429 research outputs found

    The single-finger keyboard layout problem

    Get PDF
    The problem of designing new keyboards layouts able to improve the typing speed of an average message has been widely considered in the literature of the Ergonomics domain. Empirical tests with users and simple optimization criteria have been used to propose new solutions. On the contrary, very few papers in Operations Research have addressed this optimization problem. In this paper we firstly resume the most relevant problems in keyboard design, enlightening the related Ergonomics aspects. Then we concentrate on keyboards that must be used witha single finger or stylus, like that of Portable Data Assistant, Smartphones and other small devices.We show that the underlying optimization problem is a generalization of the well known Quadratic Assignment Problem (QAP). We recall some of the most effective metaheuristic algorithms for QAP and we propose some non trivial extensions to the keyboard design problem. We compare the new algorithms through computational experiments with instances obtained from word lists of the English, French, Italian and Spanish languages. We provide on the web benchmark instances for each language and the best solutions we obtained

    Population Diversity in Ant-inspired Optimization Algorithms

    Get PDF
    Finding a balance between exploration and exploitation is very important in the case of metaheuristics optimization, especially in the systems leveraging population of individuals expressing (as in Evolutionary Algorithms, etc.) or constructing (as in Ant Colony Optimization) solutions. Premature convergence is a real problem and finding means of its automatic detection and counteracting are of great importance. Measuring diversity in Evolutionary Algorithms working in real-value search space is often computationally complex, but feasible while measuring diversity in combinatorial domain is practically impossible (cf. Closest String Problem). Nevertheless, we propose several practical and feasible diversity measurement techniques dedicated to Ant Colony Optimization algorithms, leveraging the fact that even though analysis of the search space is at least an NP problem, we can focus on the pheromone table, where the direct outcomes of the search are expressed and can be analyzed. Besides proposing the measurement techniques, we apply them to assess the diversity of several variants of ACO, and closely analyze their features for the classic ACO. The discussion of the results is the first step towards applying the proposed measurement techniques in auto-adaptation of the parameters affecting directly the exploitation and exploration features in ACO in the future

    ACOustic: A nature-inspired exploration indicator for ant colony optimization

    Get PDF
    A statistical machine learning indicator, ACOustic, is proposed to evaluate the exploration behavior in the iterations of ant colony optimization algorithms. This idea is inspired by the behavior of some parasites in their mimicry to the queens’ acoustics of their ant hosts.The parasites’ reaction results from their ability to indicate the state of penetration.The proposed indicator solves the problem of robustness that results from the difference of magnitudes in the distance’s matrix, especially when combinatorial optimization problems with rugged fitness landscape are applied.The performance of the proposed indicator is evaluated against the existing indicators in six variants of ant colony optimization algorithms.Instances for travelling salesman problem and quadratic assignment problem are used in the experimental evaluation.The analytical results showed that the proposed indicator is more informative and more robust

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review on   a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc

    Optimized Rearrangements of Turkish Q and F Keyboards by Means of Language-statistics and Simple Operations

    Get PDF
    I n this study, based on the language particularly n-gram statistics of Turkish extracted from a large corpus of meaningful written text of various categories, we try to propose some improvements, namely optimized rearrangements for the Turkish Q and F keyboards via some simple rules and heuristics. Our proposals result in more desirable and efficient keyboard layouts that increase the comfort and the speed of professional typists. The methods and procedures followed throughout this study can be extended and applied for any keyboard of other alphabets and language

    A Sule’s Method initiated genetic algorithm for solving QAP formulation in facility layout design: A real world application

