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A bstract
Location-awareness is emerging as a promising technique for future-generation wire
less network to adaptively enhance and optimize its overall performance through 
location-enabled technologies such as location-assisted transceiver reconfiguration and 
routing. The availability of accurate location information of mobile users becomes 
the essential prerequisite for the design of such location-aware networks. Motivated 
by the low locationing accuracy of the Global Positioning System (GPS) in dense 
multipath environments, which is commonly used for acquiring location information 
in most of the existing wireless networks, wireless communication system-based po
sitioning systems have been investigated as alternatives to fill the gap of the GPS 
in coverage. Distance-based location techniques using time-of-arrival (TOA) mea
surements are commonly preferred by broadband wireless communications where the 
arrival time of the signal component of the First Arriving Path (FAP) can be con
verted to the distance between the receiver and the transmitter with known location. 
With at least three transmitters, the location of the receiver can be determined via 
trilatération method. However, identification of the FAP’s signal component in dense 
multipath scenarios is quite challenging due to the significantly weaker power of the 
FAP as compared with the Later Arriving Paths (LAPs) from scattering, reflection 
and refraction, and the superposition of these random arrival LAPs’ signal compo
nents will become large interference to detect the FAP. In this thesis, a robust FAP 
detection scheme based on multipath interference cancellation is proposed to im
prove the accuracy of location estimation in dense multipath environments. In the 
proposed algorithm, the signal components of LAPs is reconstructed based on the 
estimated channel and data with the assist of the communication receiver, and sub
sequently removed from the received signal. Accurate FAP detection results are then 
achieved with the cross-correlation between the interference-suppressed signal and 
an augmented preamble which is the combination of the original preamble for com
munications and the demodulated data sequences. Therefore, more precise distance 
estimation (hence location estimation) can be obtained with the proposed algorithm 
for further reliable network optimization strategy design.

in



Abstract

On the other hand, multiceli cooperative communication is another emerging 
technique to substantially improve the coverage and throughput of traditional cellular 
networks. Location-awareness also plays an important role in the design and imple
mentation of multiceli cooperation technique. With accurate location information of 
mobile users, the complexity of multiceli cooperation algorithm design can be dra
matically reduced by location-assisted applications, e.g., automatic cooperative base 
station (BS) determination and signal synchronization. Therefore, potential latency 
aroused by cooperative processing will be minimized. Furthermore, the cooperative 
BSs require the sharing of certain information, e.g., channel state information (CSI), 
user data and transmission parameters to perform coordination in their signaling 
strategies. The BSs need to have the capabilities to exchange available information 
with each other to follow up with the time-varying communication environment. As 
most of broadband wireless communication systems are already orthogonal frequency 
division multiplexing (OFDM)-based, a Multi-Layered OFDM System, which is spe
cially tailored for multiceli cooperation is investigated to provide parallel robust, 
efficient and flexible signaling links for BS coordination purposes. These layers are 
overlaid with data-carrying OFDM signals in both time and frequency domains and 
therefore, no dedicated radio resources are required for multiceli cooperative networks.

In the final aspect of this thesis, an enhanced channel estimation through itera
tive decision-directed method is investigated for OFDM system, which aims to provide 
more accurate estimation results with the aid of the demodulated OFDM data. The 
performance of traditional training sequence-based channel estimation is often lim
ited by the length of the training. To achieve acceptable estimation performance, a 
long sequence has to be used which dramatically reduces the transmission efficiency 
of data communication. In this proposed method, the restriction of the training se
quence length can be removed and high channel estimation accuracy can be achieved 
with high transmission efficiency, and therefore it particular fits in multiceli coopera
tive networks. On the other hand, as the performance of the proposed FAP detection 
scheme also relies on the accuracy of channel estimation and data detection results, 
the proposed method can be combined with the FAP detection scheme to further 
optimize the accuracy of multipath interference cancellation and FAP detection.

IV
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C hapter 1 

Introduction

1.1 M otivation

The ever-increasing demand for broadband mobile communications along with the 

tremendous growth in the number of mobile users drives the rapid evolution of future- 

generation cellular networks. One of the most prominent feature of next-generation 

wireless network is its location-awareness. Incorporation of this capability brings sig

nificant opportunities in various location-based network optimization schemes, which 

aim to enhance the performance of the entire network.

The ability for mobile users to determine their positions through automatic 

means is recognized as the fundamental requirement for location-awareness. Based 

on the accurate location estimation, adaptive transmission techniques, i.e., link adap

tation and channel environment identification as well as location-aware routing pro

tocols can be efficiently designed to achieve reliable and efficient transmission with 

diverse Quality of Service (QoS) to the large number of mobile users. The most 

popular “location awareness engine” , the Global Positioning System (GPS) is widely 

used in the existing wireless networks, where the mobile users obtain their location 

information through the embedded GPS chips. Despite the GPS chip-induced cost, 

size and battery consumption for mobile handsets, the biggest challenge of the GPS 

is that the accuracy dramatically degrades in dense multipath environments (dense 

urban and indoor) due to the severe multipath propagation effects.
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For these reasons, future wireless networks cannot fully rely on the GPS as the 

sole location technology. As a result, some wireless network-based location techniques 

using existing networks (either cellular or wireless local area networks (WLAN)) have 

been investigated as alternatives for locationing purposes in dense multipath envi

ronments. For broadband wireless communication systems, time-of-arrival (TOA)- 

based location technique is commonly used, which uses geometric relationships based 

on multiple distance measurements between the mobile user and a number of fixed 

transmitters (reference stations) to determine the location coordinates of the mobile 

user. Each distance measurement can be derived from the signal propagation time 

by multiplication by the speed of propagation. By assuming the time when the signal 

leaves the transmitter is known, the distance can be easily obtained by measuring the 

arrival time of the signal at the receiver. However, in dense multipath environments, 

signal components arrive at the receiver along multiple paths including the First Ar

riving Path (FAP) corresponding to the direct signal propagation path and the Later 

Arriving Paths (LAPs) caused by scattering, reflection and refraction. Furthermore, 

the direct signal propagation path is often blocked by various obstacle such as build

ings, pedestrians and vehicles in these scenarios such that the power of the FAP’s 

signal component is significantly weaker than those of the LAPs’ components. The 

superposition of these LAPs’ signal components becomes large interference for the 

detection of the FAP. Reliable detection of the FAP is challenging with large LAPs 

interference and therefore, large location estimation error is inevitable if the FAP is 

erroneously identified. Therefore, a robust FAP detection scheme in the presence of 

large LAPs interference needs to be developed to provide accurate location estimation 

and based on which, high quality location-assisted applications can be successfully 

realized in next-generation wireless networks for potential performance enhancement.

In the meantime, multicell cooperation, which has the capability of exploiting
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inter-cell interference (ICI) cooperatively by enabling joint signal processing among 

several interfering base stations (BSs), is emerging as a revolutionary technology to 

remarkably enhance throughput and coverage of traditional cellular networks. The 

intelligent wireless system prescribes coordinated signaling strategies such as power 

allocation, beamforming directions, user scheduling and joint encoding/decoding of 

signals through BS coordination.

Potential improvement can be obtained in both performance and efficiency of 

multicell cooperation with the location-awareness capability. For instance, utilizing 

the location information of the target mobile users, the group of BSs which will be 

involved in coordination can be automatically determined, and therefore reducing the 

latency caused by BS searching process. Moreover, efficient synchronization scheme 

can also be designed based on the location of the target mobile users to allow the 

signals transmitted from different BSs to arrive synchronously at the mobile user for 

coherent combing.

Current multicell cooperation entails sharing the information via a backhaul 

network with unlimited capacity and free delay connecting the BSs with each other. 

In practice, however, the situation is quite unrealistic for large scale networks due to 

the prohibitive costs involved in establishing high-capacity links. This will restrict 

the quality of the exchanged information, which in turn affects the performance gain 

obtained. Therefore, a dedicated signaling with reliable, fast and flexible transmission 

capabilities for sharing the required information among BSs needs to be established to 

support multicell cooperation. Meanwhile, the network latency and BS synchroniza

tion issues will also lead to dramatic performance degradation of the existing design 

of multicell cooperation. Motivated by the scarcity of available radio resources, the 

proposed signaling is expected to share the same radio resource (frequency band and 

time slot) with the user data carrying information. To support these requirements of
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multicell cooperation technique, new signal transmission scheme and its correspond

ing transceiver have to be designed. Due to the overlap of different signaling links, 

interference cancellation algorithm is also a necessary part of the desired system.

In addition, since most of the broadband wireless communication systems are 

already Orthogonal Frequency Division Multiplexing (OFDM)-based due to its high 

spectral efficiency and robustness to multipath distortion, accurate channel estimation 

is a fundamental requirement not only indispensable for OFDM receiver to perform 

coherent data detection but also important for location estimation using the proposed 

FAP detection. As the proposed FAP detection algorithm relies on multipath inter

ference cancellation, where the multipath interference is reconstructed based on the 

channel estimation and data detection results. Given the limited length of the train

ing sequence, the performance of channel estimation can be improved by utilizing 

Decision-Directed method. However, this algorithm can only provide limited perfor

mance gain under frequency selective channel because a large portion of data decision 

feedback is unreliable. Therefore, Decision-Directed method with reliable data de

cision feedback selection needs to be developed to optimize the estimation accuracy 

which successively lead to more accurate location estimation and data demodulation. 

The proposed channel estimation also fits in multicell cooperative cellular networks 

where large overhead of training sequences have to be assigned to acquire the channel 

state information (CSI) of each BS-user link for BS coordination purposes by reducing 

the length of the training sequence with the aid of the decisioned data.

1.2 Thesis O bjective

Conventional TOA-based positioning systems detect the FAP based on the cross

correlation between the received signal and a local preamble signal. In dense multi
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path environments, the correlation detector may suffer from a low correlation peak 

corresponding to the FAP, and the peak is also significantly distorted by the signal 

components of the LAPs. Large location estimation error is more likely to occur with 

the utilization of correlation detector in dense multipath environments. The first 

objective of the thesis is to develop a weak FAP detection algorithm based on mul

tipath interference cancellation for positioning systems operating in dense multipath 

environments. To reconstruct the LAPs’ interference components, an iterative esti

mator for joint channel estimation and data detection needs to be developed, and the 

impact of LAPs on the performance of FAP detection can subsequently be removed. 

Considering the low correlation peak resulting from the weak power of the FAP, an 

augmented preamble is constructed to provide an enhanced correlation peak such that 

the FAP detection performance can be substantially improved.

On the other hand, multicell cooperation is a new communication paradigm 

promising significant system capacity by targeting intercell interference (ICI) elim

ination. BSs need to have the capability of coordination by sharing transmission- 

related information with each other. In addition, the location information of the 

target mobile users also plays an important role in the design of such multicell coop

eration. Due to the practical challenges in establishing high-capacity and low-latency 

backhaul networks, a new Multi-Layered transmission scheme is proposed to simul

taneously support both data communication and BS coordination. This way, the 

restriction of backhaul networks on the multicell cooperation strategy design can be 

removed. Other functionalities such as BS synchronization or location information 

sharing can also be achieved with the proposed transmission scheme.

The last objective of this thesis is to design a robust channel estimation scheme 

for practical OFDM system with a short training sequence. In this case, Decision- 

Directed channel estimation (DDCE) can be applied to improve the accuracy with the
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aid of the demodulated OFDM data. However, the data decisions may consist of large 

portion of decision errors in severe frequency selective channels. Therefore, dedicated 

research effort is given to derive an optimal iterative DDCE (IDDCE) where unreliable 

data decision feedback can be eliminated on the subcarriers with enhanced noise 

effects. With this technique, the accuracy of the proposed FAP detection algorithm 

can also be enhanced.

1.3 Thesis C ontributions

The main contributions of this thesis can be summarized as follows:

1. Robust FAP detection for location estimation:

• A new FAP detection using multipath interference cancellation is proposed 

for wireless communication-based positioning system. With the FAP de

tection algorithm, location estimation accuracy is significantly improved 

as compared with the traditional correlation detector while there is no 

requirement for special preamble design or hardware modification.

• An iterative estimator for joint channel and data estimation is proposed 

to determine the interfering LAPs for the proposed FAP detection algo

rithm. Semi-analytical expression describing the behavior of the iterative 

estimator is derived and based on which, an automatic stopping criterion is 

proposed to avoid unnecessary computation while assuring the acceptable 

performance.

• An optimal threshold to select dominant LAPs is derived. LAPs interfer

ence cancellation and preamble extension techniques are proposed to make 

the correlation peak of the FAP more distinctive to identify.
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2. Transmission scheme design for multicell cooperative networks:

• A new multi-layered OFDM (ML-OFDM) system with flexible parallel 

transmission feature is proposed for multicell cooperative networks. With 

the transmission scheme, BS cooperation can be easily achieved without 

the utilization of backhaul network or additional control channels.

• The transceiver structure and the corresponding signal processing algo

rithms for the proposed ML-OFDM system are designed and validated 

through computer simulations.

3. Optimal iterative decision directed channel estimation for OFDM system:

• An optimal IDDCE is proposed to improve the accuracy of conventional 

training-based channel estimation in practical OFDM system where the 

length of the training sequence is limited by the transmission efficiency 

requirement.

• An optimal threshold is derived to select reliable data decision feedback by 

eliminating the data decision errors on the subcarriers where noise compo

nents are enhanced due to the impact of frequency selective channel.

1.4 Thesis Organization

The rest of the thesis is organized as follows:

Chapter 2 describes the overall technical backgrounds related to the thesis in

cluding the brief introduction of positioning systems, different location techniques, 

multiceli cooperation and channel estimation for OFDM system. Their correspond

ing technical challenges are also discussed in this chapter.
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In Chapter 3, the proposed FAP detection algorithm using multipath interfer

ence cancellation is discussed in detail. Different modules including joint channel and 

data estimation, LAPs selection, LAPs interference cancellation and FAP detection 

are developed. Performance comparison between the proposed algorithm and the 

conventional method is analyzed and verified by computer simulations.

In Chapter 4, a ML-OFDM system is depicted in detail. The corresponding 

transmitter and receiver structures for the proposed ML-OFDM are presented. Later 

in this chapter, a power distribution scheme is proposed for different layers to optimize 

the overall system performance. Analysis on the data detection error probability and 

link capacity is given followed by the simulation results for the evaluation of the 

system performance.

In Chapter 5, an optimal IDDCE is investigated. The performance of this 

technique is analyzed in terms of the variance of channel estimation error and based 

on which, an optimal threshold for reliable data decision feedback selection is derived. 

Computer simulations are also conducted for performance evaluation.

Finally, in Chapter 6, conclusions are drawn based on the presented studies and 

some important future works are also discussed.
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C hapter 2 

Background

In this chapter, the technical background related to the three major research topics 

in this thesis including positioning techniques, multicell cooperation techniques for 

cellular networks and channel estimation schemes for OFDM systems is introduced 

for better understanding of the thesis.
/

2.1 Positioning System s

Traditionally, the location estimation of the mobile users in a cellular network relies on 

the GPS, which is a popular satellite-based positioning system. However, in some cir

cumstances the GPS signal is extremely weak and the resultant location estimation is 

inaccurate. Based on the unreliable location information, the performance of network 

optimization including adaptive power control, transceiver algorithm reconfiguration 

and location-aware routing will be dramatically degraded. Therefore, positioning sys

tems based on existing wireless communication systems have been studied to provide 

alternative location estimation methods. In this section, the two main types of posi

tioning systems are introduced. The challenges of satellite-based positioning systems 

are analyzed and a few examples of wireless communication system-based positioning 

systems are also discussed.
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2.1.1 Satellite-B ased  P osition ing System

The most popular satellite-based positioning system, the GPS, provides global loca

tion information of mobile receivers with the aid of at least 4 satellites of the total 24 

satellites orbiting the earth at altitudes of approximately 11,000 [1, 2, 3]. In Europe, 

a satellite navigation system named Galileo was deployed by European Commission 

and Space Agency based on a 30 satellite constellation to provide positioning and tim

ing services in 2008 [4]. Uncorrected positions determined from GPS satellite signals 

produce accuracies in the range of 50 to 100 meters. When using a technique called 

differential correction, users can get positions accurate to within 5 meters or less. 

Although the mobile users equipped with GPS chip may have a relatively high degree 

accuracy outdoors, there are still some factors making GPS technically challenging:

1. The biggest challenges of GPS is that the precision of GPS measurements dra

matically degrades in dense multipath environments, such as in dense urban 

areas as well as inside buildings, due to the extremely weak strength of GPS 

signal and severe multipath propagation.

2. GPS is vulnerable to jamming and other disruptions from manmade or natural 

causes. Without a functional backup, widespread disruption the GPS would be 

catastrophic for commercial applications, as well as domestic and international 

security.

3. Embedding a GPS chip into mobile devices may lead to increased cost, size and 

battery consumption of the mobile devices.

For these reasons, wireless service providers may be unwilling to embrace GPS 

fully as the sole location technology for the cellular networks, and therefore, alterna-
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tive solutions are needed to fill the gaps of the GPS in coverage and provide reliable 

location information.

2.1.2 W ireless C om m unications-B ased Position ing System

New wireless communication system-based positioning systems have been investigated 

as alternatives to obtain location estimation of the mobile users in the scenarios where 

the GPS signal is unavailable. An order issued by the U.S. Federal Communications 

Commission (FCC) in July 1996 requires all wireless service providers, including cel

lular and broadband wireless communication systems, to provide location information 

of the mobile users to Emergency 911 (E-911) public safety services [5]. These FCC E- 

911 safety requirements, along with the other location-based techniques have boosted 

research in wireless location techniques.

Cellular networks can be used to provide location services, where the mobile 

users are located and tracked by measuring the signals’ attributes (e.g. signal’s arrival 

time, angle and strength) transmitted from/to a set of fixed cellular BSs [6, 7, 8]. 

However, due to the low power of each transmitter, narrow bandwidth, as well as 

the limited time resolution caused by the long symbol duration of cellular wireless 

signals, the cellular-based positioning system can only achieve very limited accuracy 

and the positioning error is often larger than several hundred meters [6, 7].

With the deployment of broadband wireless networks, the increasing level of in

terest drives the rapid evolution of geolocation technique using OFDM-based WLAN

[9]. Location estimation based on WLAN positioning system is more accurate within 

its service area of network. However, its application is limited by the network coverage 

and outdoor location information is often unavailable, e.g., dense urban areas.
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Recently, another kind of positioning system using Digital Television (DTV) 

networks was proposed in [10]. The major advantage of the DTV locationing includes 

the low RF frequency, wide band, high transmission power and the broad coverage of 

DTV transmitting stations. However, the performance may be significantly degraded 

due to the large cochannel interference in Single Frequency Networks (SFNs).

2.2 Location Techniques

There are several different approaches that can be adopted by wireless communication 

system-based positioning systems to determine the location of the mobile users in 

the wireless network, ranging from calculation of the received signal’s strength to 

detection of the arrival time of the received signal. In this section, we introduce 

different location techniques and compare the advantages and disadvantages of them. 

Taking the location estimation accuracy and real-implementation complexity into 

consideration, the most suitable technique for broadband wireless communication 

systems is also determined.

