 2N) to the latent variables.

This induces a Gaussian density for Z ∼ N (µ,C) where the model covari-

ance is given by

C = σ2I + WWT (3.3)

and a Gaussian posterior distribution for the latent variables,

p(α|Z) ∼ N (M−1WT (Z− µ), σ−2M) (3.4)

where M = σ2I + WT W, and I is the identity matrix.

It is shown in [101] that by maximizing the log-likelihood of the L

observations with respect to the model parameters, we obtain:

µ =
1

L

L∑
i=1

Zi (3.5)

W = U(Λ− σ2I)
1
2 R (3.6)
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where U is a d× q matrix whose columns are the q principal eigenvectors

of the sample covariance matrix of Z and Λ is a q × q diagonal matrix

of corresponding eigenvalues; R is an arbitrary rotation matrix, which we

simply choose to be the identity matrix. The noise variance is given by

σ2 =
1

d− q

d∑
i=q+1

λi (3.7)

which is the average variance of the discarded dimensions.

Since α is specified by a posterior distribution, an observation Z can

be represented in the latent space by the posterior mean,

ᾱ = M−1WT (Z− µ) (3.8)

and an optimal reconstruction in normalized face space can be obtained as

Ẑ = W(WT W)−1Mᾱ + µ (3.9)

with the same reconstruction error as PCA. The optimal reconstruction ˆ̃Z

in the image frame, or image space, can be obtained from Ẑ by inverting

the similarity transformation in Eq. 3.1.

The model can be generalized to a mixture of PPCA as

p(Z) =
K∑

i=1

βiρ(Z|Si) (3.10)

where βi are the mixing weights, K is the number of mixture components,

and ρ(Z|Si) ∼ N (µi,Ci) is the PPCA model for the ith subspace Si with
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covariance matrix given by

Ci = σ2
i I + WiW

T
i (3.11)

and where σ2
i and Wi are analogous to σ2 and W for the single component

case. These parameters and βi can be estimated by maximizing the log-

likelihood using the EM algorithm.

The EM algorithm requires the number of mixture components, K, and

the initial conditions for the iterations to be specified. We obtain these by

using the G-means algorithm of [49]. Here, starting with an initial number

of cluster centers (e.g. one) in the k-means algorithm, the Anderson-Darling

statistic [97] is used iteratively to increase the number of clusters until

each cluster can be represented by a unimodal Gaussian distribution. In

each iteration of the algorithm, hypothesis testing based on the Anderson-

Darling statistic is used to verify whether the data assigned to a cluster

are samples from a Gaussian distribution; if not, the cluster is split into

two sub clusters. The only parameter to be set is the significance level γ

for the test, whose choice controls the number of clusters obtained. The

clusters thus obtained are used to initialize the EM algorithm to estimate

the mixture of PPCA model for the face shapes.

Once the model is learned, the training face shape vectors are hard

assigned to a PPCA subspace by the maximum probability rule,

Zi ∈ Sk where k = argmax
l

ρ(Zi|Sl) (3.12)

This partition of the training shape vectors is useful to learn the subspace

transition probabilities for the tracking algorithm.
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Characterizing Face Shape Transitions

As the facial expression evolves, the face shape will make transitions be-

tween the learned PPCA subspaces. The training data can be used to learn

the probabilities of transitions between subspaces for use in the tracking

algorithm. For this, the training face shapes are indexed by the subspace k

they belong to as in Eq. 3.12, and also according to their time index t in a

given video sequence. The transition probability from Si to Sj is computed

as the ratio of the number of i → j transitions in consecutive frames over

all sequences, to the total number of samples in Si

P (Sj|Si) =
Count ({Zi,t,Zj,t+1})

Count ({Zi,t})
(3.13)

3.2.2 Track Propagation

To estimate the face shape Z̃t in the current frame, the subspace for the

current frame is first predicted and the optimal face shape estimate Z̃t−1 in

the previous frame is used as the initial condition for iterative optimization

in the predicted subspace as described below. Here, Z̃t is found as an

acceptable compromise between the matching of the intensities It(Z̃t) and

It−1(Z̃t−1) in consecutive frames, and its deviation from the model shape

in the predicted subspace.

We define a NW 2 × 1 intensity matching error vector between the cur-

rent and previous frames as

∆It = It(Z̃t)− It−1(Z̃t−1) (3.14)

and characterize this error vector by a Gaussian distribution learned from
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training data using the maximum likelihood method as

∆It ∼ N (∆I,Φ) (3.15)

to compute a weighted square error for intensity matching as

EI = (∆It −∆I)T Φ−1(∆It −∆I) (3.16)

Assuming that the intensity windows centered at different feature points

are independent, Φ = diag{φ1,φ2, . . . ,φN}, where φk corresponds to the

w2 × w2 covariance matrix of the intensity window difference ∆Ik,t at the

kth feature point, and EI reduces to

EI =
N∑

k=1

(∆Ik,t −∆Ik)T φ−1
k (∆Ik,t −∆Ik) (3.17)

Simply minimizing EI to estimate the shape can lead to unacceptable

face shapes. Hence, we impose a penalty for deviation from the learned

face shape model. A reasonable penalty function to encourage conformity

to face shape is the Mahalanobis distance,

ES = (Zt − µi)
T C−1

i (Zt − µi) (3.18)

where Zt is the normalized version of Z̃t, µi and Ci are the learned mean

and covariance of the subspace Si
t , predicted for time t, using the normalized

track history, Z0,Z1, . . . ,Zt−1. Si
t is used to constrain Zt and is found as
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the most probable subspace, given the tracking to t− 1:

i = argmax
k

p(Sk
t |Z0:t−1) (3.19)

These probabilities can be computed as

p(Sk
t |Z0:t−1) =

K∑
j=1

P (Sk
t |S

j
t−1)p(S

j
t−1|Z0:t−1) (3.20)

where, assuming conditional independence, we have

p(Sj
t−1|Z0:t−1) =

p(Zt−1|Sj
t−1)p(S

j
t−1|Z0:t−2)

p(Zt−1|Z0:t−2)
(3.21)

p(Zt−1|Z0:t−2) =
K∑

j=1

p(Zt−1|Sj
t−1)p(S

j
t−1|Z0:t−2) (3.22)

Here p(Sk
t |S

j
t−1) is obtained from the learned subspace transition probabil-

ities and p(Zt−1|Sj
t−1) from the PPCA model.

The augmented match measure for tracking can be written as:

E = EI + λES (3.23)

where λ trades-off the relative importance of shape matching and intensity

matching, and is found experimentally for best performance.

We use the iterative Gauss-Newton method to minimize E in this non-

linear weighted least squares problem. Here EI is linearized by using a

first order Taylor series approximation for It, and the estimate at the lth
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iteration is obtained as:

Z̃l
t =

 Z̃t−1, l = 0

Z̃l−1
t + h̃l, l > 0

(3.24)

Zl
t = Al−1

t (Z̃l−1
t + h̃l) + bl−1

t = Z̃l−1
t + Al−1

t h̃l (3.25)

where h̃l is optimally estimated in each iteration, as described below.

Writing Eq. 3.14 as

∆I l
t = It(Z̃

l−1
t + h̃l)− It−1(Z̃t−1) (3.26)

and using a linear Taylor series approximation, we have

∆I l
t '∆I l−1

t +

[
∂It(Z̃

l−1
t )

∂Z̃t

]
h̃l (3.27)

where

∆I l−1
t , It(Z̃

l−1
t )− It−1(Z̃t−1) (3.28)

Specializing Eq. 3.27 for the window at the kth feature point, we have

∆I l
k,t = ∆I l−1

k,t +

[
∂It(z̃

l−1
k,t )

∂z̃k,t

]
h̃l

k (3.29)

Defining a w2 × 1 vector ∆l
k,t as

∆l
k,t , ∆I l−1

k,t −∆Ik (3.30)

and a w2 × 2 matrix Jl
k,t

Jl
k,t ,

∂It(z̃
l−1
k,t )

∂z̃k,t

(3.31)
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we can write

EI ' E ′I =
N∑

k=1

(∆l
k,t + Jl

k,th̃
l
k)T φ−1

k (∆l
k,t + Jl

k,th̃
l
k) (3.32)

Writing ES in Eq. 3.18 for the iterative algorithm as

ES = (Zl−1
t + Al−1

t h̃l − µi)
T C−1

i (Zl−1
t + Al−1

t h̃l − µi) (3.33)

we can obtain h̃l
k as the solution to

∂E

∂h̃l
k

=
∂

∂h̃l
k

(E ′I + λES) = 0 (3.34)

This yields

h̃l =
[
λAl−1

t

T
C−1

i Al−1
t + Jl

t

T
Φ−1Jl

t

]−1 [
λAl−1

t

T
C−1

i (µi − Zl−1
t )− Jl

t

T
Φ−1∆l

t

]
(3.35)

The iterations are continued until |El − El−1| < τ with τ << 1, a pre-

defined threshold.

3.2.3 Updating of Face Shape Subspaces

To make the tracking robust with respect to face shapes of individuals not

included in the training database, the PPCA model can be adapted during

tracking. Rather than update the full PPCA mixture model, the procedure

is simplified by assigning Zt to one of the PPCA subspaces, for example,

based on a maximum probability rule. Then the updated mean µt and
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covariance matrix Ct of the chosen subspace at time t can be written as:

kt = kt−1 + 1 (3.36)

µt =
kt−1

kt

µt−1 +
1

kt

Zt (3.37)

yt =

√
1

kt

(Zt − µt−1) (3.38)

Ct =
kt−1

kt

(Ct−1 + yty
T
t ) (3.39)

where kt is the number of observations in the subspace, at time t, and k0

is the number of training samples initially assigned to the subspace using

Eq. 3.12.

