1,699 research outputs found

    Optimization of Electricity Markets Participation with Simulated Annealing

    Get PDF
    The electricity markets environment has changed completely with the introduction of renewable energy sources in the energy distribution systems. With such alterations, preventing the system from collapsing required the development of tools to avoid system failure. In this new market environment competitiveness increases, new and different power producers have emerged, each of them with different characteristics, although some are shared for all of them, such as the unpredictability. In order to battle the unpredictability, the power supplies of this nature are supported by techniques of artificial intelligence that enables them crucial information for participation in the energy markets. In electricity markets any player aims to get the best profit, but is necessary have knowledge of the future with a degree of confidence leading to possible build successful actions. With optimization techniques based on artificial intelligence it is possible to achieve results in considerable time so that producers are able to optimize their profits from the sale of Electricity. Nowadays, there are many optimization problems where there are no that cannot be solved with exact methods, or where deterministic methods are computationally too complex to implement. Heuristic optimization methods have, thus, become a promising solution. In this paper, a simulated annealing based approach is used to solve the portfolio optimization problem for multiple electricity markets participation. A case study based on real electricity markets data is presented, and the results using the proposed approach are compared to those achieved by a previous implementation using particle swarm optimization.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794info:eu-repo/semantics/publishedVersio

    Initial Solution Heuristic for Portfolio Optimization of Electricity Markets Participation

    Get PDF
    Meta-heuristic search methods are used to find near optimal global solutions for difficult optimization problems. These meta-heuristic processes usually require some kind of knowledge to overcome the local optimum locations. One way to achieve diversification is to start the search procedure from a solution already obtained through another method. Since this solution is already validated the algorithm will converge easily to a greater global solution. In this work, several well-known meta-heuristics are used to solve the problem of electricity markets participation portfolio optimization. Their search performance is compared to the performance of a proposed hybrid method (ad-hoc heuristic to generate the initial solution, which is combined with the search method). The addressed problem is the portfolio optimization for energy markets participation, where there are different markets where it is possible to negotiate. In this way the result will be the optimal allocation of electricity in the different markets in order to obtain the maximum return quantified through the objective function.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 641794 (project DREAM-GO) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2013.info:eu-repo/semantics/publishedVersio

    Hybrid particle swarm optimization of electricity market participation portfolio

    Get PDF
    This paper proposes a novel hybrid particle swarm optimization methodology to solve the problem of optimal participation in multiple electricity markets. The decision time is usually very important when planning the participation in electricity markets. This environment is characterized by the time available to take action, since different electricity markets have specific rules, which requires participants to be able to adapt and plan their decisions in a short time. Using metaheuristic optimization, participants' time problems can be resolved, because these methods enable problems to be solved in a short time and with good results. This paper proposes a hybrid resolution method, which is based on the particle swarm optimization metaheuristic. An exact mathematical method, which solves a simplified, linearized, version of the problem, is used to generate the initial solution for the metaheuristic approach, with the objective of improving the quality of results without representing a significant increase of the execution time.This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 703689 (project ADAPT) and No 641794 (project DREAM-GO); NetEfficity Project (P2020 − 18015); and UID/EEA/00760/2013 funded by FEDER Funds through COMPETE pro-gram and by National Funds through FCT.info:eu-repo/semantics/publishedVersio

    Hybrid approach based on particle swarm optimization for electricity markets participation

    Get PDF
    In many large-scale and time-consuming problems, the application of metaheuristics becomes essential, since these methods enable achieving very close solutions to the exact one in a much shorter time. In this work, we address the problem of portfolio optimization applied to electricity markets negotiation. As in a market environment, decision-making is carried out in very short times, the application of the metaheuristics is necessary. This work proposes a Hybrid model, combining a simplified exact resolution of the method, as a means to obtain the initial solution for a Particle Swarm Optimization (PSO) approach. Results show that the presented approach is able to obtain better results in the metaheuristic search process.This work has received funding from the European Union's Horizon 2020 research and innovation programme under project DOMINOES (grant agreement No 771066) and from FEDER Funds through COMPETE program and from National Funds through FCT under the project UID/EEA/00760/2019 and Ricardo Faia is supported by FCT Funds through and SFRH/BD/133086/2017 PhD scholarship.info:eu-repo/semantics/publishedVersio

    Investigating the Impacts of Distributed Generation on Transmission Expansion Cost: An Australian Case Study

    Get PDF
    Distributed generation (DG) is rapidly increasing its penetration level in Australia, and is expected to play a more important role in the power industry. An important benefit of DG is its ability to defer transmission investments. In this paper, a simulation model is implemented to conduct quantitative analysis on the effect of DG on transmission investment deferral. The transmission expansion model is formulated as a multi-objective optimization problem with comprehensive technical constraints, such as AC power flow and system security. The model is then applied to study the Queensland electricity market in Australia. Simulation results show that, DG does show the ability to reduce transmission investments. This ability however is greatly influenced by a number of factors, such as the locations of DG, the network topology, and the power system technical constraints.