2.2.1 R eceived  S ignal’s Strength  (RSS)

As the energy of a signal changes with the distance between the mobile user and the 

reference station, the RSS at the mobile user carries information about the distance 

between the reference station and the mobile user [11, 12]. In order to convert the 

RSS information to range estimation, the relation between the signal energy and the 

distance is required. One important factor called path loss determines the attenuation 

of signal’s power/energy along its propagation path. One common model for path 

loss is given by

P(i) = Po~ 10nlog10(d/<jo), (2.1)
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where n is the path-loss exponent, P(d) is the average received power at distance d, 

and Pq is the received power at a reference distance c?o- (2-1) specifies the relation 

between the power loss and distance through the path-loss exponent. However, the 

relation cannot accurately reflect the relation between the received power and the 

distance in the practical wireless environment as the propagation mechanisms such as 

reflection, scattering and diffraction, or the obstruction of the direct path may cause 

dramatic fluctuations in RSS even over short distance and/or small time intervals. 

Therefore, in real applications the signal power is commonly obtained by

T

P(d) = f  f  H t,d ) \2dt(2.2)

0

where r(t, d) is the received signal at distance d and T  is the time measuring interval. 

Although the averaging operation can mitigate the short-term fluctuations, the RSS 

still significantly varies about its local mean, due to the obstacles in the environments. 

Furthermore, the pathloss factor n also changes dramatically from place to place and 

it is difficult to estimate the actual value of n. Therefore, the accuracy of RSS-based 

method is usually not good enough and can only be used as initial location estimation.

2.2.2 A ngle o f Arrival (AOA)

Another position related parameter is AOA, which refers to the angle between the 

mobile user and the reference station. The estimation of location using AOA mea

surements usually requires the employment of multiple antennas in the form of an 

antenna array, e.g., uniform linear array (ULA) at the mobile devices [13, 14].

The principle of AOA measurement is that the direction of arrival of the received 

signal can be calculated by measuring the phase difference between the antenna array
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Figure 2.1: TOA-based positioning system using four synchronized transmitters in
typical indoor office environment.

elements or by measuring the power spectral density across the antenna array. It is 

reported in that the accuracy of AOA estimation is related to signal-to-noise ratio 

(SNR), effective bandwidth of the system, the number of antenna elements and their 

inter-element spacing. The precision of AOA estimation improves with an increase 

in the above related parameters. Therefore, for broadband wireless communication 

systems, high-precision AOA estimation can be facilitated. However, the extremely 

high implementation cost including the size and complexity of the antenna array 

makes it challenging for real applications, especially for the mobile stations.
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2.2.3 T im e o f Arrival (TO A)

The TOA of a signal traveling from one station to another station can be converted 

to the distance between those two stations. To obtain the location of a mobile sta

tion, geometric techniques based on trilateration are to be used. For instance, one 

TOA measurement can specify the distance between one reference station and the 

mobile station, which will define a circle for the possible positions of the mobile user 

[15, 16, 17, 18, 19, 20]. Therefore, the unknown location of the mobile user can be 

determined by the intersection of three circles in a 3-D space. However, this requires 

the timing synchronization between the mobile station and reference stations’ net

works. In a general scenario of wireless networks, the absolute signal propagation 

time is unavailable due to the lack of highly precise synchronization. In this case, at 

least four TOA measurements are needed to to calculate the 3-D coordinates of the 

mobile station by solving and optimizing the following equations:

(il — A£) c 

(f2 -  A t) c
<

(i3 -  A t) c 

(£4 — A£) c

\/(*0 -  x i )2 +  (y0 -  2/ l )2 +  (¿0 -  z \)2

y j (*0 -  x 2)2 + (2/0 -  V2)2 + (*0 -  Z 2 ?

y j(*0 -  X3)2 + (yo -  J/3)2 +  (20 -  Z 3 ) 2

y j (zo -  Z4)2 + (2/0 -  V A ?  + (*0 -  Z4Ì 2 ,

(2.3)

where £j is the relative signal propagation time from the ith  reference station to the 

mobile station to be measured, A£ is the timing difference between the unknown 

reference stations’ network time and the mobile station’s local clock, c is the speed 

of light, (XQ,yo,zo) are the unknown coordinates of the mobile user, and {xi.y^Zi) 

are the coordinates of the ith  reference station which are assumed to be known in the

network.
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The relative propagation time t3 can be determined by detecting the time index 

of the FAP from the received signals. However, the unique characteristics of dense 

multipath scenarios make it challenging for accurate FAP detection as the FAP is 

often associated with significantly low power and large interference from the LAPs. 

We will analyze the challenges of traditional FAP detection scheme in dense multipath 

environments later in this section.

2.2.4 C om parison of different location techniques

The advantages and disadvantages of different location techniques are summarized 

and compared in Table 2.1.

As we can see from Table 2.1, due to the low computational complexity and 

higher estimation accuracy, TOA is commonly preferred for broadband wireless com

munication systems as the high precision of TOA measurement can be facilitated by 

high time resolution of broadband wireless signals. Although it requires a synchro

nized network, the BSs in a conventional cellular network are already synchronized 

through GPS or pre-existing backhaul network and the local clock of the mobile users 

is not necessarily required to be synchronized with the network time as the clock 

difference can be eliminated by adding one additional TOA measurement as shown 

in (2.3).

2.2.5 Technical C hallenges o f T O A -B ased Position ing  

System

In dense multipath scenarios where the direct signal propagation path is often blocked 

by various obstacles such as buildings, pedestrians and slowly moving vehicles, the 

power of FAP is significantly weaker than those of LAPs from scattering, reflection
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Table 2.1: Comparison of different location techniques
Location
Techniques

Advantages Disadvantages

RSS

• low hardware implementation 
cost

• simple signal processing algo
rithm

• low computational complexity

• dramatic signal’s strength 
variation in dense multipath 
environment

• low accurate path loss model 
and low location estimation 
accuracy

AOA

• simple signal processing algo
rithm

• no requirement of clock syn
chronization

• high implementation cost due 
to the size and complexity of 
antenna array

• low location estimation accu
racy in large cells

TOA

• simple signal processing algo
rithm

• high time resolution of broad
band wireless signal

• high location estimation accu
racy

• requirement of synchronized 
network

and refraction. Traditional correlation detector for FAP is based on the cross cor

relation between the received signal and a local preamble signal [21]. The earliest 

peak that exceeds a particular threshold is determined as the FAP. However, in prac

tical wireless communication systems, there are some factors making the correlation 

detector significantly challenging:

1. The average power of the FAP in dense multipath environments is very weak
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Figure 2.2: Cross-correlation profile for FAP detection in the presence of large LAPs
interference.

due to the obstruction of the direct signal propagation path and therefore the 

FAP can have a very low correlation peak.

2. The length of the preamble signal in conventional communication system is finite 

due to the transmission efficiency issue and no special design of the preamble 

is allowed for positioning purpose. Hence, the correlation gain provided by the 

preamble is limited.

3. The signal strength of the LAPs from the scattering, reflection and refraction 

paths is much stronger than that of the FAP. The superposition of randomly 

arrival LAPs’ signal components can cause large interference to the FAP.

It can be observed in Fig. 2.2 that the FAP’s correlation peak is severely dis

torted by the large interference from the LAPs. In literature, some FAP detection al

gorithms have been investigated to achieve accurate location estimation. The scheme
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in [22] which finds the maximum correlation output corresponding to the FAP has 

very limited precision as the detected strong paths are not necessarily the FAP in 

dense multipath environments. In [23], a threshold-based FAP detection was pro

posed. However, it did not consider the impact of LAPs and derived the threshold 

solely based on the knowledge of background noise, which results in severe perfor

mance degradation when the FAP buries in the interference level generated by the 

strong LAPs’ signal components. A few superresolution schemes for multipath delay 

estimation such as that described in [24, 25, 26, 27, 28], can provide higher accuracy 

but are associated with extremely high computational complexity, and thus impracti

cal for many real applications. Therefore, it is very difficult to detect the FAP reliably 

from the wireless signals with large LAPs interference and thus, large positioning error 

is inevitable when the FAP is erroneously identified.

2.3 M uticell C ooperative Networks

2.3.1 Princip le o f M ulticell C ooperation

The conventional cellular networks characterized by single cell processing (SCP), have 

very limited sharing of common system resources due to the resultant large ICI, and 

therefore preventing the potential enhancement of networks’ throughput and coverage 

[29]. Although SCP scheme generally served well in the past 2G/3G networks, the 

growing popularity of high-speed wireless applications in recent years poses a looming 

challenge due to the performance limitation of existing methodology, necessitating a 

new transmission paradigm referred to as multicell cooperation which exploits the 

ICI cooperatively by enabling joint signal processing among several interfering BSs.

Multicell cooperation, sometimes also known as distributed antenna system or
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Figure 2.3: Illustration of a cellular network with multiceli cooperation.

multicell MIMO, is a revolutionary technique which aims to eliminate the capacity- 

limiting factor of conventional cellular network and remarkably improve the over

all system performance [30, 31, 32, 33]. This intelligent wireless system prescribes 

coordinated signaling strategies such as power allocation, beamforming directions, 

user scheduling, and joint encoding/decoding of the transmitted/received signals at 

the BSs depending on the different levels of multicell cooperation [30]. Recently, 

it has attracted lots of attention from both industrial and academic communities. 

For instance, the 3GPP LTE-Advanced [34] standard where the network coordi

nation is known as coordinated multi-point (CoMP) transmission has been call

ing for standardization of signaling schemes for this technique since September of 

2010 for possible consideration in Release 11 of LTE-Advanced. A few pioneer

ing works have been done in literature which evaluate the performance of multicell 

cooperation through various information-theoretic models with simplified assump

tions [35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45]. In this thesis, we take practi-
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Figure 2.4: Illustration of interference cooperation for the downlink. The BSs 
acquire and share CSI (but not user data), pertaining to all relevant direct and 

interfering links, so as to optimize jointly their transmission parameters 
(time-frequency scheduling, power level, beamforming).

cal implementation-related issues into account and design a new signal transmission 

scheme which is specially tailored for multicell cooperative networks.

2.3.2 Technical C hallenges of M ulticell C ooperation

The theoretical performance of cooperative networks have been addressed in litera

ture, however, including some ideal assumptions. With the development of multicell 

cooperation, the real-world implementation-related issues of cooperative techniques 

in cellular networks result in significant technical challenges in the design of signal 

transmission scheme for this new technique:

1) B ackhau l issues:  Current multicell cooperation techniques are enabled 

by the presence of a backhaul network with unlimited capacity and free-latency which 

connects the BSs with each other or with a central processor [46, 47]. Compared to
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Figure 2.5: Illustration of multicell full cooperation (multicell MIMO) for the 
downlink. The BSs acquire and share CSI and user data with each other, so as to 

mimic the behavior of a large MIMO array.

a SCP-based cellular network with no coordination, multicell cooperation techniques 

require the sharing of certain information among cooperative BSs. For instance, 

as shown in Fig. 2.4 and Fig. 2.5, interference coordination techniques require the 

exchange of CSI and full cooperation requires the exchange of both CSI and user 

data. The data symbols of all users must be known at all cooperative BSs. Since the 

assumption of unlimited capacity link is quite unrealistic for large scale network, the 

limited capacity link within the pre-existing infrastructure may be unable to provide 

sufficient bandwidth for exchanging CSI and user data. As a result, the desired 

transmission technique should provide a robust signaling for conveying the required 

information between collaborative BSs to reduce the burden of the low-bandwidth 

backhaul, or even in the case that the backhaul network does not exist.

2) B S  syn ch ro n iza tio n :  To guarantee the mitigation of inter-cell interfer

ence, the desired signal components transmitted from different cooperative BSs to
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the target MS must arrive synchronously. Efficient and accurate cross BS synchro

nization is another fundamental enabling technology for multicell cooperation since 

the imperfect timing advance will inevitably bring performance degradation in differ

ent aspects, e.g., power degradation of the desired signal and additional inter symbol 

interference (ISI) [30]. In some cases, sufficient synchronization could be achieved 

using commercial GPS satellite signals for outdoor BSs. However, for BSs in dense 

multipath environments, the GPS signal is not available and therefore, tight synchro

nization between BSs by exploiting alternative signaling scheme is another challenging 

requirement for multicell cooperation communications.

3) N e tw o rk  la tency: Due to the large overhead of global channel state and 

user data information and the constrained transmission capability of the backhaul 

network, the distribution of the necessary information among BSs must be achieved 

by well-designed cross layer algorithm including Media Access Control (MAC) layer 

scheduling as well as physical (PHY) layer transmission strategies [48, 49, 50, 51]. The 

communication between the PHY and higher layers protocols and the traffic routing 

will naturally bring excessive time delay, especially causing dramatic performance 

degradation when the delay exceeds the coherence time of the downlink channels.

4) C hannel e s tim a tio n :  Coherent combing at the receiver or coherent pre

combining at the transmitter can provide (signal-to-noise ratio) SNR gain when the 

CSI is known. Hence, sufficient resources have to be allocated to pilot signals to 

achieve reliable channel estimation, otherwise, the SNR gain will be significantly 

reduced due to the imperfect estimation of CSI. In the context of network coordination 

with spatially distributed BSs, the extent of coordination could depend on the range of 

reliable channel estimation, and there is a tradeoff between the increasing coordination 

network size and the increasing pilot overhead.

For estimation of the downlink channels at the transmitter in time-division du-
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plex (TDD) networks, the reciprocity of the uplink and downlink channels can be 

utilized such that the estimated channel on the uplink can also be used for down

link transmission. In this scenario, estimation at the TDD transmitter faces similar 

challenges as the traditional channel estimation at the receiver. However, TDD sys

tem may be associated with additional challenges if the number of users is much 

larger than to total spatial degree of freedom. Pilot signals and protocols should be 

well designed to address these issues without leading to excessive training sequence 

overhead.

Estimation of downlink channels in frequency-division duplex (FDD) networks 

face much greater challenges. In FDD networks, the channel estimates obtained at 

the mobile user must be conveyed back to the BS, typically over a limited-bandwidth 

uplink feedback channel. Quantized channel estimates could be fed back using “code

books” consisting of fixed precoding vectors.

Therefore, the pilot signals or training sequences should be kept as short as 

possible in order to reduce the overall overhead of the training while ensuring the 

acceptable performance of channel estimation. To overcome the contradiction be

tween the large overhead and limited performance caused by the short training, an 

IDDCE is proposed in this thesis which utilizes the demodulated data to improve the 

performance of the original estimation provided by the training. Details of IDDCE 

will be presented in Chapter 5.
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2.4 Channel E stim ation for OFDM  System

2.4.1 Princip le o f O FDM  System

OFDM technique has emerged as one of the most attractive transmission schemes for 

broadband wireless communications in recent decades [52]. With the ever increasing 

demand of high data rate transmission in broadband wireless communications, the 

performance of single carrier modulation schemes is severely affected by large ISI due 

to the fact that the symbol duration is much shorter than the delay spread of the 

wireless channel. Therefore, highly complex time domain equalizer is required for 

good performance in a high data rate system. To solve the challenges, OFDM was 

first proposed to divide the data stream into multiple substreams to be transmitted 

over different orthogonal subchannels centered at different subcarrier frequencies. The 

subchannel bandwidth is less than the coherence bandwidth of the wireless channel, so 

that the frequency selective fading is now eliminated and the subchannels experience 

relatively flat fading. This insures that the subchannels will not experience significant 

ISI.

Furthermore, due to the introduction of a cyclic prefix (CP), not only the im

pact of ISI in OFDM system is completely removed, but also the received signal can 

be represented a circular convolution between the transmitted signal and the channel 

instead of the linear convolution. As a result, a simple one-tap frequency domain 

equalizer can be adopted to mitigate the effect of the channel which can be mod

eled as a complex gain on each subchannel/subcarrier. Therefore, OFDM has been 

widely adopted in various broadband systems such as WLANs, digital video/audio 

(DVB/DAB), and recently the upcoming fourth generation cellular and mobile radio 

system such as long term evolution (LTE) [53].
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Figure 2.6: Typical pilot arrangement for OFDM systems.

The performance of OFDM systems is generally enhanced through the use of a 

coherent demodulation process. However, the reliable coherent detection is critically 

dependent on the accurate channel estimation results. In literature, various channel 

estimation techniques have been investigated.
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2.4.2 P ilo t A ided Channel E stim ation  (PACE)

In OFDM systems, channel can be estimated using pilot tones known at both trans

mitters and receivers. The pilot tones are periodically inserted at different subcarriers 

of different OFDM data blocks as shown in Fig. 2.6. The channel response corre

sponding to the pilot subcarriers is first estimated and then that corresponding to 

the data-carrying subcarriers is achieved by interpolation [54, 55, 56, 57].

When channel statistics information is unknown and the channel is treated 

as a deterministic parameter, maximum likelihood (ML) channel estimation will be 

optimal. The ML estimation of channel parameters is equivalent to finding channel 

parameters to minimize
y

||x -  SPH ||2 (2.4)

where x and H are the received signal vector and channel frequency response vector, 

respectively, which are defined as

x =

/  \
XQ

\  xn ~i y

,H =
Ho N

\  Hn -  1 )

and Sp is the pilot symbol matrix, which can be represented as

(2.5)

/

Sp =

so 0 

0 si

\

 ̂ 0 0 s N - i  )

(2.6)

It can easily be seen that ML estimation can be solved by the Least Square (LS)
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estimation which yields,

H l s  =  ‘x. (2.7)

To reduce the computational complexity of ML or LS channel estimation, 1 can be 

calculated offline. Estimation in this case neither needs nor exploits the information 

of channel statistics. Hence, the estimation accuracy is usually not good enough and 

therefore, it is often applied as initial estimation.

By exploiting channel statistics, channel estimation can significantly be im

proved. With the information of the correlation matrix of the channel frequency 

response, R H =  E |  H H ^  | , linear minimum mean square error (LMMSE) channel 

estimation can be obtained. For LMMSE estimation, channel frequency responses are 

regarded as random variables. Estimation of the channel frequency response vector 

is found to minimize the mean square error (MSE). Therefore we have,

H LMMSE = R H ^R H + crn ( SPSpf ) ^ Sp lx

=  R H ( R H +  4 ( s PS f ) _1)  l U LS. (2.8)

Compared with LS estimation, LMMSE estimation has much better performance. 

However, it requires channel statistics information and has much higher computa

tional complexity.

The two major issues which make the PACE methods challenging are pilot 

design and interpolation:

1): A few optimal design for the pilot pattern, power allocation and pilot 

number has extensively been studied in [58, 59, 60, 61, 62, 63, 64]. For instance, the 

impact of pilots on the overall system performance for time-varying channels has first 

been analyzed in [59]. Then the optimal pilot design for frequency selective channels
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has been investigated in [60] and [61], whereas that for doubly selective channels has 

been investigated in [62], The pilots have been designed to meet different criteria 

such as to minimize the MSE of channel estimation [58] or its CRB [63], maximize 

the channel capacity [60, 61, 62] and optimize the SER [64]. An extensive review on 

these topics has been addressed in [65].