With the updating of a subspace’s mean and covariance matrix, the

principal components of the subspace need to be updated also. In our case,

the covariance matrices are of dimension 2N × 2N (42× 42) which is small

enough to solve the eigenvalue problem for the principal components in

O(423) operation. However, we used the more efficient method proposed

in [81] to update the subspace model in O(q3 + 2Nq) operations, where q

is the subspace model order; typically q is much smaller than 2N to retain

95% energy.

Based on the developments in Sections 3.2.1-3.2.3, we propose and in-

vestigate two algorithms for tracking, which are summarized below.

3.2.4 Algorithm 1

In the first frame, at t = 0, the feature points are manually marked, and

to initialize the recursions in Eqs. 3.20-3.22, we

• Assume that P (Si
t |Z0:t−1) ≡ P (Si) = βi, the mixing weight for the
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subspace Si learned by PPCA.

• Calculate P (Zt|Z0:t−1) by obtaining p(Zt|Si
t) from the PPCA model

using the normalized hand-marked features.

Hence, Algorithm 1 can be summarized as follows:

At t = 0,

1. Manually mark the feature points on the frame to specify Z̃0.

2. Compute Z0 and then predict the subspace Si
1 using Eq. 3.19.

For t > 0,

3. Perform the iterative optimization (Section 3.2.2, Eq. 3.35) using the

predicted subspace to constrain the estimate. This yields, Z̃t and Zt.

4. Predict the subspace for the next time instant, using Eq. 3.19.

5. Update the current subspace with Zt using the method described in

Section 3.2.3.

6. Repeat from Step 3 until end of video sequence.

3.2.5 Algorithm 2

Here, we use the KLT algorithm [69] to obtain the raw observation of the 21

facial feature points at time t in a video sequence. The final estimate in the

previous frame is used to initialize the KLT algorithm for the current frame.

Without sufficient constraints, the KLT algorithm may track incorrectly in

challenging situations when there is fast head motion, rapid facial feature

deformations, or occlusions by hand. Hence, the final tracking result for

a video frame is obtained by smoothing the KLT observations using the
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best matching subspace. The latter is found through a recursive Bayesian

scheme, which uses the normalized KLT observation in the current frame

and the tracking history.

Here, we use Z̃t and ˆ̃Zt to denote the raw KLT observation and the

smoothed track, respectively, at time t. Given the KLT observation, the

normalized shape Zt is computed and the best matching subspace Si
t is

chosen such that

i = argmax
k

p(Sk
t |Z0:t) (3.40)

These probabilities can be computed using

p(Sk
t |Z0:t) =

p(Zt|Sk
t ,Z0:t−1)p(S

k
t |Z0:t−1)

p(Zt|Z0:t−1)
(3.41)

where, assuming conditional independence we have

P (Sk
t |Z0:t) =

P (Zt|Sk
t )

P (Zt|Z0:t−1)

K∑
j=1

P (Sj
t−1|Z0:t−1)P (Sk

t |S
j
t−1) (3.42)

P (Zt|Z0:t−1) =
K∑

k=1

P (Zt|Sk
t )P (Sk

t |Z0:t−1) (3.43)

Here again, p(Sk
t |S

j
t−1) is obtained from the learned subspace transition

probabilities and p(Zt|Sk
t ) from the PPCAmodel. The normalized smoothed

track Ẑt is obtained by projecting Zt and reconstructing it from the sub-

space Si
t using

ᾱi = Mi−1
WiT (Zt − µi) (3.44)

Ẑt = Wi(WiT Wi)−1Miᾱi + µi (3.45)

as mentioned in Section 3.2.1, and the smoothed track in image space ˆ̃Z is
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then computed from Ẑt.

Algorithm 2 can be summarized as follows:

At t = 0, we manually mark the feature points on the frame to specify
ˆ̃Z0 and normalize it to obtain Ẑ0.

For t > 0,

1. Use the KLT algorithm initialized with ˆ̃Zt−1 to obtain Z̃t.

2. Compute normalized shape Zt and predict the subspace Si
t (using

Eq. 3.40) to smooth Zt .

3. Obtain the normalized smoothed track Ẑt using Eq. 3.44 and 3.45.

The final, smoothed, track ˆ̃Zt in image space is then computed from

Ẑt.

4. Update the current subspace with Ẑt from Step 3 using the method

of Section 3.2.3.

5. Repeat from Step 1 until end of video sequence.

The major difference between Algorithm 1 and 2, is that in the former,

the updated track is obtained by jointly optimizing for texture and shape

matching. Whereas, in Algorithm 2, texture matching through the KLT

tracker, and enforcement of the shape constraint by projection and recon-

struction of the shape from the predicted subspace, take place in separate

steps.

3.3 Recognition Framework

Facial expressions in ASL are described using facial feature movements and

head motions [5]. The descriptions of the six expressions (shown in Fig. 3.2)
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Exp. Brow Eye Head
AS Raise Nil Nod
NEG Knit Nil Shake
RH Raise Widen Tilt(left/right)
TP Raise Widen Move upward
WH Knit Squint Move Forward
YN Raise Widen Move Forward

Table 3.1: Simplified description of the six ASL expressions (Exp.) con-
sidered: Assertion(AS), Negation(NEG), Rhetorical(RH), Topic(TP), Wh
question(WH), and Yes/No question(YN). Nil denotes unspecified facial
feature movements.

considered in this chapter are summarized in Table 3.1, in terms of eye,

eyebrow, and head movements. Our recognition scheme uses information

from these three channels to classify the facial expression, in two stages. In

the first stage, the likelihoods of facial feature movements and head motions

are evaluated using HMMs, and these are input to an SVM in the second

stage to provide the final classification.

3.3.1 Features

Movements of the head and facial features are obtained from the tracked

feature points shown in Fig. 3.1; these include both rigid and non-rigid

motion. A subset of these points exhibiting rigid motion, (ER3, EL3), the

two inner eye corners, and N2, the bottom middle of the nose, are shown

in Fig. 3.3. A reference line is defined to pass through EL3 and ER3, and

several parameters are defined as the perpendicular distances of correspond-

ing feature points from this line. These heights/distances shown in Fig. 3.4

are:

• Seven eyebrow parameters: Left inner brow height (BIL), Right inner

brow height (BIR), Left middle brow height (BML), Right middle brow
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Frame 0 Frame 7 Frame 12 Frame 15 Frame 22 Frame 25

Frame 0 Frame 10 Frame 16 Frame 21 Frame 25 Frame 31

Frame 0 Frame 4 Frame 8 Frame 11 Frame 15 Frame 19

Frame 0 Frame 2 Frame 4 Frame 6 Frame 8 Frame 10

Frame 0 Frame 2 Frame 4 Frame 6 Frame 8 Frame 12

Frame 0 Frame 2 Frame 4 Frame 7 Frame 9 Frame 12

Figure 3.2: Examples of grammatical expressions. Each row shows frames
from one expression. From top to bottom: AS, NEG, RH, TP, WH, YN.

Figure 3.3: Features used for
scale and in-plane rotation
normalization.

Figure 3.4: Distance features
used.
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(a) (b)

Figure 3.5: HMMs used to model facial feature movements and head mo-
tions.

height (BMR), Left outer brow height (BOL), Right outer brow height

(BOR), Distance between brows (BB).

• Four eye parameters: Left top eye height (ETL), Right top eye height

(ETR), Left bottom eye height (EBL), Right bottom eye height (EBR).

The features used to characterize motion of facial points are the ratios of

these heights/distances and their corresponding values in the first frame.

This normalization is done to remove scaling effects across video sequences.

To recognize head motions, tracks of the non-deformable facial feature

locations, namely, EL3, ER3 and N2, are used to define three features, SM ,

CM x and CM y as follows:

• SM : area of the triangle formed by the above three locations in each

frame.

• CM x and CM y: components of the 2D motion vector1 CM of the center

of gravity of the triangle.

SM and CM are then normalized by EM 0, the distance between the two

inner eye corners in the first frame, Cn
M t = CM t

EM 0
, Sn

M t = SM t

EM 0
2 . These 14

features obtained from the tracked facial points are used for recognition.

1Motion vector vt+1 = (xt+1, yt+1)− (xt, yt)
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Figure 3.6: The framework for recognizing facial expressions in ASL.

3.3.2 HMM-SVM Framework for Recognition

Nine HMMs were trained for four facial feature movements (brow knit,

brow raise, eye widen, eye squint) and five head motions (move forward,

move upward, nod, shake, and tilt). Different HMM topologies were chosen

to model the facial feature movements and head motions. We used the left-

right HMM (Fig. 3.5a) to model eye and brow movements, and three head

motions (move forward, move upward, tilt). Two head motions, shake

and nod, were modeled by the HMM shown in Fig. 3.5b. The number

of states and mixtures for each HMM were chosen experimentally using

validation data. Gaussian probability density functions were used to model

observations for each HMM state. Training of HMMs followed the Baum-

Welch re-estimation algorithm [91].

We used two-class SVMs with Radial Basis Function (RBF) kernels to

classify the facial expressions using the likelihoods of facial feature move-
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ments and head motions output by the HMMs. The SVMs were trained

using C-Support Vector Classification [14, 26] for every pair of classes and

a voting scheme was used to obtain the final classification. The overall

recognition system is illustrated in Fig. 3.6.

3.4 Experiments

We conducted several experiments to evaluate the performance of the pro-

posed trackers and the facial expression recognition scheme.

3.4.1 Experimental Data

Videos of natural sign language facial expressions showing the signers’ faces

were recorded at 25 fps and spatial resolution of 640 x 480; signers were

provided with appropriate signing scripts for sentences. These sentences

were created or adapted from ASL resources [5, 15, 12]. Seven deaf signers

from the Deaf and Hard-of-Hearing Foundation of Singapore provided the

data, and each signer contributed videos in two sessions on different days.

A signer signed each sentence ten times. We observed that initially some

signers’ facial expressions appeared forced at first, but became natural as

they relaxed. The natural looking expressions were selected for our exper-

iments. Each English sentence in the script was signed in ASL with hand

signs and corresponding facial expressions, for example:

• English sentence: You know why he is crying? His mother went away!

