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ABSTRACT 

The function of an electric utility is to make stable electric power available to consumers in an 

efficient manner. This would include power generation, transmission, distribution and retail sales. 

Since the early nineties however, many utilities have had to change from the vertically integrated 

structure to a deregulated system where the services were unbundled due to a rapid demand 

growth and need for better economic benefits. With the unbundling of services came competition 

which pushed innovation and led to the improvement of efficiency. 

In a deregulated power system, power generators submit offers to sell energy and operating 

reserve in the electricity market. The market can be described more as oligopolistic with a 

System Operator in-charge of the power grid, matching the offers to supply with the bid in 

demands to determine the market clearing price for each interval. This price is what is paid to all 

generators. Energy is sold in the day-ahead market where offers are submitted hours prior to 

when it is needed. The spot energy market caters to unforeseen rise in load demand and thus 

commands a higher price for electrical energy than the day-ahead market. A generating company 

can improve its profit by using an appropriate bidding strategy. This improvement is affected by 

the nature of bids from competitors and uncertainty in demand. In a sealed bid auction, bids are 

submitted simultaneously within a timeframe and are confidential, thus a generator has no 

information on rivals’ bids. There have been studies on methods used by generators to build 

optimal offers considering competition. However, many of these studies base estimations of 

rivals’ behaviour on analysis with sufficient bidding history data from the market. Historical data 

on bidding behaviour may not be readily available in practical systems. The work reported in this 

thesis explores ways a generator can make security-constrained offers in different markets 

considering incomplete market information. It also incorporates possible uncertainty in load 

forecasts. 

The research methodology used in this thesis is based on forecasting and optimization. Forecasts 

of market clearing price for each market interval are calculated and used in the objective function 

of profit maximization to get maximum benefit at the interval. Making these forecasts includes 

competition into the bid process. Results show that with information on historical data available, 

a generator can make adequate short-term analysis on market behaviour and thus optimize its 
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benefits for the period.  This thesis provides new insights into power generators’ approach in 

making optimal bids to maximize market benefits. 
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CHAPTER 1 

INTRODUCTION 

1.1 Electric Power System 

An electric power system is a complex network of generating stations, transmission lines and 

distribution stations that supply electrical energy to consumers. Traditionally, the task of 

electricity production, transmission and supply to consumers is handled and managed by an 

electric utility. An electric utility in the traditional regulated electric power industry is a vertically 

integrated monopoly as it is responsible for all activities related to electricity supply.  

Electric power can be generated utilizing different techniques. A thermal generating station uses 

heat energy to produce electric power. Examples of thermal power plants are coal-fired units, 

nuclear units and gas turbines. Hydropower stations generate electric power with energy from 

water at high pressure. Other renewable sources of generation are solar, wind, biofuels and 

geothermal. Hydroelectricity is still the most popular form of renewable power supply, although 

there are ongoing studies on ways to largely improve electricity production from wind and solar.  

Moving electric power from points of generation to where it is distributed to different customers 

is done with transmission lines. The transmission network of a region consists of several 

interconnected electric power lines that may consist of underground cables and overhead lines. 

Electric power is moved under high voltage through these lines to distribution substations.  

At the distribution substation, the voltage is stepped down before sending power to the bulk 

customers. Power is moved through the distribution system to consumers at different service 

levels. Distribution lines can either be overhead; with utility poles, or underground. 

1.2 Deregulation in Electric Power Industry 

Before the nineties, electric power industries across the world were in most part regulated 

entities. Due to huge capital investment necessary to build and operate, a regulated environment 

created by governments made risk management possible [1][2]. Monopolies were set up to insure 
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local utilities against unfavorable competition [2]. Regulated utilities made a steady growth of the 

electric power industry possible. To effectively manage operations, a regulated utility was  under 

obligation to provide services at the least cost to all customers within its region [1]. The 

traditional electric utility was responsible for power generation, transmission, distribution, 

metering, billing, maintenance and repair, and all other activities related to electricity supply and 

use in its jurisdiction. However, with growth in technology and demand for electricity, came a 

need for innovation. Deregulation brought about competition which pushed innovation to 

improve quality and lower electricity price. 

Deregulation can broadly be defined as removal or reduction of government’s influence in an 

industry. In recent times, the need for this in the electric power industry became an important 

issue in many regions mainly due to a large increase in power demand and inefficient electricity 

pricing system. In a deregulated environment, the three major components (power generation, 

transmission, and distribution) of the electric power industry are unbundled. The main aim of 

deregulation in the electric power industry is to encourage competition among power producers 

and among retailers [1]. To ascertain fair competition, an open access transmission and 

distribution system is practiced. An open access system gives equal rights to generators or 

retailers to use the power grid for energy delivery to any location within the system. Coordinating 

the whole process brought the need for an Independent System Operator (ISO); an organization 

whose function is to manage the operations of the power grid in a region. The functions of a 

typical ISO will be further discussed in the next Chapter. The entities in a restructured power 

industry can be categorized into market operator and market participants [3]. The market operator 

is the ISO and generally, market participants are generation companies (GENCOs), transmission 

companies (TRANSCOs), distribution companies (DISCOs), retail energy services companies 

(RESCOs), and customers. In some regions, the local distribution companies are also the retail 

service providers. 

As previously stated, with the operation of a competitive generation market, GENCOs own 

and/or operates facilities to produce bulk electric power and makes offers to sell the power in the 

electricity market. GENCOs have the option to sell their electric power under bilateral contracts 

and can participate in energy market auctions arranged by an ISO. They can sell power at 

whatever location and price with their revenue coming only from the sale of power produced. 
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GENCOs can participate in the market for ancillary services by providing operating reserves, 

frequency and voltage regulation, they can also make capacity offers in the capacity market. 

Examples of GENCOs are independent power producers (IPPs) or non-utility generators (NUGs). 

GENCOs inform the ISO of an impending scheduled maintenance outage and ISO gives approval 

based on system reliability constraints [3]. Sale of electric power is an ‘on-site’ transaction, 

transmission lines are required to move power to consumers. TRANSCOs own and maintain 

facilities for moving bulk power from point of production to DISCOs for distribution to 

customers. Transmission lines efficiently move large amount of power over long distances to 

distribution stations. In many regions where a deregulated environment is practiced, a 

TRANSCO may still operate as a regulated monopoly with unbiased connections for transport of 

power. This is maintained to remove complexities that may arise with the use of transmission 

lines and the method has been found to be beneficial to the public [1]. A regional operator (ISO) 

is responsible for the operation of the transmission system. However, TRANSCOs are paid for 

the use of their facilities through access charges, transmission usage charges and congestion 

revenues [3]. There can be more than one TRANSCO within a regional grid, but each would have 

its own jurisdiction or coverage area. The transmission sector is devoid of competition. DISCOs 

own and operate facilities for the distribution of power to consumers. A DISCO is a regulated 

company that obtains its revenue from the use of its distribution lines for delivery of electric 

power. In regions where DISCOs are also in charge of retail services, they buy electricity from 

the wholesale market or enter into bilateral contracts with GENCOs for the purchase of electric 

power and sell to customers through the distribution system (an illustration of this is the local 

distribution company). DISCOs are responsible for maintenance and availability of the 

distribution system as well as responding to outages and power quality issues in the system [3]. 

The RESCOs are responsible for retail sale of electric power and other energy-related services to 

consumers. They operate in a competitive environment, buying bulk electric power from 

GENCOs to sell to end-users through the distribution system. A RESCO can offer demand-side 

management services to customers, designing efficient ways to use energy. Customers are home-

owners, small businesses (interacting with RESCOs) or large factories and industries (connected 

to the transmission system) who are end-users of electric power. In a deregulated environment, a 

customer has the choice of buying power from different RESCOs and can also buy directly from 

a GENCO. 
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Power flow Information flow Money flow
 

Fig. 1.1 Structure of a deregulated electric power industry 

Deregulation encourages new measures for investment in the power industry. Cleaner and more 

productive methods for power generation are on-going in many regions. Market participants find 

ways of improving their services despite competition, saving cost and maximizing profit. 

Competition also brings efficiency, lowering electricity price. Customer experience/service 

improves as customers have options for retail energy providers. An optimal operation of the 

power system is achieved through deregulation.  

1.3 Power System Reliability 

The term ‘Reliability’ in engineering is generally understood to mean the probability that a 

component or system will perform its prescribed function without failure within a given time 

period when operated correctly in a stipulated environment. Improved reliability became a 

necessity due to the need for more complex functions to be performed by a single system, 

systems being used in increasingly hostile environments, pressure from the public on product 

performance and failure rate, competition among manufacturers, and many other factors. Critical 

systems and networks such as the electric power system require a high reliability over a long 

period. Maintaining reliability in electric power system requires evaluation of the system for 

adequacy and security [4]. Adequacy relates to having enough capacity or facilities to meet the 
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demand for electricity at every point while security refers to the ability of the system to react to 

contingencies or disruptions [3][5]. Unstable conditions arising in the system can be due to 

weather, loss of generation, or equipment failure. In general, a reliable power system should have 

sufficient generation and transmission facilities to meet demand, be able to accommodate 

uncertainty in demand and loss of generation and maintain steady frequency and voltage at an 

acceptable level. In a bid to ensure resource adequacy and system security, one of the tools used 

in power system planning and operation is Load Forecasting. 

