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PENGKUANTUMAN VEKTOR KEKISI BERBILANG 
KETERANGAN UNTUK PENGKODAN IMEJ DAN 

VIDEO BERPANDUKAN KESEKENAAN SUBKEKISI- 
SUBKEKISI An SERUPA  

 

ABSTRAK 

 

Pada hari ini penggunaan perhubungan multimedia boleh didapati di mana-mana. 

Sistem digital komunikasi digital menguruskan perwakilan data sama ada untuk 

penyimpanan atau penghantaran. Saiz data digital merupakan satu faktor yang 

penting untuk penghantaran data yang berkesan dan kebingkasan ralat merupakan 

faktor penting untuk sistem transmisi. Oleh itu, algoritma-algoritma pengekodan 

yang lebih berkesan dari segi mampatan dan kebingkasan ralat adalah amat 

diperlukan. Teknik ini mengelakkan penggunaan penghantaran semula data atau 

penghantaran semula automatik (ARQ) dalam sesuatu sistem rangkaian 

perhubungan. Pengekodan berbilang keterangan telah menjadi pilihan yang popular 

untuk penghantaran data yang lasak melalui saluran-saluran rangkaian tanpa 

kebolehharapan. Pengkuantuman vektor kekisi (LVQ) menghasilkan pengiraan yang 

lebih rendah untuk pemampatan data yang berkesan. Dalam tesis ini, pengkuantuman 

vektor kekisi berbilang keterangan untuk imej dan video berasaskan kesekenaan sub-

kekisi serupa daripada An (MDCLVQ-An) telah disasarkan. Reka bentuk MDCLVQ 

adalah berdasarkan pada kesekenaan sub-kekisi serupa A2 dan A4. Kesekenaan  sub-

kekisi adalah sub-kekisi  yang bergeometri serupa dengan indeks yang sama, tetapi 

dihasilkan oleh penjana matrik yang berlainan. Satu algoritma penandaan baru 

berdasarkan kesekenaan sub-kekisi juga telah dibangunkan. Skema MD yang 
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dicadangkan, MDCLVQ-A2 dan MDCLVQ-A4 telah diaplikasikan kepada 

pengekodan imej. Di samping itu, di dalam penyelidikan ini MDCLVQ-A2 telah 

diaplikasikan kepada pengkodan video piawai H.264/AVC dan Motion JPEG2000 

untuk membentuk skema-skema pengekodan video MD, MDCLVQ-H.264/AVC dan 

MDCLVQ-Motion JPEG2000. Skema pengekodan MD digunakan untuk 

meningkatkan keteguhan penghantaran melalui saluran-saluran cenderung ralat. 

Skema-skema MD yang dicadangkan telah diuji menggunakan dua jujukan imej dan 

lima video ujian piawai. Keputusan-keputusan ujikaji daripada aplikasi pengekod 

MD menunjukkan penambahbaikan dari segi prestasi pengekodan dan keteguhan 

penghantaran. 
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MULTIPLE-DESCRIPTION LATTICE VECTOR 
QUANTIZATION FOR IMAGE AND VIDEO CODING 

BASED ON COINCIDING SIMILAR SUBLATTICES OF 
An 

 

ABSTRACT 

 

Nowadays applications of multimedia communication are found everywhere. Digital 

communication systems deal with representation of digital data for either storage or 

transmission. The size of the digital data is a crucial factor for storage and error 

resiliency of the data is a crucial factor for transmission systems. Thus, it is required 

to have more efficient encoding algorithms in terms of compression and error 

resiliency. Multiple-description (MD) coding has been a popular choice for robust 

data transmission over unreliable network channels. This technique avoids having 

data retransmission or the automatic repeat-request (ARQ) in a communication 

system network. Lattice vector quantization (LVQ) provides lower computation for 

efficient data compression. In this thesis multiple-description lattice vector 

quantization for image and video coding based on coinciding similar sublattices of 

 has been targeted. The design of the MDCLVQ is based on the (௡ܣ-MDCLVQ) ௡ܣ

coinciding similar sublattices of ܣଶ and ܣସ. The coinciding sublattices are 

geometrically similar sublattices with the same index, but generated by different 

generator matrices. A novel labeling algorithm based on the coinciding sublattices is 

also developed. The proposed MD coding schemes, MDCLVQ-A2 and MDCLVQ-

A4 are applied to image coding. In addition, in this research the MDCLVQ-A2 has 

been employed to H.264/AVC and Motion JPEG2000 video coding standards to 
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form MD video coding schemes, MDCLVQ-H.264/AVC and MDCLVQ-Motion 

JPEG2000. The MD coding schemes are used in order to increase the robustness of 

transmission over error-prone communication channels. The proposed MD coding 

schemes have been applied to two standard test images and five videos. The 

experimental results of application of the MD coders show improvements in terms of 

encoding performance and transmission robustness. 
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CHAPTER 1  

INTRODUCTION 

 

 

1.1 Preface 

During the past forty years, image and video encoding for transmission has been 

focused by many researchers. At the beginning days, researchers’ focus was on the 

development of analog methods for reducing image/video transmission bandwidth or 

bandwidth compression. After development of powerful digital computers and cheap 

integrated circuits, interests are shifted to digital compression approaches.  

In recent years, according to widespread use of smart-phones and tablet 

personal computers, the demand for multimedia communication has been increased. 