• ASL sentence: [HE CRY]TP [REASON]RH [HIS MOTHER GO]AS
2

2subscripts denote facial expressions
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Isolated facial expression sequences of the six types of grammatical

markers were extracted from the video of the signed sentences, and cropped

examples are shown in Fig. 3.2. The ground truth data for facial feature

points and face shapes was obtained by manually marking each frame. The

length of the sequences varied depending on the facial expression and the

subject. The average sequence length was 18.6 frames, though there was

variability between subjects and expression types. For example, the se-

quence length for TP varied between 9.4 frames to 17.9 frames, while for

AS, the sequence length varied between 22.4 frames to 32.6 frames.

The isolated expression sequences were divided into mutually exclusive

training and test sets. The training set consisted of 212 sequences, with

each of the seven subjects contributing an average of five sequences for each

of the six grammatical expressions. The training set was used to train all

of the models used, viz: PPCA, HMMs, and SVM. Validation sets were

formed from the training set to determine the configurations of HMMs

and SVM. The test set consisted of 85 sequences, with an average of two

sequences per subject per expression. This set was used for evaluating the

performance of the trackers as well as the recognition scheme.

We also collected two other sets of video sequences especially for test-

ing the trackers, which we refer to as the challenging set and random set.

The facial features in these sequences were manually marked to create

the ground truth. The challenging set contained 13 sequences of different

lengths with a total of 1200 frames. These sequences exhibited complex-

ities such as motion blur, heavy occlusions, and multiple head motions,

and were obtained from ASL facial expressions we had recorded earlier,

as well as from Boston University [80, 78] (Fig 3.7). The random set in-
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Figure 3.7: Images from the challenging video sequences.

Figure 3.8: Images from the randomly collected video sequences.

cluded 5 sequences with 1000 frames in total. These video sequences were

randomly downloaded from the Internet, and included head and shoulder

shots (Fig. 3.8).

3.4.2 The PPCA Subspaces

The face shapes in the 3944 frames of the 212 training sequences were

first normalized to reduce the effects of scale and in-plane rotation. Three

rigid facial features were chosen for normalizing face shapes: the inner eye

corners ER3, EL3, and the point between the two nostrils N2 as shown in

Fig. 3.3. The line passing through ER3 and EL3 was chosen to be the hori-

zontal axis, and the line orthogonal to it and passing through N2 is chosen

to be the vertical axis, with the origin at the intersection of these axes.

Using this coordinate system, the marked 2D points were translated to the

origin and rotated so that the axes coincided with the image row-column

axes. The feature points were then normalized by the O-N2 distance. This

is the similarity transformation of Eq.3.1.

The normalized face shapes were then partitoned into the mixture

of PPCA subspaces following the method of Section 3.2.1. Since the
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Figure 3.9: Variations of the first mode of some subspaces, showing partic-
ular deformations of face shapes due to facial feature movements and head
motions that they model. Subspace 1 models a deformation of face shape
when the head rotates from slightly right to slightly left and the eyebrows
are knitting; Subspace 4: head rotates from frontal to left; Subspace 10:
head rotates right with opening mouth and raising eyebrow; Subspace 27:
head slightly rotates right with opening mouth and knitting of eyebrows.

Anderson-Darling test would be applied several times in the process of

predicting the number of subspaces, we chose a low significance level γ =

0.0001, with corresponding critical value of 1.8692. 28 subspaces were ob-

tained with this setting. The principal components in the subspaces were

set to retain 95% of the total energy, and this led to 13-23 components

in the subspaces. The first mode of variation in a few of the subspaces is

shown in Fig. 3.9. The subspace transition probabilities were obtained as

described in Section 3.2.1.
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3.4.3 Tracking Facial Features

In the following, we consider the tracking results from Algorithm 1, and

compare them to results from KLT, Algorithm 2, etc.

In the implementation of Algorithm 1, we found that the off-diagonal

elements of the matrices φk in Eq. 3.17 were generally quite small, and

hence these matrices were approximated to be diagonal. Besides, a coarse-

to-fine strategy with a 3-level Gaussian pyramid was used to deal with large

displacements of facial features. Algorithm 1 was employed on each level,

and the tracking result obtained at the coarser level was used to initialize

the algorithm at the finer level. The coarse-to-fine strategy was also applied

to other tracking methods we experimented with. A suitable value of λ in

Eq. 3.23 for our data set was found by experimentation, and set to be 400.

Results were similar for λ = 400± 200.

We first compare the performance of Algorithm 1 with the popular

KLT algorithm where the latter tracks by minimizing an intensity match

measure between two consecutive frames but without a shape constraint.

Fig. 3.10 compares tracking by Algorithm 1 and KLT in a common ASL

scenario when multiple facial feature movements and head motions occur

rapidly. In Frame 10, the mouth opens and the head rotates, causing

the KLT-tracked middle feature point on the lower lip to start drifting

away from its true location. By Frame 15, the KLT-tracked feature points

around the mouth have drifted away. It is clear that the shape constraint

in Algorithm 1 results in robust tracking in this situation, even though

the face in Frame 15 is far from frontal. In the rapid motion from Frame

15 to 18, the neighborhood of the right eyebrow changes rapidly, causing

the KLT-tracked feature point in the middle right eyebrow to mistrack.
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Frame 10 Frame 15 Frame 18 Frame 22

Figure 3.10: Tracking in an expression sequence which includes many facial
feature movements and head motions. Upper row: tracking by KLT, lower
row: Algorithm 1.

Frame 1 Frame 2 Frame 3 Frame 5 Frame 6 Frame 9

Figure 3.11: Algorithm 1 (lower row) can deal naturally with eye blinks
due to the shape constraint, while the KLT tracks (upper row) suffer due
to the rapidly changing texture in the blink region.

Narrowed eyes also cause the KLT to mistrack on the eyelids. By Frame

22, KLT-tracked feature points on the left eyebrow, eyes, nose, and mouth

have drifted away. In comparison, tracking by Algorithm 1 was stable due

to the shape constraint, even with rapidly changing head pose and face

shape. Also, due to the shape constraint, tracks on the left eyelids which

had drifted away slightly found their correct location by Frame 22.

Fig. 3.11 shows that Algorithm 1 tracks points on the eye lids robustly

through eye blinks due to the shape constraint, while the KLT suffers in

comparison due to the rapidly changing texture in the eye area during

blinks. Occlusions of the face by the hands during signing are common in
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Frame 16 Frame 17 Frame 18 Frame 19 Frame 57

Figure 3.12: Algorithm 1 is stable under occlusions (lower row) while the
KLT mistracks occluded points (upper row).

ASL and tracking needs to handle these situations robustly. Fig. 3.12 shows

an example where the hand occludes almost half of the face during signing.

The shape constraint in Algorithm 1 helps to maintain stable tracks, e.g.

feature points around the right eye which are occluded by the hand are

tracked; the feature point at the right mouth corner is initially affected but

proceeds to its true location. Additionally, the subject in this sequence

was not included in the training data. In comparison, the rapidly changing

intensities in the vicinity of the tracked points due to the occluding hand

cause the KLT algorithm to mistrack. Fig. 3.13 is another example of

robust tracking of an unseen face occluded by hand during a different sign.

In this example, feature points on the right eye and mouth are slightly

affected by the occlusion but they are preserved in appropriate locations.

For comparison, Fig.3.14 shows the result obtained with the original Active

Appearance Model using the AAM-API library [96].

Fig. 3.15 shows tracking results by Algorithm 1 during a long sequence

which includes head pose changes, facial feature deformations, eye blinks,

and occlusions. After 500 frames, the feature points are still maintained at
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Frame 42 Frame 43 Frame 44 Frame 45

Figure 3.13: Stable tracking by Algorithm 1 on an unseen face with occlu-
sion by hand during signing.

Frame 42 Frame 43 Frame 44 Frame 45

Figure 3.14: Tracking using AAM on seen face, where the AAM was trained
for the person. The AAM is manually initialized on the first frame, and
the result obtained in the current frame is used as the initialization for the
next frame.

their appropriate locations.

Figs. 3.16-3.18 show quantitative comparisons of tracking between Al-

gorithm 1 in Section 3.2.4, Algorithm 2 in Section 3.2.5, the KLT tracker,

and Algorithm 1b - a variant of Algorithm 1 where the update procedure of

Section 3.2.3 is not used and the constraining subspace is predicted by the

maximum likelihood based on the latest track instead of the entire tracking

history, i.e. in Eq 3.19, i = argmaxk p(S
k
t |Zt−1).

The tracking results were evaluated against manually labeled ground

Frame 110 Frame 140 Frame 283 Frame 353 Frame 370 Frame 500

Figure 3.15: Tracking in long sequences with multiple challenges, in order
of appearance (first four images from left to right): eye blink, facial feature
deformation, head rotation, occlusion.
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truth for each test image frame. The average error dk,t of the tracking result

in the tth frame of the kth video sequence was computed as dk,t =
∑j=N

j=1 |e
j
k,t|

N
,

where N = 21 is the number of tracked feature points, and ej
k,t is the

distance between the jth feature point and the corresponding ground truth

feature point (the tracking errors are in pixel units).

Fig. 3.16 shows a comparison of the cumulative distribution of {dk,t}

computed over all frames in all test video sequences, between Algorithm 1

and the other trackers listed above. Algorithm 1 is the most accurate with

90% of the displacement errors being less than 4 pixels, with Algorithm

1b (which omits the face update scheme) yielding similar performance. In

comparison, Algorithm 2 which uses separate intensity matching and shape

constraint steps, shows worse performance. The KLT tracker’s performance

was the worst, both qualitatively and quantitatively (the tracking error was

less than 4 pixels with a probability of only 76%). For reference, in this

data set, the face size averages about 300 × 300 pixels in frames of size

640× 480 pixels.

