239 research outputs found

    Optimization of Layer Selection with Unreliable RI in LTE Systems

    Get PDF
    This paper investigates the optimization of transmission spatial layer selection with unreliable rank indicator (RI) in downlink LTE systems. Taking the block error rate (BLER) into consideration, we propose an accurate throughput calculation (ATC) algorithm at user equipment (UE) side as well as at evolved NodeB (eNB) side. On the basis of ATC algorithm, we propose an accurate RI selection algorithm to periodically choose the preferred number of transmission spatial layers at UE side. Further based on acknowledgement (ACK)/ negative acknowledgement (NACK) history, channel quality indicator (CQI) is adjusted at eNB side to achieve the throughput optimal target BLER. By substituting the derived BLER into ATC algorithm, the optimal number of transmitted spatial layers in current downlink channel is derived at eNB side. Simulation results show that both the proposed CQI adjustment scheme for spatial layer selection and RI selection algorithm yield up significant throughput improvement for different evaluation scenarios in LTE systems

    Novel Physical Layer Authentication Techniques for Secure Wireless Communications

    Get PDF
    Due to the open nature of radio propagation, information security in wireless communications has been facing more challenges compared to its counterpart in wired networks. Authentication, defined as an important aspect of information security, is the process of verifying the identity of transmitters to prevent against spoofing attacks. Traditionally, secure wireless communications is achieved by relying solely upon higher layer cryptographic mechanisms. However, cryptographic approaches based on complex mathematical calculations are inefficient and vulnerable to various types of attacks. Recently, researchers have shown that the unique properties of wireless channels can be exploited for authentication enhancement by providing additional security protection against spoofing attacks. Motivated by the vulnerability of existing higher-layer security techniques and the security advantages provided by exploring the physical link properties, five novel physical layer authentication techniques to enhance the security performance of wireless systems are proposed. The first technique exploits the inherent properties of CIR to achieve robust channel-based authentication. The second and third techniques utilize a long-range channel predictor and additional multipath delay characteristics, respectively, to enhance the CIR-based authentication. The fourth technique exploits the advantages of AF cooperative relaying to improve traditional channel-based authentication. The last technique employs an embedded confidential signaling link to secure the legitimate transmissions in OFDM systems

    Wireless industrial monitoring and control networks: the journey so far and the road ahead

    Get PDF
    While traditional wired communication technologies have played a crucial role in industrial monitoring and control networks over the past few decades, they are increasingly proving to be inadequate to meet the highly dynamic and stringent demands of today’s industrial applications, primarily due to the very rigid nature of wired infrastructures. Wireless technology, however, through its increased pervasiveness, has the potential to revolutionize the industry, not only by mitigating the problems faced by wired solutions, but also by introducing a completely new class of applications. While present day wireless technologies made some preliminary inroads in the monitoring domain, they still have severe limitations especially when real-time, reliable distributed control operations are concerned. This article provides the reader with an overview of existing wireless technologies commonly used in the monitoring and control industry. It highlights the pros and cons of each technology and assesses the degree to which each technology is able to meet the stringent demands of industrial monitoring and control networks. Additionally, it summarizes mechanisms proposed by academia, especially serving critical applications by addressing the real-time and reliability requirements of industrial process automation. The article also describes certain key research problems from the physical layer communication for sensor networks and the wireless networking perspective that have yet to be addressed to allow the successful use of wireless technologies in industrial monitoring and control networks

    Data Transmission in the Presence of Limited Channel State Information Feedback

    Get PDF

    Optimisation of relay placement in wireless butterfly networks

    Get PDF
    As a typical model of multicast network, wireless butterfly networks (WBNs) have been studied for modelling the scenario when two source nodes wish to convey data to two destination nodes via an intermediary node namely relay node. In the context of wireless communications, when receiving two data packets from the two source nodes, the relay node can employ either physical-layer network coding or analogue network coding on the combined packet prior to forwarding to the two destination nodes. Evaluating the energy efficiency of these combination approaches, energy-delay trade-off (EDT) is worth to be investigated and the relay placement should be taken into account in the practical network design. This chapter will first investigate the EDT of network coding in the WBNs. Based on the derived EDT, algorithms that optimize the relay position will be developed to either minimize the transmission delay or minimize the energy consumption subject to constraints on power allocation and location of nodes. Furthermore, considering an extended model of the WBN, the relay placement will be studied for a general wireless multicast network with multiple source, relay and destination nodes

