685 research outputs found

    Multiple Description Coding Using A New Bitplane-LVQ Scheme.

    Get PDF
    In this paper, a novel Bitplane-LVQ technique to compress subbands bitplane coefficients is proposed for multiple description coding (MDC) system

    State of the art in 2D content representation and compression

    Get PDF
    Livrable D1.3 du projet ANR PERSEECe rapport a été réalisé dans le cadre du projet ANR PERSEE (n° ANR-09-BLAN-0170). Exactement il correspond au livrable D3.1 du projet

    Multiple-Description Lattice Vector Quantization For Image And Video Coding Based On Coincidings Similar Sublattices Of An

    Get PDF
    Nowadays applications of multimedia communication are found everywhere. Digital communication systems deal with representation of digital data for either storage or transmission. The size of the digital data is a crucial factor for storage and error resiliency of the data is a crucial factor for transmission systems. Thus, it is required to have more efficient encoding algorithms in terms of compression and error resiliency. Multiple-description (MD) coding has been a popular choice for robust data transmission over unreliable network channels

    Improved bounds for the rate loss of multiresolution source codes

    Get PDF
    We present new bounds for the rate loss of multiresolution source codes (MRSCs). Considering an M-resolution code, the rate loss at the ith resolution with distortion D/sub i/ is defined as L/sub i/=R/sub i/-R(D/sub i/), where R/sub i/ is the rate achievable by the MRSC at stage i. This rate loss describes the performance degradation of the MRSC compared to the best single-resolution code with the same distortion. For two-resolution source codes, there are three scenarios of particular interest: (i) when both resolutions are equally important; (ii) when the rate loss at the first resolution is 0 (L/sub 1/=0); (iii) when the rate loss at the second resolution is 0 (L/sub 2/=0). The work of Lastras and Berger (see ibid., vol.47, p.918-26, Mar. 2001) gives constant upper bounds for the rate loss of an arbitrary memoryless source in scenarios (i) and (ii) and an asymptotic bound for scenario (iii) as D/sub 2/ approaches 0. We focus on the squared error distortion measure and (a) prove that for scenario (iii) L/sub 1/<1.1610 for all D/sub 2/<0.7250; (c) tighten the Lastras-Berger bound for scenario (i) from L/sub i//spl les/1/2 to L/sub i/<0.3802, i/spl isin/{1,2}; and (d) generalize the bounds for scenarios (ii) and (iii) to M-resolution codes with M/spl ges/2. We also present upper bounds for the rate losses of additive MRSCs (AMRSCs). An AMRSC is a special MRSC where each resolution describes an incremental reproduction and the kth-resolution reconstruction equals the sum of the first k incremental reproductions. We obtain two bounds on the rate loss of AMRSCs: one primarily good for low-rate coding and another which depends on the source entropy

    Multiple Description Quantization via Gram-Schmidt Orthogonalization

    Full text link
    The multiple description (MD) problem has received considerable attention as a model of information transmission over unreliable channels. A general framework for designing efficient multiple description quantization schemes is proposed in this paper. We provide a systematic treatment of the El Gamal-Cover (EGC) achievable MD rate-distortion region, and show that any point in the EGC region can be achieved via a successive quantization scheme along with quantization splitting. For the quadratic Gaussian case, the proposed scheme has an intrinsic connection with the Gram-Schmidt orthogonalization, which implies that the whole Gaussian MD rate-distortion region is achievable with a sequential dithered lattice-based quantization scheme as the dimension of the (optimal) lattice quantizers becomes large. Moreover, this scheme is shown to be universal for all i.i.d. smooth sources with performance no worse than that for an i.i.d. Gaussian source with the same variance and asymptotically optimal at high resolution. A class of low-complexity MD scalar quantizers in the proposed general framework also is constructed and is illustrated geometrically; the performance is analyzed in the high resolution regime, which exhibits a noticeable improvement over the existing MD scalar quantization schemes.Comment: 48 pages; submitted to IEEE Transactions on Information Theor

    Combined Industry, Space and Earth Science Data Compression Workshop

    Get PDF
    The sixth annual Space and Earth Science Data Compression Workshop and the third annual Data Compression Industry Workshop were held as a single combined workshop. The workshop was held April 4, 1996 in Snowbird, Utah in conjunction with the 1996 IEEE Data Compression Conference, which was held at the same location March 31 - April 3, 1996. The Space and Earth Science Data Compression sessions seek to explore opportunities for data compression to enhance the collection, analysis, and retrieval of space and earth science data. Of particular interest is data compression research that is integrated into, or has the potential to be integrated into, a particular space or earth science data information system. Preference is given to data compression research that takes into account the scien- tist's data requirements, and the constraints imposed by the data collection, transmission, distribution and archival systems
    corecore