2): The most challenging problem associated with the PACE is how to design 

an efficient interpolation method. LMMSE estimation can be applied for joint channel 

estimation and interpolation. Nevertheless, it requires channel statistics information 

and very high computational complexity [55, 56] and therefore, low-complexity inter

polation algorithms are required for practical communications. Two of the simplest 

ways are piecewise constant [66] and liner interpolation [54]. However, closely-spaced 

pilot subcarriers are needed to achieve acceptable performance in frequency selective 

channels, which results in dramatic bandwidth loss. If channel variation statistics 

(Power Delay Profile/Doppler spectrum) are known as a priori, high-order polyno

mial can be applied to accurately adapt to wireless channels [54, 67]. Unfortunately, 

the assumptions on channel information prevents the deployment in practical com

munication systems.

2.4.3 Training Sequence Based Channel E stim ation

In this technique, a training sequence is periodically inserted at the beginning of an or 

several OFDM data symbols in the time domain depending on the channel variation 

speed. Therefore, the OFDM frame can be formulated by {p[n], c[n], x[n]}, where p[n] 

denotes the training sequence. c[n] and x[n] denote the guard interval (GI)/CP and 

the OFDM data sequence, respectively.

In the receiver, the channel response can be estimated using the training se
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quence. If we denote the received signal of the training sequence by p[n], it can be 

expressed as

p[n\ = p[n] ® h[n], (2.9)

where <g> represents the cyclic convolution operation and h[n] denotes the multipath 

channel. Therefore, in the frequency domain, we have,

P[k\ = P[k] ■ H[k], ( 2 . 10)

Thus the channel frequency response can be estimated by

H[k\ = P[k]/P[k\. (2.11)

The estimated channel frequency response can then be used to demodulate the sub

sequent OFDM data symbols.

The main advantage of training sequence-based channel estimation is its low 

implementation complexity as it does not require the interpolation process, making it 

as one of the simplest channel estimation schemes. However, several drawbacks exist 

for the channel estimator:

• The length of the training sequence must be longer than the maximum channel 

delay spread. Therefore, in the case of estimation of multipath channel with 

long dispersive time, the overhead of training sequence will result in severe 

transmission inefficiency.

• For time-varying channels, the training sequence needs to be frequently inserted 

into the transmitted data stream, e.g., one training sequence for each OFDM
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data symbol. In this case, the transmission efficiency will be dramatically re

duced.

2.4.4 Superim posed P ilot Based Channel E stim ation

A special form of pilot called superimposed pilot, where the pilot is superimposed 

onto the data symbols before transmission [68, 69], was first proposed for phase syn

chronization and originally referred to spread spectrum pilot and was later applied 

for channel estimation [70, 71, 72, 73]. The use of the superimposed pilot enhances 

both the bandwidth utilization and the transmission efficiency since dedicated pilot 

subcarriers or training sequences are not required, and therefore representing a more 

practical approach. However, a certain portion of transmission power must inevitably 

be allocated to the pilots and therefore, the improvement of the bandwidth utilization 

is achieved at the expense of a poorer SNR level. Furthermore, the performance of 

channel estimation using the superimposed pilots also degrades due to the unknown 

data symbols as large interference.

2.4.5 D ecision-D irected  Channel E stim ation

Motivated by the aforementioned drawbacks of training sequence-based channel esti

mation, DDCE was proposed to reduce the overhead of the training sequence as well 

as improve the estimation accuracy [74, 75, 76, 77, 78, 79]. In practical wireless envi

ronments, the channel can be assumed to be static over a number of OFDM symbols 

due to the short symbol duration of broadband communication systems. Therefore, 

the channel corresponding to the training sequence is first estimated, and then used 

to demodulate and detect the subsequent OFDM data blocks. The channel can be 

improved by combing the detected data symbols with the original training sequence
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to form an augmented preamble such that the length and the resultant total power 

of this training sequence are virtually extended training sequence are significantly 

increased.

In literature, there are two main categories of DDCE schemes where the data 

is detected on either hard decision or soft decision:

(1) Soft Decision: For systems with error-correction coding, redundancy in 

coding can be exploited to improve the performance of channel estimation, iterative 

receivers for joint channel estimation and decoding have been proposed in OFDM 

systems. The scheme performs a combined channel estimation/decoding process 

according to the maximum a posteriori (MAP) criterion, using the expectation- 

maximization (EM) algorithm. In the iterative receiver, the MAP decoding sub- 

module progressively provides more reliable information on coded bits to the channel 

estimator submodule. Then it subsequently provides more reliable information on 

the channel gain to the decoding submodule in an iterative manner. However, the 

main problem associated with the soft decision feedback is its extremely high imple

mentation complexity due to the iterative decoding procedure [77, 78]. Therefore, it 

is impractical to implement in real applications.

(2) Hard Decision: The DDCE with hard data decisions can be more suitable 

for practical OFDM systems with both improved channel estimation accuracy and 

reduced complexity as compared with the soft data decision. It particularly fits in 

systems in a slot transmission mode, such as wireless cellular systems. However, this 

method sometimes can only provide limited performance improvement even degrada

tion in severe frequency selective channels when the data decisions comprise a large 

portion of hard decision errors [79, 80]. Therefore, in this thesis, we focus on the 

DDCE with hard decision and propose an iterative DDCE with reliable data feed

back selection. Details of the algorithm can be found in Chapter 5.
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2.5 Sum m ary

In this chapter, thesis-related technical background, including positioning techniques, 

multiceli cooperation and channel estimation for OFDM systems. Two main types of 

positioning systems are first introduced. An overview of different location techniques 

is subsequently presented, based on which, the suitability of these techniques for 

broadband wireless communication systems is analyzed. In Section 2.3, the principle 

of multiceli cooperative network and its corresponding challenges are presented. Fi

nally, various channel estimation methods including traditional pilot/training-based 

estimation method and recently proposed DDCE scheme are discussed.
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3.1 Introduction

Recent development in wireless communication-based location technology brings sig

nificant challenge of detecting weak FAP signal for TOA-based techniques in severe 

dense multipath environments. Due to the common obstruction of the direct sig

nal path, identification of weak FAP in these environments can be very difficult via 

conventional correlation detector based on the preamble signal in the presence of 

interference from strong LAPs.

In this chapter, a new FAP detector based on LAPs interference cancellation 

and preamble extension techniques is proposed for TOA-based positioning system in 

dense multipath environments. An OFDM-based communication system, which is 

widely adopted in various broadband wireless applications [52] is considered in this 

chapter. We first propose an iterative estimator where the channel and the trans

mitted OFDM data are jointly estimated with progressively improved accuracy. An 

optimal threshold is subsequently derived to select the significant LAPs that intro

duce dominant interference to the FAP. The signal components of the LAPs are then 

reconstructed and removed from the original received signals. FAP detection is per

formed based on the correlation between the LAPs interference-suppressed signal and
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an augmented preamble which is the combination of the preamble signal and the de

modulated data sequence. As a result, more accurate FAP detection results can be 

obtained to improve the precision of location estimation. Since the proposed algo

rithms can be realized by traditional communication transceivers, our system entails 

neither special preamble signal design nor hardware modification. Furthermore, the 

performance of the iterative estimator is studied by deriving the semi-analytical ex

pressions of the variance of estimation error, based on which, an automatic stopping 

criteria is also developed to avoid the unnecessary computational complexity and al

low a tradeoff between the performance degradation and computational burden. The 

overall performance of the algorithm is studied through the mathematical analysis 

of the FAP’s signal-to-noise-and-interference-ratio (SINR). Computer simulations are 

used to evaluate and verify the performance and effectiveness of different modules as 

well as the overall algorithm. Simulation results show that the accuracy of location 

estimation is substantially improved with the proposed algorithm.

The rest of the chapter is organized as follows. The transceiver structure of 

the OFDM system with the proposed FAP detection is presented in Section 3.2. In 

Section 3.4, a new FAP detection scheme using the proposed multipath interference 

cancellation technique is proposed. An automatic stopping criteria is subsequently 

derived for the sake of power constraint of mobile devices. Performance of the pro

posed FAP detection is analyzed in Section 3.5 and numerical simulation results are 

presented in Section 3.6 to validate the performance of the proposed algorithms. Fi

nally, the chapter is summarized in Section 3.7.
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3.2 Transceiver of OFDM  System  w ith  the  

Proposed A lgorithm

We propose to incorporate the proposed FAP detection algorithm into general com

munication systems. Hence, a traditional OFDM system is considered which is envi

sioned as a promising technology for broadband wireless communications.

The block diagram of the OFDM system is shown in Fig. 3.1. Basically the 

TX in Fig. 3.1(a) is exactly the same as that in a traditional OFDM system. For 

the RX part, it also shares high similarity with conventional OFDM RXs except 

that the iterative process is used to provide joint LAPs and data estimation with 

enhanced accuracy. Accordingly, an automatic criterion is also proposed to reduce 

the associated computational complexity. The other major departure is the LAPs 

interference canceller and the FAP detector (shaded blocks). However, they can be 

implemented by simple adder circuits and correlation detector such that no further 

hardware modification is needed.

Consider the signal frame structure of the OFDM system in Fig. 3.2. We

denote the preamble signal as p = PO.Pl ■ >PNp- 1 with length Np, which is

periodically multiplexed with OFDM data blocks for synchronization and channel 

estimation purposes. Each OFDM data symbol is then generated by A^-point inverse 

discrete Fourier transform (IDFT) and given by

1
Zn —

*=o

Nd~ 1 • 2nkn
£  X keJ^ , n  = 0 ,l ,2 , . . . ,N d - l , (3.1)

where X ^  denotes the complex data on the fcth subcarrier and is the number of 

total subcarriers. Assume that the guard interval (GI) and the cyclic prefix (CP) 

are longer than the maximum channel delay spread L and therefore the preamble
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(a) Transmitter

Proposed FAP Detection

Transmitted Signal Regeneration

(b) Receiver

Figure 3.1: Block diagram of the OFDM transceiver with the proposed FAP 
detection approach: (a) Transmitter (b) Receiver.

signal and OFDM data blocks are free of intersymbol interference (ISI). When the 

observation periods (OPs) in Fig. 3.2 are adopted at the RX, the received signals
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t

Preamble
Part

— A-------------------- r

Signal
Part

-------------- *----------------------------

GI PREAMBLE CP OFDM CP OFDM ■ ■ ■ CP OFDM

H*--------------------► H*-----------------------------------►
OP OP

Figure 3.2: The transmitted signal structure of the OFDM system, 

after the removal of GI and CP can be written in the following matrix form

yp

yd
A
= y

Sd 

sh +  w,

h +  w

(3.2)

where y p and denote the received signal vectors corresponding to the preamble and 

OFDM data symbol, respectively. sp denotes the matrix derived from the preamble 

signal,

sp -

Sd can be given by

Sd =

PO PNp- l  ■’ ' PN p-L + l

Pi PO ■ ■ PNp-L+2

PNp—l PNp-2 ■' • PNp-L

XQ x Nd- 1 • •' x Nd- L + 1

X I x 0 • • x Nd- L + 2

x Nd- 1 XNd—2 ■• • XNd- L

(3.3)

(3.4)

h =  [ho, h \ , /r-2, • • • , hL_i]T  is the L-tap multipath channel vector where fy, 0 <  l <
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L — 1 are independent complex Gaussian-distributed random variables with zero mean 

and variance af. w denotes the additive white Gaussian noise (AWGN) vector with 

zero mean and variance a \.

3.3 Conventional Correlation D etector for FAP

Traditional scheme to detect the FAP is based on the correlation profile between the 

received signal and a local preamble. The time index of the first detected peak on 

the correlation profile is then converted to the corresponding arrival time. However, 

it is worth mentioning that in traditional communication systems, due to the use of 

strong error correction coding and the requirement of high transmission efficiency, 

the length of the preamble signal has to be as short as possible to reduce the cor

responding redundancy when the acceptable channel estimation and synchronization 

performance is achieved. The ideal peak gain of the FAP is therefore limited by the 

length of the preamble. Furthermore, the peak of the FAP also consists of the LAPs 

interference components. As we can see in Fig. 2.2, the FAP is severely distorted by 

the interference from LAPs when the power of the FAP is significantly weaker than 

those of LAPs.

Mathematically, we can write the correlation between the received signal and 

the local preamble as follows,

Np- 1

Ryp{m) — 'y ] 2/nPn-rm
n=0

(3.5)
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The correlation peak corresponding to the FAP can be further arranged as,

thesis, an m-sequence will be adopted as the preamble for the following considerations:

1 . m-sequence exhibits good correlation properties such that the interference com

ponents from LAPs have been minimized by the sequence itself. Even in this 

case, we will show the significant achievements of our proposed algorithm over 

the traditional one. Therefore, further enhanced performance gain can be ex

pected when other types of preambles are used.

2. Unlike some complex-valued sequences, the m-sequence is associated with low 

hardware implementation complexity which is widely employed in various re

search works and real applications.

Therefore, we have the cyclic correlation value q  =  —1, VZ ^  0. The SINR on

(3.6)

LAPs interference noise
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the FAP’s correlation peak RyP(ho) can be formulated as

SINR
E [jVjlM 2]

~L-1 pVp-1
E £  N 2 + E T , wnPn*

J= 1 n=0

E  +  Nva l
1=1

(3.7)

where o f = E [|/i/|2] denotes the average power of the /the channel path. In wireless 

environments such as indoor or dense commercial areas, the average power of the FAP 

is often significantly weaker than LAPs due to the blockage of the direct path, e.g., 

<7q <C Yli'Ji ° f  • Therefore, interference from LAPs shown in (3.6) will have large 

impact on FAP detection even with a preamble of good correlation properties such 

as m-sequence. In such circumstances, even a high correlation processing gain Np 

cannot guarantee sufficient SINR for accurate FAP detection. The severely interfered 

correlation sample may result in the wrong peak selection of those LAPs’ correlation 

samples. In order to achieve accurate FAP detection in dense multipath environments, 

a new FAP detector based on LAPs interference cancellation and preamble extension 

will be presented in the next section.

3.4 Proposed First Arriving P ath  D etection  

A lgorithm

The flowchart of the proposed FAP detection approach is shown in Fig. 3.3. In 

this section, the key modules of the proposed FAP detection algorithm including 

the iterative estimator for joint channel and data estimation, automatic stopping
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Figure 3.3: The flowchart of the proposed FAP detection approach.

criterion design for the iterative estimator, optimized LAP selection, LAP interference 

cancellation and FAP detection will be sequentially presented.
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3.4.1 Joint Channel E stim ation  and D ata  D etection

The accuracy of of LAPs interference mitigation relies on the accuracy of LAPs and 

the transmitted data estimation, and high accuracy in the acquisition of LAPs and 

OFDM data will certainly result in exact LAPs interference reconstruction and re

moval from the received signal.

The predominant LAPs causing large interference to the FAP detection can be 

estimated by selecting the significant taps of channel impulse response (CIR) which 

are greater than a particular threshold. Traditionally, the CIR estimation h can 

be obtained by using the preamble signal only based on a LS or MMSE estimator. 

Unfortunately, the performance of CIR estimation is also limited by the length and 

total power of the preamble signal. To solve this problem, we propose to improve the 

LAPs estimation via an iterative estimator using an augmented preamble, which is 

the combination of the original preamble and the demodulated OFDM symbols. The 

duration and resultant total power of the extended “training sequence” are expected 

to be significantly enhanced as compared with the original one. Hence, the accuracy 

of CIR and data estimation can be progressively improved as the process is iterated.

We summarize the proposed iterative estimation algorithm as follows:

Step 1. Initial CIR Estimation

Set the iteration index i =  0. Initial CIR estimation will be derived solely from 

the original multiplexed preamble signal. Without the subsequent OFDM data, the 

received signal now is

yp =  sph + w. (3.8)

The LS estimator can be used to obtain the CIR estimation since no channel statistics 

information is required,

h<‘> =  (sp^Sp) 1spHy p. (3.9)
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The variance of the estimation error can be used as a criterion to evaluate the per

formance of the preamble-based estimator,

"A h =  ¿ t r ( E [ { h » - h } i i { h W - h } ] )

It should be mentioned that the accuracy of the initial estimation is limited by the 

length of the preamble. Therefore, the performance of LAPs interference cancella

tion will be dramatically degraded if the LAPs are determined based on the above 

estimated CIR.

Step 2. Iterative Estimator

The basic idea behind the proposed iterative estimator is that we utilize the 

augmented preamble for CIR estimation instead of using the preamble signal only. 

The performance of the estimator is then expected to be significantly improved since 

now the duration and the resultant power of this virtually extended training sequence 

are enhanced as compared with the original one. However, the augmented preamble 

is not very reliable in the beginning based on the demodulated results from the 

initial CIR estimation. The OFDM data detection accuracy can be improved when 

the CIR estimation improves. This indicates an iterative estimator is required to 

simultaneously enhance the CIR estimation and data detection. The OFDM signal 

in frequency domain is equalized with the tentative CIR estimation from the previous
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step, channel estimates,
jj(i) _  DFT {yd } 

D F T jh W }
(3-11)

Make data decisions based on the equalizer output and denote it as X(l). Now the 

transmitted signal in time domain can be re-modulated using the data after decision,

*(*) =  ID F T { x (i)} . (3-12)

Similar to (3.4), the matrix of x(*) is constructed by

JOX

JOX1

x (0
Nd~l x

X

(0
Nd-L+1
(i)
Nd- L + 2 (3.13)

JO
XNd~l X (0

Nd- 2 x (i)
Nd- L  J

Consequently, the matrix of the augmented preamble can then be formulated by

(3.14)

The new channel estimate is updated by the LS estimator, however, the sp and 

yp are now replaced by s(*) and y. The CIR estimation is then obtained by using 

the following

h(i+1) =  ((s (*))#§(*)) _1 {s®)H y. (3.15)

Set iteration index i = i +  1.

Repeat Step 2 if necessary until the automatic stopping criterion is fulfilled 

or a predefined number of iterations is achieved. Details of the automatic stopping
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criterion design will be presented in the next subsection.

3.4.2 A u tom atic Stopping C riterion D esign

Due to the limited battery life of the mobile devices, an automatic stopping criterion 

is proposed to terminate the iterative process as early as possible to avoid unnecessary 

computations and system latency while the user-specified performance is achieved.

3.4.2.1 Analysis o f the estim ation error

Before deriving the stopping criterion, it is necessary to study the variance of the es

timation error of the iterative process. Given (3.15), the estimation error is straight

forward to obtain. (Note that the superscript i has been dropped in for simplicity, 

unless otherwise stated)

Ah = (sHs ) ”1sHy - h

= ( s » 8 ) ' 1sflA s h + ( s ii8 ) ‘ 1si iw 

=  A h f  + A h w, (3.16)

where

A s = — s

SP SP 0

Sd Sd A sd
(3.17)

The terms A h y and Ah^ denote the estimation error caused by data decision 

feedback errors and AWGN, respectively. In (3.16), the approximation holds that
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=  I l /N  when N  »  L and therefore, the variance of A h ^  can be ob

tained by

2
aAhw =  j t r  ( e  [A h ^ A h ^  )

- (3.18)

where N  = Np -f N^.