The tracking stability of Algorithm 1 on the challenging data set is

clearly seen in Fig. 3.17. Algorithm 1b is slightly worse than Algorithm 1,

but better than Algorithm 2. The KLT tracker is the least accurate on this

data set, which contains considerable motion blur and occlusion. 99.6% of

the displacement errors with Algorithm 1 are within 10 pixels.

Fig. 3.18 shows the cumulative distribution of displacement errors for

the video sequences randomly selected from the internet (Section 3.4.1). A

displacement error of 3 pixels is obtained from Algorithm 1 in 80% of the

cases, while it is 63%, 35%, and 28% in the case of Algorithm 1b, 2, and

KLT, respectively. The better performance of Algorithm 1 and 1b com-
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Figure 3.16: Cumulative distribution of displacement errors on the test data
described in Section 3.4.1. Algorithm 1 and 1b are close in performance
and better than Algorithm 2 and KLT.

pared to Algorithm 2 in all three comparisons indicates the superiority of

integrated tracking with shape and texture, over separate steps for track-

ing and regularizing with the shape constraints. In the challenging and

random data sets, which contain new faces not seen by the trackers during

training, Algorithm 1b has a somewhat worse performance than Algorithm

1. This can be attributed mainly to the lack of face updates during track-

ing. We also obtained similar tracking results with Algorithm 1 by using

the simplifying assumption ∆It ∼ N (0, I) in Eq. 3.15. This assumption

makes Algorithm 1 equivalent to integrating the KLT algorithm with shape

constraints using subspaces learned by PPCA.

Algorithm 1 requires O(1.6× 106) operations performed on each 640×

480 frame. Using a coarse-to-fine with a 3-level Gaussian pyramid, the

number of operations including those for unoptimized Gaussian filtering is
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Figure 3.17: Cumulative distribution of displacement errors on the chal-
lenging data set described in Sec. 3.4.1. Algorithm 1 provides the best
performance, while Algorithm 1b is slightly worse. The KLT performance
is considerably worse.
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Figure 3.18: Cumulative distribution of displacement errors on the random
data set (Section 3.4.1).
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less than 10 millions. In another word, using state-of-the-art PC with an

optimized code, our algorithm can perform in real-time.

3.4.4 Recognizing Grammatical Facial Expressions

The tracked features are used in the recognition system consisting of HMMs

and the SVM described in Section 3.3.2. To obtain optimized parameters

for the HMMs and the SVM, we randomly split the training data into

two sets in a 75:25 ratio - a T set used for training and a V set used

for validation. Parameters which provided the best result on the V set

were used for obtaining results on the test data. The HMMs and SVM

were trained and tested using the HMM Toolbox [75] and LIBSVM [18],

respectively.

The structure of each HMM (as in Fig. 3.5) is defined by parametersM

and Q, where Q is the number of states and M is the number of Gaussian

mixtures of each state. We considered parameters in the range M ∈ {1, 2}

and Q ∈ {2, 3, 4}. To find the optimal structure of the nine HMMs in

Fig. 3.6, we grouped the HMMs into three sets corresponding to eyebrow

movement (brow raising, brow knitting), eyelid movements (eye widening,

eye squinting), and head motions (move forward, move upward, nod, shake,

and tilt). Inputs to each HMMwere described in Section 3.3.1. We specified

optimal parameters for each group of HMMs, based on the parameter set

that yielded the best average accuracy for the group on the validation set.

Validation sequences were classified according to the HMM that yielded the

highest likelihood score. Group performance was measured by the average

accuracy of all HMMs in a group over the validation set. The optimized

HMMs gave accuracies of 100%, 95.74%, and 83.02% for eyebrow, eyelid,
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Table 3.2: Confusion matrix for testing with MAT-MAT(%).
YN WH NEG TP AS RH

YN 78.57 0 0 14.29 0 7.14
WH 0 100 0 0 0 0
NEG 0 0 100 0 0 0
TP 0 0 0 85.71 7.14 7.14
AS 0 0 0 0 100 0
RH 7.14 0 0 0 7.14 85.71

and head movements, respectively on the validation data. The SVM was

also optimized using the validation set. The inputs to the SVM are the

likelihoods from the optimized HMMs. Once the optimum SVM parameters

were found, the SVM was retrained using all the training data.

To assess the influence of the tracker on recognition performance we

trained and tested the system with tracking inputs obtained from manually

annotated tracks (MAT) and tracks obtained by using Algorithm 1 (Alg1).

We used the test set of 85 isolated grammatical expression sequences de-

scribed in Section 3.4.1. The average number of video sequences for each

expression in this test set is 14. The recognition rates for MAT-MAT (the

system trained and tested with manually annotated tracks), and Alg1-Alg1

were both 91.76%. The similarity of results for MAT-MAT and Alg1-Alg1

suggests that the tracker using Algorithm 1 can track facial feature points

for facial expression classification as well as the manually annotated feature

points. Tables 3.2 and 3.3 show the confusion matrices obtained by classi-

fying the test data with MAT-MAT and Alg1-Alg1, respectively. Besides,

our experiments reported in [82] show that results for Alg2-Alg2 is worse

than MAT-MAT. In other words, Algorithm 1 is a better choice for tracking

facial features to recognize grammatical facial expressions of interest.

For comparison, we also modeled the six grammatical facial expressions
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Table 3.3: Confusion matrix for testing with Alg1-Alg1(%).
YN WH NEG TP AS RH

YN 78.57 7.14 0 7.14 0 7.14
WH 0 100 0 0 0 0
NEG 0 0 100 0 0 0
TP 7.14 0 0 92.86 0 0
AS 0 0 0 0 100 0
RH 14.29 0 0 0 7.14 78.57

Table 3.4: Confusion matrix for recognizing ASL expressions by modeling
each expression with an HMM on Alg1 data(%).

YN WH NEG TP AS RH
YN 78.57 0 0 0 7.14 14.29
WH 0 71.43 7.14 0 14.29 7.14
NEG 0 0 93.33 0 6.67 0
TP 7.14 0 0 71.43 21.43 0
AS 0 0 0 7.14 85.71 7.14
RH 14.29 0 0 0 7.14 78.57

using six HMMs, with the classification determined by the HMM with the

highest likelihood score. The inputs to the HMMs were 14-D feature vec-

tors consisting of the facial feature parameters (described in Section 3.3.1)

extracted from each frame. The HMM structures (the number of states and

the number of Gaussian mixtures per state) were optimized using the T

and V sets. An average recognition rate of 80% and 83.53% was obtained

on the Alg1 and MAT data, respectively. The confusion matrix for the

recognition results obtained on the Alg1 data is shown in Table 3.4.

We also conducted experiments for person independent recognition. In

this experiment, the HMMs and the SVM were trained with the data from

all subjects except one, and the recognition system was tested on the ex-

cluded data. Average recognition rate per person using the MAT data was

87.88% while the tracked data from Algorithm 1 yielded 87.71%. The av-

erage recognition rate per expression in both cases was also comparable.
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Table 3.5: Person independent recognition results with MAT data (%)
(AvgS: average per subject, AvgE: average per expression).

Subject YN WH NEG TP AS RH AvgS
1 85.71 100 100 100 100 100 97.62
2 100 100 100 100 100 57.14 92.86
3 14.29 100 71.43 85.71 85.71 28.57 64.29
4 87.5 100 100 100 100 85.71 95.45
5 100 100 100 85.71 100 57.14 90.7
6 85.71 100 100 100 100 100 97.62
7 71.43 100 28.57 85.71 100 75 76.74

AvgE 77.81 100 85.71 93.88 97.96 71.94 87.88

Table 3.6: Person independent recognition results using tracks from Algo-
rithm 1 (%).

Subject YN WH NEG TP AS RH AvgS
1 85.71 100 100 100 100 100 97.62
2 100 100 100 100 100 42.86 90.48
3 28.57 100 100 85.71 71.43 42.86 71.43
4 87.5 100 85.71 100 87.5 71.43 88.69
5 85.71 100 100 100 100 71.43 92.86
6 57.14 100 100 100 100 100 92.86
7 85.71 100 57.14 100 100 37.5 80.06

AvgE 75.77 100 91.84 97.96 94.13 66.58 87.71

The confusion matrices are shown in Tables 3.5 and 3.6, respectively.

Finally, we used our tracker with Algorithm 1 and a slightly modified

recognition scheme to recognize the six universal facial expressions using

the CMU data set [54]. The faces here are mainly frontal with minimal head

motion. Also, in contrast to the ASL grammatical facial expressions, the

universal expressions contain significant information in the mouth region.

Due to these different characteristics, we used a modified set of HMMs for

recognition: six left-to-right HMMs (Fig. 3.5a) to model mouth movements

observed in the six universal facial expressions (wide open, stretched open,

smile, curved lips (mouth closed), curved upper lip (mouth open), and

pursed lips), one HMM to model formation of the nasolabial furrow, two
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Table 3.7: Confusion matrix for recognizing six universal expressions (%).
Surprise Fear Happy Sad Disgust Angry

Surprise 83.33 5.56 0 5.56 0 5.56
Fear 6.25 81.25 12.5 0 0 0
Happy 0 0 95.24 0 0 4.76
Sad 0 0 0 93.33 0 6.67

Disgust 0 18.18 0 18.18 54.55 9.09
Angry 0 0 0 37.5 12.5 50

HMMs to model eyelid movements (eye widen, eye squint), and two HMMs

to model eyebrow movements (brow raised, brow knit). The likelihood

scores obtained from these HMMs were input to an SVM to classify these

six expressions. The optimal structures and parameters for this recognition

system were identified following the method described at the begining of

this section.