Internet services such as the Internet telephony systems, Voice over Internet Protocol 

(VoIP), and audio/video streaming (e.g. online Radio/TV broadcasting) are 

becoming more and more popular. Clearly, many consumers enjoy the Internet 

telephony services provided for free by many different companies such as Google 

TalkTM, Yahoo MessengerTM, OovooTM, and SkypeTM. This trend is steadily growing, 

and more and more people are switching their landline phones into VoIP compatible 
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telephones. On the wireless side, it is likely that cell phones soon are to use the same 

Internet telephony systems using the General Packet Radio Service (GPRS) (Keshav, 

2005) which is available on 2G, 3G, and 4G cellular communication systems of the 

global system for mobile communications (GSM).  

  These types of “real-time” services often require low delay, high error 

resiliency, low packet-loss rates, and high bandwidth in order to deliver the quality 

desired by the end users. However, current packet-switched networks and 

communication infrastructures do not guarantee such needs and therefore the desired 

quality of service may not be achieved. Thus, this reveals the need for encoding 

schemes that offer high compression ratios and robust transmissions over unreliable 

wireless and wired network channels.  

  Digital communication channels and digital storage systems usually suffer 

from limited available bandwidth and limited storage capacity. Thus, digital 

compression is an essential part of any information processing systems. The term 

data compression refers to the process in which the amount of data required to 

represent a given quantity of information is reduced. Data is the physical material 

that is used to contain and represent given information, therefore several different 

data may represent the same information.  

  The amount of data that is required to represent the information varies from 

one representation to another and there may be methods to convert one 

representation to another representation with fewer amounts of data. Since these data 

representations are equal in terms of the information they represent, the amount of 

data that is omitted in the conversion (compression) process is called redundancy.  
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  A conversion system may contain two building blocks: an encoder and a 

decoder. The encoder is responsible for converting from the representation with 

higher data to the representation with less data and the decoder does the reverse 

conversion. The encoder-decoder couple is usually connected through a channel, that 

is, encoder-channel-decoder. Therefore, each of these two blocks contains two 

different sub-blocks with independent behaviors. The encoder is made up of a source 

encoder and a channel encoder. The source encoder is responsible for data 

compression and the channel coder is responsible for error resiliency. The decoder is 

made up of a source decoder and a channel decoder. In fact, the conversion and the 

compression happen in both sub-blocks. The encoder-channel-decoder model and the 

sub-blocks are depicted in Figure  1-1. Multiple-descriptions lattice vector 

quantization is a method to address both error resiliency and data compression. 

1.2 Problem statement 

The demand for higher data communication rates has risen and this introduces a 

problem because the available bandwidth becomes scarce. In addition, current 

networks are error prone. Thus, there is a great demand for efficient encoding 

techniques that offer error resiliency and data compression. In single-channel 

communications, channel impairment reduces the communication performance. 

Therefore, multiple-channel data transmission techniques are much more demanded 

for reliable data communications.  

Figure  1-1: The encoder-channel-decoder model and the sub-blocks. 

Encoder Decoder
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The packet switching networks enable the user to increase the robustness in 

terms of delay and packet loss by exploiting diversity. For example, every packet 

may be duplicated and transmitted over two different paths, throughout the network. 

If one of the packets is lost, there will be no reduction in quality at the receiving side. 

Thus, there is a great degree of robustness. On the other hand, if none of the channels 

fail, no packets will be lost. Thus, there is no point in using both packets. Besides, 

the robustness that roots from diversity poses an extra cost. 

   However, if small quality degradation is compromised with a lower 

transmission cost, when receiving one description, and preserving a good quality on 

reception of both packets, it is possible to reach robustness without extra cost. This 

idea of trading off required bit rate vs. quality between a numbers of packets 

(descriptions) is usually referred to as the Multiple-Description (MD) coding. A 

typical 2-channel MD coding scheme includes two joint encoders, one central 

decoder and two side decoders.  In such scheme, a source that requires R b/s for 

encoding is encoded by the two joint encoders that require R1 and R2, provided that 

R≥R1+R2. The joint encoders generate two descriptions of the source so that the 

central decoder can provide high fidelity if both descriptions are received and side 

decoders can provide an acceptable approximation of the source if only one 

description is received. 

  In single description quantization, an extra transmission bit rate reduces the 

squared error distortion by a factor of 4 (Vaishampayan et al., 2001). However in 

multiple-description quantization if the transmission rate is increased by 0.5 bit then 

the central distortion and side distortions are decreased by 2ିሺଵା௔ሻ and 2ିሺଵି௔ሻ, 

respectively, for any ܽ א ሺ0,1ሻ. This means that by adjusting the value of  ܽ, the 
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central distortion and the side distortions are decreased by different amounts but the 

product of the distortions decreases by a factor of  4 (Vaishampayan et al., 2001).   

  In addition, the vector quantization decreases the granular distortions because 

in higher dimensions it is possible to construct more spherical Voronoi cells than the 

hypercube (Vaishampayan et al., 2001).  However, the vector quantization technique 

usually comes with high design complexity and computational load such as Linde 

Buzo Gray (LBG) algorithm (Linde et al., 1980). Therefore, the second problem is to 

have a quantizer with lower complexity, such as lattice vector quantization. 

  The MD coding using lattice codebooks or multiple-description lattice vector 

quantization (MDLVQ) has appeared to be an attractive scheme to tackle network 

failures and increase robustness of the multimedia communications especially for 

those applications that retransmission is not possible or is costly (Vaishampayan et 

al., 2001). The proposed scheme in Vaishampayan et al. (2001), SVS-MDLVQ, uses 

a labeling function to map lattice points to two point of a sublattice using a labeling 

function. The optimized-MDLVQ (Bai et al., 2007) proposes an optimized labeling 

function for SVS-MDLVQ.  But the descriptions generated by the optimized labeling 

function are not balanced and even alternative transmission over the two channels 

cannot impose balance between the descriptions. Thus, it is required to use inherent 

symmetries of the An lattices to develop new labeling functions that generate 

balanced descriptions 

1.3 Objectives of the research 

This research focuses on developing new MD coding schemes using the lattice 

codebook to address channel failure without re-transmission. The key objectives of 

this work are given as follows:  
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1. To investigate inherent symmetries and properties of A2 and A4 lattices. 

