946 research outputs found

    Optimized Placement of Wind Turbines in Large-Scale Offshore Wind Farm using Particle Swarm Optimization Algorithm

    Get PDF

    Advanced methods for offshore windfarm planning

    Full text link
    There have been increasing interests and projects of Offshore wind farm (OWF) development across the world given the rich wind resources in order to achieve carbon neutral objectives. Appropriate electrical system design of OWF is of key importance in terms of cost saving and improving system efficiency. Two novel electric system layout optimization models for OWF planning are proposed to optimize the topology of collector system and connected transmission system simultaneously in OWFs with single and multiple substations. For OWF with single-substation, a novel mathematical model to represent the system topology is proposed to reduce the number of variables so as to effectively decrease the search space of the optimisation problem, where the continuous substation sitting problem is discretized by a 2-step rasterization method. For large-scale OWFs, the overall electric system optimization problem has been classified into 3 levels: substation optimization, feeder selection, and cable determination. Fuzzy clustering technique and wind turbine allocation method has been proposed to effectively divide the large offshore windfarms into partitions. Both HVDC and HVAC cables are considered as alternatives used in the associated transmission system, which can be optimized at the substation level. The concept of clustering is further applied in feeder level to cluster wind turbines into appropriate feeders. The proposed model and the optimization algorithms are tested and validated in two large-scale offshore winds. A comprehensive decision support model is proposed which covers three key factors that characterize OWF integration: investment cost, system stability and the interactions between MTDC and local AC system, all of which are concerned to characterize the optimal integration location of wind turbines into AC bus location and appropriate converter size installed at the corresponding MTDC terminals. To better fit into the real-world situation, various wind speed and load scenarios have been considered. Validity and effectiveness of the proposed model has been tested to integrate two wind farms to a benchmark AC system via a MTDC grid. The research methodologies presented in the thesis form a rather comprehensive approach for OWF design and planning. With the rapid development in OWF technologies, future research needs are also identified and presented in the thesis

    Optimization of large-scale offshore wind farm

    Get PDF

    Conceptual Design of Wind Farms Through Novel Multi-Objective Swarm Optimization

    Get PDF
    Wind is one of the major sources of clean and renewable energy, and global wind energy has been experiencing a steady annual growth rate of more than 20% over the past decade. In the U.S. energy market, although wind energy is one of the fastest increasing sources of electricity generation (by annual installed capacity addition), and is expected to play an important role in the future energy demographics of this country, it has also been plagued by project underperformance and concept-to-installation delays. There are various factors affecting the quality of a wind energy project, and most of these factors are strongly coupled in their influence on the socio-economic, production, and environmental objectives of a wind energy project. To develop wind farms that are profitable, reliable, and meet community acceptance, it is critical to accomplish balance between these objectives, and therefore a clean understanding of how different design and natural factors jointly impact these objectives is much needed. In this research, a Multi-objective Wind Farm Design (MOWFD) methodology is developed, which analyzes and integrates the impact of various factors on the conceptual design of wind farms. This methodology contributes three major advancements to the wind farm design paradigm: (I) provides a new understanding of the impact of key factors on the wind farm performance under the use of different wake models; (II) explores the crucial tradeoffs between energy production, cost of energy, and the quantitative role of land usage in wind farm layout optimization (WFLO); and (III) makes novel advancements on mixed-discrete particle swarm optimization algorithm through a multi-domain diversity preservation concept, to solve complex multi-objective optimization (MOO) problems. A comprehensive sensitivity analysis of the wind farm power generation is performed to understand and compare the impact of land configuration, installed capacity decisions, incoming wind speed, and ambient turbulence on the performance of conventional array layouts and optimized wind farm layouts. For array-like wind farms, the relative importance of each factor was found to vary significantly with the choice of wake models, i.e., appreciable differences in the sensitivity indices (of up to 70%) were observed across the different wake models. In contrast, for optimized wind farm layouts, the choice of wake models was observed to have no significant impact on the sensitivity indices. The MOWFD methodology is designed to explore the tradeoffs between the concerned performance objectives and simultaneously optimize the location of turbines, the type of turbines, and the land usage. More importantly, it facilitates WFLO without prescribed conditions (e.g., fixed wind farm boundaries and number of turbines), thereby allowing a more flexible exploration of the feasible layout solutions than is possible with other existing WFLO methodologies. In addition, a novel parameterization of the Pareto is performed to quantitatively explore how the best tradeoffs between energy production and land usage vary with the installed capacity decisions. The key to the various complex MO-WFLOs performed here is the unique set of capabilities offered by the new Multi-Objective Mixed-Discrete Particle Swarm Optimization (MO-MDPSO) algorithm, developed, tested and extensively used in this dissertation. The MO-MDPSO algorithm is capable of dealing with a plethora of problem complexities, namely: multiple highly nonlinear objectives, constraints, high design space dimensionality, and a mixture of continuous and discrete design variables. Prior to applying MO-MDPSO to effectively solve complex WFLO problems, this new algorithm was tested on a large and diverse suite of popular benchmark problems; the convergence and Pareto coverage offered by this algorithm was found to be competitive with some of the most popular MOO algorithms (e.g., GAs). The unique potential of the MO-MDPSO algorithm is further established through application to the following complex practical engineering problems: (I) a disc brake design problem, (II) a multi-objective wind farm layout optimization problem, simultaneously optimizing the location of turbines, the selection of turbine types, and the site orientation, and (III) simultaneously minimizing land usage and maximizing capacity factors under varying land plot availability