For A h f , it is more difficult to determine the variance which consists of the 

unknown data decision errors and the multipath channel. We first represent the 

variance as follows

2
a Ah -  H

= A Îtr(

HA hyA hy D
E s ^ A s h h ^ A s ^ s ])• (3.19)

note that the term sH A s  can be written as

sH A s  = s H s , H»p j »d

=  sd ^ A s d

0

A sd

(3.20)

Thus, (3.19) can be further arranged as

2
a Ah 1 tr ( e  is‘di , A sdhhHA sdHs‘d j

N 2L

¿ t r  ( e  [sd ' , F # F jv A S dh h , i A Sd ' ?F # F wSd] )  

¿ t r  (E  [s /  A S dhhff A S dHSd] ) , (3.21)
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where F ¡y represents the DFT transform matrix with its element F(n, k ) determined 

by (eJ N / v N), S j  is the frequency domain version of s j  with its element S^(n, k) =  

X ^_ n and ASq is the frequency domain version of Asq with element AS^(n, k) =  

XX]i_n .

As seen from (3.19), due to the trace operation, we only concern the elements 

on the main diagonal of (S ^ A S h h ^ A S ^ s )  , which can be represented as

Nd Nd 1

( s d" A S dh h i i A S dHSd) jj =  Y C L  £  X ^ X pkX qiA X ;k \hk \2. (3.22)
p=  1 g = l k = 0

It is straightforward to check that for any Aym, X jn , AX im and AX jn , they are 

independently and identically distributed (i.i.d.) when (i ,m ) ^  (j,n ), then the ex-



Chapter 3: First Arriving Path Detection in Dense Multipath Environments 49

pectation of (3.22) can be subsequently obtained by

E [ ( s / A S d h ^ A S d ^ S d )  ]

Nd L - 1

E  E  e
p=  1 k=0, k^i

N i
+ E e

P= 1
Nd

+  E  
VA= 1> PAQ 

Xd L - 1

E  E  e
p=  1 fc=0,

"d

x ^ x pkx ^ x ; k E I hk \

X ^ A X ^ A X ^ E I hi

X ^ A X jn X g iA X ^ E IK

x,

X.pi

pi

AX.

E A Xpk E

pi

X'piA Xpi

E I fH

E E

+ E e
P= 1

+ E  e
p,q= l,

L—1
Vi £  E[|/lfc|2] + V 2E[ |^ |2] + V 3E[|/i

A:=0, k ^ i

XqiAX*qi \K

(3.23)

For analytical simplicity, we drop the subscripts and therefore Vj can be repre

sented as

Vi =  V2 =  Nd E 

V3 =  Nd{Nd -  1)

1*1

E

•E 

X*AX

|AX ( 
2

(3.24)

(3.25)

Note the values of Vj may vary depending on the modulation scheme and its corre

sponding signal constellation. Let Pe denote the symbol error rate of the iterative 

estimator. We can make further simplifying assumptions that a nearest neighbor
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selection is adopted when making symbol detection errors. For a particular point 

in a given signal constellation, assume that there are m  nearest neighboring points

with distance d = X - X , each equally likely to occur when an decision error has 

occurred. We also assume zero conditional error probability to nonnearest neighbor

ing points. For instance, if an M-PSK constellation is used, then we have m = 2 

and d = 2sin(n/M ). For QPSK constellation, this yields d = \f2. Under these 

assumptions, we have

|AX | =  \
0, with probability 1 — Pe, 

d, with probability Pe,

which yields

E =  d2Pe

Therefore, Vi and V2 can be finalized by

(3.26)

(3.27)

Vi =  V2 =  Ndd2Pe. (3.28)

It should be noted that there is no closed form expression for V3 since it consists of the

term E X*AX Therefore, it can only be obtained through numerical calculations. 

For instance, for a known M-PSK constellation A  =  {a¿, 1 =  0,1, • • • , M — 1}, con

sidering a particular point X  — o^, then the errorous decision falls into its neighbor

ing points {o!fc_i, Q;fc+l} and the corresponding error AX G {&k- 1 ~  aki a k+l ~ ak}
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with equal probability. Hence, Q can be defined as

g = E \X * A X

M - 1
=  ^2  {0.5Pca£_i • (ak_i -  ak) +  0.5Peak+1 • (a*.+1 -  ak)} , (3.29)

k= 0

consequently, V3 can be achieved by

V3 =  Nd(Nd -  1)|5 |2. (3.30)

By replacing V* with the approximated values, c r ^ ,  can be finally obtained by

2
°A h Y  4  + V2<ri+V3ai 

i= 1 V k=0,k&
4sin2(7r/M )PeNdL +  \Q\2Nd(Nd -  1)

N 2L
(3.31)

Under the assumption that the overhead of the preamble signal is small, i.e., Np <C 

Nd, (3.31) can be further simplified to

^Ah
4sin2(7r/M )Pe \Q\2

N + (3.32)

Note that in the above equations, the channel energy o2H =  Y^i=0 af normalized 

to one. At high SNR range where Pe is sufficiently small, the last term consisting of 

P 2 in (3.31) can be neglected and therefore, (3.31) can be further simplified to

_2 4sin2(7r/M )Pe
°A h f  *  Jj (3.33)
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The final results of 0 ^ ^  can rePresented as

4sin2(7r/M)Pe , \Q\2
Ah N +

L ’
(3.34)

where M  is the modulation order and Pe denotes the symbol error probability of the 

output of the iterative estimator. The definition of Q can be referred to the Appendix. 

Therefore, the overall variance of the estimation error can be written as

2 2 , 2
aAh ~  aA hf  +  aAhw

4sin 2(n/M )P e|Sf2 1 2
=  --------N --------+ ~ + N  n

3.4.2.2 A utom atical Stopping Criterion Design

It can be seen from the previous subsection that cr^h —► cr^/N  as Pe —■► 0. It should 

be mentioned that this bias cannot be removed when the length of the preamble and 

the OFDM data symbol is fixed. In fact, Pe is dependent on SNR and therefore 

this bias vanishes as SNR—> oo or cr2 —* 0. Based on the convergence analysis of 

the iterative estimator, an automatic stopping criterion can be derived. Consider the 

relative estimation error between consecutive two iterations at the ith  iteration,

(3.35)

hW -  h(*'-l)

(h i*-1) -  h)

|h(*-1 ) 

(hW -  h ! -

hi*-1) |

AhW -  A h ^ " 1) 

h ^ - 1)
7 (3.36)
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the iterative process is terminated if the following criterion is fulfilled,

£  < e, (3.37)

where e is a user-defined threshold dependent on the tolerable performance degrada

tion of the receiver. As a small e which results in less performance degradation is 

often associated with large number of iterations and vice versa. Therefore, we test 

the performance of the iterative estimator with different thresholds and it will be dis

cussed in Section 3.6. In real-time application, a tuneable threshold selection device 

can be equipped such that the user is flexible to adjust the threshold according to its 

required performance and battery condition.

3.4.3 LAP Selection

After the CIR with improved accuracy is obtained, the significant LAPs which intro

duce dominant interference to the FAP are to be determined based on the estimated 

CIR. We proposed a threshold-based scheme to select the significant LAPs. Since 

the practical multipath channels often show some level of sparsity, where very lim

ited channel paths carry significant energy, the total AWGN perturbation from those 

nonsignificant paths is usually much higher than the channel energy carried by them. 

Therefore, choosing a relative high threshold can successfully reject those nonsignifi

cant paths while detecting most of the significant paths.

R em ark:  It is worth mentioning that the FAP may also be selected in the 

above process and cancelled in the line-of-sight (LOS) scenario where the direct path 

between TX and RX is very strong. However, some well-researched non-line-of-sight 

(NLOS) identification schemes [81, 82, 83] can be adopted before the proposed algo

rithm to identify the presence of direct path. If the direct path is weak due to the
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obstruction, the proposed algorithm is subsequently adopted to remove the impact 

of LAPs and enhance the FAP detection. Otherwise, conventional FAP detection 

scheme can be used when the strong FAP is present.

3.4.3.1 Conventional LAP Selection

Motivated by [84], one typical solution is to first determine the strongest estimated 

path hmax from the estimated CIR h by hmax =  max{hj,i =  1, ■ • • , L — 1}. The 

LAPs estimation and the corresponding vector are then given by

hi, if M  > Tf\h max | 

0, otherwise.

hLAPs =  0 , h i , . - -  ,h L_ i
nT

(3.38)

However, the process of the above LAPs identification has not been optimized 

which may result in high probabilities of false alarm of noise-only paths (insignificant 

paths) and missed detection of strong LAPs. In effect, the FAP detection accuracy 

is not maximized due to the large residual interference after imperfect interference 

cancellation. In [85, 86, 87], a few other significant-tap-catching schemes have been 

proposed and can be directly applied to LAPs selection. Unfortunately, adaptation of 

these schemes in real wireless environments is impractical due to assumptions about 

the channel statistics or time-consuming pre-simulations for optimization.

3.4 .3.2 O ptim ized LAP Selection

An optimal threshold is derived to maximize the probability of distinguishing between 

significant LAPs and noise-only taps. The interference of LAPs can then be refor

mulated optimally and removed to improve the FAP detection. The performance of
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LAPs selection is analyzed theoretically by deriving the mean square error (MSE) of 

LAPs selection.

Note that in our considered propagation scenarios where distinguished power 

differences exist between the FAP and strong LAPs, the scheme will only choose 

significant LAPs and therefore the FAP’s signal component will be retained in the 

received signal. The significant LAPs can be determined by

i
hi if \h[\ > 7

, ¿ =  1,2, . . .  , L - 1 ,  (3.39)

0 otherwise

where 7  denotes the threshold for LAPs selection.

Assuming independent Rayleigh fading for each path of the multipath channel, 

the optimal threshold can be derived as follows to minimize the error probability of 

the binary hypothesis testing problem in (3.39). It is straightforward to express the 

estimated channel hi in two regions R \ and R2 which are given by

hi
nf, l E R \

<
h[ +71*, l E i?2

(3.40)

where n' denotes the noise component caused by channel estimation error of the 

iterative estimator in Section 3.1. In the region R \ where only noise components 

exist on the insignificant paths, the probability density function (PDF) of |/i;| can be 

demonstrated by,

V R x ( h )  =  — exp 
a R 1

(3.41)

where 4 ,  =  2- °A/i *s the variance the estimation error and derived in (3.35).

j n  is identical to the receiver once the modulation scheme and SNR level have been
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determined.

In the region R 2, the estimated channel gain consists of the ideal channel path 

gain and the associated estimation noise. Therefore, the PDF depends on the statis

tical property of the Ith LAP. In Rayleigh channels, the PDF of \hi\ can be written 

as

p r2,i W  = - J ~ exv ( r 4 ~ )  > (3-42)
aR2,l \ 2aR2,lJ

where aR2,l ~  aRi -I- <x2/2  and cr2 — E [|/q|2] denotes the average power ratio of the 

Ith LAP to the total channel power. The optimal threshold 7opt can then be derived 

mathematically to maximize the probability that

P7 =  Prob j |h ; | < 7  < |hm| |  ,1 E R \ ,m  e  R 2- (3.43)

Given the PDFs in (3.41) and (3.42), the above probability can be further represented 

as

P7 =  I I  \ 1 ~ [ I I  f 1 - / PR2Ah)dh
l e r t  1 \  7 /  1 & r 2 \  0

L - M

= 11  — exp ~7
n  e x p

l e R 2

■r
2ah i

(3.44)

where M. is the number of significant LAPs of the channel. To maximize the prob

ability, we take the first derivative of (3.44) and set it equal to zero. Therefore, the 

optimal threshold can be shown to be

/

7opt —

\
2aRX ■ ln

\
1 +

L - M

Rl l e R 2 )

(3.45)
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Recall the cr^  is identical to the receiver. Now the task is to estimate the channel 

statistics of strong LAPs, e.g., the number and average power. Fortunately, the num

ber of significant LAPs can be obtained through the first step iterative estimator and 

the average power of these taps can also be achieved through historical observation 

in a short period of time.

M S E  A na lysis:  The MSE of the proposed optimal LAPs selection is theoret

ically analyzed as follows. First, we can represent the estimation error A hi = \h[ — h{\ 

as follows,

0 \hi\ < 7,1 e  R\

A h t = <
\n'\ \hi\ > 7 ,/ G R\ 

M  \ht \ < j , l  E R.2
J

n'l N  > 7,1 € #2

(3.46)

which indicates that the error is composed of three parts. When an insignificant 

tap (region R \) containing only noise components exceeds the threshold, the noise 

components will contribute to the MSE. While for the significant LAPs (region R 2), 

if it does not overcome the threshold, the neglected channel energy on that path 

contributes to the MSE; otherwise, only the noise component contributes to the MSE. 

Therefore, the distribution of Afy can be shown to be,

N  < i , l  € Ri 

N  > It, l e  R\

N  < 7>J e  R 2 ’ 

\hi\ > 7 , Z G

(3.47)

where TZ(-) denotes the Rayleigh distribution. The total MSE can thus be written as
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the sum of the above three different contributions and shown as follows,

MSE =  p (\hl\ > t ) e  \A h f 
leR\

+ E
l£R2 L

= E (1 - exp
leR2

P  ( |h ,| < 7)  E [a hf

M  > 7 

N  < 7

/

7'

2aR2,l

+  p  (l^zl > 7 )  E 

\

Ah* N  > 7

<Tl + r

\
1 -  exp ( -4

R2lJ  /

+ 4 , e x p l - ^ -
V ZaR2,l

+ (L -  M ) [p/2 +  2a 2R^j exp ^ r
2rr2ZaRl

. (3.48)

3.4.4 L A Ps Interference C ancellation and FAP D etection

As we can see from (3.2), the received signal can be decomposed into two parts

y =  shFAP + shLAPs +  w, (3.49)

where h FAp  =  [ho, 0, • • • , 0]r  and hLAp s =  [0, h i, /12, • • • , h i_ \]T denote the FAP’s 

vector and LAPs’ vector, respectively. Basically, shpAp is the FAP’s signal com

ponent that we want to capture. shLAp s can be considered as the accumulated 

interference from all the LAPs’ components to the FAP’s signal. In order to achieve 

a high SINR level for accurate FAP detection, the interference has to be mitigated. 

Fortunately, by utilizing the estimation of LAPs and OFDM signal from the iterative 

estimator, the LAPs interference can be reconstructed the LAPs interference and then
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removed according to

y =  y -  shLAPs

=  sh FAP 4- sh LAPs -  shLAPs +  w 

=  sh PAP+ w ,  (3.50)

where shLAPs represents the reconstructed LAPs interference and w is the residual 

interference and AWGN after cancellation. The successful LAPs interference cancel

lation can be expected as the regenerated transmitted signal is close to the original 

transmitted signal, s —» s after a few iterations at operating SNRs.

Furthermore, to enhance the FAP’s peak gain, an augmented preamble is for

mulated by

P O i P l i ' - ' ) PNp— 1 > ®0> ^ 1 1 ’ ‘ ’ > > (3.51)

which consists of the original preamble signal and the recovered OFDM signal.

The cross-correlation is then performed between the LAPs interference-suppressed 

signal y  and the augmented preamble p,

N - 1
R ypljn )  =  'y ] VnVn—m • 

n= 0
(3.52)

A threshold needs to be set up to select the FAP. As the correlation peak now becomes 

so distinctive, the threshold is easy to find. Denote by ko the time index of the 

detected FAP, the corresponding arrival time at the RX can be obtained via to = kQ-Ts 

where Ts is the sampling period. However, as mentioned in Section 2.2.3, there is 

usually a clock drift between the RX the TXs’ networks, and therefore at least four 

TXs are required for RX’s location estimation.
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3.5 Perform ance A nalysis of the Proposed FAP 

D etection

The performance of the proposed FAP detection scheme is analyzed in this section 

by evaluating the FAP’s SINR level and this can be achieved by calculating the SINR 

on the FAP’s sample of the cross-correlation profile given by (3.52). We denote the 

FAP’s correlation peak as Rgp(ho) and it is shown in detail as follows,

Np- 1 Nd- 1

Ryp(ho) = h0 [ ^ 2  PnPn +  ^  XnX
71=0 71=0

71

+ E
/€LAPs

signal
■ Nd- 1 / N p-1  Nd- 1

hi ^  ] A x n_iXn A h i  I ^   ̂ Pn—lPn ^  > x n —lx n 
71=0 V 71=0 71=0

N - 1

+ wnPn >
71=0 s___------- ---------

interference noise

(3.53)

where LAPs denotes the set of LAPs’ indices which can be determined by (3.38), 

LAPs =  e  hLAps}- Note that the impact of the non-significant paths has

been neglected in (3.53). Denote the signal part in (3.53) as P  and the interference 

and noise parts as I  which is contaminated by residual interference from the LAPs 

interference components and background noise.
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The power of P  can be first calculated as

N d ~ l

'cm

II M N 2  • N p +  X  x n x n

7 2 = 0

= °0

= (T0

= (7§

Nd~1 Nd-1

Np + NP X  E  \-Xn**n\ +  NP X  E  lxnxn\ +  E  
72=0 n=0

Nd-1

Nrf- 1

X  XnXn
7 2 = 0

n 2"

7 2 = 0

/  o  \
r.  |2 1 -  i2 2

1 * I2k n l  F n |
L

+ 1 ̂ *xTl ixTl \

W

iV p  +  2NpNgfil {rXn,xn} +  Nd +
t 2

Nd
x n->x n (3.54)

where

^xn txn ~  ^  [^72̂ 72] j

The power of /  can then be represented as

N d- 1
2 "

q II M H > bO E — 1 “b ^  y x n —l x n
le LAPs 7 2 = 0

+ E eN
le LAPS

E
Nd~ 1
X  ^ n - l K
7 2 = 0

(3.55)

N - l
+ > Hj 1 in

n=0
E E [I™!2] • (3.56)

Note that by assuming the OFDM signals at different sample period are identical, in

dependently distributed (i.i.d.) such that E [x^xi*] =  0, if k ^  /, it is straightforward 

to check that

E [xkx t*] =  0,



Chapter 3: First Arriving Path Detection in Dense Multipath Environments 62

• E [AxjfcxjT] =  0, when k ^  l. 

Therefore, (3.56) results in

a] = MSE •
Nd- 1

i  +  E  e  [k .
n = 0

E \x n\

+ E "i2 ■E [iA%-ii2]E [ii»i2] + E E [i"i
le  LAPs n=0

=  MSE(1 + Nd) + NdrA xA x ^ 2  °1 + N ° 2n
/(ELAPs

~  MSE (1 +  Nd) +  N dr ^ x ^ x +  N cr2, (3.57)

where we assume that these significant LAPs carry most of the channel energy such 

that LAPs0)2 ~  and MSE is defined as MSE =  • M ,  where M  is the

number of the significant LAPs. r \ xj \ x is defined as,

r A x ,A x  ~  ^ |Axn|2 . (3.58)

The SINR on the FAP’s correlation peak can be determined by

(7p
SINR =  (3.59)

aI

Note for practical communication systems where strong error correction coding 

is used at operating SNR, the SER is normally sufficiently low such that the probabil

ity that xn =  x n is close to unity. With the perfect estimation of the OFDM signal, 

we have

V A —¥ 1 x7iixn ’

r A x ,A x  0)

(3.60)

(3.61)
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almost surely, as Pe —> 0.