    Enabling Technology and Algorithm Design for Location-Aware Communications

    Get PDF
    Location-awareness is emerging as a promising technique for future-generation wire­ less network to adaptively enhance and optimize its overall performance through location-enabled technologies such as location-assisted transceiver reconfiguration and routing. The availability of accurate location information of mobile users becomes the essential prerequisite for the design of such location-aware networks. Motivated by the low locationing accuracy of the Global Positioning System (GPS) in dense multipath environments, which is commonly used for acquiring location information in most of the existing wireless networks, wireless communication system-based po­sitioning systems have been investigated as alternatives to fill the gap of the GPS in coverage. Distance-based location techniques using time-of-arrival (TOA) mea­surements are commonly preferred by broadband wireless communications where the arrival time of the signal component of the First Arriving Path (FAP) can be con­verted to the distance between the receiver and the transmitter with known location. With at least three transmitters, the location of the receiver can be determined via trilatération method. However, identification of the FAP’s signal component in dense multipath scenarios is quite challenging due to the significantly weaker power of the FAP as compared with the Later Arriving Paths (LAPs) from scattering, reflection and refraction, and the superposition of these random arrival LAPs’ signal compo­ nents will become large interference to detect the FAP. In this thesis, a robust FAP detection scheme based on multipath interference cancellation is proposed to im­ prove the accuracy of location estimation in dense multipath environments. In the proposed algorithm, the signal components of LAPs is reconstructed based on the estimated channel and data with the assist of the communication receiver, and sub­ sequently removed from the received signal. Accurate FAP detection results are then achieved with the cross-correlation between the interference-suppressed signal and an augmented preamble which is the combination of the original preamble for com­ munications and the demodulated data sequences. Therefore, more precise distance estimation (hence location estimation) can be obtained with the proposed algorithm for further reliable network optimization strategy design. On the other hand, multiceli cooperative communication is another emerging technique to substantially improve the coverage and throughput of traditional cellular networks. Location-awareness also plays an important role in the design and imple­mentation of multiceli cooperation technique. With accurate location information of mobile users, the complexity of multiceli cooperation algorithm design can be dra­matically reduced by location-assisted applications, e.g., automatic cooperative base station (BS) determination and signal synchronization. Therefore, potential latency aroused by cooperative processing will be minimized. Furthermore, the cooperative BSs require the sharing of certain information, e.g., channel state information (CSI), user data and transmission parameters to perform coordination in their signaling strategies. The BSs need to have the capabilities to exchange available information with each other to follow up with the time-varying communication environment. As most of broadband wireless communication systems are already orthogonal frequency division multiplexing (OFDM)-based, a Multi-Layered OFDM System, which is spe­cially tailored for multiceli cooperation is investigated to provide parallel robust, efficient and flexible signaling links for BS coordination purposes. These layers are overlaid with data-carrying OFDM signals in both time and frequency domains and therefore, no dedicated radio resources are required for multiceli cooperative networks. In the final aspect of this thesis, an enhanced channel estimation through itera­ tive decision-directed method is investigated for OFDM system, which aims to provide more accurate estimation results with the aid of the demodulated OFDM data. The performance of traditional training sequence-based channel estimation is often lim­ ited by the length of the training. To achieve acceptable estimation performance, a long sequence has to be used which dramatically reduces the transmission efficiency of data communication. In this proposed method, the restriction of the training se­quence length can be removed and high channel estimation accuracy can be achieved with high transmission efficiency, and therefore it particular fits in multiceli coopera­tive networks. On the other hand, as the performance of the proposed FAP detection scheme also relies on the accuracy of channel estimation and data detection results, the proposed method can be combined with the FAP detection scheme to further optimize the accuracy of multipath interference cancellation and FAP detection