2. To develop the mathematics for constructing the coinciding similar 

sublattices of A2 and A4. 

3. To develop multiple-description lattice vector quantization schemes, based on 

the coinciding similar sublattices of A2 and A4, respectively. 

4. To apply the proposed MD coding schemes to standard test images and 

videos and compare the results with the state-of-the-art MD coding schemes. 

1.4 The scope of the research 

Diversity systems are potential methods that can be used to solve the problem of 

retransmission, automatic repeat-request (ARQ) in communication networks. 

Besides, it adds error resiliency to communication systems by sending information 

over multiple channels. This is due to their probabilities of failure on every channel 

are independent events. Thus, the probability of receiving at least one of the channels 

is greatly increased. The MD coding is an efficient data transmission method using 

for transmission using multiple communication channels. In such a system, the MD 

coding is designed to encode the baseband source by two joint encoders into two 

bitstreams. If both channels are received, a high-quality reconstruction can be 

achieved. However, if one channel is corrupted, an acceptable degraded 

reconstruction can be achieved from the other channel. The MD coding eliminates 

the need for data retransmission or ARQ and offers communication networks with 

higher error resiliency. 

 This study focuses on the design and development of a new data transmission 

system for application in communication networks based on a particular MD coding 

technique that incorporates lattice vector quantization. Several factors are important 
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in multiple description lattice vector quantization (MDLVQ) schemes such as the 

required bit rate for encoding the two bitstreams. The required bit rate is affected by 

the value of fundamental area of the lattice.  

 The second factor is the trade-off between the reconstruction qualities in the 

central decoder versus the reconstruction qualities in the side decoders. The 

performances of the MD coding schemes are tested using the baseband data. In this 

case, the simplest and most available baseband data for this particular application are 

image and video data as commonly found in the related literatures. 

1.5 Thesis outline 

An introduction to requirements of data transmission systems, error resiliency and 

compression efficiency were presented in Section 1.1. In addition, the application of 

MD coding to address these requirements were presented. In Section 1.2, the 

definition of the MD coding was presented and the problem statement was described. 

The objectives of the research and the scope of the research were presented in 

Section 1.3 and Section 1.4, respectively.  

 In Chapter 2, preliminary concepts related to the MD coding and MDLVQ 

are presented. In addition, brief reviews of the MD coding literature as well as 

current state-of-the-art MD coding schemes are presented. Chapter 3 includes the 

details of the development of the coinciding similar sublattices of A2 and A4. In this 

chapter, the required mathematics for calculating the generator matrices of the 

coinciding similar sublattices of A2 and A4 and their corresponding transformation 

matrices are provided. In addition, a new labeling function based on the coinciding 

similar sublattices of A2 is proposed for MDCLVQ scheme. 
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Chapter 4 is devoted to the design and development of the multiple-

description coinciding lattice vector quantization (MDCLVQ) schemes for MD 

image coding, MDCLVQ-A2 and MDCLVQ-A4. In addition, in this chapter 

implementation of the proposed multiple-description video coding schemes, 

MDCLVQ-H.264/AVC and MDCLVQ-Motion JPEG2000 are presented.  

Experimental results related to the application of the proposed MDCLVQ 

schemes based on the coinciding similar sublattices of A2 and A4 to standard test 

images and standard test video sequences are provided in Chapter 5. In addition, the 

performances of the proposed schemes in terms of the reconstruction quality and bit 

rate efficiency are provided in Chapter 5. In Chapter 6, the thesis is concluded and 

guidelines for future researches are discussed. 
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CHAPTER 2  

LITERATURE REVIEW 

 

 

2.1 Introduction 

Digital signal processing for various applications such as video/image 

communication, wireless communication, and biomedical technologies has been 

found interesting by many researchers. Increasing number of wireless 

communication users has increased the competition in using the transmission 

bandwidth and hence tightened the constraints in bandwidth allocation. In addition, 

the error prone networks require error resilient coding schemes. Therefore, in order 

to reduce the amount of data to be transmitted, compression techniques and error 

resilient techniques are very much needed. Multiple-descriptions lattice vector 

quantization is a method that offers data compression and error resiliency. 

In this chapter, different techniques that have been developed in order to attack 

the mentioned challenges such as MD coding, lattice vector quantization (LVQ) and 

multiple-description lattice vector quantization (MDLVQ) are presented. However, 

there are several preliminary concepts that need to be discussed first. In Section 2.2.1 

the elementary definitions and properties of the lattices are presented. Then, the 
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geometrically similar sublattices are described in Section 2.2.2. In Section 2.2.3, the 

vector quantization is presented and lattice vector quantization is described in 

Section 2.2.4. Fast quantizing algorithms are common lattice quantizing algorithms 

and they are presented in Section 2.2.5. The MD coding technique is described in 

2.2.6. Rate and distortion theory for MDLVQ are presented in Section 2.2.7. In 

Section 2.2.8, the discrete wavelet transform is discussed and the details of the 

quaternion algebra are presented in Section 2.2.9. The entropy coding is presented in 

Section 2.2.10. These serve as the background knowledge for the reader. These 

techniques will be used as the main topics in the rest of this thesis. The literature 

review of different types of techniques related to MD coding using scalar 

quantization and the important MDLVQ schemes proposed so far are presented in 

Section 2.3.1 and 2.3.2, respectively. 