To characterize the mouth movements, we used five parameters (as

shown in Fig. 3.4): Left lip corner height (LL), Right lip corner height

(LR), Top lip height (LT ), Lip width (LW ), and Lip height (LB - LT ). To

characterize formation of the nasolabial furrow, we used four parameters

(as in Fig 3.1 and 3.4, the reference line is the line formed by EL3 and

ER3): Left nose corner height (distance between N3 and the reference line),

Right nose corner height (distance between N1 and the reference line),

Left brow-eye distance (distance between BL3 and EL3), Right brow-eye

distance (distance between BR3 and ER3). To characterize the eyelid and

eyebrow movements, we used the same sets of parameters as described in

Section 3.3.1. All distance parameters were also normalized with respect

to their corresponding values in the first frame.

We used 397 video sequences from 97 subjects in total. Among these,

308 sequences were used for training (number of sequences per expression:
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Surprise: 58, Fear: 48, Happy: 78, Sadness: 59, Disgust: 36, Anger: 29),

and 89 sequences were used for testing (number of sequences per expression:

Surprise: 18, Fear: 16, Happy: 21, Sadness: 15, Disgust: 11, Anger: 8). In

the total data set used, there was about one video sequence per subject per

expression, so the testing was naturally person independent. The average

recognition accuracy with optimized settings was 80.9%, and the confusion

matrix is shown in Table 3.7 for the test sequences.

3.5 Conclusion

We proposed algorithms for tracking facial features in sign language video,

assessed their performance on the basis of their tracking accuracies and also

used them in a recognition system for isolated facial expressions in ASL.

The robustness of our trackers derive from shape constraints learned by

a mixture PPCA model. The shape constraint is governed by a Bayesian

framework which predicts or selects the subspace used to restrict the face

shape deformation in each frame. In Algorithm 1, the shape constraint

and an intensity matching constraint are integrated into an energy-based

optimization framework to stabilize tracking. In Algorithm 2, the KLT

tracks are smoothed by a reconstructed shape from a recursively predicted,

best matching subspace; however, here the intensity matching and shape

constraints are implemented in separate steps. The results show that

our algorithms can track facial features robustly under various changes

of head poses, temporary facial occlusions, and significant facial feature

movements. The integrated tracking scheme of Algorithm 1 yielded the

best accuracy. The proposed recognition framework utilized temporal vi-
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sual cues obtained from the tracker using nine HMMs, and an SVM. The

SVM inputs were the HMM likelihoods of facial feature movements and

head motions for identifying six isolated grammatical facial expression in

ASL. The experiments showed that the recognition results of using the

tracks from Algorithm 1 were as good as from the manually annotated

data, with both yielding accuracy of 91.76%. Similarly, the person inde-

pendent tests yielded 87.88% and 87.7% accuracy for manually annotated

tracks, and tracks from Algorithm 1, respectively. Further, on the CMU

facial expression database, a slightly modified feature set and recognition

scheme yielded 80.9% accuracy for the six universal expressions. Using the

proposed trackers, we will address the problem of recognizing continuous

facial expressions in ASL.
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Chapter 4

Recognizing Continuous

Grammatical Markers

4.1 Introduction

In this chapter, we consider recognizing continuous facial gestures in sign

language, particularly grammatical markers in ASL. The six grammatical

markers considered in this paper are summarized in Table 3.1 in terms of

eye, eyebrow, and head movements. We propose to use a layered Con-

ditional Random Field (CRF) model [61] for this purpose. The classifier

includes two CRF layers, the first layer to model head motions and the sec-

ond to model facial expressions. The separate head motion layer helps to

reduce the ambiguity in recognizing facial expressions in the second layer.

For each video sequence, probabilities of different head motions are evalu-

ated by the first layer, and these are input to the second layer together with

other features for labeling the grammatical marker in each frame. Manually

annotated labels of head motions and grammatical markers were used for
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training the classifier and assessing performance. The result were compared

with a HMM-based classifier. The proposed classifier yielded precision and

recall rates of 94.19% and 81.36%, respectively, and yielded better results

than the HMM-based classifier.

4.2 Recognizing Continuous Facial Expressions

in Sign Language

4.2.1 The Challenge

Facial gestures in ASL are identified from head motion and facial feature

movement. In this chapter we consider recognition of six grammatical

markers listed and characterized in Table 3.1, through their gestures com-

prising eye, eyebrow and head movements. Here, we extend our work to

recognition of continuous facial gestures as would occur in sign language

discourse, and consider six types of facial gesture chains/sequences (Ta-

ble 4.2) composed of these grammatical markers. Examples of these facial

gesture chains are shown in Table 4.1. The figure shows obvious variations

in different people performing the same grammatical markers, e.g. Yes/No

question or Assertion in different chains. In this figure, unidentified expres-

sions correspond to those not in the grammatical marker set and usually

to transition expression between a pair of markers. Besides, the Neutral

expression is also not interested in the current context, and is hence labeled

as an unidentified expression.

There are several aspects to the continuous facial gesture recognition

problem which make it challenging, more so than isolated recognition.
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Table 4.1: Examples of six types of grammatical marker chains. The neu-
tral expression shown in the first frame is not related to grammatical mark-
ers, and is considered to be an unidentified expression. An unidentified
facial gesture can also be present between any two grammatical markers
and can vary greatly depending on nearby grammatical markers.

Unidentified Topic Unidentified Assertion

Unidentified Topic Unidentified Negation

Unidentified Topic Unidentified Yes/No question

Unidentified Topic Rhetorical Assertion

Unidentified Topic Wh question Unidentified Yes/No question

Unidentified Topic Unidentified Yes/No question Assertion
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Table 4.2: Different types of grammatical marker chains considered.
Chain English sentence ASL signs
TP AS I really want the

book!
[BOOK]TP [WANT]AS

TP YN Do you want the
book?

[BOOK]TP

[WANT]Y N

TP NEG I don’t want the
book.

[BOOK]TP

[WANT]NEG

TP RH
AS

I know where the
game is! It’s in Sin-
gapore.

[GAME]TP

[WHERE]RH

[SINGAPORE]AS

TP WH
YN

Where is the game?
Is it in New York?

[GAME]TP

[WHERE]WH

[NEW YORK]Y N

TP YN
AS

Do you know that
book? I finished it!

[BOOK]TP

[KNOW]Y N

[FINISH]AS

Movement epenthesis is the extra motion required by the head (and fa-

cial features), due to physical constraints, to transit from the end of the

previous gesture to the neutral state before beginning to form the next

grammatical marker; this is difficult to model due to its variability. Co-

articulation refers to the appearance of a head gesture being influenced by

adjacent gestures. Speech also has the co-articulation effect, but not move-

ment epenthesis. There can also be asynchronization between head motion

and facial feature movement. Movement epenthesis and co-articulation

effects between grammatical markers are shown in Tables 4.3-4.5. The ex-

ample shows the grammatical marker chain TP WH YN when a subject

is signing the words “Game”, “Where”, “New York” to convey the English

sentences, “Where is the game? Is it in New York?”.
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Table 4.3: A subject’s facial gestures while signing the English sentence “Where is the game? Is it in New York?”. Here,
his facial gestures are showing the Topic (TP) grammatical marker while his hands are signing the word “Game”.

Frame 1 (Und): The video sequence
starts with a neutral expression and head
at neutral position.

Frame 3 (Und, the TP marker is being
formed): The brows are being raised, the
eyes are widening, while the head is still.
Movement of head, brows, and eyes ap-
pear asynchronous.

Frame 7 (TP): the head moves back-
wards together with raised brows and
widened eyes.
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Table 4.4: (Continued from Table 4.3) The subject’s facial gestures are changing from Topic to Wh question (WH) gram-
matical marker while his hands are signing the word “Where”.

Frame 13 (TP): The facial gesture is be-
ing held still because signing the word
GAME has not finished.

Frame 16 (Und): The head is held
still while the brows and eyes are chang-
ing back to their normal states. Here,
changes of eyes and brows are movement
epentheses towards neutral.

Frame 19 (Und, The Wh marker is be-
ing formed): The head is held still, while
the brows are knitting, and the eyes are
squinting.

Frame 23 (Wh): Head is moving for-
ward, slightly turning right due to the
subject’s habit, and past the neutral posi-
tion. The head motion from Frame 19 to
this frame is a movement epenthesis of the
head. Besides, the WH expression starts
when the brows have already been knit
and the eyes have already been squinting
(asynchronous effect).

Frame 28 (Wh): Head is moving forward
and slightly turning right.

Frame 33 (Wh): Head stops after mov-
ing forward and slightly turning right.
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Table 4.5: Continued from Table 4.4) The subject’s facial gestures are changing from WH to Yes/no question (YN)
grammatical marker while his hands are signing the word “NEW YORK”.

Frame 38 (Wh): The WH marker is be-
ing held from Frame 33.

Frame 42 (Und, the YN marker is being
formed): The head is still while brows and
eyes are being relaxed.

Frame 47 (Und, the YN marker is be-
ing formed): Head is moving towards neu-
tral position (movement epenthesis). Be-
sides, the head also moves slightly down-
ward due to the subject’s habit. Eyes are
widened and brows are raised.

Frame 48 (YN): The head starts mov-
ing forward while brows and eyes have al-
ready been raised and widened.

Frame 51 (YN): The head is moving for-
ward slowly.

Frame 55 (YN): The head stops after
moving forward. This second forward
head motion is not as noticeable as in the
previous WH marker (frame 23 to 33) be-
cause the co-articulation effect from the
WH marker causes the starting position
of the head motion to not be at the com-
fortable, neutral, position.
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Visually, the beginning and ending of an expression is considered to co-

incide with the beginning and ending of the head motion corresponding to

that expression. However, during an expression, movements of facial fea-

tures like brows and eyes are independent and may evolve asynchronously

with the head motion. This asynchronization adds an uncertainty in iden-

tifying a facial expression by using a combination of features related to

head motions and facial feature movements. An effective strategy to deal

with this problem is to use multi-channel frameworks [84] [79], where each

channel is trained to analyze a different signal, and the outputs combined

to yield the final classification.