1.3.1 Load Forecasting 

Load forecasting is a form of prediction of consumers’ electricity demand over a period to make 

adequate commitments for supply. This is an important part of planning and operation in a power 

system. To make a good forecast, analysis is done on data considering factors such as 

temperature, wind chill, historical data on demand and price, climate change and day of the week. 

Forecasts can be short-term (hours to a few days ahead), medium-term (few weeks to months 

ahead) or long-term (years ahead). Short-term forecasts are applied in scheduling daily generation 

and supply of electricity, maintaining system stability. Medium-term forecasts are used in outage 

and maintenance planning, scheduling fuel purchases and generation optimization. Long-term 

forecasts are employed for investment planning purposes such as capacity expansion. Some 

techniques used in electricity load forecasting are discussed in [6]. While the use of good 

forecasting models would give highly accurate results, and thus higher operating reliability of the 

power system, it is nonviable to expect an exact demand for electricity in real-time. This 

inexactness is due to complexities with electricity demand as there are many uncontrollable 

factors that determine its quantity.   

1.3.1.1 Load Forecast Uncertainty 

Load forecast uncertainty (LFU) is the variability associated with the prediction of load demand. 

LFU is an essential part of electric power system operation. The system’s operating cost increases 

with spare generation capacity kept to accommodate contingencies like sudden increase in 

demand, an accurate load forecast usually minimizes this since quantity on reserve would be 

minimal. However, irrespective of how meticulously forecasts are made, it is unlikely that real-

time demand would be exact since forecasts are mainly based on experience. LFU affects the 

quantity of resources to be committed to have adequate capacity in the system. It is an important 



 

6 
 

factor to be considered in units scheduling and dispatch as it affects the reliability of the system. 

Uncertainty in load can be described by a normal distribution as proposed by many authors 

[4][6][8][9], with the distribution mean, µ, as the forecast peak load and standard deviation, σ, as 

level of uncertainty. A normal distribution can be divided into discrete number of class intervals. 

The designated probability of an interval relates to the probability of the load within that interval 

[4]. A distribution with five class intervals (5-step) is shown in Fig. 1.2, which is adequate for 

LFU representation in the research work done. Dividing the distribution into seven class intervals 

is also a popular approach by researchers to model LFU. 

 

0.382

0.067 0.067

0.242 0.242

-2σ -1σ µ +1σ +2σ 

 

 Fig. 1.2 5-step approximation of the normal distribution for load forecast uncertainty 

1.4 Objectives and Thesis Outline 

This thesis examines ways power producers can maximize their daily benefits by making optimal 

offers to supply electricity to the market while maintaining their system security. The objectives 

of this research are: 
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1. To determine the hourly price/quantity offers to submit in the day-ahead market 

bid process for maximum benefit. 

2. To determine the quantity of spinning reserve needed to be maintained with each 

offer to ensure the generator’s system security in the event of an emergency. 

3. To determine the price/quantity offers that can be submitted in the spot market. 

4. To study the effects of LFU on hourly price/quantity offers made in the day-ahead 

and spot markets. 

The overall structure of this thesis takes the form of five chapters, including the current chapter. 

Chapter 2 begins by describing functions of an Independent System Operator. This Chapter 

defines what a market clearing price is and provides examples of electricity market. Review of 

literature on market modelling and optimal bidding by power producers in the day-ahead 

electricity market is also discussed. 

Chapter 3 discusses the methodology used for this research work. Electricity price forecasting 

with the double seasonal Holt-Winters model is described. Price forecasting is a reliable way of 

determining optimal prices for offers made in the bid process. The golden section search method 

as an optimization algorithm for calculating optimal quantity to be offered is discussed. Dynamic 

programming for economic dispatch after deciding on hourly price/quantity pairs is also included 

in this Chapter. 

Chapter 4 presents the results. A sample test system and load model are used to demonstrate the 

methodology stated in the previous Chapter. Results are discussed based on different scenarios 

with the effect of LFU on the strategy employed. 

Conclusions derived from the work and suggestions for future work are outlined in Chapter 5. 
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 CHAPTER 2 

ELECTRICITY MARKETS IN DEREGULATED POWER SYSTEM 

2.1 Introduction 

With the advent of deregulation in the electric power industry, the number of participants who 

provide different services related to the production, transmission and distribution of electricity 

increased. It became necessary to have an independent system operator (ISO) to monitor that the 

bulk customers receive stable, reliable and secure delivery of electric power. An ISO is also 

responsible for a safe operation of the power system. To achieve an efficient operation, several 

market processes are implemented with different timelines. Generators and retailers take part in 

these markets and offer other services to help maintain system reliability. This Chapter explains 

the responsibilities of the ISO. It describes wholesale energy markets and services for secure 

system operation. Relevant literature on the structure and modelling of a wholesale electricity 

market and strategic participation of power producers in day-ahead auction process are also 

presented in this Chapter. 

2.2 Independent System Operator 

In a deregulated power system, an ISO is an entity that manages operation to provide all market 

participants open-access to wholesale and retail markets [3]. It is independent of other market 

participants such as the consumers, generating companies, distribution companies and 

transmission owners. It ensures an economic operation by balancing the energy market every 

hour of the day for customers to receive supply when needed at the lowest possible price. An ISO 

determines the price commonly known as market clearing price that the suppliers will receive. 

Unit commitment and economic dispatch of resources are done to ensure system security by 

frequency regulation, voltage control, load following and managing congestion in transmission 

lines. Market forecasting, load and price forecasting, are also done by an ISO [3]. An ISO takes 

proper steps to maintain the safety and reliability of the system. Some ISOs operating in North 

America are Ontario’s Independent Electricity System Operator (IESO), Alberta Electric System  
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Operator (AESO), California Independent System Operator (CAISO) and New York Independent 

System Operator (NYISO). 

2.2.1 Electricity Market Clearing Price 

The ISO makes hourly forecast of expected demand for trade day weeks ahead, making necessary 

adjustments as the day approaches. Based on these forecasts, power producers or generators 

submit offers to supply in price/quantity pairs while consumers also submit bids in same manner 

in the electricity market. The price/quantity pair states the quantity a producer can supply and the 

minimum price acceptable or the quantity a consumer is willing to buy and the maximum price 

that can be paid [10]. Bids or offers can be submitted for any or all hours of the trade day. An 

ISO arranges offers from the cheapest to the most expensive against demand. Market supply 

curve, showing offer price as a function of cumulative offer quantity, is built from this ranking. 

Similarly, the market demand curve is built from ranking consumers’ bids in a decreasing order 

of price. Price at the point of equilibrium where there is a balance between supply and demand 

for energy is the market clearing price (MCP).  
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$/MWh

MCP

MW

Supply offers

Demand bids

Fig. 2.1 Electricity market clearing price 

All generators with prices below or equal to the MCP would be scheduled to supply for that 

auction interval. The MCP is paid to these generators irrespective of what their offer price was. 

This single price method improves efficiency in the power grid as electricity is being supplied at 

the least possible cost, encourages investment in generation and limits market manipulation. 

As explained in [10], there are dispatchable and non-dispatchable generators and loads or 

consumers. A dispatchable generator would submit offers in the wholesale electricity market, 

taking active part in the auction process, and respond to dispatch instructions when scheduled to 

supply. These generators must be able to adjust their amount of generation in response to ISO’s 

dispatch instructions. Examples are: coal-fired, nuclear and hydro-electric power generating 

facilities. Dispatchable loads also submit bids to buy energy and respond to instructions on how 

to manage their consumption. These dispatchable loads can provide operating reserve to handle 

contingencies in the system [11]. Dispatchable facilities help maintain reliability and efficient 

operation of a power grid by responding to instructions to manage congestion, providing 
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operating reserves for frequency regulation and continuous balance of energy supply and demand 

[10]. Dispatch instructions consider participant’s ability to adjust its generation or consumption 

levels. Non-dispatchable generators submits estimates of energy production instead of 

price/quantity offers while non-dispatchable loads draw electricity from the power grid as 

needed. These generators and loads are price-takers, meaning they accept the MCP for their 

supply or consumption. This makes non-dispatchable generators the least expensive and thus, 

considered first in the process of determining MCP. Wind, solar photo-voltaic and run-of-the-

river hydro generating facilities are examples of non-dispatchable generators. A good example of 

non-dispatchable load is the local distribution company (LDC). The LDC takes electricity from 

the grid and distributes to retail consumers at a lower voltage. Most of the energy consumed in 

ISO-controlled grids of many regions are non-dispatchable loads. 

2.3 Unit Commitment 

Unit commitment is a decision process to determine the starting, stopping and generation output 

schedule of generating units to satisfy varying demand over a period of time. This process finds 

the optimal schedule for units present in a power grid to supply power such that the total 

operating cost for the period becomes minimum [12]. Schedules generated from unit commitment 

depend on demand and reserve requirement, amongst other constraints. In a regulated 

environment, since all generation is from same entity, reserve requirement is integrated directly 

into the unit commitment process, hence system adequacy is easily covered. This would still 

apply to GENCOs in a deregulated environment in estimating optimal offer schedules and 

minimizing cost. When an ISO publishes accepted offers from the market process, winning 

GENCOs are under contract to supply as scheduled. A GENCO would incorporate provision for 

unforeseen events such as sudden loss of generation in its unit commitment and operating 

schedule process to ensure there’s adequate capacity to supply as stated in its offer. This can be 

termed spinning reserve requirement on generating side for GENCO’s system security. Quantity 

on reserve and reserve allocation are determined by each GENCO. The ISO is however 

responsible for overall unit commitment on the power grid. From the unconstrained optimization 

run to calculate MCP, the ISO determines units to be committed to economically satisfy demand. 