2.2 Background 

2.2.1 Elementary of lattices 

In mathematics (algebra), a lattice is defined as a partially ordered set (poset) in 

which any two elements have a unique supremum (the element’s least upper bound 

or join) and an infimum (greatest lower bound or meet). In other words, a lattice is 

considered as a subset of points in the Euclidean space that share a common 

property. For example the lattice A୬ is a subset of points with n+1 coordinates, such 

that the sum of these coordinates is zero. Therefore, the lattice A୬ can be defined as: 

A୬ ൌ ሼሺx଴, xଵ, … , x୬ሻ א Z୬ାଵ: x଴ ൅ xଵ ൅ ൅ڮ x୬ ൌ 0ሽ               ( 2-1) 

  An n-dimensional lattice ߉ in  Թ୬ is denoted by ߉ ൌ ,૚࢈ۃ ,૛࢈ … ,  It means .ۄ࢔࢈

that ߉ consists of all integer linear combinations of a basis vectors ሼ࢈૚, ,૛࢈ … ,  ሽ in࢔࢈
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Թ୬ (Heuer, 2008). Thus, the fundamental parallelotope of a lattice ߉ is defined as 

(Conway and Sloane, 1998) 

૚࢈ଵߠ ൅ ૛࢈ଶߠ ൅ڮ൅ ሺ0 ࢔࢈௡ߠ ൑ ௜ߠ ൏ 1ሻ          ( 2-2) 

The fundamental parallelotope is the building block of the lattice because if it 

is repeated many times, the whole space is filled in a way that there is only one 

lattice point in each parallelotope. There are many ways of choosing a basis and a 

fundamental parallelotope for a lattice ߉. But the volume of the fundamental region 

is uniquely determined by ߉, and the square of this volume is called the determinant 

of the lattice (Conway and Sloane, 1998).  

The lattice points are generated using a generator matrix. The generator 

matrix is composed of the basis vectors of the lattice. The generator matrix of the 

lattice ߉ with the basis vectors ࢈૚ ൌ ሺܾଵଵ, ܾଵଶ, … , ܾଵ௠ሻ, ૛࢈  ൌ ሺܾଶଵ, ܾଶଶ, … , ܾଶ௠ሻ 

, … , ࢔࢈ ൌ ሺܾ௡ଵ, ܾ௡ଶ, … , ܾ௡௠ሻ is given as (Conway and Sloane, 1998): 

ࡳ ൌ ൮

ܾଵଵ ܾଵଶ ڮ ܾଵ௠
ܾଶଵ ܾଶଶ ڮ ܾଶ௠
ڭ ڭ ڰ ڭ
ܾ௡ଵ ܾ௡ଶ ڮ ܾ௡௠

൲                                     ( 2-3) 

The Grammian or Gramm matrix of a lattice ߉ is defined as ࡭ ൌ  where ,࢚ࡳࡳ

 The Gramm matrix determines the linear .ࡳ is the transposed matrix of ࢚ࡳ

independence of the basis vectors, that is, they are linearly independent if and only if 

the determinant of the Gram matrix is non-zero. Two lattices are called equivalent if 

they have the same Gramm matrix or if the Gramm matrices are proportionate. The 

determinant of a lattice ߉ is also equal to the determinant of the Gramm matrix 

(Conway and Sloane, 1998): 
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ݐ݁݀ ߉ ൌ ݐ݁݀  (4-2 )                                                     ࡭

 If the generator matrix is a square matrix then Eq. (2-4) is written 

ݐ݁݀ ߉ ൌ ሺ݀݁ݐ  ሻଶ                                               ( 2-5)ࡳ

 Thus, the volume of the fundamental parallelotope of a lattice ߉ is also 

calculated as (Conway and Sloane, 1998) 

݈݋ݒ ൌ det ࡳ ൌ √det ߉ ൌ √det  (6-2 )                                 ࡭

For example, the hexagonal lattice is a subset of the complex space ԧ, and at 

unit scale it is generated by the basis vectors ሼ૚,࣓ሽ ؿ ԧ, where ࣓ ൌ െ1 2⁄ ൅ ݅ √3 2⁄  

(Vaishampayan et al., 2001). Therefore, the hexagonal lattice at unit scale is 

generated by 

ଶൈଶࡳ ൌ ൬
ܴ݁ሺ૚ሻ ሺ૚ሻ݉ܫ
ܴ݁ሺ࣓ሻ ሺ࣓ሻ൰݉ܫ ൌ ቆ

1 0
ିଵ

ଶ

√ଷ

ଶ

ቇ                      ( 2-7) 

and the Gramm matrix of ࡳ૛ൈ૛ is calculated as (Conway and Sloane, 1998) 

૛ܠ૛ۯ ൌ ૛ൈ૛ࡳ૛ൈ૛ࡳ
ܜ ൌ ቌ

1 ିଵ

ଶ
ିଵ

ଶ
1
ቍ                           ( 2-8) 

and ݀݁ݐ ଶൈଶ߉ ൌ ݐ݁݀ ૛ൈ૛࡭ ൌ
ଷ

ସ
. Thus, the volume (or area) of fundamental 

parallelotope of Λ will be calculated as ݈݋ݒ ൌ ඥ݀݁ݐ ଶൈଶ߉ ൌ
√ଷ

ଶ
 . The hexagonal 

lattice generated by Eq. (2-7) and its fundamental parallelotope are shown in Figure 

 2-1.  
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Figure  2-1: The hexagonal lattice and its fundamental parallelotope. 