    Get PDF
    This paper considers the Quadratic Assignment Problem (QAP) as one of the most important issues in optimization. This NP-hard problem has been largely studied in the scientific literature, and exact and approximate (heuristic and meta-heuristic) approaches have been used mainly to optimize one or more objectives. However, most of these studies do not consider or are not tested in real applications. Hence, in this work, we propose the use of Sule’s Method and genetic algorithms, for a QAP (stated as a facility Layout Problem) in a real industry application in Colombia so that the total cost to move the required material between the facilities is minimized. As far as we know, this is the first work in which Sule’s Method and genetic algorithms are used simultaneously for this combinatorial optimization problem. Additionally the proposed approach was tested using well-known datasets from the literature in order to assure its efficiency

    Crowd-sourced Photographic Content for Urban Recreational Route Planning

    Get PDF
    Routing services are able to provide travel directions for users of all modes of transport. Most of them are focusing on functional journeys (i.e. journeys linking given origin and destination with minimum cost) while paying less attention to recreational trips, in particular leisure walks in an urban context. These walks are additionally predefined by time or distance and as their purpose is the process of walking itself, the attractiveness of areas that are passed by can be an important factor in route selection. This factor is hard to be formalised and requires a reliable source of information, covering the entire street network. Previous research shows that crowd-sourced data available from photo-sharing services has a potential for being a measure of space attractiveness, thus becoming a base for a routing system that suggests leisure walks, and ongoing PhD research aims to build such system. This paper demonstrates findings on four investigated data sources (Flickr, Panoramio, Picasa and Geograph) in Central London and discusses the requirements to the algorithm that is going to be implemented in the second half of this PhD research. Visual analytics was chosen as a method for understanding and comparing obtained datasets that contain hundreds of thousands records. Interactive software was developed to find a number of problems, as well as to estimate the suitability of the sources in general. It was concluded that Picasa and Geograph have problems making them less suitable for further research while Panoramio and Flickr require filtering to remove photographs that do not contribute to understanding of local attractiveness. Based on this analysis a number of filtering methods were proposed in order to improve the quality of datasets and thus provide a more reliable measure to support urban recreational routing

    Unification of the a priori inconsistencies checking among assembly constraints in assembly sequence planning.

    No full text
    International audienceSequence planning generation is an important problem in assembly line design. A good assembly sequence can help to reduce the cost and time of the manufacturing process. This paper focuses on assembly sequence planning (ASP) known as a hard combinatorial optimization problem. Although the ASP problem has been tackled via even more sophisticated optimization techniques, these techniques are often inefficient for proposing feasible assembly sequences that satisfy the assembly planners' preferences. This paper presents an approach that makes easier to check the validity of operations in assembly process. It is based on a model of the assembly planners' preferences by means of strategic constraints. It helps to check a priori the consistency of the assembly constraints (strategic an operative constraints) given by the assembly system designers before and while running an assembly plan generation algorithm. This approach reduces the solution space significantly

    Applying the big bang-big crunch metaheuristic to large-sized operational problems

    Get PDF
    In this study, we present an investigation of comparing the capability of a big bang-big crunch metaheuristic (BBBC) for managing operational problems including combinatorial optimization problems. The BBBC is a product of the evolution theory of the universe in physics and astronomy. Two main phases of BBBC are the big bang and the big crunch. The big bang phase involves the creation of a population of random initial solutions, while in the big crunch phase these solutions are shrunk into one elite solution exhibited by a mass center. This study looks into the BBBC’s effectiveness in assignment and scheduling problems. Where it was enhanced by incorporating an elite pool of diverse and high quality solutions; a simple descent heuristic as a local search method; implicit recombination; Euclidean distance; dynamic population size; and elitism strategies. Those strategies provide a balanced search of diverse and good quality population. The investigation is conducted by comparing the proposed BBBC with similar metaheuristics. The BBBC is tested on three different classes of combinatorial optimization problems; namely, quadratic assignment, bin packing, and job shop scheduling problems. Where the incorporated strategies have a greater impact on the BBBC's performance. Experiments showed that the BBBC maintains a good balance between diversity and quality which produces high-quality solutions, and outperforms other identical metaheuristics (e.g. swarm intelligence and evolutionary algorithms) reported in the literature
    • …
    corecore