    Adaptive OFDM Cooperative Systems

    Get PDF
    Cooperative communication is a promising technique for wireless communication systems where wireless nodes cooperate together in transmitting their information. Such communication transmission technique, which realizes the multiple antenna arrays in a distributed manner over multiple wireless nodes, succeeds in extending the network coverage, increasing throughput, improving both link reliability and spectral efficiency. Available channel state information at the transmitting nodes can be used to design adaptive transmission schemes for improving the overall system performance. Throughout our work, we adaptively change loaded power and/or bit to the Orthogonal Frequency Division Multiplexing (OFDM) symbol in order to minimize bit error rate or maximize the throughput. In the first part of this dissertation, we consider single-relay OFDM system with amplify-and-forward relaying. We propose three algorithms to minimize the bit error rate under total power constraint and fixed transmission rate. These algorithms are optimal power loading, optimal bit loading and optimal bit and power loading. Through Monte Carlo simulations we study the proposed system performance and discuss the effect of relay location and channel estimation. This study shows that the proposed algorithms result in exploiting the multi-path diversity and achieving extra coding gain. In the second part, we extend the problem to a multi-relay OFDM network but with decode-and-forward relaying. We propose an adaptive power loading algorithm to minimize the bit error rate under total power constraint based on two relay selection strategies. The proposed system leads to achieve both multi-path and cooperative spatial diversity using maximal-ratio combiner for the detection. In the last part, we consider also multi-relay network but with amplify and forward relaying. We optimize the bit loading coefficients to maximize the throughput under target bit error rate constraint. The proposed algorithm is considered more practical since it takes into consideration the channel estimation quality. The considered adaptive system has less complexity compared with other adaptive systems through reducing the feedback amount. Furthermore, the full network channel state information is needed only at the destination

    Mobile and Wireless Communications

    Get PDF
    Mobile and Wireless Communications have been one of the major revolutions of the late twentieth century. We are witnessing a very fast growth in these technologies where mobile and wireless communications have become so ubiquitous in our society and indispensable for our daily lives. The relentless demand for higher data rates with better quality of services to comply with state-of-the art applications has revolutionized the wireless communication field and led to the emergence of new technologies such as Bluetooth, WiFi, Wimax, Ultra wideband, OFDMA. Moreover, the market tendency confirms that this revolution is not ready to stop in the foreseen future. Mobile and wireless communications applications cover diverse areas including entertainment, industrialist, biomedical, medicine, safety and security, and others, which definitely are improving our daily life. Wireless communication network is a multidisciplinary field addressing different aspects raging from theoretical analysis, system architecture design, and hardware and software implementations. While different new applications are requiring higher data rates and better quality of service and prolonging the mobile battery life, new development and advanced research studies and systems and circuits designs are necessary to keep pace with the market requirements. This book covers the most advanced research and development topics in mobile and wireless communication networks. It is divided into two parts with a total of thirty-four stand-alone chapters covering various areas of wireless communications of special topics including: physical layer and network layer, access methods and scheduling, techniques and technologies, antenna and amplifier design, integrated circuit design, applications and systems. These chapters present advanced novel and cutting-edge results and development related to wireless communication offering the readers the opportunity to enrich their knowledge in specific topics as well as to explore the whole field of rapidly emerging mobile and wireless networks. We hope that this book will be useful for students, researchers and practitioners in their research studies

    LTE-verkon suorituskyvyn parantaminen CDMA2000:sta LTE:hen tehdyn muutoksen jälkeen

