344 research outputs found

    Stability analysis and control for bipedal locomotion using energy methods

    Get PDF
    In this thesis, we investigate the stability of limit cycles of passive dynamic walking. The formation process of the limit cycles is approached from the view of energy interaction. We introduce for the first time the notion of the energy portrait analysis originated from the phase portrait. The energy plane is spanned by the total energy of the system and its derivative, and different energy trajectories represent the energy portrait in the plane. One of the advantages of this method is that the stability of the limit cycles can be easily shown in a 2D plane regardless of the dimension of the system. The energy portrait of passive dynamic walking reveals that the limit cycles are formed by the interaction between energy loss and energy gain during each cycle, and they are equal at equilibria in the energy plane. In addition, the energy portrait is exploited to examine the existence of semi-passive limit cycles generated using the energy supply only at the take-off phase. It is shown that the energy interaction at the ground contact compensates for the energy supply, which makes the total energy invariant yielding limit cycles. This result means that new limit cycles can be generated according to the energy supply without changing the ground slope, and level ground walking, whose energy gain at the contact phase is always zero, can be achieved without actuation during the swing phase. We design multiple switching controllers by virtue of this property to increase the basin of attraction. Multiple limit cycles are linearized using the Poincare map method, and the feedback gains are computed taking into account the robustness and actuator saturation. Once a trajectory diverges from a basin of attraction, we switch the current controller to one that includes the trajectory in its basin of attraction. Numerical simulations confirm that a set of limit cycles can be used to increase the basin of attraction further by switching the controllers one after another. To enhance our knowledge of the limit cycles, we performed sophisticated simulations and found all stable and unstable limit cycles from the various ground slopes not only for the symmetric legs but also for the unequal legs that cause gait asymmetries. As a result, we present a novel classification of the passive limit cycles showing six distinct groups that are consecutive and cyclical

    Minimalistic control of biped walking in rough terrain

    Get PDF
    Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the “phase locking” mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrain.National Science Foundation (U.S.) (grant 0746194)Swiss National Science Foundation (grant PBZH2-114461)Swiss National Science Foundation (grant PP00P2_123387/1

    Dynamic Walking: Toward Agile and Efficient Bipedal Robots

    Get PDF
    Dynamic walking on bipedal robots has evolved from an idea in science fiction to a practical reality. This is due to continued progress in three key areas: a mathematical understanding of locomotion, the computational ability to encode this mathematics through optimization, and the hardware capable of realizing this understanding in practice. In this context, this review article outlines the end-to-end process of methods which have proven effective in the literature for achieving dynamic walking on bipedal robots. We begin by introducing mathematical models of locomotion, from reduced order models that capture essential walking behaviors to hybrid dynamical systems that encode the full order continuous dynamics along with discrete footstrike dynamics. These models form the basis for gait generation via (nonlinear) optimization problems. Finally, models and their generated gaits merge in the context of real-time control, wherein walking behaviors are translated to hardware. The concepts presented are illustrated throughout in simulation, and experimental instantiation on multiple walking platforms are highlighted to demonstrate the ability to realize dynamic walking on bipedal robots that is agile and efficient

    Minimalistic control of biped walking in rough terrain

    Get PDF
    Toward our comprehensive understanding of legged locomotion in animals and machines, the compass gait model has been intensively studied for a systematic investigation of complex biped locomotion dynamics. While most of the previous studies focused only on the locomotion on flat surfaces, in this article, we tackle with the problem of bipedal locomotion in rough terrains by using a minimalistic control architecture for the compass gait walking model. This controller utilizes an open-loop sinusoidal oscillation of hip motor, which induces basic walking stability without sensory feedback. A set of simulation analyses show that the underlying mechanism lies in the "phase locking” mechanism that compensates phase delays between mechanical dynamics and the open-loop motor oscillation resulting in a relatively large basin of attraction in dynamic bipedal walking. By exploiting this mechanism, we also explain how the basin of attraction can be controlled by manipulating the parameters of oscillator not only on a flat terrain but also in various inclined slopes. Based on the simulation analysis, the proposed controller is implemented in a real-world robotic platform to confirm the plausibility of the approach. In addition, by using these basic principles of self-stability and gait variability, we demonstrate how the proposed controller can be extended with a simple sensory feedback such that the robot is able to control gait patterns autonomously for traversing a rough terrai

    Energy Shaping of Mechanical Systems via Control Lyapunov Functions with Applications to Bipedal Locomotion

