104 research outputs found

    PEA265: Perceptual Assessment of Video Compression Artifacts

    Full text link
    The most widely used video encoders share a common hybrid coding framework that includes block-based motion estimation/compensation and block-based transform coding. Despite their high coding efficiency, the encoded videos often exhibit visually annoying artifacts, denoted as Perceivable Encoding Artifacts (PEAs), which significantly degrade the visual Qualityof- Experience (QoE) of end users. To monitor and improve visual QoE, it is crucial to develop subjective and objective measures that can identify and quantify various types of PEAs. In this work, we make the first attempt to build a large-scale subjectlabelled database composed of H.265/HEVC compressed videos containing various PEAs. The database, namely the PEA265 database, includes 4 types of spatial PEAs (i.e. blurring, blocking, ringing and color bleeding) and 2 types of temporal PEAs (i.e. flickering and floating). Each containing at least 60,000 image or video patches with positive and negative labels. To objectively identify these PEAs, we train Convolutional Neural Networks (CNNs) using the PEA265 database. It appears that state-of-theart ResNeXt is capable of identifying each type of PEAs with high accuracy. Furthermore, we define PEA pattern and PEA intensity measures to quantify PEA levels of compressed video sequence. We believe that the PEA265 database and our findings will benefit the future development of video quality assessment methods and perceptually motivated video encoders.Comment: 10 pages,15 figures,4 table

    The Design of Network Camera System Based on TMS320DM642

    Get PDF
    随着社会和互联网技术的进步,视频监控技术也逐渐数字化和网络化。网络摄像机便是视频监控设备数字化与网络化的产物,它是将传统的模拟视频信号转变成数字视频信号,并且借助现有的IP网络进行传输。它的出现是视频监控系统发展中质的飞跃,如何设计高分辨率、可扩展性强、易于升级的网络摄像机更是当今视频监控研究的热门方向。本文基于这种需求,设计了一套以DSP和H.264为核心的网络摄像机系统。 本文的硬件平台选用以DSPTMS360DM642芯片为核心的开发板,采用H.264算法实现系统的视频编码,编码器源代码选用的是三大开源代码之一的x264代码。本文主要任务就是移植x264到DM642中,并且优化x264...With the development of society and internet technology, video surveillance has become digitalized and networked. Network camera, which is the new generation equipment for video surveillance, has caused a tremendous progress in the field of video surveillance system. Designing a network camera with high performance, easy expanding and easy updating is one of the most popular researches nowadays. T...学位:工学硕士院系专业:信息科学与技术学院自动化系_检测技术与自动化装置学号:2322008115337

    Research and Implement of Real-Time Video Encoder Based on H.264/AVC

    Get PDF
    H.264/AVC是ITU-T和ISO/IEC联合推出的最新视频编码国际标准,它包含了很多先进的视频压缩编码方法,与以前的视频编码标准相比有了明显的进步。由于其良好的压缩效率和网络适应性,H.264/AVC必将在视频电话、数字电视广播、移动流媒体、压缩视频存储等领域得到广泛的应用。然而,高编码压缩率是以很高的计算复杂度为代价的,因此,如何降低运算复杂度,提高编码速度是实现实时编码器的关键。 本文主要研究H.264/AVC实时视频编码器在Pixelworks公司提供的以PWBSP-16DSP处理器为核心的BabelFishII开发平台上的实现与优化。通过了解当前视频处理领域最新发展动态,本文重...H.264/AVC is the latest international video coding standard. It is developed by a Joint Video Team (JVT) consisting of experts from ITU-T's Video Coding Experts Group (VCEG) and ISO/IEC's Moving Picture Experts Group (MPEG). There are many advanced encoding methods given by H.264/AVC. Due to the advanced compression performance and the "network-friendly" nature, H.264/AVC will be adopted over a br...学位:理学硕士院系专业:信息科学与技术学院电子工程系_无线电物理学号:20043001

    An efficient multi-core SIMD implementation for H.264/AVC encoder

    Get PDF
    The optimization process of a H.264/AVC encoder on three different architectures is presented. The architectures are multi- and singlecore and SIMD instruction sets have different vector registers size. The need of code optimization is fundamental when addressing HD resolutions with real-time constraints. The encoder is subdivided in functional modules in order to better understand where the optimization is a key factor and to evaluate in details the performance improvement. Common issues in both partitioning a video encoder into parallel architectures and SIMD optimization are described, and author solutions are presented for all the architectures. Besides showing efficient video encoder implementations, one of the main purposes of this paper is to discuss how the characteristics of different architectures and different set of SIMD instructions can impact on the target application performance. Results about the achieved speedup are provided in order to compare the different implementations and evaluate the more suitable solutions for present and next generation video-coding algorithms