For electric power system reliability in a restructured environment, spinning reserve is not 
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embedded in the unit commitment process. Reserve requirements are procured in a separate 

market from that for bulk energy.  

Minimizing fuel cost of different power plants while maintaining sufficient supply to meet 

demand is an important part of power system operation. The minimization problem would 

consider demand, reserve requirements and generating units constraints [13]. Power systems or 

reliability councils may set different rules on committing units depending on demand curve 

characteristics, generation side structure, and other related factors [14]. Generating units 

constraints as described in [14] include minimum up time and minimum down time, for thermal 

generating units.  Minimum up time is the least period a unit committed and running should be 

left operating before turning off while minimum down time is the least period a unit decommitted 

should be left off before being recommitted. Also, since temperature and pressure changes in 

thermal units is a gradual process, taking some hours and energy to bring units on-line, there is an 

associated start-up cost. The start-up cost varies from cold-start (if the unit has been off for a 

while) to a value for when unit is off, but temperature is still close to operating temperature. The 

latter usually referred to as ‘banking’ requires just enough energy in the boiler to maintain 

operating temperature. Effect of maintenance and unplanned outages as they affect capacity 

limits of thermal units and units that have the ‘must-run’ status should also be considered in unit 

commitment [14]. Other unit operating constraints are the minimum and maximum operating 

limits which defines the generation output range. There is also the unit response rate limitation. 

The unit response rate or ramp rate is the rate of change in a unit’s instantaneous output, usually 

measured in minutes. For system reliability and economic operation, ramp rate limits is an 

important consideration as it would ensure there is adequate committed capacity to accommodate 

changes in generation [15][16]. Common techniques in solving the unit commitment problem 

such as the priority-list method, Lagrange relaxation, dynamic programming, simulated 

annealing, evolutionary and swarm algorithms are described in [13][14]. Solution to unit 

commitment would have generation schedules, reserve and regulation market schedules as 

outputs, for every period committed units should be able to generate enough power to satisfy 

peak demand. 
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2.4 Energy Markets 

Electricity markets operate on basic principle of demand and supply. MCP is the price at 

equilibrium point of supply and demand. Energy market is where the competition for buying and 

selling of electricity happens. The day-ahead and spot markets are types of energy market for 

wholesale trade of electricity. Respective ISOs in most jurisdictions operate the energy market. 

2.4.1 Day-ahead Market 

A day-ahead market (DAM) is a forward market for energy needed at each hour of the following 

day. It opens days prior to the trade day (7 days in CAISO) and closes a day before the trade day. 

It operates on a single schedule market design, with timeline before real-time energy market and 

use. An ISO determines the least expensive means of satisfying demand and then procures 

ancillary services. Ancillary services are procured through bid submissions and can be through a 

systemwide auction or on zonal basis [3]. DAM encourages transparency in electricity pricing 

and reduces price uncertainty, limits unfavourable strategic gaming by power producers and 

enables consumer participation in the trade of electricity [17]. It improves production certainty 

for dispatchable generators and reduces operational uncertainty between day-ahead schedules and 

real-time demand [18]. 

In a day ahead scheduling process, an ISO accepts submissions of supply offers, import offers, 

demand bids, export bids, and estimated output and consumption level of self-scheduling 

generators and loads, to optimize energy and operating reserve while considering system’s 

reliability requirements for the trade day. Importers are those market participants who make 

offers (in a similar manner to dispatchable generators) to sell energy not generated originally in 

the ISO’s jurisdiction but in neighbouring areas with which the ISO’s power grid has 

interconnection. Exporters are market participants who submit bids (like large 

consumers/dispatchable loads) advising quantity of energy to consume and price. Since power 

import and export is done through the transmission lines and systems controlled by an ISO, they 

are factored into the market process to maintain system reliability. An ISO ensures availability of 

adequate resources to meet the next day’s demand and balances generation and demand at every 

hour or interval, at minimum production cost. MCP is determined at the balance point between 

supply and demand at that interval. This MCP is set ignoring transmission constraints or 

congestion. After determining the MCP and energy schedule, an ISO runs a security constrained 
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load dispatch. This would consider limitations such as losses, congestion and transmission 

constraints. The security constrained scheduling process notes the physical characteristics of the 

grid [10], dispatch schedule for the interval is an output of this process. This way, reliability is 

maintained in a grid.  

A security constrained scheduling process is what produces the locational marginal price (LMP) 

which is zonal energy price. Since degree of constraints on the delivery of energy at zones or 

locations controlled by an ISO may vary, energy price at zones differs. The LMP is energy price 

at a specific location. Depending on the region, rules on market timelines may differ. However, 

continuous balance between energy supply and demand must be maintained within a close 

margin. 

2.4.2 Spot Market 

A spot market (SM) also known as real-time market is a market to maintain continuous balance 

of supply and demand for energy on the trade day. A DAM is operated with load forecasts, 

however, regardless of how ISOs and the market participants carefully make these forecasts, 

there are usually slight variations between forecasts and real-time demand. A SM is an avenue for 

utilities to procure additional energy needed to meet demand when real-time demand is more than 

forecast made [19]. Deviations from the day-ahead schedules which can’t be covered by 

operating reserve are settled at the SM. Since delivery time for energy procured in this market is 

very short, price is usually very high. Bids and offers are submitted in a SM in a similar process 

as in a DAM but within a shorter timeline, dispatch and delivery is done in minutes. An ISO 

monitors and operates a SM, serving demand in the least expensive way. Balancing of energy in 

real-time is done within 15 to 5 minutes interval. This makes a SM operation a continuous 

process. 

2.5 Capacity Market 

A capacity market is a kind of ‘future’ market to ensure there would be enough resources in the 

grid to constantly meet demand. This translates to having the resources to meet the projected 

peak demand within a timeframe. Power producers make offers to supply capacity in a capacity 

auction. These auctions take place years before their operating period, the market is settled with 
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capacity payments [20]. The single pricing system of paying all ‘winning’ generators the MCP is 

also adopted in this market.  

A capacity market reduces the probability of having spikes in the wholesale price of electricity 

due to insufficient supply [21]. It helps with real-time electricity price volatility. The market 

encourages investment in power generation, maintaining the current resources, and pushes 

innovations for more sustainable and cleaner ways of generating power [20][21]. A capacity 

market would reduce the likelihood of a blackout. 

2.6 Ancillary Services 

Ancillary services are essential for the safe, secure and reliable operation of a power system. 

Federal Energy Regulatory Commission (FERC) defined ancillary services as ‘those services 

necessary to support the transmission of electric power from seller to purchaser, given the 

obligations of control areas and transmitting utilities within those control areas, to maintain 

reliable operations of the interconnected transmission system’ [22]. ISOs have differing lists of 

these services. They can however be grouped based on operation as frequency control/regulation, 

voltage control, and black start facilities for system restart. An ISO maintains a reliable grid by 

ensuring continuous supply of power under stable voltage and frequency. 

a. Voltage Control: there are two products from power generation; real power and reactive 

power. Real power is what is supplied as electricity. Voltage in the system must be 

maintained within a close margin to the required level (between 95% and 105% of the 

nominal). Reactive power supports voltage stability. High level of reactive power raises 

voltage in the grid while voltage drops when reactive power is low. Synchronous 

generating units can be used to manage voltage by making changes in their operating 

conditions to either supply or absorb reactive power [23]. 

b. Frequency Control/Regulation: maintaining the system frequency at operating level 

(60Hz in North America) is important for reliability and stability. An imbalance between 

energy supply and demand causes the system frequency to change. When supply is higher 

than demand, there is a surplus, frequency goes up and this can lead to damage of plugged 

electrical devices by consumers. A ‘regulation down’ is required to correct this. If demand 

is higher than supply, there is a deficit in the system, frequency drops which leads to 

blackouts or brownouts. ‘Regulation up’ is required to correct this. Generating units 
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ramping up or down, units’ inertia, demand response and more recently energy storage, 

are means of regulating frequency in an electric power system [24]. 

• Operating Reserve: this is used to offset imbalance between energy supply and 

demand to maintain reliability in the presence of an unexpected event. The 

unexpected incident can be sudden loss of generation, loss of transmission lines or 

sudden increase in demand. The Ontario IESO describes operating reserve as 

‘stand-by power or demand reduction that can be called on with short notice to 

deal with an unexpected mismatch between generation and load’ [25]. Operating 

reserve can be divided into spinning and non-spinning reserve. The spinning 

reserve is generation capacity synchronized to the grid and can be available to 

dispatch in 10 minutes. Non-spinning reserve is generation capacity not 

synchronized to the grid but can be made running and available to dispatch in 10 

to 30 minutes. 

c. Black Start Facilities: in the event of a system-wide outage, i.e. total loss of power, black 

start units are used to re-energize the system. A typical black start unit is a diesel engine. 