    Get PDF
    This dissertation presents a method which attempts to improve the stability properties of periodic orbits in hybrid dynamical systems by shaping the energy. By taking advantage of conservation of energy and the existence of invariant level sets of a conserved quantity of energy corresponding to periodic orbits, energy shaping drives a system to a desired level set. This energy shaping method is similar to existing methods but improves upon them by utilizing control Lyapunov functions, allowing for formal results on stability. The main theoretical result, Theorem 1, states that, given an exponentially-stable limit cycle in a hybrid dynamical system, application of the presented energy shaping controller results in a closed-loop system which is exponentially stable. The method can be applied to a wide class of problems including bipedal locomotion; because the optimization problem can be formulated as a quadratic program operating on a convex set, existing methods can be used to rapidly obtain the optimal solution. As illustrated through numerical simulations, this method turns out to be useful in practice, taking an existing behavior which corresponds to a periodic orbit of a hybrid system, such as steady state locomotion, and providing an improvement in convergence properties and robustness with respect to perturbations in initial conditions without destabilizing the behavior. The method is even shown to work on complex multi-domain hybrid systems; an example is provided of bipedal locomotion for a robot with non-trivial foot contact which results in a multi-phase gait

    Symmetry Method for Limit Cycle Walking of Legged Robots.

    Full text link
    Dynamic steady-state walking or running gaits for legged robots correspond to periodic orbits in the dynamic model. The common method for obtaining such periodic orbits is conducting a numerical search for fixed points of a Poincare map. However, as the number of degrees of freedom of the robot grows, such numerical search becomes computationally expensive because in each search trial the dynamic equations need to be integrated. Moreover, the numerical search for periodic orbits is in general sensitive to model errors, and it remains to be seen if the periodic orbit which is the outcome of the search in the domain of the dynamic model corresponds to a periodic gait in the actual robot. To overcome these issues, we have presented the Symmetry Method for Limit Cycle Walking, which relaxes the need to search for periodic orbits, and at the same time, the limit cycles obtained with this method are robust to model errors. Mathematically, we describe the symmetry method in the context of so-called Symmetric Hybrid Systems, whose properties are discussed. In particular, it is shown that a symmetric hybrid system can have an infinite number of periodic orbits that can be identified easily. In addition, it is shown how control strategies need to be selected so that the resulting reduced order system still possesses the properties of a symmetric hybrid system. The method of symmetry for limit cycle walking is successfully tested on a 12-DOF 3D model of the humanoid robot Romeo.PhDApplied and Interdisciplinary MathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/133356/1/razavi_1.pd

    Goal-Based Control and Planning in Biped Locomotion Using Computational Intelligence Methods

    Get PDF
    Este trabajo explora la aplicación de campos neuronales, a tareas de control dinámico en el domino de caminata bípeda. En una primera aproximación, se propone una arquitectura de control que usa campos neuronales en 1D. Esta arquitectura de control es evaluada en el problema de estabilidad para el péndulo invertido de carro y barra, usado como modelo simplificado de caminata bípeda. El controlador por campos neuronales, parametrizado tanto manualmente como usando un algoritmo evolutivo (EA), se compara con una arquitectura de control basada en redes neuronales recurrentes (RNN), también parametrizada por por un EA. El controlador por campos neuronales parametrizado por EA se desempeña mejor que el parametrizado manualmente, y es capaz de recuperarse rápidamente de las condiciones iniciales más problemáticas. Luego, se desarrolla una arquitectura extendida de control y planificación usando campos neurales en 2D, y se aplica al problema caminata bípeda simple (SBW). Para ello se usa un conjunto de valores _óptimos para el parámetro de control, encontrado previamente usando algoritmos evolutivos. El controlador óptimo por campos neuronales obtenido se compara con el controlador lineal propuesto por Wisse et al., y a un controlador _optimo tabular que usa los mismos parámetros óptimos. Si bien los controladores propuestos para el problema SBW implementan una estrategia activa de control, se aproximan de manera más cercana a la caminata dinámica pasiva (PDW) que trabajos previos, disminuyendo la acción de control acumulada. / Abstract. This work explores the application of neural fields to dynamical control tasks in the domain of biped walking. In a first approximation, a controller architecture that uses 1D neural fields is proposed. This controller architecture is evaluated using the stability problem for the cart-and-pole inverted pendulum, as a simplified biped walking model. The neural field controller is compared, parameterized both manually and using an evolutionary algorithm (EA), to a controller architecture based on a recurrent neural neuron (RNN), also parametrized by an EA. The non-evolved neural field controller performs better than the RNN controller. Also, the evolved neural field controller performs better than the non-evolved one and is able to recover fast from worst-case initial conditions. Then, an extended control and planning architecture using 2D neural fields is developed and applied to the SBW problem. A set of optimal parameter values, previously found using an EA, is used as parameters for neural field controller. The optimal neural field controller is compared to the linear controller proposed by Wisse et al., and to a table-lookup controller using the same optimal parameters. While being an active control strategy, the controllers proposed here for the SBW problem approach more closely Passive Dynamic Walking (PDW) than previous works, by diminishing the cumulative control action.Maestrí
    corecore