    Video coding standards

    Full text link
    Review by Ashraf A. Kassim, Professor, Department of Electrical & Computer Engineering, and Associate Dean, School of Engineering, National University of Singapore.     The book consists of eight chapters of which the first two provide an overview of various video & image coding standards, and video formats. The next four chapters present in detail the Audio & video standard (AVS) of China, the H.264/MPEG-4 Advanced video coding (AVC) standard, High efficiency video coding (HEVC) standard and the VP6 video coding standard (now VP10) respectively. The performance of the wavelet based Dirac video codec is compared with H.264/MPEG-4 AVC in chapter 7. Finally in chapter 8, the VC-1 video coding standard is presented together with VC-2 which is based on the intra frame coding of Dirac and an outline of a H.264/AVC to VC-1 transcoder.   The authors also present and discuss relevant research literature such as those which document improved methods & techniques, and also point to other related resources including standards documents, open source software, review papers, and keynote speeches. The numerous projects presented in the later chapters are particularly thought provoking and challenging. These would be useful for readers, especially graduate students, helping them develop a deeper understanding of the standards and also direct them to further research. True to its name, “Video Coding Standards” would serve as a unique resource for researchers, developers and graduate students in the video coding field, enabling them to achieve a good understanding of these current standards including the differences in performance and limitations, as well as keep abreast of latest developments

    Exploring Processor and Memory Architectures for Multimedia

    Get PDF
    Multimedia has become one of the cornerstones of our 21st century society and, when combined with mobility, has enabled a tremendous evolution of our society. However, joining these two concepts introduces many technical challenges. These range from having sufficient performance for handling multimedia content to having the battery stamina for acceptable mobile usage. When taking a projection of where we are heading, we see these issues becoming ever more challenging by increased mobility as well as advancements in multimedia content, such as introduction of stereoscopic 3D and augmented reality. The increased performance needs for handling multimedia come not only from an ongoing step-up in resolution going from QVGA (320x240) to Full HD (1920x1080) a 27x increase in less than half a decade. On top of this, there is also codec evolution (MPEG-2 to H.264 AVC) that adds to the computational load increase. To meet these performance challenges there has been processing and memory architecture advances (SIMD, out-of-order superscalarity, multicore processing and heterogeneous multilevel memories) in the mobile domain, in conjunction with ever increasing operating frequencies (200MHz to 2GHz) and on-chip memory sizes (128KB to 2-3MB). At the same time there is an increase in requirements for mobility, placing higher demands on battery-powered systems despite the steady increase in battery capacity (500 to 2000mAh). This leaves negative net result in-terms of battery capacity versus performance advances. In order to make optimal use of these architectural advances and to meet the power limitations in mobile systems, there is a need for taking an overall approach on how to best utilize these systems. The right trade-off between performance and power is crucial. On top of these constraints, the flexibility aspects of the system need to be addressed. All this makes it very important to reach the right architectural balance in the system. The first goal for this thesis is to examine multimedia applications and propose a flexible solution that can meet the architectural requirements in a mobile system. Secondly, propose an automated methodology of optimally mapping multimedia data and instructions to a heterogeneous multilevel memory subsystem. The proposed methodology uses constraint programming for solving a multidimensional optimization problem. Results from this work indicate that using today’s most advanced mobile processor technology together with a multi-level heterogeneous on-chip memory subsystem can meet the performance requirements for handling multimedia. By utilizing the automated optimal memory mapping method presented in this thesis lower total power consumption can be achieved, whilst performance for multimedia applications is improved, by employing enhanced memory management. This is achieved through reduced external accesses and better reuse of memory objects. This automatic method shows high accuracy, up to 90%, for predicting multimedia memory accesses for a given architecture

    Image and Video Coding Techniques for Ultra-low Latency

    Get PDF
    The next generation of wireless networks fosters the adoption of latency-critical applications such as XR, connected industry, or autonomous driving. This survey gathers implementation aspects of different image and video coding schemes and discusses their tradeoffs. Standardized video coding technologies such as HEVC or VVC provide a high compression ratio, but their enormous complexity sets the scene for alternative approaches like still image, mezzanine, or texture compression in scenarios with tight resource or latency constraints. Regardless of the coding scheme, we found inter-device memory transfers and the lack of sub-frame coding as limitations of current full-system and software-programmable implementations.publishedVersionPeer reviewe

    Architectures for Adaptive Low-Power Embedded Multimedia Systems

    Get PDF
    This Ph.D. thesis describes novel hardware/software architectures for adaptive low-power embedded multimedia systems. Novel techniques for run-time adaptive energy management are proposed, such that both HW & SW adapt together to react to the unpredictable scenarios. A complete power-aware H.264 video encoder was developed. Comparison with state-of-the-art demonstrates significant energy savings while meeting the performance constraint and keeping the video quality degradation unnoticeable

    Algorithm/Architecture Co-Exploration of Visual Computing: Overview and Future Perspectives

    Get PDF
    Concurrently exploring both algorithmic and architectural optimizations is a new design paradigm. This survey paper addresses the latest research and future perspectives on the simultaneous development of video coding, processing, and computing algorithms with emerging platforms that have multiple cores and reconfigurable architecture. As the algorithms in forthcoming visual systems become increasingly complex, many applications must have different profiles with different levels of performance. Hence, with expectations that the visual experience in the future will become continuously better, it is critical that advanced platforms provide higher performance, better flexibility, and lower power consumption. To achieve these goals, algorithm and architecture co-design is significant for characterizing the algorithmic complexity used to optimize targeted architecture. This paper shows that seamless weaving of the development of previously autonomous visual computing algorithms and multicore or reconfigurable architectures will unavoidably become the leading trend in the future of video technology
    corecore