2.7 Market Modelling and Bidding in Electricity Markets 

Electricity markets can be monopolistic, perfectly competitive or oligopolistic, depending on the 

market power a participant wields. A perfectly competitive market has many buyers and sellers, 

with no seller dominating the market. A seller in this market has no distinct advantage over 

others and accepts price dictated by the market. Power producers typically bid their marginal cost 

of production. All participants in this market are price-takers [17][27]-[28]. A producer’s profit is 

computed as: 

p(Q)  =  RQ −  C(Q)            (2.1) 

where Q is the production quantity, R is the market price, p(Q) is the producer’s profit from 

producing quantity Q and C(Q) is the cost of producing quantity Q. To maximize profit, the 

generator only needs to determine the quantity to produce. Differentiating Equation (2.1) with 

respect to Q and applying first order condition gives 

   p′(Q) = R −  C′(Q) = 0 

   R =  C′(Q)             (2.2) 
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Equation (2.2) shows that for maximum profit, the marginal production cost should be equal to 

the market price. This implies that a generator only needs to dispatch its generating units in a way 

that incremental production cost is same as the market price. Several studies however, have 

reported electricity markets to be oligopolistic and not perfectly competitive [26][29]-[30]. This 

can be due to large capital investment and technology needed in power generation and 

distribution and transmission constraints and losses which discourages customers from buying 

power from distant generators. In an oligopolistic market, there are few sellers, hence fierce 

competition. A power producer with large enough quantity and good bidding strategy would have 

market power. Exercising this power can be by reducing quantity of power to be produced or 

increasing offer price for quantity produced [27]. 

In a competitive electricity market, the main objective of the generator is to maximize its benefits 

from the market. Profits derived are determined by factors such as level of demand, generator’s 

bids and bids from competitors. With no power over rivals’ bids and demand for energy, 

generators take steps to strategically place bids for optimal profits and minimum risk of not being 

selected to supply. Popular methods for electricity generation market modelling can be grouped 

into simulation models, equilibrium models and optimization models [31]. Equilibrium models 

analyse the competitive market considering behaviour and strategy of all power producers. The 

method applies techniques from game theory to simultaneously maximize profit of each 

generator competing in the market. Equilibrium models are based on the principle of Nash 

equilibrium [32], which occurs when no producer can benefit from a change in its bid strategy 

considering no change in bids of competitors. Equilibrium state would signify point of optimal 

bids of producers in the market [30]. The Cournot model [28] is an example of equilibrium 

models, where competing generators base competition on production quantity. Borenstein and 

Bushnell [33] found the profit-maximizing output of a GENCO by maintaining a constant 

quantity for others in an iterative process. This calculation is repeated until a state of Nash 

equilibrium is achieved. The method though has limitations about conditions for convergence. In 

a similar study, Kian et al. [34] developed a strategy to maximize profit for GENCOs and load 

serving entities in a supply and demand auction using a feedback Nash-Cournot model. 

Assumptions made however, included all participants having prior knowledge of competitor’s bid 

information which is not probable. The Cournot model has been viewed to be more suitable for 

analysis of market power as seen in [35][36] than for building optimal bids for GENCOs. It is of 



 

18 
 

limited use for inelastic demand and  incompatible with the price/quantity competition nature of 

electricity markets as generators’ strategies are based only on production quantity [31][37]. 

Another example of equilibrium models is the supply function equilibrium (SFE). Klemperer and 

Meyer [38] introduced the SFE approach, showing a better strategy for modelling uncertainty in 

electricity markets by relating quantity and price as opposed to the Cournot model (fixed 

quantity) or Bertrand model (fixed price). This gives a more realistic representation of the 

behaviour of power producers in an electricity market. The output of the SFE model is a bid 

curve stating price and corresponding quantity. Green and Newbery [39] applied the SFE model 

to the England and Wales electricity market for analysis of market power. SFE have some 

limitations relating to computational complexities as they are represented by differential 

equations as opposed to algebraic equations found in traditional equilibrium models [31]. To 

address this limitation, many researchers use a linear form of the SFE model. Green [40] 

implemented this approach with the case of asymmetric GENCOs in England and Wales 

electricity market. Baldick et al. [41] extends the application of this model by making some 

changes in same market to include capacity constraints and affine marginal costs. Likewise, Al-

Agtash [42] developed a supply curve bidding approach from a GENCO’s perspective based on 

the SFE model. The approach outputs the profit-maximizing bids from iteratively altering 

solutions from the SFE model. However, the SFE has some drawbacks that may limit its 

application. A major drawback is the possibility of producing multiple equilibria with no clarity 

as to which best defines the GENCO’s strategic behaviour [31]. There is also the limitation of 

computational complexities, increased with the system of differential equations. Solutions to 

these equations may not follow the non-decreasing curve constraint of a supply function. With 

SFE model relying on the assumption that slope of the demand function remains constant across 

time periods, applying the model in situations where transmission constraints are considered may 

not be feasible [36]. 

Simulation models also consider strategy of all market participants in analysis of market 

behaviour.  They evaluate the effects of repetitive interaction between market participants for 

operation and strategic bidding [31].  Otero-Novas et al. [43] presented a model representing 

profit-maximizing behaviour of market participants under different types of constraints. An 

iterative procedure was used to simulate market behaviour with participants picking their best 

response to the market in each iteration. The model was applied to the Spanish electricity market. 
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In  related research, Walter and Gomide [44] suggested a fuzzy-rule based approach to model 

bidding strategies for power auction and Bower and Bunn [45] presented an agent-based 

simulation model  to examine the behaviour of GENCOs in wholesale electricity market of 

England and Wales. The model represents GENCOs as autonomous adaptive agents developing 

their own bidding strategies under constraints in a repetitive daily market, profit-maximizing 

strategies are obtained based on results from previous market sessions. Simulation models have 

the advantage of being able to accommodate more complex assumptions over traditional 

equilibrium models [31]. These models are useful in the analysis of market rules and regulatory 

measures as general methodology states participants make decisions based on previous 

experience while adjusting to changes in the environment [31]. Equilibrium and Simulation 

models concurrently examine profit maximization of each GENCO competing in the electricity 

market. With the many simplifying assumptions made to apply these models, they are seen to be 

more suitable for analysis of potential market power and not building optimal bidding strategies 

as equilibrium point achieved from these assumptions may not be applicable to strategic bidding. 

Optimization models presents analysis of strategic bidding by a single firm in the electricity 

market, the objective function is to maximize profit subject to some technical and economic 

constraints. Optimization algorithms are applied to provide solutions with these models. 

Computation flexibility associated with optimization models make them applicable to short-term 

building of daily bid curves [31]. Wen and David [46] presented a framework for strategic 

bidding by power producers. The method assumes power producers submits offers as a linear 

supply function, coefficients of this function are chosen to maximize profit noting offers by 

competitors and subject to technical constraints. Historical data on bidding is employed to 

estimate bid coefficients of rivals and analysed to follow a joint normal probability distribution. 

The optimal bidding problem becomes a stochastic optimization problem with a single objective 

function subject to some technical constraints. The problem was solved with Monte-Carlo 

simulation and an optimization-based technique. Effects of symmetrical and unsymmetrical 

information among power producers present in the market was also included in the analysis. The 

authors extended this approach of estimating rivals’ bid coefficients to the study in [47], 

integrating two bidding strategies; maximum hourly-benefit and minimum stable output, to 

develop an overall bidding strategy for GENCOs in the DAM. Stochastic optimization models 

were used to describe the bidding schemes and genetic algorithm to solve the overall bidding 
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problem. Similar research that model rivals’ bidding behaviour was done by Gountis et al. [48], 

where the optimal bidding problem was modelled as a two-level optimization  problem; profit-

maximization for GENCOs and economic dispatch by the ISO. The problem was solved utilizing 

Monte-Carlo simulation and genetic algorithm techniques. Anderson and Philpott [49] presented 

a model for GENCOs to build optimal supply function offers, representing energy demand and 

rivals’ behaviour with a probability distribution to derive optimality conditions. In a related 

research, Garcia-Gonzalez et al. [50] developed a method to find optimal bids for a GENCO 

under market uncertainty. It was assumed that the GENCO had sufficient data on the market to 

generate rivals’ behaviour scenarios through residual demand. Researchers have also applied 

other heuristic and metaheuristic techniques such as particle swarm optimization [51][52], 

differential evolution [53][54] and shuffled frog leaping algorithm [55][56] to solve the 

optimization problem for GENCOs. More literature on optimization models for a single GENCO 

can be found in [26][57][58]-[59]. 

This section has attempted to provide a brief discussion on literature relating to market modelling 

and strategic bidding by power producers. The set of literature reviewed describes solving the 

strategic bidding problem by some game theory-based approach and estimating rivals’ bidding 

behaviour with a probability distribution and/or residual demand curve facing the GENCO of 

interest. These techniques rely mainly on access to sufficient data on bidding history in the 

market. With little information on auction process and bidding history, this thesis explores 

building a GENCO’s optimal offers by estimating the MCP for each hour of the trade day in a 

DAM, extending this to the SM and incorporating possible risk with uncertainty in demand while 

acknowledging high prices feature of the SM. The analysis in this thesis examines a method for 

GENCOs to simultaneously participate in DAM and SM and gain optimal benefits from both 

markets. This is a short-term analysis, 7 to 14 days prior to the trade day. 