 

The hexagonal lattice is also generated by 

૛ൈ૜ࡳ ൌ ቀ1 െ1 0
0 1 െ1

ቁ                                   ( 2-9) 

and the Gramm matrix of ࡳ૛ൈ૜ can be calculated as 

૛ൈ૜࡭ ൌ ૛ൈ૜ࡳ૛ൈ૜ࡳ
ܜ ൌ ቀ 2 െ1

െ1 2
ቁ ൌ  ૛ൈ૛               ( 2-10)ۯ2

 According to ࡭૛ൈ૜ ൌ  ૛ൈ૜ areࡳ ૛ൈ૛ andࡳ ૛ൈ૛, the lattices generated by࡭2

equivalent lattices. However, the determinant of  ߉ଶൈଷ is 3 and the volume of 

fundamental parallelotope of ߉ଶൈଷ is √3. This is because ࡳ૛ൈ૛ and ࡳ૛ൈ૜ both 

describe the hexagonal lattice but in different coordinates and on different scales 

(Conway and Sloane, 1998). 

In an n-dimensional lattice ߉, the Voronoi region of a lattice point is defined 

as the union of all non-lattice points within Թ௡ that are closer to this particular lattice 

point than any other lattice point. Thus, the Voronoi region of  ߣ א  is defined as  ߉

(Vaishampayan et al., 2001) 
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ܸሺߣሻ ؜ ሼݔ א Թ୬ ׷ ԡݔ െ ԡߣ ൑ ԡݔ െ , ᇱԡߣ ᇱߣ׊ א  ሽ                      ( 2-11)߉

  As a consequence, all the points within ܸሺߣሻ must be quantized to ߣ. The 

Voronoi regions of the points in the A2 are hexagons; therefore, it is called the 

hexagonal lattice. The Voronoi region of a sublattice point ߣᇱ is the set of all lattice 

points that are closer to ߣᇱ than any other sublattice points. Thus, the Voronoi region 

of  ߣᇱ א   Ԣ is defined as߉

ܸሺߣᇱ ሻ ؜ ൛ߣ א ߉ ׷ ԡߣ െ ᇱԡߣ ൑ ฮߣ െ , ฮ"ߣ "ߣ׊ א  ᇱൟ                      ( 2-12)߉

  In order to define an n-dimensional lattice ߉, it is enough to specify its 

fundamental area. However, it is usually expressed through its dimensionless second 

moment of inertia. The dimensionless second moment of inertia ܫܯܵܦሺ߉ሻ is defined 

as (Conway and Sloane, 1998) 

ሻ߉ሺܫܯܵܦ ؜ ଵ

௩௢௟భశ
మ
೙
׬ ԡݔԡଶ௏ሺ଴ሻ  (13-2 )    ݔ݀

where ԡݔԡଶ ൌ ଵ

௡
∑ .௜ݔ ௜ݔ
௡
௜ୀଵ  is the l2-norm of ݔ, vol is the fundamental volume of ߉, 

and ܸሺ0ሻ is the Voronoi region of the origin (Conway and Sloane, 1998). 

2.2.2 Geometrically similar sublattices of A2 

Assume that  ߉  is an L-dimensional lattice with the generator matrix ࡳ. A 

sublattice ߉′ ؿ  if ߉ is said to be geometrically similar to ′ࡳ with generator matrix ߉

and only if ࡳ′ ൌ ࢁwith det ࢁ for nonzero scalar ܿ, an integer matrix ,࡮ࡳࢁܿ ൌ േ1, 

and a real orthogonal matrix B (with ࢚࡮࡮ ൌ   .(Conway and Sloane, 1998) (ࡵ
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 The index N is defined as the ratio of the fundamental volume of the 

sublattice ߉ᇱ to the fundamental volume of the lattice ߉. The fundamental volume of 

the lattice (݈݋ݒ) is equal to the determinant of the generator. Thus, N is calculated by  

ܰ ൌ ௩௢௟′

௩௢௟
ൌ ටௗ௘௧ ௸ᇲ

ௗ௘௧ ௸
ൌ ௗ௘௧ ᇲࡳ

ௗ௘௧ ࡳ
                                              ( 2-14) 

     In other words, N is the number of lattice points within the Voronoi region of 

the sublattice points. Therefore, the value of N controls the coarse degree of the 

sublattice as well as the amount of redundancy in the MD coder (Vaishampayan et 

al., 2001). It has been shown in Bernstein et al. (1997) and Vaishampayan et al. 

(2001) that, for the hexagonal lattice, ߉′ is similar to ߉ if N is of the form 

  ܰ ൌ ଶߙ െ ߚߙ ൅ ,ߙ ଶ forߚ ߚ א Ժ                                ( 2-15) 

 In addition, N must be in the form of ܰ ൌ ∑ ݊௜
௄
௜ୀ଴ , where, ݊௜ denotes the 

number of points at squared distance ݅ from the origin. If these conditions are met 

then the basis vector of the sublattice ߉′ will be ࢛ ൌ ߙ ൅ ࢜ and ࣓ߚ ൌ ሺߙ ൅  .ሻ࣓࣓ߚ

Sublattice  ߉′ ؿ  reside ߉ is considered as a clean sublattice if all the points of the ߉

only inside the Voronoi region of the sublattice points rather than on the boundary of 

the Voronoi region (Conway et al., 1999). It means that the lattice points are not 

shared between the Voronoi regions of adjacent sublattice points.  