Therefore, we have the following SINR,

(Np +  Nd)24
M SE (l + Nd) + N a l

(3.62)

It can be seen that the SINR is inversely proportional to the variance of the estimation 

error which shows that more accurate CIR estimation is required from the iterative 

estimator than the conventional LS estimator.

Recall the SINR of the traditional correlation detector for FAP in (3.7), the 

SINR gain of the proposed approach can be represented as

SINRpro
SINRcon

N  \  2 +

N~P)  M SE(1+ Nd) + N a l

N _ \2 _______ 1 +  Npa l /  E f=Y  _______
Nn ) L- 1 L- 1 ’

p MSE/ £  o f  a  + Nd) + N a l l  T . o f  
1=1 1=1

(3.63)

where a ^ /  ° f  can be approximated to the inverse SNR and MSE/ " 5 2 of  is 

defined as normalized MSE (NMSE). In operating SNR ranges, the NMSE can be 

assumed to be close to zero. Therefore, (3.63) can be further simplified by

SINRpro
SINRcon

N \ 2 1 +  iVp/SNR
Nr N/  SNR

N Î  Np
(3.64)

Since the length of the augmented preamble N  is much longer than that of the original 

preamble Np, significant SINR gain can be achieved by the proposed algorithm which 

will certainly result in more accurate FAP detection. This conclusion will be further
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verified through computer simulations in the next section.

3.6 Sim ulation R esults and D iscussions

3.6.1 Perform ance o f th e Proposed FAP D etection

Numerical simulations have been performed to quantify the performance of each block 

of the proposed system as well as the overall algorithm. The demonstration system 

considered is an OFDM system with subcarrier number 512 and CP ratio 1/16 and 

the preamble signal is an m-sequence with length 15. The modulation scheme chosen 

is QPSK.

We consider three 8-tap multipath channels with each path independently Rayleigh 

fading. The average power delay profiles are reported in Table 3.1. Channel I is the 

modified version of 3GPP LTE Extended Pedestrian A (EPA) channel model [88] 

where the strongest direct path is replaced by a significantly weaker path. The power 

of the FAP is set to around 20dB below the strongest LAP, which simulates the sce

nario with blocked direct signal path in dense multipath environments. Channel II 

is a variation of Channel I with a stronger FAP. Channel III has a very short de

lay spread which is close to AWGN case. All the results are obtained over 10000 

independent channel realizations.

It should be mentioned that the scenarios simulated in this section are just 

several specific examples since our purpose is to verify the performance of the pro

posed algorithm in dense multipath environments and the LAP selection criterion in 

(3.38) is used and the threshold factor 77 is set to —8dB in all cases. Note that the 

performance of the derived optimal LAP selection threshold will be presented in the 

next subsection.
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Table 3.1: Average power delay profiles of multipath channels used in the
simulations
Channel I Channel II Channel III

Normalized Path Delay Average Power' dB)
0 -21.4 -12.8 -21.4
1 -1.7 -1.9 -0.032
2 -5.1 -5.3 -oo
3 -20.5 -20.7 -oo
7 -24.1 -24.3 -oo

3.6.1.1 Performance of the Iterative Estim ator for Joint Channel and 

D ata Estim ation

To evaluate the performance of the iterative estimator proposed in Section 3.4.1, the 

MSE of channel estimation is simulated under Channel II and plotted in Fig. 3.4. 

The “0 iteration” curve is obtained by the conventional LS estimator and the lower 

bound is achieved when the transmitted OFDM signal is perfectly regenerated and 

subsequently used for channel estimation. It can be observed that the accuracy of CIR 

estimation improves with an increase in iteration number. It is also shown that only 

one iteration is needed to achieve the lower bound at the SNR level of 20dB. However, 

more iterations are required for better performance at middle SNR ranges. This is 

because at the middle SNR, the accuracy of channel estimation is more sensitive to 

the SER improvement during the iteration process. However, the cases are different 

for low or high SNR ranges. At extremely low SNR, the SER of iterative estimator is 

very high such that the augmented preamble may consist of large portion of decision 

errors. Therefore, limited performance improvement can be achieved over the previous 

iteration when this unreliable preamble is used. On the contrary, the SER of data 

detection from the 0 iteration is already sufficiently low at high SNR and therefore 

only one iteration can reach the lower bound. The performance characteristics of the
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LUif)

-~o~0 iteration
1 iteration
2 iterations
3 iterations 
10 iterations 
lower bound

10 15
SNR (dB)

Figure 3.4: Mean square error of the iterative estimator for the OFDM system with
4-QAM modulation.

10 15
SNR (dB)

Figure 3.5: Symbol error rate of the iterative estimator for the OFDM system with
4-QAM modulation.
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iterative estimator also indicate that an automatic stopping criteria is needed at the 

moderate SNR range to control the number of iterations in order to avoid unnecessary 

computation.

The SER of data detection is simulated under Channel II and Channel III 

in Fig. 3.5. Good SER performance can be achieved with only 1 iteration under 

both channel conditions. The performance is significantly better with Channel III as 

compared Channel II due to the much shorter channel duration. As for Channel II, the 

SER can achieve 10-3  at the SNR level of 25dB. This number reduces to 12dB under 

Channel III which is close to AWGN case. Furthermore, the SERs in Fig. 3.5 can 

be further reduced by the use of error correction coding in practical communication 

systems. Therefore, it can be demonstrated that the iterative estimator is capable of 

providing accurate LAPs and data estimation under various channel conditions.

Figure 3.6: Comparison between theoretical values and simulations on MSE versus
SER.

To verify the theoretical MSE derived in Section 3.4.2, we replace Pe in (3.34)
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with the SER values from 0 iteration under Channel II (the red solid curve in Fig. 3.5), 

and the corresponding theoretical MSE of 1 iteration is obtained. It is compared with 

the simulated MSE in Fig. 3.6. The observation implies that the theoretical results 

match the simulation results well, which also demonstrates the convergence of the 

iterative estimator with respect to SER.

3.6.1.2 Im pact of the Autom atic Stopping Criterion

The impact of different threshold e in (3.36) is evaluated in terms of estimation 

accuracy and the corresponding required average iterations. The MSE performance 

degradation of different thresholds as compared with the fixed 10 iterations is shown 

in Fig. 3.7. It can be found that the lower threshold we set, the better MSE we can 

achieve. Consequently, the lower threshold also requires more computations as shown 

in Fig. 3.8. The threshold e — 0.001 leads to more than 6 iterations at low SNR 

and 2 iterations at high SNR region which may result in heavy computational burden 

to battery-limited mobile receivers. However, only 1 iteration is needed for e =  0.1 

throughout the whole SNR range. Regarding the performance degradation, an SNR 

estimator can be equipped which may adaptively select the threshold according to 

the SNR range, e.g., lower threshold for good SNR and higher threshold for middle 

SNR conditions.

3.6.1.3 Performance of the Proposed FAP D etection

The SINR of the FAP’s correlation peak under Channel I and Channel II is shown 

in Fig. 3.9. The curve labeled “preamble” refers to the conventional FAP detection 

scheme based on preamble correlation. Fig. 3.9 shows due to the weak FAP’s power, 

the SINR is extremely low under both channels with the traditional method. It is
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Figure 3.7: Mean square error of the iterative estimator with different stopping
criterion threshold.

Figure 3.8: The average iterations with different stopping criterion threshold.

obvious that the SINR level provided by this method cannot achieve acceptable ac

curacy of FAP detection. However, as analyzed in Section IV, the SINR significantly
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IC & Data 0 iteration 
IC & Data 1 iteration 
IC & Data 3 iterations 
IC & Data 10 iterations 
preamble

10
SNR (dB)

Figure 3.9: SINR of FAP’s correlation peak with and without the proposed
approach.

■i........................... i...........................j..... :...............

Figure 3.10: FAP detection error rate with and without the proposed approach.
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improves with the proposed the proposed algorithm based on interference cancella

tion and preamble extension (the curves labeled “IC & Data”). With as few as 1 

iteration from the iterative estimator, the interference from the LAPs can be accu

rately reconstructed and removed from the received signal. Results show that our 

proposed techniques can achieve approximately 20dB and 16dB SINR gain over the 

traditional scheme under Channel I and Channel II, respectively. In practical indoor 

or urban scenarios, the channel conditions may be much better than these specific 

models and therefore higher SINR can be expected. In [89], the author pointed out 

that the penetration loss may vary around KMB for typical urban office buildings and 

therefore our proposed algorithm is able to provide sufficient gain to overcome the 

severe attenuation in dense multipath environments.

The FAP detection error rate is simulated under Channel I and Channel II in 

Fig. 3.10. It can be found that the detection error rate reduces very slowly with an 

increase in SNR when the conventional scheme is used. The detection error probabil

ity is as high as 20% and 10% even at high SNR ranges for Channel I and Channel 

II, respectively. However, the performance of FAP detection is substantially en

hanced by using the proposed algorithm where the error rate 10-3 and 10-2 can be 

easily achieved at 19dB under Channel I and Channel II, respectively. Again, the 

performance of our proposed algorithms in these extremely bad environments also 

demonstrates its feasibility and effectiveness in practical conditions.

3.6.2 Perform ance o f Proposed O ptim al LAP Selection

In this subsection, we focus on the impact of the optimized LAPs selection under 

a more severe multipath channel with an average power delay profile reported in 

Table 3.2. The channel represents a typical dense multipath scenario with a very
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weak FAP where the LAPs dominate the total channel energy and it is assumed to 

be quasi-stationary during the transmission of one preamble and one OFDM symbol. 

The results are obtained over 10000 channel realizations.

Table 3.2: Average power delay profile of the multipath channel used in the
simulations

Relative Delay 0 15 18 21 29
Average Power (dB) -21.37 -8.33 -1.58 -9.32 -17.85

3.6.2.1 D em onstration of the Optimal Threshold 7opt

Figure 3.11: MSE of LAPs selection with different threshold values.

We first demonstrate the optimal threshold 7opt derived in (3.45) by simulating 

the LAPs selection using different values of 7  over a wide range of SNR values. The 

MSE here is defined as MSE =  \^l ~  h¿|2- ^  is observed in Fig. 3.11 that the

derived optimal thresholds (indicated by text arrows) are in close agreement with the
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simulation results (points with minimum MSE) under different SNRs. Furthermore, 

the ratio of the minimum MSE value with the optimal threshold to the MSE without 

the LAPs selection process (7 =  0 case) becomes smaller with a decrease in SNR. This 

is because at low SNR, the estimation error from the iterative estimator (Section 3.4.1) 

is sufficiently large and comparable to those true LAPs. In other words, the noise-only 

taps are more likely to be determined as significant LAPs.

3.6.2.2 M SE Performance Comparison of Different Schemes

Figure 3.12: MSE of LAPs selection under different SNR ranges.

The MSE of LAPs selection is evaluated with different schemes including the LS 

estimator in (3.9), the proposed iterative estimator without threshold, Minn’s scheme 

[86], Kang’s scheme [87], and the proposed optimal threshold. It can be observed in 

Fig. 3.12 that the proposed optimal threshold always gives the best performance under 

different SNR ranges since it successfully selects the dominant LAPs and suppresses

.O ..Kang's method
—□ - iterative estimator - 3 iterations 

Minn's method - rj=0.1

X  Minn's method - ti=0.15
Conventional preamble-based
Proposed optimal yopt

10 15
SNR (dB)
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those noise-only taps. Kang’s scheme only provides slight improvement over the 

iterative estimator without LAPs selection. The proposed optimal LAPs selection 

can achieve approximately 4 — 5dB gain over both Kang’s scheme and the iterative 

estimator. Furthermore, it can be found that the error floors occur for Minn’s method 

with different threshold factors. This is because the actual criteria utilized in [86] is 

V\hmax\, where p is the threshold factor and \hmax\ is the largest estimated channel 

tap gain. Since \hmax\ is itself a random variable, a fixed p cannot be optimal for 

various SNRs. It is worth mentioning that [86] pointed out that the optimal r? can be 

achieved by pre-simulations at a particular SNR for a particular channel. However, the 

trial and error process is impractical for dramatically varying wireless environments.

y
3.6.2.3 FAP D etection  Performance

Figure 3.13: FAP’s SINR under different SNR ranges.

The SINR on FAP’s correlation sample is evaluated in Fig. 3.13. It is found that
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Figure 3.14: FAP’s detection error probability under different SNR ranges.

with the conventional preamble-based correlation, the SINR can only reach 8dB even 

at high SNR which cannot provide sufficient peak gain for accurate FAP detection. 

However, with the proposed LAPs interference cancellation and preamble extension 

techniques, an improvement of 15 — 20dB over the conventional scheme is observed. 

The performance of Minn’s scheme is several dB below the proposed optimal one. It 

should be mentioned that the performance gaps between the optimal threshold and 

the other schemes are relatively small due to the short channel length where the ratio 

of insignificant taps to dominant LAPs is low. The impact of channel length will be 

studied in the next subsection.

The corresponding FAP detection error probability is presented in Fig. 3.14. 

It indicates that an approximate 50% performance gain over other schemes can be 

obtained at lOdB when the optimal threshold is adopted. Although at this SNR 

the performance difference is not significantly large, it could cause large location
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estimation error when the FAP is missed and the subsequent LAP is erroneously 

judged as the direct path. Furthermore, as we can see, with an increase in SNR, the 

performance gaps gradually expand.

3.6.2.4 Im pact o f M ultipath Channel Length

Figure 3.15: FAP’s SINR with different multipath length.

Fig. 3.15 and Fig. 3.16 demonstrate the SINR and the error probability of FAP 

detection with various channel lengths. The same power profile in Table 3.2 is used; 

however, the channel length is increased by padding zeros between two dominant 

paths and the relative position of each dominant path remains unchanged. Distin

guished performance gain can be observed with the proposed FAP detection scheme 

over others for both SINR and detection error probability.
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/

Figure 3.16: FAP’s detection error probability with different multipath length.

3.6.3 Perform ance o f th e T O A -B ased Position ing System

U sing th e Proposed FAP D etection  Approach

To study the impact of our proposed FAP detection algorithm on TOA positioning 

system, a more realistic signal propagation scenario is considered in this subsection 

where the length of multipath channel is set to 60 with 4 LAPs randomly placed in 

the tap range [20,59]. Different FAP’s average power is considered in this simulation. 

The average power of LAPs is also randomly chosen and the sum is normalized to 

1 — ctq. The length of preamble signal is correspondingly increased to 63 samples. We 

evaluate the root mean square error (RMSE) of the normalized arrival time of FAP 

under wide range of SNR. It can be observed in Fig. 3.17 that the proposed FAP 

detection algorithm can achieve significant gain over the conventional preamble-based 

detection with different FAP’s power. At high SNR range, very accurate arrival time 

estimates (less than 1 tap) can be achieved with the proposed FAP detection algo-
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Figure 3.17: RMSE of FAP’s arrival time estimation with and without the proposed
FAP detection approach.

rithm. Furthermore, as expected, the RMSE gaps between the proposed algorithm 

and the conventional one reduce with an increase in FAP’s power.

Numerical results for positioning system using our proposed algorithms are 

shown in Fig. 3.18. Four synchronized TXs with known locations are used in our 

system. The coordinates of the four TXs are (0,0), (0,500), (500,0) and (500,500) 

respectively and the RX location is chosen randomly inside the square formed by 

these TXs. Each circle or star represents one round of location process (Stars are the 

results with the proposed algorithms). The propagation model used in Fig. 3.18 is 

considered here. The time resolution AT is assumed to be 5ns such that the maximum 

channel delay spread is around 300ns [89]. The FAP’s power is —21dB and SNR 

15dB. The accuracy of the positioning process is evaluated by the distance between 

the estimation and the true location of the RX (origin of the coordinates). The 

simulation results show that with LAPs interference cancellation and the utilization
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Figure 3.18: Numerical results for the proposed positioning system with and 
without the proposed FAP detection approach.

of augmented preamble, the accuracy of the positioning system using the proposed 

algorithms is within several meters while for conventional preamble-based location 

estimation this value is as large as thirty meters.
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3.7 Sum m ary

A new FAP detection scheme based on multipath interference cancellation is proposed 

for TOA-based positioning systems in dense multipath environments. Utilizing the 

channel estimation and data demodulation results provided by the iterative estima

tor, the interference components of the LAPs are reconstructed and removed from 

the original received signal. Furthermore, based on the analysis of the estimation 

error, an automatic stopping criteria is proposed to reduce the computational com

plexity of the iterative process. Performance of the proposed algorithm is evaluated 

by mathematical analysis and computer simulations. It is shown that the proposed 

algorithm is capable of improving the performance of the FAP detection substantially
y

with very few iterations over the conventional correlation detector in dense multipath 

environments.



C hapter 4

M L-O FD M  System  D esign  for M ulticell 

C ooperative N etw orks

4.1 Introduction

The performance of conventional cellular networks characterized by SCP can be sub

stantially improved by multicell cooperation technique which enables joint signal pro

cessing among several interfering BSs to fulfill the demands of broadband mobile 

multimedia applications. However, as mentioned earlier in Section 2.3.2, technical 

challenges arise in practical implementation of multicell cooperation including back

haul issues, network latency and BS synchronization. Therefore, the motivation of 

this chapter is to address the aforementioned challenges with the proposed Multi- 

Layered OFDM (ML-OFDM) system. As OFDM is envisioned as a key technology 

for broadband wireless communications and most of the broadband systems (DVB- 

T, DVB-H, WiMAX and LTE) are already OFDM-based, we propose a ML-OFDM 

system which provides a robust, efficient and flexible platform specially tailored for 

the newly conceptual multicell cooperation enabled cellular networks.

The proposed ML-OFDM is illustrated in Fig. 4.1. The Base Layer (BL) pro

vides conventional OFDMA-based two-way unicast services ( “private” information)

81
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for cellular users and the Enhanced Layers (ELs) offer several other important func

tionalities for the cellular network. First, the broadcast services ( “common” infor

mation) [90, 91, 92, 93] including location information of mobile users, em ergency  

alerting  signal or public messages can be delivered by utilizing one EL link to the 

silent mobile receivers over the entire cell for the design of potential location-assisted 

applications. The “common” and “private” information is overlaid across both the 

entire frequency and time domains, and therefore, the tedious procedure to establish 

sperate infrastructures or design orthogonal multiplexing could be avoided, which 

significantly reduces the implementation cost and radio resource overhead. Secondly, 

alternative parallel EL can provide a dedicated over-the-air link among different BSs 

of exchanging the available information, e.g., CSI pertaining to all relevant direct and 

interfering links, data symbols sent to the target MS, and transmission parameters 

including power level, beamforming coefficients, time slot, subcarrier usage etc. These 

information can be sent concurrently with data-carrying OFDM signal (BL signal) 

for dynamic BS coordination. Such coordination protocol can be realized by solely 

exploiting the proposed EL link or using this link to enhance the pre-existing finite 

capacity backhaul network when a high-bandwidth link is required for information 

sharing. In addition, the timing synchronization between cooperative BSs can also 

be easily achieved through additional parallel EL link in PHY layer, eliminating the 

involvement of MAC layer scheduling, which reduces the potential network latency. 