2.8 Summary 

This Chapter began by describing the ISO and its duties, explaining the process of determining 

hourly MCPs and settlements within. It went on to outline the operation of some common 

markets existing in a deregulated power industry, relating how system reliability and security is 

maintained. The last section presents market modelling techniques and methods suggested by 

researchers in building optimal strategies for bidding in energy market. 



 

21 
 

CHAPTER 3 

BUILDING OPTIMAL PRICE/QUANTITY OFFERS 

3.1 Introduction 

The overall aim of this research work is to explore GENCO’s participation in electricity markets 

for optimum market returns. The proposed approach to get desired results detailed in this Chapter 

models the general problem of obtaining maximum profit from electricity markets as a 

constrained optimization problem, with MCP as input variable. Since the approach is being 

implemented for GENCOs with thermal generating units, operating cost in the objective function 

is described with the fuel cost presented as a quadratic cost function. The first step to solving the 

GENCO’s problem is to estimate next day’s prices in the electricity markets. Double seasonal 

Holt-Winters model, a univariate time series model based on exponential smoothing, is 

introduced for short-term electricity price forecasting. A brief description of the model and the 

way it can be applied to prediction of hourly MCPs which have been observed to follow daily 

and weekly seasonal pattern is presented in this Chapter. With forecast of next day energy market 

prices as GENCO’s offer price, the objective function of the optimization problem is solved for 

profit-maximizing offer quantity which is the second step of the approach. Hourly price/quantity 

pairs make up the supply offers submitted in the auction process in electricity markets. The 

algorithm of the golden section search method utilized to solve the optimization problem will be 

described in steps. For cost minimization, an economic distribution of load (offer quantity in this 

case) is done by GENCOs among committed units. This process of economic dispatch would 

ensure that the GENCO is operating at the least incremental running cost. This is an important 

part of the optimization problem for proper estimation of expected daily market benefits and 

economic operation of units. The economic dispatch in this context becomes a subproblem of 

unit commitment. After determining the offer quantity from the optimization algorithm, the unit 

commitment process is carried out again for hourly scheduling and subsequently economic 

dispatch would integrate other operational constraints such as reserve constraint for system 
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security into the optimization process. This Chapter introduces dynamic programming procedure 

and describes its application for economic dispatch. Economic dispatch of units would form the 

last step for profit-maximization approach proposed in this thesis. This Chapter relates an 

approach to achieving the desired results of maximizing profit from supplying energy in 

electricity markets, a test of the methods with a sample practical utility would be presented in the 

next Chapter. 

3.2 Problem Formulation 

The objective of a GENCO is to maximize benefit from the electricity market for each hour of the 

trade day while minimizing cost. Cost associated with power generation has two components: 

fixed cost and variable cost. Fixed costs are mostly capital costs, insurance and land related, 

which are constant irrespective of amount of generation. Variable costs would change depending 

on the level of production. A GENCO’s variable costs consist of fuel cost and operations and 

maintenance cost [60]. For renewable power generation, operation and maintenance costs have 

more influence in determining production cost while for thermal power plants, fuel cost 

dominates with operation and maintenance cost less than 10% of the total variable cost [60]. The 

model presented in this thesis relates to GENCOs with thermal plants, thus the fuel cost is 

assumed the production cost to be minimized. If the valve point effect of a thermal power plant is 

ignored, the fuel cost can be described as a smooth function defined by polynomial functions 

[61]. The smooth function for fuel cost in an idealized form is expressed as [62]: 

   FCi(Pi)  =  ci  +  ∑ ajiPi
j
 +  ri

L
j=1      (3.1) 

        i = 1, 2…M 

Where FCi is the fuel cost function of the ith generating unit, Pi is the power output of the ith 

thermal unit, ci and ai are the cost coefficients, ri is the error related to the ith equation, L is the 

equation order (1 for linear model, 2 for second-order, 3 for cubic), M is the total number of 

thermal generating units. ci would be the value of the cost function when generation output is 

zero. Since thermal power plants can be represented by quadratic fuel cost functions [63], 

excluding the error, Equation (3.1) becomes: 

   FCi(Pi)  =  ci  +  a1iPi  +  a2iPi
2     (3.2) 
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If bi = a1i, ai = a2i  

 FCi(Pi)  =  ci  +  biPi  +  aiPi
2

 

FCi(Pi)  =  aiPi
2  +  biPi  +  ci     (3.3) 

The problem of daily benefit for 24 separate hourly auctions is described as: 

   max  ∑ [p(Qh) = Rh ∗ Qh  −  C(Qh)]24
h=1     (3.4) 

    Qh = ∑ Pi
hM

i=1        (3.5) 

    Pi
min ≤ Pi

h ≤ Pi
max      (3.6) 

Where Qh is the production quantity at hour h, Rh is the market clearing price at same hour, 

C(Qh) is the total cost of producing quantity Qh and p(Qh) is the profit from producing quantity 

Qh. Equation (3.4) presents hourly profit as revenue minus production cost. For optimal benefit, 

offers to be submitted for the trade day should be decided in a way as to minimize risk of not 

being selected to supply. Equation (3.4) has two variables; MCP and production quantity. 

Estimating the MCP would give an insight into the quantity that can be offered at a given price. 

Solving the GENCO’s optimal benefit problem described in this thesis is divided into three 

sections: MCP prediction, optimization of the objective function and economic dispatch of 

generating units. The proposed approach is presented by the simplified flow diagram in Fig. 3.1. 

Equation (3.5) presents the offer quantity Qh to be the summation of output from each generating 

unit running at hour h while the inequality constraint in (3.6) is the generating unit’s limits 

constraint. The output of each unit at every interval should be within the range of minimum and 

maximum possible generation. Units’ operating limits are designed to reduce forced outages and 

improve useful life period. 
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 Fig. 3.1 Flow diagram of proposed approach 
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3.3 Electricity Market Price Forecasting 

As was described in the previous Chapter, in a liberalized power industry, power producers 

submit offers of energy blocks to the market operator, consisting of minimum selling price and 

quantity to sell. Likewise, retailers and large consumers submit buying bids of energy blocks, 

with maximum buying prices and quantity. The market operator run an unconstrained dispatch 

algorithm, offers arranged from the least expensive in an ascending order of increasing price 

against buying bids ranked in decreasing order of price.  The point of intersection defines MCP 

for each market period, usually one hour. Producer offers with price lower than or equal to the 

MCP are accepted and producers are scheduled according to their accepted offer. Likewise, 

consumer bids with price greater than or equal to the MCP are accepted and those consumers are 

informed of the quantity available to them.  MCP is the cost of an additional megawatt-hour of 

energy and this is the price paid to all GENCOs irrespective of the offers submitted. GENCOs 

aim at maximizing profit, selling power when prices are high, in a competitive environment and 

under uncertainties and consumers also look to minimize cost. Thus, market price forecasting is 

important for market participants.  

Electricity market price forecasting is a prediction of the market price of electricity within a 

timeframe. Depending on area of use, price forecasting can be short-term (few days), medium-

term (weeks to few months) or long-term (months to few years). With restructuring of the power 

industry, electricity has become a commodity to be traded in various markets. Electricity however 

has some characteristics different from other regular commodities which can affect the 

application of popular forecasting methods to electricity markets. Examples of such 

characteristics are problem of economic and efficient storage and possible transmission 

congestion since there is a requirement of constant balance between demand and supply. 

Electricity price can thus be very volatile with unusually high or low spikes [64][65]. Generally, 

factors that affect electricity market price volatility includes availability of inexpensive 

generation facilities/renewable forms of generation, sudden loss of generation, disruptions in 

transmission system, volatility in fuel price and weather changes. The manner in which some of 

these factors affect price volatility however varies across markets in different regions [66]. Short-

term electricity price forecasting is employed by GENCOs to determine bidding strategies and 

setting up bilateral contracts. Retailers and large consumers also make price forecasts for similar 
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purposes. Medium-term forecasting is applied in mid-term planning such as schedule and 

allocation of resources while long-term forecasting is used for planning purposes which includes 

capacity expansion analysis. Factors to be considered in electricity price forecasting includes 

historical demand and forecasted demand, historical price, temperature, day of the week and 

special days (holidays or special events). Although market information on these factors may be 

limited, an estimation of the MCP would help a GENCO in determining its optimal offers more 

precisely as an offer close to the MCP would mean more profit. Forecasting of electricity market 

prices can be done with simulation-based or analysis-based methods [66]. Simulation-based 

methods require good knowledge of system operation and access to data on all determining 

factors, hence they are mostly used by market operators [66]. Analysis-based methods are 

employed by market participants as they are implemented with observable and historical 

operation data. Under analysis-based methods, time series models have been used extensively in 

price forecasting.  

3.3.1 Time Series Models 

A time series is a set of data points observed over a period in equally spaced intervals [67]. If the 

observations contained in the series is for a single variable, it is a univariate time series. A 

multivariate time series has observations for more than one variable. Analysis of time series is 

done to account for structure and important features of the series while time series modelling 

considers possibility of having forecasts for future values based on observed values [67]. Past 

observations are used to build a model which is applied to forecasting of future values. An 

adequate model needs to be used with a time series to get good forecast results in time series 

forecasting. A univariate forecasting is employed for complex time series or when there is 

insufficient data on the process under evaluation. A time series can be discrete or continuous 

though variable observed in a discrete time series is usually assumed to be a continuous variable 

[68]. Components read from observed data that can affect nature of time series are described as 

[69]: 

• Cyclical component: this relates to changes in a time series from factors that 

repeat in cycles. 