    Topology design of an offshore wind farm with multiple types of wind turbines in a circular layout

    Get PDF
    The advances in the manufacturing industry make it possible to install wind turbines (WTs) with large capacities in offshore wind farms (OWFs) in deep water areas far away from the coast where there are the best wind resources. This paper proposes a novel method for OWF optimal planning in deep water areas with a circular boundary. A three-dimensional model of the planning area’s seabed is established in a cylindrical coordinate. Two kinds of WTs with capacities of 4 and 8 MW respectively are supposed to be mixed-installed in that area. Baseline cases are analyzed and compared to verify the superiority of a circular layout pattern and the necessity of a non-uniform installation. Based on the establishment of the optimization model and a realistic wind condition, a novel heuristic algorithm, i.e., the whale optimization algorithm (WOA), is applied to solve the problem to obtain the type selection and coordinates of WTs simultaneously. Finally, the feasibility and advantages of the proposed scheme are identified and discussed according to the simulation results

    Combined wave and wind energy: synergies and implementation

    Get PDF
    Marine energy is one of the most promising alternatives to fossil fuels due to the enormous energy resource available. However, it is often considered uneconomical and difficult due in part to the initial stage of development of the technology and the harsh marine environment. With this in view, this Thesis proposes combined wave and wind energy farms as a way to enhance marine energy competitiveness by taking advantage of the mutual benefits. In this sense, the synergies between both renewables are deeply analysed in a holistic way through numerous case studies implemented by third generation models used as a conjunction – SWAN and WAsP. The benefits regarded along the different case studies are translated into monetary terms assessing the impact on the levelised cost of energy (LCOE)

    Optimal Micro-siting of Wind Turbines in an Offshore Wind Farm Using Frandsen-Gaussian Wake Model

    Get PDF

    What are the key multidimensional success criteria required for reducing LCOE through digital transformation in offshore wind farms?