Compared with the traditional control channels, which occupy additional spectrum 

resources for the aforementioned purposes, multiple functionalities are simultaneously 

supported by the proposed ELs using both the same spectrum band and the timing 

slot as those of the OFDM data-carrying signal.

The rest of the chapter is structured as follows. The principle and architecture of 

the proposed ML-OFDM system are presented in Sections 4.2 and Section 4.3. Based
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(a) (b)

Figure 4.1: Snapshot of a cellular network with multicell cooperation using the 
proposed ML-OFDM. (a) Snapshot of the cellular network (b) The signal frame of

the proposed ML-OFDM

on our interference analysis for the proposed ML-OFDM, an efficient EL induced 

interference cancellation algorithm is proposed. In Section 4.4, we analyze the system 

performance including the error probability of the proposed EL links and the impact 

of EL link on the capacity of the BL. Based on these analysis, a power distribution 

scheme is proposed which optimizes the system performance with a few practical 

constraints in Section 4.5. Simulation results are provided and discussed to access 

and validate the performance and feasibility of the proposed system in Section 4.6. 

The chapter is finally summarized in Section 4.7.
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(a)

(b)

Figure 4.2: Block diagram of the proposed multi-layered OFDM system: (a)
Transmitter (b) Receiver.
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4.2 Transm itter D esign for the Proposed  

M L-OFDM  System

4.2.1 Overall Signal Structure

The transm itter’s block diagram of the proposed ML-OFDM system is shown in 

Fig. 4.2 (a). Let X(k)  denote the complex data of the unicast data on the A:th 

subcarrier of the BL and N  denote the total subcarrier number. The corresponding 

OFDM block of the BL is given by

X =  [X (0),X (1),... , X ( N -  1)]. (4.1)

Without loss of generality, assume K  ELs and the BL are overlaid across both 

the frequency and time domains. The K  ELs are able to provide multiple functional

ities including broadcast service, multicell cooperation signaling and BS synchroniza

tion, etc. The data streams on these ELs are first modulated by the proposed scheme 

(described in next subsection) And then superimposed onto X with different power 

levels and therefore the overall frequency-domain signal can be formulated according 

to
K

S =  X +  ^ ^ E  *, (4.2)
i = 1

where Ej denotes the signal vector of the *th EL and Pi denotes its corresponding 

transmission power. Therefore, each time-domain data block is then generated by N  

point IDFT,

1 tV—l -27T kn
s (n) =  7 ^  E  S ( k ) e > - F T ,  n = 0 ,1 ,2 ,-•• ,N  -  1.

' / N  k=0

(4.3)
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Figure 4.3: Illustration of the proposed modulation scheme for the Enhanced Layers.

Note that by assuming that the CP in our system is longer than the maximum channel 

delay spread, the transmitted symbols are free of ISI and therefore, the insertion and 

removal of the CP will not be included in the following discussions throughout the 

chapter.

4.2.2 M odulation  o f the Enhanced Layers

In the proposed system, we propose a Modified Code Shift Keying for the ELs. The 

Code Shift Keying [94, 95, 96] is adopted as the basic modulation scheme where M  

different cyclic phase shifts of a signature sequence is employed as At-ary signaling 

to transmit data sequences. As the desired multicell cooperation signaling and the 

broadcast services should be very robust in handling strong interference and providing 

reliable information transmission, Code Shift Keying can offer very high noise and 

interference immunity such that low rate but error-free data transmission can be

achieved.
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Without loss of generality, we first study the modulation of the ith. EL. We 

denote the signature sequence used on this layer as with length M.. For simplicity, 

we assume that N / M. = 'F is an integer. As we can see from Fig. 4.3, the input 

data stream is first grouped into fc-bit (k =  log2 A4) data symbols and thus can be 

represented as

D «  =  [<$>, d ® ,. . - .d g L ,] .  (4.4)

For analytical simplicity, the superscripts (i) is dropped in this section unless other

wise noted. Each data symbol dm can be denoted by

dm =  [dm,0> ^m,l> ’ ’ ’ > ^mjt—l] - (4-5)

According to the symbol value of d m , the signature sequence Z is cyclicly shifted by 

a unique phase Om determined by the symbol value and denoted by Zo m- Note in 

our case, the phase Om takes value of {0,1, • • ■ , M. — 1}. The system parameters of 

the modulation scheme is shown in Table. 4.1.

Table 4.1: System parameters of the proposed modulation scheme
Sequence Length Bit Number Sequence Number Total Bit Number

of Each Data of Each OFDM
Symbol Block

M k = log2 M if =  N /M V - k

After code phase shift operation of each data symbol, the output signal on the 

rth EL can be represented by

E i = y(i) y(i)
Lz o 0’z Oi ,Z (0

°9~: (4.6)

The same modulation steps can be applied for the j th  EL except that the
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signature sequence Z (*) is now replaced by

We now consider the design of the signature sequences. Denote the set of sig

nature sequences used by the K  ELs by,

Z  =  Z ^ ,  Z<2\  • • • , Z ^ -1 )} . (4.7)

The ideal design of the signature sequences should meet the following criteria,

M - 1

E 4 Ì
k=0

•Â i, if i — j  f l  Om — On
<

O? if i ^  j  U Om ^  On
(4.8)

(4.8) indicates that ideally the signature sequence should be orthogonal to its cyclically 

shifted versions and other sequences regardless of any shift in the set such that the 

mutual interference between different ELs will be completely eliminated. However, 

the sequences with the perfect correlation properties do not exist in mathematics. Re

cently, Zadoff-Chu sequence has received considerable attention due to its excellent 

correlation properties and therefore is adopted by 3GPP LTE air interface as Primary 

Synchronization Signal (PSS) and Random Access Preamble (PRACH). One impor

tant property of Zadoff-Chu sequence is that it has perfect cyclic auto-correlation and 

small cyclic cross-correlation values. Therefore, it is preferred for Code Shift Keying 

modulation and used as the signature sequence in our proposed system.

For clarity of exposition, an example is given where N  = 1024 and M  — 64, then 

it is possible transmit 6 bits for each sequence and a maximum number of 6 x 16 =  96 

bits can be transmitted for one EL within one OFDM data block. In the case of 

3GPP-LTE Evolved Universal Terrestrial Radio Access (EUTRA) air interface where 

the symbol duration is 66.7ps, data rate for this EL in the proposed system can be 

as high as R^ = 96bits/66.7yus ss 1.4Mbps. The rate is sufficiently high for broadcast



Chapter 4- ML-OFDM System Design for Multiceli Cooperative Networks 89

services, i.e., video conferencing quality stream (128 — 384kbps) and VCD quality 

stream (1.15Mbps max), as well as THE multiceli cooperation signaling between the 

cooperative base stations.

4.2.3 F lex ib ility  o f th e Proposed M odulation

The proposed modulation scheme is capable of improving the system flexibility. The 

total transmitted number of bits is not necessarily fixed to 4/ • k which is shown in 

Table. 4.1. For instance, when a low-rate data stream such as location information 

is broadcasted using the proposed EL link, the data symbols can be repeated several 

times in the data block, e.g., (4.4) can be reformulated as

d W = ,(0 ,d«
V/K - 1 ,d (0

y/11- 1 (4.9)

n n

The benefit of this strategy is that in the receiver side, the averaging can be per

formed to reduce the associated interference and noise and therefore improve the 

robustness of the EL link. Furthermore, to achieve the same performance, lots of 

power budget can be saved at the transmitter side. The same mechanism can also be 

applied to the muticell cooperation signaling, when different quantization techniques 

are used to reduce the overhead of the shared CSI/user data information [97, 98]. 

Consequently, our proposed modulation scheme can adapt to future cellular networks 

in most flexible, efficient and reliable manners.

4.3 R eceiver D esign for the Proposed System

In order to implement the proposed ML-OFDM system, some modifications are nec

essary to traditional OFDM receiver. As the overlay ELs’ signals appear to be large
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interference to the BL’s signal, to guarantee the service quality of the unicast ser

vice on the BL, the first step is to demodulate the data on the ELs. The receiver 

is then capable of removing the interference induced by the previous demodulated 

ELs by using the estimated channel and the regenerated signals on the ELs and thus 

minimizing the impact on the demodulation of the BL.

4.3.1 D ata  D etection  on th e Enhanced Layers

Consider a block fading multipath channel h =  [/iq, h\, h2, • • • ,h i _ i] and its fre

quency response can be denoted by H whose element is given by,

^ ^  j2nlk
H(k) = Y  V  fc =  0,1, • • • , N  — 1. (4.10)

1=0

We assume that the channel impulse response hi, 0 < l < L — 1 are independent 

complex Gaussian-distributed random variables with zero mean and a variance of af,  

and therefore the fcth subcarrier channel frequency response H(k)  is also a complex 

Gaussian random variable with zero mean and variance of a^  ° f  • Then the

received signal in frequency domain after passing through the multipath channel can 

be represented as

K
Y ( k ) =  X{k)H{k)  +  V P i Ei(k )H(k) + W(k),  k = 0 ,1 , • ■ • , TV -  1 , (4.11)

i= 1

where W{k)  denotes the kth subcarrier AWGN sample with zero mean and variance 

c7̂ . For analytical simplicity, we first assume that the channel is estimated and 

compensated with high accuracy and therefore the signal after frequency-domain
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equalization can be written as

K

S \k )  = X (k ) +  J 2  \ fP iE i(k ) +  W'(k),  k =  0.1. • 1 • . N  ~  1. (4.12)
i=l

where W'{k)  =  W ( k) / H ( k ) represents the fcth subcarrier AWGN scaled by the chan

nel frequency response. As previously analyzed in (4.6), each EL may consist of 

several modulated signature sequences and therefore without loss of generality, we 

now discuss the demodulation of the m th data symbol of the j th  EL. First the cyclic 

phase embedded in the sequence is detected by computing the frequency domain 

cross-correlations between the corresponding signal segment and the local generated 

signature sequence with all possible cyclic phase shifts:

M - i  +

R (< P )=  £  S \ k  +  (m  -  1 ) A 4 ) Z ^  (fc)> °<P =  0 , 1 , - - - , Z - 1 ,  (4.13)
k=0

( j )
where Zq^  is the locally generated j th EL’s signature sequence with all the possible 

cyclic shifts.
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Mathematically, (4.13) can be further expanded as

X (k  + (m  -  1 )M )  + Y ,  V P i Z o J V  +  " ' 'W
Z=1

M - 1 /s:

*(*>) = E
k= 0
Ai-1  .M-l

= E sfpÆ̂ol<*> + E E  m
k=0 k=0 V

At-1

E
A:=0

mutual Enhanced Layer interference

V)+ E [X(*+(m-l).M)+ »"(*)] (*)
Base Layer interference and noise

+  E " o l [ * ( *  +  (m -  1 )M ) +  VF'(fc)] Z ^ * ( t )  if Om =  O 

E fe o 1 [ * ( *  +  (m -  l ) A f ) +  »"(A:)] if

(4

The mutual layer interference can be assumed to be negligible when comparing with 

the strong interference from the BL and the AWGN,

K  M - \  +

E E ^ i ( ‘)^(*)» <41s)
i= l,i^j k=0

Therefore, the local signature sequence with cyclic phase shift that leads to the 

maximum correlation output is the phase encoded from the transmitted data bits. 

With the one to one mapping between the decimal value of the input data sequence 

and the cyclic phase shift O^, the original data dm  in (4.4) can be retrieved.

4.3.2 Interference C ancellation o f Enhanced Layers

The superimposition of ELs’ signals may cause large interference to the demodulation 

of OFDM data on the BL. However, due to the significantly large gap between the
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regenerated ELs’ signals E( =  Ej is close to unity. Hence, E( can be subtracted from 

the received signal according to,

K

S' -  £  (4-17)
1=1

In practical wireless communications, the interference cancellation can be im

perfect due to the channel estimation errors and data detection errors, resulting in 

residual interference after the subtraction. If we denote the estimated channel fre

quency response as H7 and the residual interference can be written as

K

I =  ^ E j H - E ' H '
i= 1 
K

=  ^ 2  Ej A H  +  A E jH  + A E jA H , (4.18)
2=1

where A H  =  H  — H ' and A Ej =  Ej — E  ̂ denote the error of channel estimation 

and regenerated signal, respectively. Note that the last term in (4.17) is small in 

magnitude and can be neglected. Then the variance of I can be calculated,

K

— ^ 2  PiaAH  +  2Pe)iPi&H, (4-19)
i = 1

where Pe j denotes the SER of the ith EL and cr\H denotes the variance of channel 

estimation error. The residual interference is influenced by both channel estimation 

and data detection results. Nevertheless, as Pe i is already sufficiently small («  10” 6), 

the second term on the right hand side of (4.18) can be significantly weaker than the 

first term. (4.18) also implies that the accumulated residual interference from all 

the ELs may dramatically reduce the BL’s performance. As a result, further power
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distribution scheme is definitely required to optimize the overall system performance

as we will discuss later in the following sections.

After interference cancellation, hard data decisions can be made upon the 

interference-suppressed signal and the OFDM data on the BL can be retrieved.

4.4 Perform ance Evaluation of the Proposed  

System

4.4.1 Error Perform ance A nalysis o f Enhanced Layers

As the proposed modulation scheme is similar to conventional Af-ary signaling, the 

BER expression given by [99] can be used to evaluate the performance of the proposed 

modulation. However, it is difficult to obtain a closed-form expression and thus the 

computational complexity for the potential power distribution will be extremely high 

if the exact BER expression is used as a constraint. For efficiency improvement of 

further power distribution scheme, a simple BER upper bound is derived in this 

subsection.

In order to evaluate the robustness of the proposed modulation scheme, the 

Peak-to-Noise Ratio (PNR) of the correlation output is first analyzed. For analytical 

simplicity, the correlation output in (4.14) can be rewritten as

R(<p) =
.4 +  n if Om — 0(p 

n  if Om ^  0<p
(4.20)

where denotes the ideal peak value and 

denotes the associated interfer-
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ence and noise term on the peak. It is obvious that n  is Gaussian distributed and 

satisfies,

n ~  JV (o, a j )  , (4.21)

where the variance cr^ =  +  Mcr'j?. o'^ represents the variance of the W'(k)

and can be calculated according to

c'n =  J  ~ ^ p { \ H ( k )
0

(4.22)

where p(\H(k)\) denotes the probability density of the magnitude of the channel 

frequency response,

p (|Ä W I) = |ff(fc )l

aif/2
exp (4.23)

Therefore the PNR of the correlation output can be represented by

A 2PNR =  -7T-

P jM 2

E E ä ö 1 M *  +  (m -  1 )M) + W'(k)] (k)

P jM 2

<])

M cr̂  +  Ma'r 2
(4.24)

It can be observed in (4.23) that the PNR is dominated by the sequence length 

M. and the power level Pj. Longer signature sequence and higher transmission power 

can be allocated to achieve more robust transmission for the multicell cooperation and 

broadcast signaling. However, as shown in Table. 4.1, the corresponding transmission 

data rate is reduced and the resultant interference to the BL (unicast services) will
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also be increased.

It is worth mentioning that in the case of (4.9), where each modulated sequence 

on the EL is repeated by 7Z times for robustness enhancement, then the corresponding 

segments can be averaged prior to correlation. Therefore, the correlation output can 

be rewritten as

M - 1 M - 1

S  £  |z o i m |  +  £  [ * «  +  W'(k)
k=0 k=0

Z f f ( k )  if 0 „  = (4.25)

where X(k)  is the averaged OFDM symbol with variance crJ/7£ and W'[k)  is the av

eraged noise with variance cr'^/lZ. The corresponding PNR can then be reformulated 

by,
PjM2 ■ TZ

PNR = ---- J- -----------(4.26)
Mcrjj +  Mcr'n*

As we can see from (4.19), the correct detection of the cyclic shift (phase) for 

the M. — 1 comparisons should meet the criteria A > n + n. Now let us consider a 

new variable y — 2n and its probability density can be derived as follows

oo

p y (v )
- s PN(n )PN(y -  n )dn

—oo
oo

-I
—oo

\j2na

n
e

\/2na.

1
=— e 2aw dn

y2 00 
"C T

\J  2na.
e 2<Jw I \J2ircr2

—oo

2(n-y/2)2-y2/2
2ow

i - 4 te
2y/ñaw

(4.27)

The correct detection should meet the criteria that y < A for all M. — 1 correlation
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comparisons and therefore the false detection probability for one comparison is given 

by

(4.28)

The false peak detection is then upper bounded by its union bound,

Pf  = (M  -  1 )PC. (4.29)

Assume that all the bits in one data symbol dj are equally likely. Since one 

symbol is composed of k bits, the BER of the jth e  EL is therefore upper bounded by

ofc-l
P‘.i =  5 F T T  P f - J - ' a

Pj ■ NPNRj

^  M -  1 
— — n—  exP

Pj • NPNRj
(4.30)

where we define the normalized PNR of the j th  EL as NPNRy =  PNRj /Pj-

4.4.2 C apacity Loss A nalysis of Base Layer

The average channel capacity of the BL is derived in this subsection to study the 

impact of EL’s transmission on the overall system performance. After interference
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cancellation, the effective received signal of the BL can be represented as

Y ' =  X H  +  I +  W . (4.31)

Assume that the LS or MMSE estimators using training sequences are used for 

channel estimation in the proposed system and if the length of the training sequence 

is Nt, when L /N t is sufficiently small, the residual interference term I in is essentially 

uncorrelated with W . Therefore, 1+ W  in (4.30) can be considered as a Gaussian vec

tor with zero mean and covariance matrix of p i°\.H  +  ^pe,ipia^j +  I/V>

where I/y is an identity matrix of order N. Based on the analysis of the average

channel capacity for flat fading channels given in [100], we derive the average channel/
capacity of BL C ^ l  by summing over all the subcarriers,

N - 1
C B L =  1  V e

N  ^
k = 0

log ( i + ______________ p-• '"¿I2___
\  P B ° A H  S i = l  P ìg \ h  t̂ Pe,iPi cr‘i i  +  °n

(4.32)

where Pq denotes the power of BL and it has been normalized to one. For analytical 

simplicity, the following Gaussian random variable with zero mean and unit variance 

is introduced, g =  H'k/ y j v ar (H'k) ■ Therefore, (4.31) can be reformulated as

N - l

k=0

/

log

\

1 + PB ■ Var |9 |:
K

P to ta lG A H  p  ^  ‘2 P e ,iP i a ‘] f  +  a n  
i = 1 /J

(4.33)

1/
where P to ta l — P B  + 2Ji=i P i- Furthermore, the assumption that the normalized 

channel estimation error is sufficiently small holds when accurate channel

estimation techniques are adopted and therefore Var (#£) can be approximated to
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Then the capacity can be further approximated as

N - 1

k=0

/

log

\

1 + PB ■ ° h \9Ì

log 1 +

K
Ptotala \,H  ^  ^  ^Pe,iPi°'% +  °n  

i=1
PB ■ ° h \9\2

P to ta la A H  +  1 ^ P e jP iV H  +  <Tn )

(4.34)

In the absence of ELs’ transmission, the upper bound of BL’s capacity can be written 

as
_  1 (  pB ■ ojrlgl2 \

a  Hiyi ' (4.35)C BL =  j j  E  loS (  1 +
k=0 \  PB°AH  +  <

By introducing the maximum allowed capacity loss AC, the ELs’ transmission 

is enabled in the ML-OFDM system only when the following constraint is satisfied

C b l ~ Cb l  <  AC. (4.36)

The above constraint is referred to as the BL’s capacity loss constraint and can be 

reformulated as

CBL > C, (4.37)

where C = C ^ l ~  AC. The above constraint is essential for the multi-layered system 

design as it reflects the impact of ELs’ transmission on the BL. If the capacity loss 

is sufficiently large that the BL cannot tolerate, no ELs’ transmission is allowed. 