• Seasonal component: this usually describes variations in a time series that occur 

within a year.  
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• Irregular component: this relates to random variations that occur in a time series, 

following no specific pattern. 

• Trend: this is the direction of a time series over a long period of time. Either the 

series is increasing, decreasing or there is no change. 

 Autoregressive moving average (ARMA) [70], autoregressive integrated moving average 

(ARIMA) [71][72], generalized autoregressive conditional heteroskedasticity (GARCH) [73] are 

time series models that have been implemented in forecasting prices in the day-ahead energy 

market. The ARMA and ARIMA models are combinations of the autoregressive (AR) and 

moving average (MA) linear time series models. For the autoregressive model, the process 

followed assumes that the linear combination of a number of observations from the past, a 

random error, and a constant, determine the future value of a variable [68]. It is a linear 

regression of the present value against prior values of the series. In the moving average model, 

the process involves linear regression of the present value against random errors from past 

observations [68].  

a. Autoregressive Moving Average Model: this is a univariate time series model applicable 

only to stationary time series. A stationary time series would have its statistical properties 

remaining unchanged over time. A combination of autoregressive and moving average 

processes, the ARMA(b, q) model is defined as [68][70][74]: 

𝑦𝑡  =  𝑐 +  ∑ 𝜑𝑖𝑦𝑡−𝑖
𝑏
𝑖=1  +  𝜀𝑡  + ∑ 𝜃𝑗𝜀𝑡−𝑗

𝑞
𝑗=1    (3.7) 

Where 𝑦𝑡 is the current value at time t, c is a constant introduced from the AR model, 𝜑𝑖 

is AR model parameter and b is the order of the AR model. 𝜀𝑡 represents random error 

which is assumed to be white noise, 𝜃𝑗  is the MA model parameter and q is the order of 

the MA model. [70] describes variations of the ARMA model in its application to 

electricity price forecasting. ARMA models are easier to manipulate with lag operator 

notation which moves index back with one time unit; L𝑦𝑡  =  𝑦𝑡−1 [74]. Presenting the 

ARMA model with lag polynomials [74] gives:  

   φ(L)𝑦𝑡  =  𝜃(𝐿)𝜀𝑡      (3.8) 

  φ(L) =  1 −  ∑ 𝜑𝑖𝐿
𝑖𝑏

𝑖=1 , θ(L) =  1 +  ∑ 𝜃𝑗𝐿𝑗𝑞
𝑗=1  
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b. Autoregressive Integrated Moving Average: this is an extension of the ARMA model to 

accommodate evaluation of non-stationary time series [75]. In the ARIMA model, a 

difference operator is introduced to make a non-stationary time series stationary.  It is a 

combination of AR parameters, MA parameters and a number of differencing passes. The 

non-seasonal ARIMA(b, d, q) model using lag polynomials is defined as [6][68][69]: 

φ(L)∇𝑑𝑦𝑡  =  𝜃(𝐿)𝜀𝑡       (3.9) 

(1 − ∑ 𝜑𝑖𝐿
𝑖𝑏

𝑖=1 )(1 − 𝐿)𝑑𝑦𝑡  =  (1 +  ∑ 𝜃𝑗𝐿𝑗𝑞
𝑗=1 )𝜀𝑡   (3.10) 

where b, d, and q represent the order of the AR, integrated, and MA parameters 

respectively. d is the level of differencing required to make non-stationary time series 

stationary and invertible. Thus, a non-stationary time series is known as the integrated 

version of a stationary time series. A case of ARIMA model commonly encountered is 

ARIMA(0,1,0), known as the random walk model [74].  The prediction equation for this 

model is: 

    𝑦𝑡  =  𝑦𝑡−1  +  𝜀𝑡        (3.11)  

Multiplicative seasonal ARIMA is an extension of the ARIMA model for time series with 

seasonal component. It includes evaluating seasonal parameters for a specified lag, that is, 

seasonal AR, seasonal differencing, and seasonal MA parameters. The model takes the 

form ARIMA(b, d, q)×(B, D, Q)s. 

c. Generalized Autoregressive Conditional Heteroskedasticity: this is a non-linear time 

series model. A variation of the autoregressive conditional heteroskedasticity model [76] 

which is non-linear in variance but linear in mean. This model opposes the assumption of 

constant variance as found in ARIMA models [77]. The process for the model involves 

finding a best-fit AR model, evaluating autocorrelation of the error term and testing for 

significance. GARCH introduced and explained in [78], is suitable for time series 

susceptible to volatile changes. 

The models described are parsimonious stochastic models. The principle of parsimony follows 

using the model with the smallest number of parameters that provides adequate approximation to 

the underlying time series data [79]. If there are a number of adequate representations of the 

series, the simplest option should be used to avoid overfitting. Models with high number of 
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parameters have the risk of overfitting. An overfitted time series model can be unsuitable for 

forecasting. Other techniques that have been used in electricity price forecasting include artificial 

intelligence-based models, dynamic regression models, heuristics, wavelength transform models, 

and Bayesian techniques. Electricity price is a non-stationary process with seasonal patterns, 

hence a model with seasonal parameters would be better suited for forecasting. In this research 

work the double seasonal Holt-Winters (DSHW) model, a univariate time series method based on 

exponential smoothing, is applied to short-term MCP forecasting in electricity markets. It is 

found to be easy to implement and suitable for short-term forecasting as detailed in the following 

section. [80] also explains a choice of exponential smoothing model over ARIMA model with the 

latter as more fitting for series with short-term correlation and not one with seasonal and trend 

components. 

3.3.2 Double Seasonal Holt-Winters Model 

Winters [81] introduced the standard Holt-Winters model based on triple exponential smoothing 

for forecasting seasonal time series. This method is an improvement on the Holt’s model of 

double exponential smoothing, to include seasonality which is sometimes referred to as 

periodicity. The method has four equations; one forecast equation and three smoothing equations. 

The smoothing equations represent level, trend and seasonal component [82]. There are two 

versions of this method depending on the nature of the seasonal component: multiplicative 

version and additive version. With the multiplicative version, the underlying level of the series is 

multiplied by the seasonal index while seasonal factors are added to the underlying trend in 

additive version [83]. The multiplicative version is more suitable in situations where changes in 

seasonal variations is proportional to the level of the series. The additive version is appropriate if 

there are no changes in seasonal variations through the series [82]. Since energy price is 

dependent on factors that include energy demand and level of demand is affected by variations in 

conditions that determine demand, the multiplicative version is adopted in this thesis.  

Extending standard Holt-Winters’ method of forecasting seasonal time series with one seasonal 

pattern, Taylor [83] described a modification of the method to accommodate time series with dual 

seasonal pattern. The DSHW model as described would have an additional seasonal index and a 

separate equation for the second seasonal component. The method was implemented for short-

term electricity demand forecasting in [83] and was seen to produce favourable results. The 
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approach is extended in this thesis for short-term MCP forecasts. Equations presenting the 

DSHW method as described in [83] are as follows: 

   Lt = α (Xt/(DSt−p1WSt−p2))  +  (1 − α)(Lt−1 + Tt−1)  (3.12) 

   Tt = γ(Lt − Lt−1) + (1 − γ)Tt−1     (3.13) 

   DSt = δ (Xt/(LtWSt−p2)) + (1 − δ)DSt−p1    (3.14) 

   WSt = ω (Xt/(LtDSt−p1)) + (1 − ω)WSt−p2   (3.15) 

   X̂t(k) = (Lt + kTt)DSt−p1+kWSt−p2+k    (3.16) 

Where t is an index denoting a time period, Xt is the observed value, Lt is the level and Tt the 

trend. DSt and WSt are the first and second seasonality, both with period p1 and p2. α, γ, δ and ω 

are smoothing parameters in the range [0, 1]. X̂t(k) is the forecast for k hours ahead. The method 

estimates local slope (trend) by smoothing successive differences between levels. DSt with period 

p1 is estimated by smoothing the ratio of observed value to the product of level and second 

seasonality, WSt−p2. Likewise, WSt with period p2 is estimated by smoothing the ratio of 

observed value to the product of level and first seasonality DSt−p1 [83]. MCPs like market 

demand display daily and weekly seasonality. Applying the method to hourly MCP forecasting in 

electricity market, DSt and WSt would represent daily and weekly seasonality respectively. p1 is 

thus set to 24 and p2 to 168. Historical day-ahead auction MCPs from Nord Pool is used in the 

model, actual and forecast values for the week January 1st to January 7th, 2017 are shown in Fig. 

3.2. The DSHW method is a robust univariate time series method that can be used for online 

short-term MCP forecasting, its application is less demanding compared to other time series 

models. 
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Fig. 3.2 One-week Nord Pool real and simulated day-ahead auction MCP with DSHW model 

With the requirement of electricity demand and supply being balanced at every interval, a large 

increase in demand or decrease in supply can lead to price spikes. Contributing factors to this 

volatility can be LFU or load under-forecast, error in output forecast of non-dispatchable 

generators and bidding behaviour of market participants. Effect of spikes on model accuracy is 

tested by removing data points identified as spikes. Spike data are defined as values greater than 

µ+3σ or less than µ-3σ. The measured error is reduced with points as shown if Fig. 3.3 and Fig. 

