215 research outputs found

    Re-use : international working seminar : proceedings, 2nd, March 1-3, 1999

    Get PDF

    Re-use : international working seminar : proceedings, 2nd, March 1-3, 1999

    Get PDF

    Graph Priors, Optimal Transport, and Deep Learning in Biomedical Discovery

    Get PDF
    Recent advances in biomedical data collection allows the collection of massive datasets measuring thousands of features in thousands to millions of individual cells. This data has the potential to advance our understanding of biological mechanisms at a previously impossible resolution. However, there are few methods to understand data of this scale and type. While neural networks have made tremendous progress on supervised learning problems, there is still much work to be done in making them useful for discovery in data with more difficult to represent supervision. The flexibility and expressiveness of neural networks is sometimes a hindrance in these less supervised domains, as is the case when extracting knowledge from biomedical data. One type of prior knowledge that is more common in biological data comes in the form of geometric constraints. In this thesis, we aim to leverage this geometric knowledge to create scalable and interpretable models to understand this data. Encoding geometric priors into neural network and graph models allows us to characterize the models’ solutions as they relate to the fields of graph signal processing and optimal transport. These links allow us to understand and interpret this datatype. We divide this work into three sections. The first borrows concepts from graph signal processing to construct more interpretable and performant neural networks by constraining and structuring the architecture. The second borrows from the theory of optimal transport to perform anomaly detection and trajectory inference efficiently and with theoretical guarantees. The third examines how to compare distributions over an underlying manifold, which can be used to understand how different perturbations or conditions relate. For this we design an efficient approximation of optimal transport based on diffusion over a joint cell graph. Together, these works utilize our prior understanding of the data geometry to create more useful models of the data. We apply these methods to molecular graphs, images, single-cell sequencing, and health record data

    Versatile use of advanced NMR techniques for the identification of compounds able to interfere with ELAV protein−mRNA complexes

    Get PDF
    The ultimate goal of the project in which this thesis took part is to develop a new series of small, drug like organic molecules able to modulate the stability of protein−RNA complexes involved in several diseases, thus regulating gene expression with an unprecedented mode of action and opening the way to a new class of therapeutic agents. I focused my research on ELAV protein HuR due to its involvement in several pathologies (i.e., cancer, retinopathy, etc.) in which the protein is overexpressed/hyper activated with consequences on target RNAs and their activity (i.e., transcription). In this context, the main aim would be to develop small molecules able to bind HuR and interfere with the formation and/or the stability of its complexes with target RNAs. Given the early stage of this research topic, the work was articulated in three main blocks: 1. Implementation of a systematic biophysical and in silico approach exploiting complementary and informative methods; 2. Design and synthesis of new ligands according to both a structure-based (in silico) and fragment-based (based on experimental fragment screening) approach; 3. Biophysical assessment of the interaction between compounds and target protein (HuR)

    Advances in the Field of Electrical Machines and Drives

    Get PDF
    Electrical machines and drives dominate our everyday lives. This is due to their numerous applications in industry, power production, home appliances, and transportation systems such as electric and hybrid electric vehicles, ships, and aircrafts. Their development follows rapid advances in science, engineering, and technology. Researchers around the world are extensively investigating electrical machines and drives because of their reliability, efficiency, performance, and fault-tolerant structure. In particular, there is a focus on the importance of utilizing these new trends in technology for energy saving and reducing greenhouse gas emissions. This Special Issue will provide the platform for researchers to present their recent work on advances in the field of electrical machines and drives, including special machines and their applications; new materials, including the insulation of electrical machines; new trends in diagnostics and condition monitoring; power electronics, control schemes, and algorithms for electrical drives; new topologies; and innovative applications

    Incorporating declared capacity uncertainty in optimizing airport slot allocation

    Get PDF
    Slot allocation is the mechanism used to allocate capacity at congested airports. A number of models have been introduced in the literature aiming to produce airport schedules that optimize the allocation of slot requests to the available airport capacity. A critical parameter affecting the outcome of the slot allocation process is the airport’s declared capacity. Existing airport slot allocation models treat declared capacity as an exogenously defined deterministic parameter. In this presentation we propose a new robust optimization formulation based on the concept of stability radius. The proposed formulation considers endogenously the airport’s declared capacity and expresses it as a function of its throughput. We present results from the application of the proposed approach to a congested airport and we discuss the trade-off between the declared capacity of the airport and the efficiency of the slot allocation process

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described
    • …
    corecore