 The sublattices of A2 are clean, if and only if, ߙ and ߚ are relatively primes. It 

follows that A2 has a clean similar sublattice of index N if and only if N is a product 

of primes congruent to 1 (mod 6) (Conway et al., 1999). The sequence of integers 

that generate clean sublattices of the hexagonal lattice are named A038590 by Sloane 

(2000). In other words, ߙ and ߚ are selected such that the value of N satisfies these 
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conditions and hence a clean similar sublattice of the hexagonal is generated. For 

example, with ߙ ൌ െ3 and ߚ ൌ 2, a clean similar sublattice of the hexagonal lattice 

with index ܰ ൌ ሺെ3ሻଶ െ ሺെ3ሻሺ2ሻ ൅ ሺ2ሻଶ ൌ 19 is generated. The basis vectors are 

calculated as ࢛ ൌ ሺെ3ሻ ൅ ሺ2ሻ࣓ ൌ െ4 ൅ ݅√3 and ࢜ ൌ ൫െ4 ൅ ݅√3൯࣓ ൌ 0.5 െ

2.5݅√3. Thus, the corresponding generator matrix will be calculated as 

ᇱࡳ ൌ ൬
ܴ݁ሺ࢛ሻ ሺ࢛ሻ݉ܫ
ܴ݁ሺ࢜ሻ ሺ࢜ሻ൰݉ܫ ൌ ൬െ4 √3

0.5 െ2.5√3
൰                               ( 2-16) 

 It is also possible to calculate the index of the sublattice generated by ࡳᇱ 

using Eq. (2-14). The determinant of the generator of the hexagonal lattice at unit 

scale is √3 2⁄ . The determinant of ࡳԢ is calculated as ݀݁ݐሺࡳᇱሻ ൌ ሺെ4ሻ ൈ

൫െ2.5√3൯ െ ሺ0.5ሻ ൈ ሺ√3ሻ ൌ 19√3 2⁄ . Thus, the index will be ሺ19√3 2⁄ ሻ/ሺ√3 2⁄ ሻ ൌ

19. The sublattice generated by ࡳԢ is shown in Figure  2-2 with blue squares and the 

hexagonal lattice points are shown with light blue triangles. The fundamental 

parallelotope of the hexagonal lattice and the similar sublattice generated by ࡳԢ are 

shown with small and big parallelogram, respectively.  

 

Figure  2-2: The geometrically similar sublattice of A2 with index N=19 
generated by Eq. (2-16). 
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 The basis vectors, u and v, are also shown. The Voronoi region of the 

sublattice point ߣᇱ ൌ ሺ7.5, 0.5√3ሻ is shown with a dashed hexagon. It is seen in 

Figure  2-2 that ࡳԢ has generated a clean sublattice because there are no lattice points 

on the boundary of the Voronoi region of the sublattice points. 

2.2.3 Vector quantization 

Quantization algorithms fall into two different categories namely: scalar quantization 

and vector quantization. Each of them has its own models. Scalar quantization is very 

similar to the rounding up algorithm used in analog to digital transformers. Instead of 

representing the data with uncountable continuous amounts, it simply creates a 

countable set of function discontinuities called the decision and reconstruction levels 

of the quantizer. In a very simple approach scalar quantization is nothing but a 

division and dequantization is nothing but a multiplication. In other words 

quantization is considered as: 

ݎܾ݁݉ݑ݊_݀݁ݖ݅ݐ݊ܽݑܳ ൌ ை௥௜௚௜௡௔௟_௡௨௠௕௘௥

ொ௨௔௡௧௜௭௔௧௜௢௡_௙௔௖௧௢௥
                                 ( 2-17) 

 However, because the division usually comes with a loss of precision the 

inverse quantization or the dequantization may not produce the original number but 

generate an approximation of the original number: 

ݎܾ݁݉ݑ݊_݈ܽ݊݅݃݅ݎܱ   ؆ ݎܾ݁݉ݑ݊_݀݁ݖ݅ݐ݊ܽݑܳ ൈ  (18-2 )   ݎ݋ݐ݂ܿܽ_݊݋݅ݐܽݖ݅ݐ݊ܽݑܳ

  In vector quantization the input stream of data are vectorized and then the 

vectors are quantized. For example for two dimensions, every two input data are 

considered as a vector and then mapped into a two dimensional plane like the 

Cartesian coordinate system. Therefore, the quantization error in vector quantization 
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is higher than the scalar quantization. Vector Quantization (VQ) technique has been 

employed in applications related to multimedia communications (Gersho and Gray, 

1992). The VQ maps a group of input data to a fixed codeword which is readily 

available in a codebook.  

  In the early works related to VQ, many researchers set their attention on VQ 

techniques where the codebooks are generated using algorithms such as “an 

algorithm to compute the nearest point in the lattice ܣ௡כ ” in McKilliam et al. (2008) 

and “finding the closest lattice point by iterative slicing” in Sommer et al. (2007). 

The VQ technique is explored in order to have higher compression ratio. The work in 

Patrick and Christine (2001) presents vector indexing algorithms to generate the 

codebook that enables one to trade the codebook size for arithmetic operations. In 

Linde et al. (1980) an algorithm for generating an accurate codebook has been 

proposed. However, the codebook generation requires huge amount of computation. 

Thus, VQ techniques such as Lattice Vector Quantization (LVQ) that offer low 

complexities and good quantization performances are used (Chen, 2008, Servetto et 

al., 1998, Bai et al., 2007, Vasuki and Vanathi, 2006). 

2.2.4 Lattice vector quantization 

Lattice vector quantization (LVQ) is a vector quantization technique that reduces the 

amount of computation for codebook generation since the lattices have regular 

structures. A finite set of points ݕଵ, … ,  , ெ in an n-dimensional Euclidean space, ܴ௡ݕ

is called an Euclidean code (Conway and Sloane, 1982b). An n-dimensional 

quantizer is a mapping function Q ׷ ܴ௡ ื ܴ௡  that sends each point  ݔ ߳ ܴ௡ 

into ܳሺݔሻ provided that ܳሺݔሻ is the nearest code point. The code points may be 
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selected according to any type of relationship. If the code points are selected from a 

lattice, then the quantizer would be called a lattice vector quantizer. 