The movement epenthesis and co-articulation between grammatical mark-

ers also introduce additional types of noise. The movement epenthesis be-

tween head motions is unavoidable due to physical constraints. The head

tends to move back to the neutral position to comfortably start the next

motion. The asynchronization observed is in the movement of eyes and

brows which tend to hold the state established at one expression into the

next expression if the two expressions have similar eye and brow move-

ments. Also, eyes and brows have to move back to their neutral positions

between different states (knitting or raising eyebrows; widening or squint-

ing eyes). Besides, the movements of the eyes and brows can be affected

by factors that are not related to facial expressions of interest: natural

eye blinks, hand signs for adjectives such as HUNGRY or FAST involving

added facial expressions.

Furthermore, the unidentified expressions between facial expressions of

interest are highly varied due to combinations of movement epenthesis and

co-articulation. Thus it will be ineffective to model the expression se-

82



(a) HMM model (b) Linear-chain CRF model

Figure 4.1: Illustrations of HMM and linear-chain CRF models.

quences using generative models like HMMs. A discriminative model may

be more suited for this scenario, and we propose to use a layered CRF

model to handle head motion and facial expression.

4.2.2 Layered Conditional Random Field Model

The problem of recognizing continuous grammatical markers can be mod-

eled as a problem of assigning a label sequence y composed of grammatical

markers and the unidentified expression to an observation sequence x.

This problem can be approached by using generative models like HMMs

(Fig. 4.1a) which aim to maximize the joint probability P (y,x):

P (y,x) =
T∏

t=1

P (xt|yt)P (yt|yt−1) (4.1)

where T is the length of the sequence, xt and yt are the observation and

label of frame t, respectively. This approach requires the implicit model-

ing of the observations, and making the assumption that observations are

independent given the labels (or hidden state). If the distribution of obser-

vations is complex, the task of modeling them will add further challenge to

the problem of sequence labeling.

Discriminative probabilistic models like the CRF model [61] avoid mod-

eling the observation distribution by aiming to maximize the posterior dis-
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tribution P (y|x).

The evaluation function of CRF models is composed of weighted po-

tential functions which can utilize not only features extracted from the

observations but also their interactions and temporal dependencies. In the

linear-chain model (Fig. 4.1b), the probability of a label sequence y given

an observation sequence x is computed as:

P (y|x) =
1

Z(x)
exp

T∑
t=1

 Nf∑
i=1

θf
i fi(yt,x) +

Ng∑
j=1

θg
j gj(yt, yt−1,x)

 (4.2)

where fi and gj are potential functions that evaluate the interaction and

temporal dependencies among features, respectively. Nf and Ng are the

number of interaction and temporal potential functions, θf
i and θi

j are

weights estimated from training data, and Z(x) is a normalization factor

given by,

Z(x) =
∑
y

exp
T∑

t=1

 Nf∑
i=1

θf
i fi(yt,x) +

Ng∑
j=1

θg
j gj(yt, yt−1,x)

 (4.3)

and can be efficiently computed using dynamic programming. A CRF can

be trained by maximizing the log-likelihood of the training data set {yk,xk}

L(θ) =
M∑

k=1

logP (yk|xk) (4.4)

=
M∑

k=1

T∑
t=1

 Nf∑
i=1

θf
i fi(y

k
t ,x

k) +

Ng∑
j=1

θg
j gj(y

k
t , y

k
t−1,x

k)

 (4.5)

−logZ(xk)
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Figure 4.2: Layered CRF for recognizing continuous facial expressions in
sign language.

with M is the number of sequences in the training set, and θ = {θf
i , θ

k
j },

i = 1, . . . , Nf , j = 1, . . . , Ng is the estimated parameter set of the CRF.

Lafferty et al. [61] have shown that the right hand side of Eq. 4.5 is a

convex function parameterized by θf
i and θg

j , whose global optimum value

can be obtained using iterative scaling algorithms [89] or gradient-based

methods [73].

CRFs, which avoid the assumption of statistical independence of obser-

vations, have shown better performance than HMMs in many applications.

We used a layered model of the chain CRF (Fig. 4.2) to recognize con-

tinuous facial expressions in ASL. The probabilities of head motion labels

are evaluated by a CRF in the first layer. These probabilities are passed

to the second layer where other facial feature channels are also integrated.

The second layer CRF is trained on these integrated features, to provide

expression labels for frames in the test video sequences.

Our observations show that the transition from one type of head mo-
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Table 4.6: Head labels used to train the CRF at the first layer.
No. Label Meaning
1 Neutral (Neu) Head at normal position
2 Forward (Fw) Head moves forward
3 Back from Forward

(BfF )
Head moves from forward position to neutral
position

4 Backward (Bw) Head moves backward
5 Back from Backward

(BfB)
Head moves from backward position to neutral
position

6 Turn left (TL) Head turns left, usually a part of head shake
7 Back from Turn left

(BfTL)
Head pose changes from leftward to frontal

8 Turn right (TR) Head turns right, usually a part of head shake
9 Back from Turn right

(BfTR)
Head pose changes from rightward to frontal

10 Move down (MD) Head moves down, usually a part of head nod
11 Back from Move down

(BfMD)
Head pose changes from downward to frontal,
usually a part of head nod

12 Still Head is kept still
13 Forward left (FL) Head moves forward and slightly turns left
14 Back from Forward left

(BfFL)
Head pose changes from leftward to frontal and
head moves from forward to neutral position

15 Forward right (FR) Head moves forward and slightly turns right
16 Back from Forward

right (BfFR)
Head pose changes from rightward to frontal
and head moves from forward to neutral posi-
tion

tion to another can include movement epenthesis but not much articula-

tion. Thus we choose to model movement epentheses explicitly, together

with meaningful head motions. Currently, we have used 16 labels of head

motions (both meaningful head motion and their movement epentheses) as

described in Table 4.6 for all combinations of head motions which occur in

conjunction with the six grammatical markers of interest.

In manually annotating the frames, besides the head motion label, each

video frame in the data set is also labeled with one of seven facial gestures:

AS, NEG, RH, TP, RH, WH, YN, and UN. The label UN is assigned to
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frames with unidentified expressions.

As shown in Table 4.6, head motions with labels such as “Back from X”

are defined to explicitly model movement epentheses. Exceptional cases are

labels 7, 9, and 11 which are constituents of multi-part head motions: head

shake and head nod. The Neutral label appears mostly at the beginning

of the video sequences. During facial gestures, the head does move past

the neutral position but does not stop. The frames in which the head

is temporarily at the neutral position is also annotated with the Neutral

label. The label Still plays an important role in segmenting meaningful

head motions and their movement epentheses (Back from X) because there

is usually a short pause (or even long pause) between the meaningful head

motion and its “Back from” movement.

4.2.3 Observation Features

Motion of the head and facial features are obtained from the tracked feature

points (shown in Fig. 3.1) using the robust tracking algorithm 1 developed

in Chapter 3. The feature points are placed at both rigid and non-rigid

facial locations, and distances between them are extracted and used for

recognition. These distances which are similar to those in Chapter 3(see

Fig. 3.4) are,

• Five eyebrow parameters: Left inner brow height (BIL), Right inner

brow height (BIR), Left middle brow height (BML), Right middle brow

height (BMR), Distance between brows (BB).

• Two eye parameters: Left eye height (summation of EBL and ETL),

Right eye height (summation of EBR and ETR).
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A reference line is defined as the line passing through the two inner eye

corners, and the height parameters are the perpendicular distances of the

feature points from this line. All distance parameters are normalized with

respect to their corresponding values in the first frame to remove scaling

effects across video sequences.

To recognize head motions, tracks of non-deformable facial feature lo-

cations, namely, the two inner eye corners (EL3, ER3) and the middle of the

nose (N2), are used to define three features, SM , CM x and CM y as follows:

• SM : The area of the triangle formed by the above three locations in

each frame.

• CM x and CM y: two components of the 2D motion vector1 CM of the

center of gravity of the triangle.

SM and CM are normalized by the distance EM 0 between the two inner eye

corners in the first frame Cn
M t = CM t

EM 0
and Sn

M t = SM t

EM 0
2 .

These three features form the feature vector (at each frame) for the first

CRF layer to evaluate probabilities of different head motions. The feature

vector (at each frame) of the second CRF layer for recognizing continuous

facial expressions thus has 23 elements: 16 probabilities of head motions

and 7 distance ratios computed from the eyes and brows’ tracked features.

4.3 Experiments and Results

Videos of natural sign language facial expressions of interest were recorded

by providing signers with appropriate signing scripts for sentences. Each

1Motion vector vt+1 = (xt+1, yt+1)− (xt, yt)
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English sentence in the script was signed in ASL with hand signs and corre-

sponding facial expressions. These sentences were created or adapted from

ASL resources [5][15][12]. Deaf signers from the Deaf and Hard-of-Hearing

Foundation of Singapore provided the data, and each signer contributed

videos in two sessions on different days. A subject signed each sentence

ten times. As mentioned in Section 4.2, our data includes six types of

grammatical marker chains described in Table 4.2.

All six grammatical markers listed in Table 3.1 appear in this set of

data together with 16 types of head motions described in Table 4.6. For

evaluating our proposed recognition method, data from six subjects was

used for experiments. The data set includes a total of 394 video sequences

divided into two separate sets for training and testing. The length of each

video sequence varied depending on the expression and the subject. The

average number of frames in each sequence is 58.34 with standard deviation

of 23.02. The longest and shortest sequences have 125 and 19 frames,

respectively. Each video frame was manually transcribed to have two labels,

one for the head motion, and the other for the facial expression, both

identified based on observation and the signing script.

The training set consisted of 281 video sequences with an average of

seven sequences from each subject for each type of expression chain. The

training set was used to train both CRF layers of the model: head motion

layer and grammatical marker layer. The test set consisted of the remain-

ing 113 video sequences with an average of 3 sequences per subject per

expression chain.