Therefore, the constraint will further be used in the power distribution scheme as we 

will discuss in the next section.
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4.5 Power D istribution for Enhanced Layers’ 

transm ission

Power distribution scheme for different ELs is discussed in this section. The objective 

is to optimize the overall system performance by balancing the tradeoff between the 

ELs and the BL. Therefore, we propose to optimize the overall error performance of 

the ELs given the constraint on the BL’s capacity loss. Furthermore, by considering 

the different service quality of different ELs, we introduce the proportional BER 

constraints into our system. The benefit of the proportional constraints is that we 

can flexibly control the reliability of different signaling and therefore provide different 

target quality for different purposes.

The power allocation can be expressed mathematically as,

____ Y a - \  kiPhimin BER =  - l  b'1,
p i  Z h  k i

subject to,

E *=l Pi — Pe ,total

CB L > C

p b,l ■ p b,2 : : p b,K  =  71 : 72 = • • • : 7 K ,

where denotes the BER upper bound of the ith  EL as derived in (4.29). denotes 

the effective transmitted bit number on the ith  EL. Pe ,total is the total transmission 

power budget for the ELs. {7i } ^ i  is the set of the predefined values which are used 

to ensure the proportion of BER on different EL. The purpose of introducing the 

proportional BER constraints is to support various reliability/coverage requirements

(4.38)

(4.39)

(4.40)

(4.41)
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of different signaling, i.e., BS coordination signaling needs more robust transmission of

CSI information than the broadcast-, the constraints can be flexibly adjusted according

to system design targets. Note that the nonlinear inequality constraint —Cb l  <

C  makes the optimization problem in (4.37) nonconvex. Iterative methods, such

as Newton-Raphson or quasi-Newton methods can be used to obtain the solutions,

however, with a large amount of computational complexity. However, under ceratin

conditions, the optimal or near-optimal solutions of problem can be found with low

complexity. Since the operating SNR range for the ELs is much lower than that of

the BL. Therefore, we analyze the case where certain approximations can be made.

Under traditional OFDM’s operating SNR range, the SER of the ELs Pe^ ,i  =

1 , 2, ••• ,K  are already very low and the variance of channel estimation error o ^ h

can be considered to be much larger as compared with Pe t . Therefore, the term 
K
S  2Pe ¿Pj in (4.33) is significantly smaller than the other interference and back-

i = 1
ground noise Ptotala\.H  +  °ni the capacity of BL given by (4.33) can be further 

simplified to

=  log

It is obvious that now the approximated capacity is concave function with respect 

to P{, therefore, the problem becomes convex. Its global optimal solution can be

1 +
P B ° I h  +  1 P ia A H  +  a n )

(4.42)
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obtained by Karush-Kuhn-Tucker (KKT) conditions [101] as follows,

ABER SCBL ' C  9  ( F|>'1 ~  % Pb-<)
W  + A +  " ^ + S -to 4

i= 1 dP:

K

X ( ^ 2  p i -  P total 
i = l

=  0

=  0

M I !og I 1 +
PB -a2H

Pb ° \ h +  E £ i P i°2
+ c \  =

A H  T  ^ > i = l 1 *UA H
(  (  A -N PN R A  71 (  P i -N P N R iW

Wi r P {---- 4--- ) - ̂ 6XP (----— J)

(4.43)

(4.44)

(4.45)

(4.46)

where A, p, and zji are the Lagrange multipliers. Vi E {1, ■ • • ,K }  A > 0, p > 0 ,  and

zoi > 0.

Note that the capacity given by (4.33) is a monotonously increasing function of 

P{. Therefore the constraint (4.39) can be reformulated by

K

ì= 1

10°  -  1

PB ° H ° I h
~ p B =  X (4.47)

where the right hand side of the above inequality is denoted by y.

From (4.43) and (4.44), we note that A and p  are not allowed to be syn

chronously nonzero which means

K

A ^ 0  = X (4.48)
i = 1 
K

= > ^ 2 p i =  PE,total > 
i=l

(4.49)

when y  7̂  p total■ Therefore, the problem can be discussed in the following two 

circumstances:
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A. When x  <  Ptotal

With this condition, we can obtain YlfL i Pi <  Pe ,total since J2p=i Pi < X■ 

Therefore, according to (4.47), A =  0 is obtained. Therefore, (4.42) can be furthered 

expanded and solved by

hi
~K
Ë  ki

i= 1

=>Pi =

NPNRA
4 J p b,i +  P  +  & i

- 41o4 ( Ä T ^ p n r - / « } / n p n ^ . (4.50)

where rn =  ------Note that when p  =  A =  0, then it is easy to obtain
E  ki

k= l  /
Pj —» oo, which is impossible for real implementation. Therefore, this circumstance

is not allowed to occur, p  and A must not be synchronously zero.

B. When x  >  Ptotal

Similarly, we can obtain that E ^ l  Pi < X since Yld=i Pi ^  Pe ,total- Thus, 

p — 0 in this circumstance. The solution is thus given by with p  replaced by A

P i =  ~ 41° s  { ( T ^ T ^ J p n r T/’k }  /N P N R i' (4 » )

Also p and A are not allowed to be synchronously zero.

From the optimal power distribution solution for the ELs, it implies that the 

power level for different ELs depends on the parameters A, p, and A is the dual 

variable associated with the total transmission power budget. It is straightforward 

that a lager transmission power budget will result in a smaller A and thus a higher 

power level, and vice versa, p  is the dual variable associated with the tolerable 

capacity loss of the base layer. If the base layer can accommodate a larger residual 

interference introduced by the transmission of ELs, p  would be smaller, and therefore
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a higher allowed transmission power level, and vice versa. For instance, in an extreme 

case where the base layer cannot accommodate any interference or in other words, the 

capacity loss constraint for the BL is zero, then p  would be infinity and the resultant 

zero power level indicates that no ELs’ signals superimposed onto the BL is allowed 

in this condition. Similarly, the analysis can be also applied to which is associated 

with the proportional BER constraints of the ELs.

4.6 Sim ulation R esults and D iscussions

Numerical simulation results are presented to evaluate the performance of the pro

posed ML-OFDM. The OFDM system with 1024 subcarriers and CP of length 1/8 of 

the symbol duration is considered in the simulation. The modulation scheme for the 

BL is chosen as 4-QAM. In additional, two ELs are considered in the demonstration 

system which are designated to the BS cooperation signaling and the broadcast ser

vice, respectively. Two nearly orthogonal Zadoff-Chu sequences with length M  = 64 

are used as the signature sequences for the two ELs. To improve the robustness of 

the ELs, the signals are formulated according to

D t1) = d (1) • • • d (1) d ( 1 ) .. • d (1) u 0 > ’ u 0 ’ U1 ’ ’ U1
8 8

d (2) = fd (2) d ( 2 ) ............  d (2) d (2)l
a 0 >a l  » ’ ’ a 14 ’ a 15

Each data symbols are repeated by 8 times on ELI and therefore the total transmitted 

bit number becomes k\ = 12 bits for ELI and &2 =  96 bits for EL2. Note that the 

repetition time can be flexibly adjusted according to the system requirements, i.e., 

the BSs share the CSI information by using the global vector quantization (GVQ)



Chapter f:  ML-OFDM System Design for Multiceli Cooperative Networks 105

BL's capacity loss 5% 
BL's capacity loss 10% 
BL's capacity loss 20% 
BL's capacity loss 30% 
BL's capacity loss 50%

SNR (dB)

Figure 4.4: Effect of varying capacity loss constraints on the maximum ELs’ 
transmission power (with fixed channel estimation error — 0.10).

approach [98] to reduce the overhead. In this example, ELI is used for BS cooperation 

signaling and EL2 is utilized to broadcast public information.

4.6.1 T he Im pact o f Base Layer’s C apacity Loss Constraint

In this subsection, we first examine the impact of the BL’s capacity loss constraint 

in (4.35) on the performance of the ELs. Fig. 4.4 shows the maximum allowed total 

transmission power for the ELs with different BL’s capacity loss constraints. It can 

be observed in Fig. 4.4 that as the capacity loss constraint becomes looser, higher 

transmission power is allowed for the ELs, which will significantly improve the reliabil- 

ity/coverage of the multicell cooperation signaling and the broadcast service; however, 

the performance of unicast services is dramatically degraded. It is also apparent that
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Figure 4.5: Effect of channel estimation accuracy on the capacity loss of the BL 
(with fixed ELs total transmission power Pe  total =  !)■
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an increase in SNR will result in a decrease in the attained total transmission power. 

This is because as the variance of AWGN reduces, the capacity loss is dominated by
TS c\

the term P i ' aAH' ^  there exists large channel estimation error, then a small 

increase in Pe ,total will cause dramatic reduction in BL’s capacity and therefore no 

ELs’ transmission is beneficial in this case. Therefore, we subsequently assess the 

consequences of different channel estimation accuracy on the BL’s capacity. From 

Fig. 4.5, it is observed that the capacity loss increases as the channel estimation be

comes less accurate. In particular, at the SNR level of OdB, when the variance of 

channel estimation error is larger than 0.1, the capacity loss can be larger than 35% 

which dramatically degrades the performance of the BL.

/

4.6.2 Power D istribution  U sing the Proposed  A lgorithm  for 

th e  Enhanced Layers

To verify the effectiveness of the proposed power distribution scheme (suboptimal) in 

Section 4.5 with the proportional BER constraints, the allocated power for the two 

ELs versus different accuracy of channel estimation is plotted in Fig. 4.6 and compared 

with the optimal power distribution scheme. The BER proportional constraint in this 

case is set to 71 : 72 =  1 : 2 for the two ELs and the BL’s capacity loss is set to 

10%. The optimal power distribution scheme uses the exact BER expressions given 

by [99] instead of the derived BER upper bound. The exact BER expressions can 

represented as

PP = I -00 1 - ( 1

Pk =

Q{x))
o/c —1
k r

M - l
V p n r Y  
~2----e dx (4.53)

(4.54)
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Figure 4.6: The allocated power to different ELs with the proposed power 
distribution scheme and the optimal power distribution scheme.
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- 0 -  EL #1 - con waterfilling 
— EL #2 - con waterfilling 
- 0 -  EL #1 - equal power 
-■*- EL #2 - equal power 
-■©- EL #1 - proposed power 
-■*- EL #2 - proposed power

-20 -18 -16 
SNR (dB)

Figure 4.7: BER of different ELs using the proposed power distribution scheme and
other schemes.
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The above expressions can only be calculated numerically and therefore, an exhaustive 

searching is carried out to find the optimal P\ and P2 for the two ELs to satisfy the 

proportional BER constraints and therefore the required computational burden can 

be extremely high. Fig. 4.6 shows that the gap between the optimal and the proposed 

algorithm is almost invisible and therefore it confirms the feasibility of the proposed 

power distribution scheme.

The BERs of different ELs are plotted in Fig 4.7. It can be found from the figure 

that with the proposed power distribution scheme in Section 4.5, the performance of 

the two ELs is well differentiated according to the proportional constraints. For 

comparison, we also evaluate the performance with equal power allocation and the 

conventional optimal power allocation without the proportional constraints [102], It 

can be observed that for equal power distribution, due to the different robustness, 

the ELI achieves too much gain over the EL2 which leads to the unfair resource 

allocation. Moreover, for the conventional waterfilling scheme in [102], it tends to 

allocate power such that the performance of the two ELs are similar. It is worth 

mentioning that the BER ratio of the two ELs may be not strictly equivalent to the 

predefined proportion constraints due to the use of the BER upper bound, however, 

large computational burden is reduced which is more meaningful to real time cellular 

network scenario.

To evaluate more intuitively how good the proposed power distribution scheme 

satisfies the BER proportional constraints, a new metric is defined. Let P^i be the 

BER of the kth  EL for the ith  Monte Carlo run and therefore P^ i = P^ J  Pk,i

be the normalized BER for the kth  EL. Also, the normalized BER proportional 

constraints is defined as %  =  7 f c / 7fc- The normalized variance of the BER
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proportional constraints for the ith  Monte Carlo run is defined as

K

Vi =  Y ,  I 4 i  -  Tfcl2. (4.55)
k=  1

Table 4.2: Average variance of the BER proportional constraints under different
SNRs

SNR(dB) -24 -22 -20 -18 -16 -14 -12

71 : 72 0.5 0.5 0.5 0.5 0.5 0.5 0.5
V, proposed 0.0012 0.0052 0.0092 0.0217 0.0170 0.0021 0.0476

V, equal 0.0065 0.0651 0.1743 0.2162 0.2222 - -

V, [102] 0.0535 0.0527 0.0515 0.0603 0.0628 0.0127 0.1591

The average variance over total /  Monte Carlo runs, denoted by V =  Ya = i Vt/L 

is reported in Table 4.2. Note that the ideal V is supposed to be close to zero if the 

allocated power strictly satisfies the constraints. It can be observed that the variance 

of the proposed power distribution scheme is orders of magnitude smaller than those 

obtained by equal power distribution and conventional waterfilling algorithm in [102].

4.6.3 T he Effects o f Enhanced Layers’ Transm ission on 

B ase Layer

After the power distribution of the ELs, the SER of the BL is examined in the presence 

of ELs’ transmission with different channel estimation accuracy in Fig. 4.8. The curve 

labeled “ideal coherent detection” refers to the SER obtained with perfect channel 

estimation. Large gaps can be found in Fig. 4.8 between the curves with relatively 

large estimation error and ideal coherent detection. However, when highly accurate 

channel estimation scheme is used, the SER degradation is almost indistinguishable.
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Figure 4.8: Effect of ELs’ transmission on BL’s performance with difference variance
of channel estimation error.
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Figure 4.9: Mean square error of channel estimation using the proposed iterative
decision-directed scheme.

Therefore, the overall system effective throughput will be significantly improved with 

the proposed multi-layered transmission mechanism since the ELs are able to transmit 

dozens of error-free data bits at the BL’s operating SNR range.

4.6.4 A ccuracy Im provem ent o f Channel E stim ation

As we can see from the previous results, the accuracy of channel estimation has 

large impact on the performance of the overall system. With higher accurate channel 

estimation, the maximum allowed ELs’ transmission power will be increased which 

results in the corresponding enhanced performance of the ELs. On the other hand, 

the capacity loss of the BL due to the interference of ELs will also be reduced in the 

presence of more accurate of channel estimates. Therefore, to improve the quality
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of channel estimation, the iterative decision-directed (IDD) scheme can be adopted 

at the receiver. The process is briefly described as follows: First, the initial channel 

estimates are obtained through periodically multiplexed preamble signal, which is 

applied to coherent detection of the first OFDM symbol following the preamble. 

Then, the transmitted signal in frequency domain is regenerated by combing the EL’s 

signal and the demodulated OFDM symbol. Since the operating SNR range of BL is 

significantly higher than those of ELs, it can be assumed that the signals on the ELs 

can be perfectly recovered. The time-domain transmitted signal is then obtained by 

IDFT operation of the frequency-domain signal and it is combined with the original 

preamble signal to formulate the extended preamble such that the length and total 

power of the extended preamble are substantially improved. This new “preamble” is 

utilized to update the channel estimation with improved accuracy. The above process 

is iterated to simultaneously provide more accurate channel and data estimation.

Fig. 4.9 presents the mean square error of channel estimation with and without 

IDD process under a 10-tap multipath channel with uniform average power profile 

while the total channel energy o ^  is normalized to 1. One EL is assumed and its 

allocated power equals to that of BL and the total power is normalized to one. The 

preamble is assumed to be a pseudo random sequence consisting of 40 samples. 4- 

QAM modulation is also assumed for the BL. In the figure, the label “0 iteration” 

represents the conventional channel estimation scheme by only utilizing preamble 

signal. The lower bound represents the case where the transmitted signal can be per

fectly regenerated and subsequently used as part of the extended preamble. It can be 

observed that the IDD process substantially outperforms the conventional preamble 

based channel estimation scheme. With the increase of iterations, the corresponding 

MSE of channel estimation also reduces. The results also show that with 3 iterations, 

the lower bound can be achieved at the SNR level of 20dB.
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4.7 Sum m ary

A new ML-OFDM supporting multicell cooperative network is presented in this chap

ter. The flexibility of the new OFDM platform is derived from the concurrent trans

mission of the necessary information among the cooperative BSs together with the 

OFDMA-based unicast service. By encoding the CSI/data information using the 

proposed modulation scheme, tedious procedure to establish additional signaling or 

backhaul network can be substantially simplified. The BSs are tightly synchronized 

by utilizing the proposed Enhanced Layer, which significantly improve the perfor

mance of multicell cooperation. In addition, the parallel Enhanced Layer provides the 

cell broadcast capability, eliminating the requirement of separate wireless infrastruc

tures and additional radio resource. The corresponding transceiver is designed for the 

proposed ML-OFDM system based on the proposed modem for the Enhanced Layer 

and the interference cancellation algorithm. Practical power distribution scheme is 

also proposed to optimize the overall system performance by considering a set of 

BER proportional constraints. The performance of the ML-OFDM is analyzed theo

retically and verified through numerical simulations. With the ML-OFDM platform, 

BS coordination as well as various wireless demands will become more efficient and 

flexible and can easily be achieved.



C hapter 5

O ptim al Iterative C hannel E stim ation  for

O FD M  System s

5.1 Introduction

Due to the extremely short symbol duration of broadband wireless communication 

systems, the wireless environments can commonly be modeled as quasi-static where 

the multipath channel is static over a few OFDM symbols. In this case, Decision- 

Directed Channel Estimation can be used to improve the estimation accuracy with the 

aid of the detected OFDM data. In traditional DDCE with hard decision feedback, 

the improvement of channel estimation is sometimes limited due to the data decision 

errors when all the demodulated data is fed back for the next round estimation. 

Motivated by the drawback, a reliable region decision DDCE scheme was proposed in 

[79]. The high BER region and low BER region are separated based on the magnitude 

of channel frequency response (CFR). Unfortunately, the performance of the scheme 

dramatically degrades under severe frequency selective channels. Recently, a DDCE 

method using partial hard decision was proposed in [80]. However, the scheme, which 

minimizes the variance of data decision error, may not necessarily reduce the variance 

of channel estimation error.