2.2.5 Fast quantizing algorithms for A2 

Fast quantizing algorithms are a family of lattice vector quantization algorithms 

presented in Conway and Sloane (1982a) for different root lattices. The quantization 

using ܣ௡ lattice points is a projection from n-dimensional space onto ∑ ௜ݔ ൌ
௡ାଵ
௜ୀଵ

0 , ௜ݔ א Ժ hyper plane. The fast quantizing algorithm first projects the n-dimensional 

input vector onto n+1 dimensional vectors on ∑ ௜ݔ ൌ 0௡ାଵ
௜ୀଵ , ௜ݔ א Թ hyper plane using 

a matrix-multiplication Conway and Sloane (1982a). Then, using a manipulation the 

projected point is mapped onto a lattice point.  

 For example consider quantization using ܣଶ lattice points. The input stream 

of data is vectorized into 2-dimensional vectors. Then, each input vector ሺ݅ଵ, ݅ଶሻ is 

projected onto the 3-dimensional space, ሺݔ଴, ,ଵݔ ଶሻݔ א  Ժଷ with constraint that ݔ଴ ൅

ଵݔ  ൅ ଶݔ ൌ 0. In order to do the projection ሺ݅ଵ, ݅ଶሻ onto the 3-dimensional space, it is 

multiplied on the right by the transformation matrix T given as (Conway and Sloane, 

1982a) 

܂  ൌ ൬
1 0 െ1

1 √3⁄ െ2 √3⁄ 1 √3⁄ ൰                             ( 2-19) 

If the expression ݔ଴ ൅ ଵݔ ൅ ଶݔ ൌ 0  does not hold, all the coordinates need to 

be rounded to the nearest integer points, while keeping the original values in another 

variable. The projected 3-dimensional vector is easily quantized (mapped) to the 

nearest lattice point by a simple manipulation. The sum of the differences between 

each coordinate of the original projected point to the nearest integer is calculated. If 
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the sum of the differences is positive, then 1 is subtracted from the coordinate 

farthest from the integer. On the other hand, if the sum is negative, then 1 is added to 

the coordinate with the most difference. Thus, performing the computation-intensive 

nearest neighboring search algorithm is avoided. The two-dimensional version of the 

result point is calculated by right multiplying ൫ݔଵ
′ , ଶݔ

′ , ଷݔ
′ ൯ by 

ଵ

ଶ
 Conway and) ࢚ࢀ

Sloane, 1982a). The development of the lattice vector quantizer will be presented in 

Chapter 3. 

2.2.6 Multiple-description coding 

Multiple-description (MD) coding is a method to address network impairments when 

the re-transmission is expensive or impossible. According to Goyal (2001), MD 

coding can effectively address packet loss without the need for retransmission, thus 

this meets the network requirements. In this scheme, a stream of input data is 

transformed into several different independent descriptions and sent over different 

channels of a diversity system. At the receiver if all the descriptions are received 

correctly, the original data will be reconstructed accurately. But, in case some of the 

descriptions fail to reach the destination, due to channel failure, the rest of the 

descriptions, which are fed via side decoders, are used to find an estimate of the 

original data. The performance of the MD system to reconstruct the original data can 

Figure  2-3: A general scheme of the MD coding scheme. 



21 
 

be of several levels of accuracy. A typical 2-channel MD coding scheme is shown in 

Figure  2-3. In this scheme, a source that requires R b/s for encoding is encoded by 

two joint encoders that require R1 and R2, provided that R ≥ R1+R2. 

  For example, consider a simple two channels scheme in which both 

descriptions are the same. If either description is lost then the other would be useful. 

However, if both descriptions are available then one will be useless and hence the 

bandwidth has been wasted. In other word, receiving more descriptions must result in 

better reconstruction quality which can be offered by the MD coding (Goyal, 2001). 

According to information theoretic approach, the MD coding scheme may not 

require more bit rate (bandwidth) than the single description system. In the MD 

coding system, there is always a trade-off between the required bit rate and the 

distortion. Thus, in MD coding scheme, compression efficiency is sacrificed in order 

to gain error resiliency. Therefore, MD coding should be applied only if it does not 

require too extra bit rate or a wider bandwidth (Goyal, 2001).  

2.2.7 Rate and distortion theory for MDLVQ 

Information theory is the basis of the contemporary digital communication networks. 

Shannon first introduced concepts of information theory in his famous channel 

coding theorems in Shannon (1948). In order to describe an arbitrary real number, an 

infinite number of bits are required; therefore representing it with a finite number of 

bits, as in digital systems, can never be perfect. In rate distortion theory, the main 

goal is to determine the minimum expected distortion achievable at a particular rate 

for a given source (Cover and Thomas, 1991). 

 Assume the source ܺ that generates independent and identically distributed 

random variables has a finite number of alphabets ܺ௡ ൌ ሼ ଵܺ, ܺଶ, … , ܺ௡ሽ. A mapping 
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that maps every source symbol into a finite set of code symbols is called a source 

encoder. These symbols are called source symbols. The number of symbols within 

the finite set of code symbols, denoted as ݊, impacts the required bit rate R for 

encoding the source. The encoder assigns an index  ௡݂ሺܺ௡ሻ א ሼ1,2, … , 2ோሽ to every 

code symbol. The decoder is responsible for reconstructing the original source 

symbol. However, the reconstructed values  ෠ܺ ൌ ൛ ෠ܺଵ, ෠ܺଶ, … , ෠ܺ௡ൟ may not be the same 

as the original values (Cover and Thomas, 1991). A distortion function ݀ is defined 

as a mapping from the set of Cartesian product of the source alphabet set and 

reproduction alphabet set into a non-negative real number 

݀: ܺ ൈ ෠ܺ ՜ Թା    ( 2-20) 

 The difference between  ௜ܺ  and  ෠ܺ௜ is the error introduced by the source 

encoder. The amount of error would validate the accuracy of the reconstruction. If 

the error becomes more than an agreed upon threshold then the data would be 

useless. Thus, it is important to find a measure to determine the amount of error.  