Recognition accuracy for facial expressions was measured by two meth-

ods: frame-based and label-aligned. In the frame-based method, the label
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assigned to each frame is compared to the corresponding human annotated

label. In the label-aligned method, the frame labels of each sequence are

reduced such that consecutive frames with the same label are replaced by

a single label. This reduced sequence of output labels is aligned to the

reduced sequence of human annotated labels using the Needleman-Wunsch

algorithm [77]. The number of matches, insertions, deletions, and changed

labels are then obtained. Insertions are labels output by the classifier,

which do not appear in the corresponding annotated data. Deletions are

labels which are not recognized by the classifier while they appear in the

annotated data.

The first experiment was conducted to evaluate the performance of the

proposed model. The first CRF layer for head motion was trained first.

The head motion probabilities output by this trained CRF was used as

a part of the training vector for the CRF at the second layer. The two

CRF layers were trained using the scaled conjugate gradient algorithm [73]

with the CRF Toolbox [94].The output grammatical markers were obtained

using Viterbi algorithm.

Figs. 4.3 and 4.4 illustrate outputs from the two CRF layers of our

proposed model for the sequence shown in Tables 4.3-4.5. Fig. 4.3 shows the

probability output of the first layer for the 16 head motion labels described

in Table 4.6. As mentioned in Section 4.2, the head tends to move past

the neutral position before starting a new motion. Fig. 4.4 shows the

probability for the grammatical marker labels output by the two-layer CRF

classifier. Seven probabilities including six for grammatical markers and

one for the unidentified expression are obtained at each frame.

The average frame-based grammatical marker recognition rate using the
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Figure 4.3: The probability outputs of the first layer CRF trained to an-
alyze 16 types of head motion. The color bar at the top is the human
annotated head motion label for this video sequence. The curve and bar
with the same color are associated with the same head motion.
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Figure 4.4: The probabilities of the grammatical markers, output by the
second CRF layer trained using head motion probability output (shown in
Fig. 4.3) from the first layer. The dotted curves correspond to the path
chosen by the Viterbi algorithm.
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complete two-layer CRF model was 76.13%. The corresponding confusion

matrix is shown in Table 4.7 which shows that most of the confusions are

between any grammatical marker and the unidentified expression. Particu-

larly, frame-based label confusions usually occur at the boundary between

facial gestures where ambiguous head motions and asynchronous move-

ments of facial features are present. This makes even manual annotation

of consecutive frames into different facial gestures difficult.

The label-aligned method of computing accuracy reveals more about

the capability of the layered CRF for recognizing continuous grammatical

markers by discounting unavoidable confusions during transitions between

facial gestures. Table 4.7 can be augmented with insertion and deletion

entries to obtained the extended confusion matrix C from which precision

and recall rates are computed as follows:

• Match rate for expression i : C(i, i)

• Change rate for expression i :
∑

j /∈{i,Insert,Delete}

C(i, j)

• Insertion rate for expression i : C(i, Insert)

• Deletion rate for expression i : C(i,Delete)

Precision =
Match

Match+ Change+ Insert
(4.6)

Recall =
Match

Match+ Change+Delete
(4.7)

where C(i, j) is the value at row i and column j of the extended confusion

matrix.

The extended confusion matrix for the first experiment is shown in Ta-

ble. 4.8, which yields label-aligned average precision of 95.33% and average
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Table 4.7: Confusion matrix obtained by labeling grammatical markers
(%) with the proposed model. The average frame-based recognition rate is
76.13%.

Und AS NEG RH TP WH YN
UN 65.45 6.19 1.52 4.68 14.21 2.67 5.28
AS 9.20 84.39 1.25 0.00 1.15 0.00 4.02
NEG 3.21 0.00 96.47 0.00 0.32 0.00 0.00
RH 18.62 1.79 0.00 79.34 0.26 0.00 0.00
TP 7.70 1.31 0.06 1.07 89.73 0.00 0.12
WH 22.96 0.00 0.00 4.44 0.00 69.63 2.96
YN 30.99 5.75 0.80 0.64 13.90 0.00 47.92

recall of 78.86%. Here, we can notice that there are many deletions of

unidentified expressions UN while there are relatively few confusions be-

tween it and the grammatical markers. Because missing UN does not affect

our primary goal of recognizing continuous grammatical markers, the per-

formance of our proposed model can be better judged by not including the

recognition results of UN in our final result. The UN labels classified as

grammatical markers are considered to be insertion errors and the gram-

matical marker labels classified as UN are considered as deletion errors for

the corresponding markers. From this point of view, the proposed model

yields precision and recall rates of 94.19% and 81.36% respectively. The

precision rate appears quite reasonable given the complexity of the prob-

lem. Besides, in this model, head motions are a strong cue for switching

between facial expression. The lower recall rate hints that the layered CRF

is less sensitive to change of facial gestures in video sequences. This may be

improved with more descriptive features for head motion and facial feature

movements.

In the second experiment, we used a single-layer CRF for recognizing

continuous grammatical markers. The observation xt at each frame com-
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Table 4.8: Extended confusion matrix obtained by label-aligned grammat-
ical marker recognition (%) using two-layer CRF model.

UN AS NEG RH TP WH YN Insert Delete Precision Recall
UN 73.17 0.00 0.61 0.00 0.00 0.00 0.00 1.83 24.39 96.77 74.53
AS 0.00 83.93 1.79 0.00 0.00 0.00 8.93 0.00 5.36 88.68 83.93
NEG 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 100.00
RH 0.00 0.00 0.00 88.89 0.00 0.00 0.00 0.00 11.11 100.00 88.89
TP 0.00 0.00 0.00 0.00 91.96 0.00 0.00 0.00 8.04 100.00 91.96
WH 0.00 0.00 0.00 0.00 0.00 72.22 5.56 0.00 22.22 92.86 72.22
YN 0.00 7.02 0.00 1.75 1.75 0.00 52.63 0.00 36.84 83.33 52.63

Average 95.33 78.86

Table 4.9: Extended confusion matrix for label-aligned grammatical marker
recognition result (%) using a single-layer CRF model.

UN AS NEG RH TP WH YN Insert Delete Precision Recall
UN 30.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 70.00 100.00 30.00
AS 0.00 42.86 5.36 1.79 0.00 1.79 3.57 0.00 44.64 77.42 42.86
NEG 5.56 38.89 16.67 0.00 0.00 5.56 5.56 0.00 27.78 23.08 16.67
RH 0.00 0.00 0.00 27.78 0.00 0.00 5.56 0.00 66.67 83.33 27.78
TP 0.00 0.00 0.00 0.00 71.68 0.00 0.00 0.88 27.43 98.78 72.32
WH 0.00 0.00 0.00 0.00 0.00 44.44 0.00 0.00 55.56 100.00 44.44
YN 0.00 7.02 0.00 5.26 3.51 0.00 43.86 0.00 40.35 73.53 43.86

Average 87.72 43.57

prises the three features from head motions and seven features from eye

and brows as described in Section 4.2.3. The same set of training and test-

ing data was used for training this model and evaluating its performance.

The extended confusion matrix for this experiment is shown in Table 4.9.

The average precision and recall rates are 87.72% and 43.57%, respectively.

Without including the recognition result for UN, the precision and recall

rates are 84.39% and 52.33%, respectively. The significant drop of the re-

call rate from 81.36% in the first experiment to 52.33% suggested that head

motion and facial feature movement are best analyzed as separate channels

before combining them for final recognition of the grammatical markers.
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In the third experiment, we applied the layered-HMM model introduced

by Oliver et al. [83] [84] to our problem. The authors proposed a two-layer

HMM model for recognizing human activity in an office environment. Each

layer was composed of multiple HMMs, with each trained to model a single

type of signal. HMMs in the first layer were trained to classify signals using

features extracted from audio and video streams. Some of these classes were

human speech, music, phone ringing (from audio observations), one person,

multiple people, nobody (classified from video observations). Outputs from

HMMs in the first layer were combined to construct observations for the

second layer. At frame t, two types of outputs from HMMs in the first layer

could be obtained: probabilistic or signal-based. The probabilistic output

at each frame was a vector composed of probability evaluations from all

HMMs at that frame. The signal-based output was a combination of two

indices of the HMMs. In this type of output, HMMs in the first level

were considered to be composed of two groups, audio HMMs and video

HMMs. With each group, the index of the HMM yielding the maximum

likelihood at frame t would be included in the signal-based output at frame

t. HMMs in the second layer were trained to evaluate the presence of

office activities such as “presentation”, “phone conversation”, or “nobody

around”. The output of any HMM at frame t was based on observations

xL
t−NL−1, . . . ,x

L
t which were a portion of input observations to layer L. NL

is a predefined length of sub-sequences analyzed by HMMs at layer L,

NL is experimentally defined and can be increased at higher levels which

needs to analyze signals with more abstract information. In other words,

each signal was analyzed using observations within a window with size NL,

and this window would be slid frame by frame towards the end of the input
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observation sequence. Because each HMM was trained to analyze one single

signal, by employing such slide window mechanism, each HMM can provide

continuous evaluations for a sequence including different signals. However,

the transition probabilities between signals were not considered.

Based on our HMM-SVM classifier introduced in the previous chap-

ter for recognizing isolated grammatical markers, we replace the SVM in

the second layer by HMMs to form a layered architecture for continuous

grammatical marker recognition. We use similar HMMs for modeling head

motions and facial feature movements described in the previous chapter

in the first layer. The second layer consists of 4-state forward HMMs as

suggested in [84]. In our case, there are 20 HMMs in the first layer to

analyze the 16 types of basic head motions (as listed in Table 4.6), 2 types

of eye movements (squint and widen), and 2 types of eye brow movements

(knit and raised). There are 7 HMMs in the second layer for evaluating the

6 types of grammatical markers (listed in Table 3.1) and the unidentified

expression. Based on our observations on the durations of facial feature

movement, head motions, and grammatical markers, NL used for the first

and second layer are N1 = 3 and N2 = 5, respectively. The grammat-

ical marker label for each frame is chosen based on the HMMs yielding

maximum likelihood at the second layer.