3.4. Fig. 3.4 gives a clearer picture of difference when the spike data points are removed from a 

forecast of 48 hours ahead. 
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Fig. 3.3 One-week Nord Pool real and simulated day-ahead auction MCP with DSHW model 

(with spike data points excluded) 

 

Fig. 3.4 48-hours Nord Pool real and simulated day-ahead auction MCP with DSHW model 
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3.4 Optimization Algorithms 

Main objective of solving optimization problems is to determine the value of one or more 

decision variables that solve an objective function subject to equality and/or inequality 

constraint(s). The presence of constraints makes the problem a constrained optimization problem. 

Optimization problems can also be defined without constraints, these are referred to as 

unconstrained optimization problems. Optimizing the objective function would mean finding the 

function’s maximum or minimum. Optimization problems can be linear, quadratic, or non-linear, 

depending on the nature of the equations. They can also be deterministic or stochastic, 

continuously differentiable (smooth) or non-differentiable, and the decision variables may be 

continuous or integer values [84].  

Techniques for finding the best possible solution have been developed and applied in a wide 

variety of fields such as mathematics, statistics, engineering, computer science, economics, and 

operations research where optimization problems may occur [85]. These techniques can be 

broadly grouped as exact algorithms and approximate algorithms. Exact algorithms involve 

implementing an exhaustive search with the guarantee of a precise optimal solution while 

approximate algorithms provide suboptimal solutions with provable quality of output 

[86][87][88]. Exact algorithms are usually the first choice and are readily applied to simple, 

small-scale problems where effort applied to solving the problem is on polynomial increase with 

problem size. Effort refers to the computation time and space in the computer memory used by a 

method. Applying these methods to some practical problems may however prove infeasible. 

Many combinatorial optimization problems are computationally intractable, which means no 

exact algorithm has been able to solve them. If an exact algorithm is proposed to solve such 

problems, then the NP-complete (non-deterministic polynomial time) state of such problems 

would revert to being solvable in polynomial time with respect to problem size which is a feature 

of exact algorithms; P = NP [89]. Exact algorithms can be simplex and interior-point methods, 

complete search algorithms, or problem specific such as the Dijkstra’s algorithm for shortest path 

in a graph and dynamic programming algorithm for knapsack problems [86]. The methods find 

the solution to a problem by dividing original problem into subproblems and combining solutions 

from these subproblems. Approximate algorithms [90][91] are applied to solving intractable 

combinatorial optimization problems. Similar methods used for computationally tractable 
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problems can also be applied as approximate methods to find suboptimal solutions in 

computationally intractable problems [87]. These include local search algorithms, sequential 

algorithms, dynamic programming, and linear programming and relaxation-based algorithms. 

Some traditional methods for mathematical programming or optimization [84][92][93] are 

described below. The method to apply when solving optimization problems depend largely on the 

nature of the problem. 

a. Simplex Algorithm: this is an iterative procedure using slack variables and base variables. 

It analyzes a set of basic feasible solutions in sequence such that with each new solution, 

the problem of optimizing the objective function improves or remain unchanged. It is a 

popular method for solving problems in linear programming. Linear optimization 

problems have linear objective function with linear equality and/or inequality constraints.  

b. Method of Lagrangian Multipliers: this method creates a Lagrangian function from the 

objective function by including the constraints and a new variable called the Lagrange 

multiplier. The function is optimized by methods of differential calculus. The method is 

considered for problems with equality constraints. Slack or surplus variables may have to 

be introduced to have constraints take equality form. The method can be extended to 

quadratic programming where the objective function is a quadratic function and the 

constraints are linear. 

c. Steepest Ascent Method: this is one of the variations of the gradient search methods. It is 

sometimes referred to as gradient ascent method and is applicable when the objective 

function is differentiable and strictly convex. It iteratively finds the maximum of a 

function based on its first derivative, moving along a path of maximum increase. A 

similar method is the steepest descent or gradient descent method which finds the 

minimum of a function. 

d. Newton’s Method: this method uses the first and second derivative of the objective 

function. The objective function is approximated by a quadratic function whose 

coefficients are determined from the objective function and its derivatives. Solution to the 

optimization problem is obtained by iteratively optimizing the quadratic function, with the 

solution from a step used as the starting point of the next step. This is typically for 

optimization problems with one variable. However, the Newton’s method can be 

extended to functions with more than one variable. 
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e. Branch and Bound Algorithm: the method iteratively creates subsets from a feasible 

region of solutions. These subsets are checked for optimal solution against some criteria 

and the search space is narrowed until an optimal solution is found. This approach is 

particularly applicable to integer programming problems.  

The dynamic programming algorithm is also a popular approach and would be discussed later in 

this Chapter. Heuristic techniques are estimations that can be used when traditional approximate 

approaches are difficult to implement [87]. These methods exchange the guarantee of optimality 

for a faster solution, providing a quality suboptimal solution. Heuristic techniques can be broadly 

grouped into constructive algorithms and local search algorithms [94][95]. Metaheuristics are 

problem-independent techniques applied for developing heuristic optimization algorithms. 

Procedure followed takes the form of local search or imitation of a natural process such as 

biological evolution. A general characteristic of heuristic optimization techniques is that solving 

the optimization problem usually starts with an initial random guess of the solution, some criteria 

is set for iteratively generating and evaluating new solutions and the best result is given as the 

output. The usual stopping conditions for the iterative search are: an acceptable solution has been 

found, a parameter within the algorithm stops its execution, no improvement in solution after a 

specified number of iterations, or a specified CPU time has been reached. Some heuristic 

optimization techniques that have been applied to optimization problems includes [92][94][95]: 

a. Simulated Annealing: a method based on the annealing process of solids, it is a 

metaheuristic for global optimization. It considers one solution at a time which is adjusted 

by a probabilistic rule in an iterative process until it reaches its optimum. 

b. Swarm Intelligence: involves a large number of agents communicating with one another 

and their environment. The collective experience of these agents is used to generate new 

solutions. Examples of metaheuristics from this class are the ant colony optimization and 

particle swarm optimization. The ant colony optimization algorithm is a probabilistic 

method that mimics the way ants search for food and find their way back to their nest.  

c. Evolutionary Algorithm: a population-based metaheuristic, it involves having the entire 

population modified at the same time. New solutions are generated from evaluation of 

some defined fitness function. Popular examples of evolutionary algorithms are genetic 

algorithm and differential evolution. 
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The shuffled frog-leaping algorithm, a memetic meta-heuristic, has also been applied to solving 

optimization problems across varying fields [55][96][97]. Some features that can be used for 

comparisons between heuristic techniques [92] include the procedure for generating new 

solutions, management of new solutions, number of search agents, ease of implementation, speed 

of convergence, search space restrictions, methods with specific constraints, and reliability of the 

method. The golden section search method, a direct search technique, is used in this research 

work to solve the optimization problem as defined in Equation (3.4) from section 3.2. The 

approach is found to adequately represent the nature of the optimization problem. Equation (3.4) 

describes a one-variable optimization problem with the constraint defined in Equation (3.6) as a 

boundary for the solution search. The technique is relatively easy to implement with a guarantee 

of convergence and optimum solution. 

3.4.1 Golden Section Search Optimization 

The Golden Section Search Optimization (GSSO) is a method used to find the maximum or the 

minimum of a unimodal function. The function would be continuous over an interval. 

Assumption made in implementation is that the objective function f(x) can be evaluated for x but 

the derivative of the function is not available [98]. It is similar to the bisection method for finding 

roots of an equation, but with 3 sections. The interval is divided into 3 sections by adding 2 

points between ends. The function is evaluated at the 2 new points, comparing function values to 

narrow the interval. For an optimal search and less function calls, a constant reduction factor is 

introduced. Considering a maximization problem, if functions covers the interval [m, n], with two 

new points x1 and x2 introduced between m and n. Evaluating f(x1) and f(x2): if f(x1) > f(x2), 

the maximum is between [m, x2]. If f(x1) < f(x2), the maximum is between [x1, n]. The new 

interval is again divided into 3 sections and evaluation with comparison repeated, until the 

distance between interval is sufficiently small. The points x1 and x2 are selected in a way that the 

distance between them and the ends of the search region is equal to the golden ratio [99]. This 

ratio is the reduction factor. 

   Golden Ratio, GR =  
−1 + √5

2
      (3.17) 
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The GENCO’s maximum benefit problem as described by Equation (3.4) as objective and 

Equation (3.6) as constraint can be solved with the GSSO method as shown in the following 

steps: 

Step 1: Initialization 

a) Read input data ai, bi, ci (cost coefficients of generating units), Pi
min, Pi

max (units’ 

generating limits), Rh (predicted prices). 

b) Read GR as defined by Equation (3.17). 