In this chapter, a new Iterative Decision-Directed Channel Estimation with 

reliable data feedback selection is proposed for OFDM system. The unreliable data

116
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decisions are eliminated on the subcarriers suffering from noise enhancement where 

the magnitude of CFR is lower than a threshold. By investigating the variance of the 

channel estimation error, the optimal value of the threshold is derived to minimize the 

variance. Computer simulations are used to validate the performance of the proposed 

scheme.

The reminder of the chapter is organized as follows. Section 5.2 introduces the 

OFDM system model with proposed IDDCE. In Section 5.3, the proposed IDDCE 

is presented and the performance in terms of its variance of estimation error is also 

studied. In Section 5.4, the optimal threshold to select the reliable data decision 

feedback is derived. Simulation results and discussions are presented in Section 5.5. 

Finally, the chapter is summarized in Section 5.6.

5.2 System  M odel

We consider the same OFDM frame structure as shown in Fig. 3.2, where the preamble 

signal is denoted by p =  [p(0),p(l), • • • ,p(Np — 1)] and the OFDM data symbol by 

x =  [x(0), z (l) , • • • , x(N(i — 1)]. Np and are the length of the preamble signal and 

number of total subcarriers of the OFDM data symbol, respectively. Each element of 

x  is generated by N^- point IDFT,

x { n ) = W â è , x { k ) e x p ^ )
(5.1)

where X (k ) denotes the complex data on the kth  subcarrier.

According to Section 3.2, the received signal after the removal of the GI and
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the CP can be represented in the following matrix form,

yp

ya

sp

«d
h +  w =  y sh +  w, (5 2 )

where yp and y j  denote the received vectors of p  and x, respectively. sp and s j  are 

the matrices derived from p and x with size Np x L and N ^ x  L whose first columns 

are given by p T and x 7 , respectively. The remaining columns are each cyclic shift 

of p T and x 7 with an offset equal to the column indices, respectively, h  is a column 

vector of multipath channel with L taps and w is the AWGN vector with zero mean 

and variance er,7 .
/

5.3 Iterative D ecision-D irected Channel 

E stim ation

5.3.1 Proposed  ID D C E  A lgorithm

The basic idea of the IDDCE is to utilize an augmented preamble which is the com

bination of the original preamble and the demodulated data such that the duration 

and total power of this extended training sequence is significantly enhanced as com

pared with the original one. The initial channel estimate is obtained by the original 

preamble and then used to provide the tentative estimate of x. Then the iterative es

timator can progressively update the channel and data estimation with the augmented 

preamble. Therefore, the channel and data estimates are simultaneously improved as 

the process is iterated. However, as the data estimates include decision errors, a few 

data feedback may introduce large interference to the iterative estimator, resulting in 

limited performance improvement even degradation.
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In the data decision process, due to the impact of frequency selective channel, 

the noise effect may be enlarged on the subcarriers with low CFR and thus the wrong 

decisions are more likely to occur after equalization on these subcarriers. Therefore, 

it is necessary to select reliable data decision feedback by comparing the magnitude 

of CFR with a certain threshold.

The proposed IDDCE algorithm is summarized as follows.

1. Perform the initial channel estimation. Since the preamble signal is known 

to the receiver, the LS or MMSE estimator can be used to obtain the initial 

channel estimate. As the MMSE requires the channel characteristics such as 

the variance of each channel tap, here for practical consideration, we consider 

the LS estimator in this chapter. The channel estimate is obtained by using the 

circulant matrix of preamble signal sp and its corresponding received samples 

yp according to

h = (sp-^Sp) Sp^yp. (5.3)

Therefore the corresponding estimation error of LS estimator can be formulated 

by

Ah = (̂ SpHspSj spHw, (5.4)

where ^Sp^sp j  =  I l /N p. The variance of estimation error can be calculated

as

A c  =  Jtr (E [AhAh*] }

=  A f I tr { a” Iwp}

(5.5)
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where tr {•} denotes the trace operation of a matrix.

2. Equalize the OFDM signal in frequency domain with the current channel esti

mates,
^  D FT{yd } 

DFT j h j
(5.6)

3. Make data decisions based on the equalizer output and denote it as X. As 

previously analyzed, the error probability of the noise-enhanced subcarriers is 

relatively high as compared with others and the resultant data decision feedback 

is less reliable on these subcarriers. Therefore, after obataining the estimate of

CFR by H =  DFT j h j ,  the following selection criteria is proposed based on
/

the current CFR estimate:

{ x ( k ) \ H ( k ) \ > V 

(O \H (k ) \< Vt
* =  0 , 1 , , N d - l . (5.7)

Note that the corresponding received sample Y (k)  is also forced to be zero when 

the magnitude of CFR is lower than the threshold 77.

4. Re-modulate the transmitted signal in time domain using the selected data from 

the previous step,

x =  I D F T j x J .  (5.8)

Consequently the circulant matrix of x  is also obtained and denoted as s j .

5. The channel estimate is updated by the LS estimator. However, the sp and yp 

are replaced by s and y as defined in (4.2),
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where

S P (5.10)s =
Sd

6. Repeat steps 2) to 5) if necessary until the channel estimates converge or a 

predefined number of iterations is achieved.

5.3.2 Perform ance A nalysis o f the Proposed  ID D C E

In this subsection, we analyze the performance of the proposed IDDCE in terms of the 

variance of the channel estimation error. First, the estimation error of the iterative 

estimator can be represented as

=  A h f +  A h w, (5.11)

where
0

A s =  s — s = (5.12)
A sd

A h f and A h w denote the estimation error from the data decision errors and the 

AWGN, respectively. A h w is straightforward to obtain
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For A hf, it can be shown that

a A hf  =  ( E  [ s ^ A s h h ^ A s ^ s ] )

= ^ t r  (E [s^F^FArAShh^AS^F^F^s]) 

(e  [SH AShh^ ASF S] ) ,
N 2L

(5.14)

• 2n kn
where F jg denotes the DFT transform matrix with the element F(n , k) =  eJ N / \/]V. 

S and A S denote the frequency domain version of s and As, respectively. Note that 

A S only contains errors from the OFDM symbol. N  = Np +  N'd is the total length 

of the augmented preamble where N'd is the number of the non-zero components of 

X selected by the criteria in (5.7). The trace operation in (5.14) only concerns the 

diagonal elements in ^ S ^ A S h h ^ A S ^ S ^  and it can be given by

(S^AShh^AS^S

Nd Nd L - 1= E £  £  X^AX^
p =  1 q=*l k= 0

H  A o t fo
)  i i

(5.15)
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The expectation of (5.15) can be subsequently given by

E [ ( s ^ A S h h ^ A S ^ s ) . . ]

N '1d L - 1

- £  £  e
p=  1 k=0 k^ i

X ^A X pkX p iA X ^ E I hki

Nd
+ E [x^A X p tX p iA X ^

P= 1

E I IH

Nd
+ £ E

P>Q=h P^Q 
L - 1

=  v i 5 2  E[w
k= 0 k^i

X^AXyiXqiAX;, E 1̂ *

V2E N 2 + v3e  |/i (5.16)

Since the data symbols are mutually independent, the values of Vj can be calculated 

according to,

Vi = V2 = A^E \X\

V3 = N'd(N'd -  1) E

•E 

X*AX

|AX|- 
2

(5.17)

(5.18)

Finally, a fa  is given by

(JA/l / - ^ £  (Vl £  ° l k +  V2 ^  +  Vsa2h. 
i=1 v k=0,k&

V iL + Vs
N 2L

(5.19)

where the total channel energy is normalized such that a jj =  °l ~  ^  ^  *s

worth mentioning that the values of Vi and V3 vary depending on different mod
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ulation types. However, Vi and V3 are straightforward to obtain when the signal 

constellations are known. Therefore, the overall variance of the estimation error can 

be formulated as

<TA h =  ° A h w + ° A h f  (5-2°)

5.4 D erivation of the Optim al Threshold

Threshold V

Subcarriers

Figure 5.1: Illustration of the proposed reliable data decision feedback selection.

The principle of the proposed IDDCE with reliable data feedback selection is 

shown in Fig. 5.1. The shaded area below the dashed line represents the subcarriers 

associated with unreliable data decisions. In this section, the optimal threshold is 

derived which minimizes the variance of the channel estimation derived in the previous 

section. Here 4-QAM constellation is considered as basic modulation scheme and the 

proposed scheme can be easily extended to higher order modulation.
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First, the average SER over the selected subcarriers with the proposed threshold 

can be represented as

00

P (V) = J q  ( x/SNR  • |ff  |) f  (Iff I) d Iff I , (5.21)
v

_ t 2
where Q (x) =  f£ °  e T d t  and /(•) represents the probability density function

of the CFR. Assume that each path of the channel is complex Gaussian distributed 

with variance a 2 and it is straightforward to show that |f f  |2 is chi-square distributed 

with two degrees of freedom,

/( !* !)  =  exp ( - | Q .  (5.22)

Therefore, Vi and V3 given in (5.17) and (5.18) can be further represented respectively 

as

Vi = N'd -a 2eP (V) = NdProb(|ff | > rj) ■ a2eP(rj)

= Nd exp(-r]2)a2 ■ P(p), (5.23)

V3 =  N 2 exp2( - r 72) • a,2P 2(V), (5.24)

where a2 and a'2 can be approximated to 8/3 and 16/9 under the assumption that 

the probabilities of each possible decision error A X  in { —y/2 ,—y /2 j,—\/2 — \/2 j}  

are equally likely. Therefore, with the assumption that Nd 3> Np, the variance of the 

channel estimation error can be reformulated as

aAh(v)
j p (v)

Np +  N d expip2) ' Nd exp(rj2)

16 d 2
+ + P*(V) (5.25)
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To minimize the above variance, we set the first derivative of the above equation with 

respect to rj equal to zero,
daA ,  0 

dp

The above equation can be solved offline to achieve the optimal threshold and thus 

it does not contribute to the computational complexity in real applications.

Figure 5.2: Mean square error of channel estimation versus different thresholds. The 
initial channel estimation is obtained via a preamble signal of length 31. The results 
are obtained via one iteration with the proposed data feedback selection threshold.

To verify the derived optimal selection threshold, Fig. 5.2 presents the simulated 

MSE of channel estimation with IDDCE and the proposed selection criteria. The 

simulated optimal thresholds (minimum MSE points) and the theoretical optimal 

thresholds (calculated by (5.25) and (5.26)) are pointed out by the text arrows. It can 

be found that the theoretical values well match the simulated ones. Moreover, with
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the increase of SNR, the value of the optimal threshold decreases correspondingly. 

With the observed trend, it can be concluded that when the SNR is sufficiently large, 

the conventional method which uses all the data decision feedback may become the 

optimal one.

5.5 Sim ulation R esults and D iscussions

Table 5.1: Average power delay profiles of multipath channels used in the
simulations

Channel I Channel II
Delay Average Power Delay Average Power

0 0.2325 0 0.6321
7 0.6321 3 0.2325
17 0.0855 6 0.0855
29 0.0315 9 0.0315

The OFDM system with subcarrier number 512 and CP length 32 is consid

ered in the simulations. The preamble signal is an m-sequence with length 31 and 

the modulation scheme used is' 4-QAM. One 10-tap and one 30-tap Rayleigh fading 

channels are considered as two different propagation scenarios with the average power 

delay profiles reported in Table 5.1. The channels are assumed to be static during 

the transmission of one preamble and one OFDM symbol. Basically, Channel I repre

sents a more hostile scenario than Channel II due to its long dispersive time and low 

power of first arriving path. Numerical results are obtained by averaging over 10000 

independent Monte Carlo runs.

We first exploit the performance characteristics of the proposed IDDCE under 

different channel conditions and therefore the threshold of data feedback selection 

in (5.7) is set to zero. The MSE of the proposed IDDCE is presented in Fig. 5.3
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Figure 5.3: Mean square error of channel estimation with different iterations under
Channel I.

and Fig. 5.4. The “0 iteration” curves represent the conventional preamble-based 

channel estimation. It can be observed that with the increase of iteration number, 

the corresponding MSE reduces. The lower bound is obtained when the data feedback 

consists of no decision errors. The results show that for Channel I, three iterations are 

needed to approach the lower bound at high SNR while this number reduces to one 

for Channel II to approach the lower bound at 20dB. This again demonstrates that 

Channel I is more hostile than Channel II. However, for both channels at moderate 

SNR, better performance is obtained with more iterations. This is because the MSE is 

sensitive to BER improvement at middle SNR. However, the case may not be applied 

to low and high SNR ranges. Since for the extremely low SNR, the BER is very high 

and most of the data decision feedback may be unreliable for next iteration. Therefore
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Figure 5.4: Mean square error of channel estimation with different iterations under
Channel II.

the iterative process may not necessarily improve the performance. However, for high 

SNR, the BER is already sufficiently low such that only one iteration can achieve the 

lower bound.

The SER of the OFDM system with the proposed IDDCE is presented in Fig. 5.5 

and Fig. 5.6. The “0 iteration” curves have the worst performance since the corre

sponding MSE of channel estimation is much larger than others with iteration process. 

The lower bound is obtained with the ideal coherent detection (perfectly known mul

tipath channel). Significantly better SER performance can be obtained with more 

iterations as compared with the conventional one. The scheme also indicates that 

under multipath conditions where the channel is static over several OFDM symbols, 

the performance can be further enhanced when the subsequent demodulated symbols
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Figure 5.5: Symbol error rate at the receiver using the proposed IDDCE with
different iterations under Channel I.

are also used to extend the “training” . It is also found that the performance gaps 

between different iterations under Channel I are larger than those under Channel II 

since Channel II has a much shorter duration such that the SER is less sensitive to 

the MSE improvement.

To evaluate the performance of the proposed optimal threshold, the MSE of 

channel estimation with the optimal reliable data selection threshold and without 

threshold (77 =  0) are compared under Channel II. One iteration and three iterations 

are simulated in Fig. 5.7. Since at high SNR, 77 =  0 may become the optimal threshold 

and therefore the SNR range 6 — 15dB is adopted as the effective range for the 

proposed IDDCE with reliable data selection. It can be observed that the MSE 

of the optimal reliable data selection outperforms the one using all hard decision
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Figure 5.6: Symbol error rate at the receiver using the proposed IDDCE with 
different iterations under Channel II.

feedback for the corresponding iterations. More than 20% MSE gain can be achieved 

over the conventional decision feedback scheme when the proposed data feedback 

selection is adopted in the IDDCE. It is also apparent that the performance of 1 

iteration with r]0pt is approaching that of 3 and 5 iterations with rj = 0. Therefore, 

it is confirmed that the computational complexity can also be significantly reduced 

with the proposed optimal threshold in terms of iteration number.

5.6 Sum m ary

A new IDDCE with reliable data decision feedback selection is proposed. The opti

mal selection threshold is derived to eliminate the data feedback on the subcarriers
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Figure 5.7: Mean square error of channel estimation with and without the optimal
reliable data selection under Channel II.

where the noise is enhanced due to the low channel frequency response. The accu

racy of channel estimation is significantly improved by using the proposed iterative 

channel estimation scheme. Theoretical performance analysis is also given in terms 

of the variance of estimation error for the proposed channel estimation. Simulation 

results show that the proposed channel estimation scheme with the optimal selection 

threshold outperforms the conventional one without data feedback selection.
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C hapter 6 

C onclusion

In this thesis, enabling techniques and algorithms are investigated for location-aware 

communications. Using the proposed FAP detection scheme based on multipath inter

ference cancellation, robust location estimation can be achieved by wireless communi

cation system-based positioning systems in dense multipath environments. The effi

ciency and performance of wireless networks can thus be significantly enhanced based 

on various location-assisted applications. In addition, based on location-awareness 

capability, efficient strategy of multicell cooperation can be designed to improve the 

throughput and coverage of traditional wireless networks. Therefore, a robust, ef

ficient and flexible platform based on the proposed ML-OFDM is investigated for 

multicell cooperative communications. Finally, an enhanced IDDCE is proposed to 

improve the performance of OFDM receiver such that it can be utilized to further 

enhance the performance of proposed FAP detection. The major contributions of this 

thesis are summarized as follows:

• A robust FAP detection scheme using multipath interference cancellation is 

proposed for TOA-based positioning system in dense multipath environments. 

An iterative estimator is proposed to provide LAPs and data estimation with 

high accuracy. The complexity of iterative estimator is effectively reduced by 

the proposed automatic stopping criterion. Based on the estimated LAPs and
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data, the interference components of LAPs can be accurately reconstructed and 

mitigated from the received signal.

• Motivated by the weak average power of the FAP in dense multipath environ

ments, the proposed detection algorithm constructs a new augmented preamble 

which is the combination of the original preamble signal and the demodulated 

data sequence to provide a higher correlation gain. The new FAP detector is 

based on the cross-correlation between the LAPs interference-suppressed signal 

and the augmented preamble and hence a significant SINR gain can be achieved 

with the proposed algorithm. The accuracy of location estimation based on the 

proposed FAP detection algorithm is substantially increased, which is particu

larly important for location-assisted applications.

• A reliable, efficient and flexible ML-OFDM system is proposed to support mul

ticell cooperation network. Motivated by the technical challenges of multicell 

cooperation including BS backhaul issues, synchronization problem and poten

tial network latency, the proposed ML-OFDM utilizes some dedicated signal

ing links, referred to as Enhanced Layers, which are superimposed onto data- 

carrying information in both frequency and time domains. BS coordination can 

be concurrently achieved including the sharing of channel and data information, 

transmission parameters, users’ location information and synchronization with 

the transmission of data-carry signals. Traditional control channels can be elim

inated to reduced the radio resource overhead and thus enhance the network 

efficiency.

• An iterative decision-directed channel estimation is proposed in this thesis for 

accurate channel estimation with limited training overhead. Different from tra

ditional decision-directed channel estimation, an optimal threshold is derived to
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select the reliable data decision feedback and eliminate the unreliable ones on 

the subcarriers suffering from the noise enhancement effects due to the frequency 

selective channel. Utilizing the proposed IDDCE, the accuracy of channel es

timation is maximized in this case and therefore, the performance of OFDM 

receiver is significantly enhanced with a short training sequence. Furthermore, 

this technique is suitable or cooperation network since the sharing of channel 

information for multicell cooperation requires large training overhead and it 

helps to overcome the contradiction between the large overhead and limited 

performance caused by the short training.

6.1 Future Work

There are still several topics related to the presented research worthwhile for further 

studies. Some of them are listed as follows:

• In Chapter 3, the optimal threshold to select the dominant LAPs is derived 

with the assumption that the variance of the significant LAPs is known to the 

receiver. In future work, a suboptimal threshold independent of channel statistic 

information needs to be derived for real applications.

• In Chapter 4, the Enhanced Layers uses the modified Code Shift Keying as 

their modulation schemes. The ELs will have some negative impact on the 

performance of the Base Layer although most of the mutual layer interference 

can be removed. Therefore, alternative modulation and coding schemes will be 

investigated for the ELs which can completely eliminate the impact to the BL.
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