4,967 research outputs found

    Designing a CPU model: from a pseudo-formal document to fast code

    Get PDF
    For validating low level embedded software, engineers use simulators that take the real binary as input. Like the real hardware, these full-system simulators are organized as a set of components. The main component is the CPU simulator (ISS), because it is the usual bottleneck for the simulation speed, and its development is a long and repetitive task. Previous work showed that an ISS can be generated from an Architecture Description Language (ADL). In the work reported in this paper, we generate a CPU simulator directly from the pseudo-formal descriptions of the reference manual. For each instruction, we extract the information describing its behavior, its binary encoding, and its assembly syntax. Next, after automatically applying many optimizations on the extracted information, we generate a SystemC/TLM ISS. We also generate tests for the decoder and a formal specification in Coq. Experiments show that the generated ISS is as fast and stable as our previous hand-written ISS.Comment: 3rd Workshop on: Rapid Simulation and Performance Evaluation: Methods and Tools (2011

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    A Language and Hardware Independent Approach to Quantum-Classical Computing

    Full text link
    Heterogeneous high-performance computing (HPC) systems offer novel architectures which accelerate specific workloads through judicious use of specialized coprocessors. A promising architectural approach for future scientific computations is provided by heterogeneous HPC systems integrating quantum processing units (QPUs). To this end, we present XACC (eXtreme-scale ACCelerator) --- a programming model and software framework that enables quantum acceleration within standard or HPC software workflows. XACC follows a coprocessor machine model that is independent of the underlying quantum computing hardware, thereby enabling quantum programs to be defined and executed on a variety of QPUs types through a unified application programming interface. Moreover, XACC defines a polymorphic low-level intermediate representation, and an extensible compiler frontend that enables language independent quantum programming, thus promoting integration and interoperability across the quantum programming landscape. In this work we define the software architecture enabling our hardware and language independent approach, and demonstrate its usefulness across a range of quantum computing models through illustrative examples involving the compilation and execution of gate and annealing-based quantum programs

    First steps towards the certification of an ARM simulator using Compcert

    Get PDF
    The simulation of Systems-on-Chip (SoC) is nowadays a hot topic because, beyond providing many debugging facilities, it allows the development of dedicated software before the hardware is available. Low-consumption CPUs such as ARM play a central role in SoC. However, the effectiveness of simulation depends on the faithfulness of the simulator. To this effect, we propose here to prove significant parts of such a simulator, SimSoC. Basically, on one hand, we develop a Coq formal model of the ARM architecture while on the other hand, we consider a version of the simulator including components written in Compcert-C. Then we prove that the simulation of ARM operations, according to Compcert-C formal semantics, conforms to the expected formal model of ARM. Size issues are partly dealt with using automatic generation of significant parts of the Coq model and of SimSoC from the official textual definition of ARM. However, this is still a long-term project. We report here the current stage of our efforts and discuss in particular the use of Compcert-C in this framework.Comment: First International Conference on Certified Programs and Proofs 7086 (2011

    Enabling Cross-Event Optimization in Discrete-Event Simulation Through Compile-Time Event Batching

    Get PDF
    A discrete-event simulation (DES) involves the execution of a sequence of event handlers dynamically scheduled at runtime. As a consequence, a priori knowledge of the control flow of the overall simulation program is limited. In particular, powerful optimizations supported by modern compilers can only be applied on the scope of individual event handlers, which frequently involve only a few lines of code. We propose a method that extends the scope for compiler optimizations in discrete-event simulations by generating batches of multiple events that are subjected to compiler optimizations as contiguous procedures. A runtime mechanism executes suitable batches at negligible overhead. Our method does not require any compiler extensions and introduces only minor additional effort during model development. The feasibility and potential performance gains of the approach are illustrated on the example of an idealized proof-ofconcept model. We believe that the applicability of the approach extends to general event-driven programs

    Static analysis of energy consumption for LLVM IR programs

    Get PDF
    Energy models can be constructed by characterizing the energy consumed by executing each instruction in a processor's instruction set. This can be used to determine how much energy is required to execute a sequence of assembly instructions, without the need to instrument or measure hardware. However, statically analyzing low-level program structures is hard, and the gap between the high-level program structure and the low-level energy models needs to be bridged. We have developed techniques for performing a static analysis on the intermediate compiler representations of a program. Specifically, we target LLVM IR, a representation used by modern compilers, including Clang. Using these techniques we can automatically infer an estimate of the energy consumed when running a function under different platforms, using different compilers. One of the challenges in doing so is that of determining an energy cost of executing LLVM IR program segments, for which we have developed two different approaches. When this information is used in conjunction with our analysis, we are able to infer energy formulae that characterize the energy consumption for a particular program. This approach can be applied to any languages targeting the LLVM toolchain, including C and XC or architectures such as ARM Cortex-M or XMOS xCORE, with a focus towards embedded platforms. Our techniques are validated on these platforms by comparing the static analysis results to the physical measurements taken from the hardware. Static energy consumption estimation enables energy-aware software development, without requiring hardware knowledge
    • …
    corecore