    Get PDF
    CDMA2000 technology has been widely used on 450 MHz band. Recently the equipment availability and improved performance offered by LTE has started driving the operators to migrate their networks from CDMA2000 to LTE. The migration may cause the network performance to be in suboptimal state. This thesis presents four methods to positively influence LTE network performance after CDMA2000 to LTE migration, especially on 450 MHz band. Furthermore, three of the four presented methods are evaluated in a live network. The measured three methods were cyclic prefix length, handover parameter optimization and uplink coordinated multipoint (CoMP) transmission. The objective was to determine the effectiveness of each method. The research methods included field measurements and network KPI collection. The results show that normal cyclic prefix length is enough for LTE450 although the cell radius may be up to 50km. Only special cases exist where cyclic prefix should be extended. Operators should consider solving such problems individually instead of widely implementing extended cyclic prefix. Handover parameter optimization turned out to be an important point of attention after CDMA2000 to LTE migration. It was observed that if the handover parameters are not concerned, significant amount of unnecessary handovers may happen. It was evaluated that about 50% of the handovers in the network were unnecessary in the initial situation. By adjusting the handover parameter values 47,28 % of the handovers per user were removed and no negative effects were detected. Coordinated multipoint transmission has been widely discussed to be an effective way to improve LTE network performance, especially at the cell edges. Many challenges must be overcome before it can be applied to downlink. Also, implementing it to function between cells in different eNBs involve challenges. Thus, only intra-site uplink CoMP transmission was tested. The results show that the performance improvements were significant at the cell edges as theory predicted.CDMA2000 teknologiaa on laajalti käytetty 450 MHz:n taajuusalueella. Viime aikoina LTE:n tarjoamat halvemmat laitteistot ja parempi suorituskyky ovat kannustaneet operaattoreita muuttamaan verkkoaan CDMA2000:sta LTE:hen. Kyseinen muutos saattaa johtaa epäoptimaaliseen tilaan verkon suorituskyvyn kannalta. Tämä työ esittelee neljä menetelmää, joilla voidaan positiivisesti vaikuttaa LTE-verkon suorituskykyyn CDMA2000:ste LTE:hen tehdyn muutoksen jälkeen erityisesti 450 MHz:n taajuusalueella. Kolmea näistä menetelmistä arvioidaan tuotantoverkossa. Nämä kolme menetelmää ovat suojavälin pituus, solunvaihtoparametrien optimointi ja ylälinkin koordinoitu monipistetiedonsiirto. Tavoite oli määrittää kunkin menetelmän vaikutus. Tutkimusmenetelmiin kuului kenttämittaukset ja verkon suorituskykymittareiden analyysi. Tutkimustulosten perusteella voidaan sanoa, että normaali suojaväli on riittävän pitkä LTE450:lle vaikka solujen säde on jopa 50km. Vain erikoistapauksissa tarvitaan pidennettyä suojaväliä. Operaattoreiden tulisi ratkaista tällaiset tapaukset yksilöllisesti sen sijaan, että koko verkossa käytettäisiin pidennettyä suojaväliä. Solunvaihtoparametrien optimointi osoittautui tärkeäksi huomion aiheeksi CDMA2000:sta LTE:hen tehdyn muutoksen jälkeen. Turhia solunvaihtoja saattaa tapahtua merkittäviä määriä, mikäli parametreihin ei kiinnitetä huomiota. Lähtötilanteessa noin 50 % testiverkon solunvaihdoista arvioitiin olevan turhia. Solunvaihtoparametreja muuttamalla 47,28 % solunvaihdoista per käyttäjä saatiin poistettua ilman, että mitään haittavaikutuksia olisi huomattu. Koordinoidun monipistetiedonsiirron on laajalti sanottu olevan tehokas tapa parantaa LTE-verkon suorituskykyä, etenkin solujen reunoilla. Monia haasteita pitää ratkaista, enne kuin sitä voidaan käyttää alalinkin tiedonsiirtoon. Lisäksi sen käyttöön eri tukiasemien solujen välillä liittyy haasteita. Tästä syystä monipistetiedonsiirtoa voitiin testata vain ylälinkin suuntaan ja vain yhden tukiaseman välisten solujen kesken. Tulokset osoittivat, että suorituskyky parani merkittävästi solun reunalla
    corecore