    Get PDF
    Formålet med denne studien er å undersøke de flerdimensjonale suksesskriteriene som er avgjørende for å redusere energikostnaden også kjent som Levlized cost of Energy (LCOE) gjennom digital transformasjon innenfor offshore vind prosjekter. For å besvare problemstilling vil studien sette søkelys på fire underspørsmål som omhandler: (1) For å sikre operational excellence og tilpasning til FNs bærekraftsmål gjennom digital transformasjon: Hvilke suksessfaktorer må være på plass? (2) Er data tilgjengelig for bruk til den digital transformasjon? (3) Hvordan kan man muliggjør optimal Grid Integration av vindparken? (4) Kan man utnytte digitale verktøy for å redusere LCOE i en havvindpark? Studien fremhever den uunnværlige rollen av teknologi i form av digitale verktøy og data, som spiller som katalysatorer for å styrke operasjonell effektivitet og maksimere verdiskaping i offshore vindenergisektoren. Studien er gjennomført som kvalitativ Case-studier analyse i form av ti individuelle dybdeintervjuer med deltakere fra ulike selskaper i verdikjeden til offshore vind industri. Studien undersøker den betydelige påvirkningen FNs bærekraftsmål har på utviklingen av offshore vindprosjekter, samt den vitale rollen operational excellence har for å lykkes. Den vurderer om offshore vind industrien er klar for Industri 5.0, dens evne til å redusere LCOE, og dens innflytelse på sektorens fremtid. Funnene understreker betydningen av tilgjengelig data, optimalisert effektivitet, og bruk av sanntidsdata for å forbedre sikkerhet, bærekraft og effektiv energiproduksjon i vindparker. Videre dykker studien ned i implementeringen av digital transformasjon, og viser til hvordan digitale verktøy og automatisering, sammen med menneskelig inngripen, driver informert beslutningstaking. Funnene legger vekt på nødvendigheten av datasamarbeid, kunnskapsdeling, og kompetent personell for å fremme industriell vekst, samtidig som det opprettholdes en balanse mellom kompleksitet og kompetanse, og utforsker avansert digital tvilling-teknologi og hvordan det kan påvirke i redusering av LCOE. Studien tilbyr verdifull innsikt for interessenter og hjelper til med å håndtere utfordringer og muligheter i digital transformasjon av offshore vindparker. Den fremhever offshore vinindustriens avgjørende rolle i utviklingen av renere, effektive energisystemer, og støtter en bærekraftig og fremgangsrik fremtid.This purpose of this study is to thoroughly examine the multidimensional success criteria crucial in reducing the levelized cost of energy (LCOE) through digital transformation within the context of offshore wind farm projects. To help answer the research question, this study will focus on four preliminary research questions: (1) To ensure Operational Excellence and Alignment with UN SDGs through Digital Transformation: What success factors need to be in place? (2) Is Data available to be used to enable Digital Transformation? (3) How do you enable optimal Grid Integration of the wind park? (4) Can you leverage digital tools to reduce LCOE in an offshore wind farm? The research spotlights the indispensable role of technology in form of digital tools and data, as catalysts for bolstering operational efficiency and maximizing value creation in the offshore wind energy sector. The study has been carried out as a qualitative case study analysis in the form of ten individual in-depth interviews with participants from various companies in the value chain of the offshore wind industry. The study investigates the substantial impact of United Nations (UN) sustainability goals on offshore wind project development and the vital role of operational excellence. It evaluates the industry's preparedness for Industry 5.0, its capacity to reduce LCOE, and its influence on the sector's future. The research and findings underscore the significance of accessible data, optimized efficiency, and real-time data utilization to enhance safety, sustainability, and energy production in wind farms. Additionally, the research delves into Industry 5.0's implementation, demonstrating how digital tools and automation, combined with human input, drive informed decision-making. The findings emphasize the necessity for data collaboration, knowledge sharing, and skilled personnel to foster industry growth while maintaining a balance between complexity and competence and explores advanced digital twin technology and how it can influence in reducing LCOE. The study offers valuable insights for stakeholders and aids in addressing challenges and opportunities in offshore wind farm digital transformation. It accentuates the offshore wind industry's pivotal role in advancing cleaner, efficient energy systems, promoting a sustainable and prosperous future

    Learning, future cost and role of offshore renewable energy technologies in the North Sea energy system

    Get PDF
    The pace of cost decline of offshore renewable energy technologies significantly impacts their role in the North Sea energy transition. However, a good understanding of their remains a critical knowledge gap in the literature. Therefore, this thesis aims to quantify the future role of offshore renewables in the North Sea energy transition and assess the impact of cost development on their optimal deployments. The following findings were observed in this thesis, 1) Fixed-bottom offshore wind is well established in the North Sea region and is already competitive with onshore renewables 2) Floating wind is emerging and their current costs are high, but it can reach about 40 EUR/MWh by early 2040 and would require 44 billion EUR of learning investment.3) Grid connection costs will become a major factor as wind farm moves further away. Policy actions and innovation is needed in this space to avoid increasing integration costs. 4) Offshore wind (fixed-bottom and floating) can play a significant role in the North Sea energy system, comprising 498 GW of deployments in 2050 (222 GW of fixed-bottom and 276 GW of floating wind) and contributing up to a maximum of 51% of total power generation in the North Sea power system. 5) The role of the investigated low-TRL offshore renewables, including the tidal stream, wave technology, and bioethanol, was limited in all scenarios considered, as they remain expensive compared to other mature technologies in the system

    Renewable Energy in Marine Environment

    Get PDF
    The effects of human-caused global warming are obvious, requiring new strategies and approaches. The concept of business-as-usual is now no longer beneficial. Extraction of renewable energy in marine environments represents a viable solution and an important path for the future. These huge renewable energy resources in seas and oceans can be harvested, including wind, tide, and waves. Despite the initial difficulties related mostly to the elevated operational risks in the harsh marine environment, newly developed technologies are economically effective or promising. Simultaneously, many challenges remain to be faced. These are the main issues targeted by the present book, which is associated with the Special Issue of Energies Journal entitled “Renewable Energy in Marine Environment”. Papers on innovative technical developments, reviews, case studies, and analytics, as well as assessments, and papers from different disciplines that are relevant to the topic are included. From this perspective, we hope that the results presented are of interest to for scientists and those in related fields such as energy and marine environments, as well as for a wider audience
    corecore