    Optimal scheduling of smart microgrids considering electric vehicle battery swapping stations

    Get PDF
    Smart microgrids belong to a set of networks that operate independently. These networks have technologies such as electric vehicle battery swapping stations that aim to economic welfare with own resources of smart microgrids. These resources should support other services, for example, the supply of energy at peak hours. This study addresses the formulation of a decision matrix based on operating conditions of electric vehicles and examines economically viable alternatives for a battery swapping station. The decision matrix is implemented to manage the swapping, charging, and discharging of electric vehicles. Furthermore, this study integrates a smart microgrid model to assess the operational strategies of the aggregator, which can act like a prosumer by managing both electric vehicle battery swapping stations and energy storage systems. The smart microgrid model proposed includes elements used for demand response and generators with renewable energies. This model investigates the effect of the wholesale, local and electric-vehicle markets. Additionally, the model includes uncertainty issues related to the planning for the infrastructure of the electric vehicle battery swapping station, variability of electricity prices, weather conditions, and load forecasting. This article also analyzes how both the user and the providers maximize their economic benefits with the hybrid optimization algorithm called variable neighborhood search - differential evolutionary particle swarm optimization. The strategy to organize the infrastructure of these charging stations reaches a reduction of 72% in the overall cost. This reduction percentage is obtained calculating the random solution with respect to the suboptimal solution

    Unit Commitment Problem in Electrical Power System: A Literature Review

    Get PDF
    Unit commitment (UC) is a popular problem in electric power system that aims at minimizing the total cost of power generation in a specific period, by defining an adequate scheduling of the generating units. The UC solution must respect many operational constraints. In the past half century, there was several researches treated the UC problem. Many works have proposed new formulations to the UC problem, others have offered several methodologies and techniques to solve the problem. This paper gives a literature review of UC problem, its mathematical formulation, methods for solving it and Different approaches developed for addressing renewable energy effects and uncertainties

    Optimal Participation of Power Generating Companies in a Deregulated Electricity Market

    Get PDF
    The function of an electric utility is to make stable electric power available to consumers in an efficient manner. This would include power generation, transmission, distribution and retail sales. Since the early nineties however, many utilities have had to change from the vertically integrated structure to a deregulated system where the services were unbundled due to a rapid demand growth and need for better economic benefits. With the unbundling of services came competition which pushed innovation and led to the improvement of efficiency. In a deregulated power system, power generators submit offers to sell energy and operating reserve in the electricity market. The market can be described more as oligopolistic with a System Operator in-charge of the power grid, matching the offers to supply with the bid in demands to determine the market clearing price for each interval. This price is what is paid to all generators. Energy is sold in the day-ahead market where offers are submitted hours prior to when it is needed. The spot energy market caters to unforeseen rise in load demand and thus commands a higher price for electrical energy than the day-ahead market. A generating company can improve its profit by using an appropriate bidding strategy. This improvement is affected by the nature of bids from competitors and uncertainty in demand. In a sealed bid auction, bids are submitted simultaneously within a timeframe and are confidential, thus a generator has no information on rivals’ bids. There have been studies on methods used by generators to build optimal offers considering competition. However, many of these studies base estimations of rivals’ behaviour on analysis with sufficient bidding history data from the market. Historical data on bidding behaviour may not be readily available in practical systems. The work reported in this thesis explores ways a generator can make security-constrained offers in different markets considering incomplete market information. It also incorporates possible uncertainty in load forecasts. The research methodology used in this thesis is based on forecasting and optimization. Forecasts of market clearing price for each market interval are calculated and used in the objective function of profit maximization to get maximum benefit at the interval. Making these forecasts includes competition into the bid process. Results show that with information on historical data available, a generator can make adequate short-term analysis on market behaviour and thus optimize its benefits for the period. This thesis provides new insights into power generators’ approach in making optimal bids to maximize market benefits

    Ellipsoidal Prediction Regions for Multivariate Uncertainty Characterization

    Get PDF
    While substantial advances are observed in probabilistic forecasting for power system operation and electricity market applications, most approaches are still developed in a univariate framework. This prevents from informing about the interdependence structure among locations, lead times and variables of interest. Such dependencies are key in a large share of operational problems involving renewable power generation, load and electricity prices for instance. The few methods that account for dependencies translate to sampling scenarios based on given marginals and dependence structures. However, for classes of decision-making problems based on robust, interval chance-constrained optimization, necessary inputs take the form of polyhedra or ellipsoids. Consequently, we propose a systematic framework to readily generate and evaluate ellipsoidal prediction regions, with predefined probability and minimum volume. A skill score is proposed for quantitative assessment of the quality of prediction ellipsoids. A set of experiments is used to illustrate the discrimination ability of the proposed scoring rule for misspecification of ellipsoidal prediction regions. Application results based on three datasets with wind, PV power and electricity prices, allow us to assess the skill of the resulting ellipsoidal prediction regions, in terms of calibration, sharpness and overall skill.Comment: 8 pages, 7 Figures, Submitted to IEEE Transactions on Power System
    • 

    corecore