The quality of reconstruction is usually measured by the distortion between 

the original data and the reconstructed data. Distortion is a measure that shows how 

well a source letter is reconstructed using its representative (Goyal, 2001). The 

distortion between a source letter ܺ and its reconstructed version  ෠ܺ is calculated as 

,൫ܺ௡ݐݏ݅݀ ෠ܺ௡൯ ൌ ଵ

௡
∑ ݀௡
௜ୀଵ ൫ ௜ܺ, ෠ܺ௜൯ ,                             ( 2-21) 

where ݀ may be any distortion measure. The squared error is the most common 

distortion measure. The squared error is calculated as 

݀ሺݔ, ොሻݔ ൌ ሺݔ െ  ොሻଶ                 ( 2-22)ݔ
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  Thus, the general distortion between a typical source code and the 

reproduction is defined as the expected value of the ݀݅ݐݏሺݔ,  ොሻ. This distortion isݔ

defined as 

ܦ ൌ ,൫ܺ௡ݐݏ݅݀ൣܧ ܺ௡෢൯൧ ൌ ,ሺܺ௡ݐݏሾ݀݅ܧ ݃ሺ݂ሺܺ௡ሻሻሻሿ                    ( 2-23) 

where, ݂ሺݔሻ is the source coder and ݃ሺݔሻ is the source decoder.  

 In MD coding systems, there are two types of decoders and hence two types 

of distortions must be defined namely central decoder and side decoders. The central 

decoder is used whenever all the descriptions are received correctly and the side 

decoders are used whenever one or more descriptions are lost. For example, if the 

MD coding scheme includes two transmission channels, then the central decoder 

needs both descriptions to be received. However, the side decoders may decode 

using either first or second descriptions. The central distortion or the distortion 

related to the central decoder of a MDLVQ scheme is defined as  

݀௖ ؜ ∑ ׬ ԡݔ െ ௖ԡଶߣ ௑݂ሺݔሻ ݔ݀ ൎ ೎௸א௖ሻ௏೰ሺఒ೎ሻఒ೎߉ሺܫܯܵܦ  ଶ/௅    ( 2-24)݈݋ݒ

where  ஃܸሺߣሻ is the Voronoi region of ݈݋ݒ ,ߣ is the volume of fundamental 

parallelotope of the L-dimensional lattice, ܫܯܵܦሺΛୡሻ is the dimensionless second 

moment of inertia of the central lattice ߉௖ Eq. (2-13), and ௑݂ is the L-fold probability 

distribution function given by (Ostergaard et al., 2006) 

௑݂ሺݔሻ ൌ ∏ ݂ሺݔ௜ሻ
௅ିଵ
௜ୀ଴                                     ( 2-25) 

 The distortion of the ݅௧௛  side decoder is defined as (Ostergaard et al., 2006) 
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݀௜ ൌ ෍ න ԡݔ െ ܽ௜ሺߣ௖ሻԡଶ ௑݂ሺݔሻ ݔ݀
௏೰ሺఒ೎ሻఒ೎א௸೎

 

                                   ൎ ݀௖ ൅ ∑ ׬ ԡߣ௖ െ ܽ௜ሺߣ௖ሻԡଶܲሺߣ௖ሻ ஃౙא௏౻ሺఒ೎ሻఒ೎ݔ݀          ( 2-26) 

where ߙ௜ሺߣሻ is the component mapping (side decoder), ܲሺߣ௖ሻ is the probability that 

௖ is selected or ܲሺܳሺܺሻߣ ൌ  ௖ሻ. In Shannon’s information theory entropy is definedߣ

as a measure of disorder, or more precisely unpredictability of an information source. 

The entropy of a discrete random variable X with possible values of ሼݔଵ, ,ଶݔ … , ,௡ݔ ሽ 

is defined as (Shannon, 1948) 

ሺܺሻܪ ൌ െ∑ ௜ሻݔሺ݌ log௕ ௜ሻݔሺ݌
௡
௜ୀଵ       ( 2-27) 

where ܾ is the base of the logarithm which determines the unit of entropy. If ܾ ൌ 2 

then the unit is bit, and if ܾ ൌ 10 then the unit is called dit. The definition of the 

entropy for the discrete source can be extended to be used for continuous source, 

which is called differential entropy. The differential entropy for a continuous source 

with probability density function ௑݂ is defined as (Shannon, 1948) 

݄ሺܺሻ ൌ ׬ ௑݂ሺݔሻ log௕ ௑݂ሺݔሻ௑     ( 2-28) 

  If a single-description source X is blocked into L-dimensional vectors then 

the minimum entropy required to achieve an expected central distortion ݀௖ is denoted 

as (Ostergaard et al., 2006) 

ܴ௖ ൌ
ு൫ொሺ௑ሻ൯

௅
ൌ െ ଵ

௅
∑ ׬ ௑݂ሺݔሻ ݔ݀ logଶሺ׬ ௑݂ሺݔሻ ௏౻ሺఒ೎ሻݔ݀

ሻ௏౻ሺఒ೎ሻఒ೎אஃౙ        ( 2-29) 

  Assuming that the Voronoi regions of all lattice points have identical areas of 

 and the pdf is constant through each Voronoi region, ܴ௖ is approximated by ݈݋ݒ