Table 4.10 shows the confusion matrix for frame-based recognition re-

sults of the third experiment. As expected, the accuracy for unidentified

expression is poor due to its highly variable appearance. Table 4.11 shows

the extended confusion matrix using the label-aligned method; the average

precision and recall rates are 38.42% and 76.39%, respectively. Without

including the recognition results of UN, the precision and recall rates are
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Table 4.10: Confusion matrix for labeling grammatical markers with the
layered-HMM model. The average frame-based recognition rate is 50.05%.

Und AS NEG RH TP WH YN
UN 10.77 8.51 7.71 11.14 43.15 6.30 12.42
AS 6.86 28.65 16.32 8.16 14.50 16.84 8.68
NEG 6.32 8.62 45.69 7.47 12.93 15.23 3.74
RH 4.59 3.06 5.10 65.82 13.52 3.32 4.59
TP 2.75 1.29 3.39 1.37 89.74 0.00 1.45
WH 5.68 14.32 8.89 2.47 4.20 62.96 1.48
YN 9.07 3.97 2.83 8.22 29.18 0.00 46.74

Table 4.11: Extended confusion matrix for label-based grammatical marker
recognition result (%) using layered-HMM.

UN AS NEG RH TP WH YN Insert Delete Precision Recall
UN 47.12 3.85 7.21 3.85 3.85 2.88 1.44 25.00 4.81 49.49 62.82
AS 0.00 23.26 1.74 1.16 0.00 2.91 2.91 67.44 0.58 23.39 71.43
NEG 0.00 0.00 17.78 0.00 0.00 1.11 1.11 80.00 0.00 17.78 88.89
RH 0.00 0.00 1.47 25.00 0.00 0.00 0.00 73.53 0.00 25.00 94.44
TP 0.00 0.00 0.00 0.00 62.07 0.00 0.00 37.36 0.57 62.43 99.08
WH 0.00 1.52 0.00 0.00 3.03 18.18 4.55 72.73 0.00 18.18 66.67
YN 0.00 2.02 0.00 4.04 6.06 0.00 39.39 42.42 6.06 41.94 68.42

Average 38.42 76.39

32.72% and 84.06%, respectively. The low precision rate may be caused

by the high variance of continuous grammatical markers’ appearance due

to co-articulation, movement epenthesis, and asynchronization effects. Be-

sides, the lack of constraints of the transition between signals may cause

high insertion errors. A proper concatenation model of HMMs of the sec-

ond layer may improve the recognition result. In a concatenation model,

HMMs trained with single signals will be “connected” to form a long HMM,

and the transition between different portions, original single HMMs, will

be learned from training data.

Finally, we conducted person-independent recognition tests using the

two-layer CRF model. In this fourth experiment, the classifier was trained
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Table 4.12: Precision and recall rates (%) for person-independent recogni-
tion of grammatical markers in expression chains.

1 2 3 4 5 6 Average
Precision 75.00 94.55 84.62 87.41 96.12 84.96 87.11
Recall 61.45 68.87 55.31 83.89 71.26 62.34 67.19

and tested six times. In each round it was trained on the data of five

subjects and tested on the data of the left-out subject. The recognition

results were computed using label-aligned method without including the

unidentified expression. Six pairs of precision and recall rates are reported

in Table 4.12 for person independent recognition. The average precision

and recall rates are 87.11% and 67.19% respectively. Not surprisingly, the

precision and recall rates have dropped, but still very reasonable, given the

variability among subjects arising from there signing habits, etc. Having

more signers for training will no doubt improve person independent results,

but it would be more interesting to identify features, if possible, that are

less sensitive to signer variations.

4.4 Conclusion

In this chapter, we addressed the problem of recognizing continuously

signed grammatical markers in sign language video. A 2-layer CRF model

was proposed for recognizing six common grammatical markers in ASL

sentences. The first layer was trained for evaluating head motions and

the second layer was trained for segmenting and recognizing the markers

using the output from the first layer and measurements of facial feature

movements. Data was collected using an experimental set up for captur-

ing natural facial expressions composed of facial feature movements and
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head motions without a forced “neutral” state between expressions. The

performance of the complete 2-layer CRF model yielded precision rate of

94.19%, and recall rate of 81.36% for recognizing the six types of contin-

uously signed grammatical markers. The person-independent test yielded

87.11% and 67.19%, respectively. The proposed classifier also outperformed

two other classifiers: a linear chain CRF model and a layered-HMM classi-

fier. These encouraging results show that the proposed 2-layer model is a

viable scheme for recognizing continuous facial gestures in sign language.

In the near future, we propose to enhance the robustness of the model

by incorporating more descriptive features for identifying head motions.

Other non-manual signals will be considered for further development of the

system.
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Chapter 5

Conclusion and Future Works

In this thesis, we addressed the problem of recognizing grammatical mark-

ers in ASL. In particular, we proposed algorithms for tracking facial features

in sign language video, assessed their performance on video recorded from

deaf signers, and used the tracked data in classification systems for isolated

and continuously signed grammatical marker facial gestures in ASL.

Tracking facial features was considered for analyzing both facial fea-

ture movements and head motions which are concurrent components of

grammatical markers in ASL. We first developed algorithms to track facial

features robustly in the challenging sign language scenario which includes

motion blur, rapidly changing head pose, occlusions, etc, which can cause

frame-based intensity matching algorithms such as KLT to easily mistrack.

We used 21 feature points selected at rigid and non-rigid facial locations,

and used this set of points to describe face shape. For robust tracking, the

tracks must be constrained to conform to face shape. We explored two

alternative algorithms for tracking. In Algorithm 1, we propagated tracks

from one frame to the next by joint optimization of intensity matching
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of feature points and shape constraint implemented through energy min-

imization. In Algorithm 2, we used the KLT algorithm to propagate the

track, and then refined it using the shape constraint. Hence in the lat-

ter algorithm, the tracking and constraint enforcement are implemented

in two separate steps. We used the mixture PPCA model to represent

face shapes. The advantage of PPCA is that unlike other clustering and

PCA-based schemes, it provides the likelihoods of face shapes belonging to

particular subspaces. This is useful information that can be used in prob-

abilistic tracking schemes. In particular, we used it to recursively predict

the most probable face subspace to constrain the tracked feature points.

We also used the incremental PPCA to update the mixture PPCA model

to adapt to new persons, not seen during training.

We used the above two trackers and minor variants of them on facial sign

language video recorded using subjects from the Deaf and Hard of Hearing

Association of Singapore, while signing ASL. We also used “talking heads”

video selected randomly from the Internet. The results show that our

algorithms can track facial features robustly under rapid changes of head

pose, temporary facial occlusions, and significant facial feature movements.

The integrated tracking in Algorithm 1 yielded excellent tracking results,

while Algorithm 2 was somewhat worse when the video was challenging. It

is useful to note here that the tracking algorithms are generic, and can be

used to handle other classes of rigid and non-rigid objects besides faces.

Our next contributions were methods for recognizing grammatical mark-

ers using the tracks of the feature points provided by Algorithm 1. We first

recognized isolated grammatical markers, and then used the insights ob-

tained to develop a classifier for continuously signed grammatical markers.
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For isolated grammatical marker recognition, we used a bank of nine HMMs

to separately recognize head motion and facial feature movements, using

features derived from the rigid and non-rigid feature points, respectively.

The likelihoods output by the HMMs were fused in an SVM classifier,

trained to output the grammatical marker. The experiments showed that

the recognition results of using the tracks from Algorithm 1 were as good

as those from the manually annotated data, with both yielding accuracy

of 91.76%. Similarly, person independent tests yielded 87.88% and 87.7%

accuracy for recognition from manually annotated tracks, and tracks from

Algorithm 1, respectively. Further, on the CMU facial expression database,

a slightly modified feature set and recognition scheme yielded 80.9% accu-

racy for the six universal facial expressions.

The good recognition performance for isolated grammatical markers

makes the case for a layered classifier architecture for recognition, rather

than one using features from combined head motion and facial feature

movements. The success of the discriminative CRF models motivated us

to apply this to the problem of continuous grammatical marker recognition.

Hence, we proposed a two-layer CRF model for this purpose, and compared

its performance with a single layer CRF model as well as a layered HMM-

based classifier.

In the two-layer CRF model, the first layer was trained for evaluating

head motions and the second layer was trained for segmenting and rec-

ognizing grammatical markers using the output from the first layer and

measurements of facial feature movements. The performance of the com-

plete two-layer CRF model yielded precision rate of 94.19%, and recall rate

of 81.36% for recognizing the six types of continuously signed grammatical
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markers. Experimental results showed that this classifier outperformed a

single layer CRF classifier and a layered HMM classifier. These encourag-

ing results show that the proposed two-layer CRF model is a viable scheme

for recognizing facial gestures in sign language.

Future Work

The robustness of our tracking algorithms under occlusions can be enhanced

by explicitly detecting occluded features using more informative descriptors

as SIFT [68]. Occluded features can then be recovered using a robust

face alignment method [48]. The robustness of the recognition model can

be enhanced by incorporating more descriptive features as those reviewed

in [76].

To build a complete system for recognizing grammatical markers, we

need to automatically detect facial features of interest; available meth-

ods [28, 40] could be utilized for this purpose. Furthermore, a system

for fully recognizing simple signed sentences can be developed in the near

future by integrating a continuous hand sign recognition framework with

ours. The recognition of other non-manual signs such as conversation reg-

ulators (eye-gaze), modifiers and non-manual lexical signs (mouthing) can

be developed using features obtained from the proposed tracking algorithm.

Other non-manual signals will be considered for further development of the

system.

Besides application in sign language, the robustness of our facial feature

tracker and facial gesture classification schemes could well be used for facial

gesture analysis in unstructured environments and in multimodal human
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action recognition systems.
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