Step 2: Iteration 

a) Assign Pi
min and Pi

max as the boundaries [m, n]. 

b) Determine two internal points x1 and x2 such that 

x1 =  m – d 

x2 =  n + d 

where d =  GR ∗  (m − n) 

c) Evaluate p(x1) and p(x2) using Equation (3.4), Q as x1 or x2 

If p(x1) > p(x2) 

 𝑥𝑚𝑎𝑥  =  𝑥1 

 diff =  1 − GR ∗  abs (
𝑚−𝑛

𝑥𝑚𝑎𝑥
) 

 If diff > ε (a sufficiently small number) 

  m =  x2 

  x2 =  x1 

  d =  GR ∗  (m − n) 

  x1 =  m −  d 

If p(x1) < p(x2) 

 𝑥𝑚𝑎𝑥  =  𝑥2 

 diff =  1 − GR ∗  abs (
𝑚−𝑛

𝑥𝑚𝑎𝑥
) 

 If diff > ε (a sufficiently small number) 

  n =  x2 

  x1 =  x2 

  d =  GR ∗  (m − n) 
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  x2 =  n + d 

Step 3: Output xmax 

Step 4: Offer Quantity 

a) Repeat step 2 and step 3 for each generating unit. 

b) Sum xmax from all units to obtain maximum quantity Qh for the interval.  

An example using a GENCO with two thermal generating units whose cost coefficients and 

generation output limits are listed in Table 3.1, is used to demonstrate this method. Since the 

generating limit constraint states the output of each unit should be within its maximum and 

minimum generation capacity, these limits are set as the boundaries of the optimum solution 

search. Thus, for units 1 and 2 the search interval is [80, 190] and [94, 375] respectively.  

      Table 3.1 GENCO’s generating units’ data 

Unit ai bi ci Pmax 

(MW) 

Pmin 

(MW) 

1 0.00942 8.1817 369.03 190 80 

2 0.00569 12.796 654.69 375 94 

 

Assuming an estimated electricity price of 17.05 $/MWh, production quantity of each unit is 

calculated using Equation (3.4) as described in step 2 of the GSSO algorithm. For the first 

division and search, function maximum, xmax, is 148 MW for unit 1 and 267.7 MW for unit 2. 

After further divisions and evaluations, reducing the distance between intervals till a pre-set 

tolerance of 10−8 between the previous and current values (37 iterations for unit 1 and 59 

iterations for unit 2), the function maximum occurs when the output of the units are 190 MW and 

373.6 MW respectively. At these production levels, the generating units are operating at a 

capacity that gives the maximum returns considering the price stated. The GENCO can thus offer 

to supply 563.6 MW of energy at 17.05 $/MWh which would be the profit-maximizing offer for 

the period under consideration. Since unit 1 is operating at the maximum generating capacity, an 

increase in estimated price would have no effect on its output. There can however be increase in 

profit due to general increase in revenue with same operating cost. An increase in the price could 

mean an increase in the output of unit 2. Likewise, a decrease in price would affect estimated 
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profit-maximizing outputs from both units. Taking energy price to be 16.80 $/MWh for example, 

unit 1 still has its generation at 190 MW but unit 2’s output decreases to 349.7 MW. It is 

important to note that the optimization process only follows generating units’ constraints, other 

operational constraints such as spinning reserve requirement is ignored at this point. This would 

be further discussed in the next Chapter.  

3.5 Dynamic Programming for Economic Dispatch 

An essential aspect of power system planning and operation is the ability to provide adequate 

generation to satisfy demand at minimum cost. Generation end of a typical power system is an 

amalgamation of different generating units with varying associated cost, incremental operation 

(fuel cost) and maintenance cost and fixed cost. Economic dispatch is the operation of committed 

generating units (unit commitment) to supply power such that demand, and other operational 

constraints are satisfied at minimum cost. The economic dispatch of generating units is an 

optimization problem where the objective is to minimize running cost subject to level of demand, 

reserve constraints and operational limits of generation and transmission facilities. In a 

restructured power system, an ISO is responsible for economic dispatch to minimize energy cost. 

The ISO run an unconstrained dispatch algorithm to determine the MCP and unit commitment 

schedule based on demand forecast for the trade day. A constrained algorithm is run to dispatch 

units in an economic order, recognizing units’ ramp rate, generation limits and other 

characteristics as indicated by GENCOs in the offer submission, losses, and transmission line 

capacity [10]. Integrating constraints and uncertainty in scheduling dispatch is important in 

maintaining system reliability. For the ISO to effectively minimize cost, adequate and accurate 

information from market participants and entities is needed. Frequent run of dispatch algorithm 

(every 5 minutes by IESO) would also contribute to cost minimization. 

A GENCO also solves its economic dispatch problem when making offers in electricity markets, 

in a similar method to regulated power systems. The optimal operation of units would give a 

price/quantity pair of offers for profit maximization. General idea behind economic dispatch is to 

have the unit with the lowest marginal cost being dispatched first. If the unit reaches its 

maximum generating limit before demand is met, the next cheapest unit is dispatched. This order 

continues until demand and other system conditions such as transmission loss are met. Economic 

dispatch algorithm is based on running cost of units which would be fuel cost for thermal units, 



 

40 
 

not fixed cost. If a GENCO has a priority list for M generating units, the objective is to minimize 

total running cost 𝐹𝐶𝑇 subject to equality constraint of sum of power generated should be equal 

the demand. If transmission losses or reserve requirements are considered, the constraint would 

be sum of demand and other factors. The problem can be explained as:  

   min 𝐹𝐶𝑇 = ∑ 𝐹𝐶𝑖(𝑃𝑖)
𝑀
𝑖=1        (3.18) 

where 𝐹𝐶𝑖(𝑃𝑖) is fuel cost of unit i as defined by Equation (3.3) and at time h, 𝐹𝐶𝑇 would be 

equal to C(Q) in Equation (3.4). The minimization problem is subject to the generating unit’s 

limits constraint (the output of each unit should be within its minimum and maximum limits) as 

described in Equation (3.6). Other constraints include: 

• Power Balance: to maintain system reliability, total generation should be equal to 

demand, 𝑃𝐷. 

𝑃𝐷  −  ∑ 𝑃𝑖 = 0M
i=1          (3.19) 

Including transmission loss, the above equation becomes 

𝑃𝐷 + 𝑃loss −  ∑ 𝑃𝑖 = 0M
i=1         (3.20) 

• Ramp rate: adjusting a unit’s output between two operating periods can be 

restricted by unit’s ramp rate. If the output of a unit is required to change within 

the period, the rate of change should be in the range of the ramp rate limits. 

If unit’s output is to be decreased, 

𝑃𝑖
0  −  𝑃𝑖 ≤ 𝑅𝐷𝑖         (3.21) 

If unit’s output is to be increased, 

𝑃𝑖  − 𝑃𝑖
0 ≤ 𝑅𝑈𝑖         (3.22) 

where 𝑃𝑖
0 is the previous output power, 𝑅𝐷𝑖 is the ramp-down limit and 𝑅𝑈𝑖 is the 

ramp-up limit, of unit i. Combining Equations (3.6), (3.21) and (3.22) gives, 

max (𝑃𝑖
𝑚𝑖𝑛 , 𝑃𝑖

0  − 𝑅𝐷𝑖) ≤ 𝑃𝑖 ≤ min (𝑃𝑖
𝑚𝑎𝑥, 𝑃𝑖

0 + 𝑅𝑈𝑖)   (3.23) 

The economic dispatch problem assumes a number of units have been committed to supply at the 

required time interval and finds the optimum generating point for each unit. It is a subproblem of 

unit commitment. The unit commitment problem is solved to find the combination of units that 

would satisfy demand at minimum operating cost and may be executed as a daily or a weekly 

problem [14]. Techniques to solve economic dispatch problem for thermal units include the 
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lambda-iteration method, gradient method, dynamic programming, artificial intelligence-based 

methods and heuristic and metaheuristic algorithms. 

Dynamic programming (DP) introduced in [100] is a search method for optimization problems 

with solution arising from a sequence of decisions. The general working principle of DP [101] is 

to divide the original problem into smaller and simpler subproblems with search for solution 

starting from the smallest subproblem. To avoid repetitive calculation in solving current 

optimization problem and others that might be closely related, a table of results of all 

subproblems can be created in DP. Optimum solution for each subproblem is saved in the table 

for future computation or use. A solution to the original problem is achieved by combining 

solutions of the subproblems, in increasing size from the least. DP process involves making 

decisions on solutions that depend on some defined optimality criteria. This principle of 

optimality [102] describes an optimal decision  as one obtained from optimal sequence of results 

which are based on the nature of result of the first decision. A solution to an optimization 

problem is optimal only if solutions of its subproblems are optimal. 

Applying DP to economic dispatch problem is similar to solving a shortest path problem. It 

would mean finding optimum output of generating units within a system for all possible load 

levels with units’ generating limits as constraint. The exhaustive search and storing partial 

solutions for future references makes DP a flexible technique for solving the economic dispatch 

problem.  
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  Fig. 3.5 Economic dispatch with DP example 

A simple generating facility with two generating units, A and B is used to explain the basic 

principle of the DP process as shown in Fig. 3.5. Assuming unit A has generating range of 40 

MW to 42 MW and unit B has a range of 65 MW to 67 MW, possible load levels that the system 

can supply would be from 105 MW to 109 MW. Suppose generation from each unit is adjusted 

with discrete steps of 1 MW (lstep = 1) with a to z representing the running cost for each state as 

shown in the figure. The DP process evaluates the cost of generating enough output to meet each 

load level, storing the unit combination with the minimum operating cost. For load levels 105 

MW and 109 MW, evaluating the running cost is quite clear since the utility would be producing 

at minimum or maximum capacity to satisfy each load. Load demand that fall between these two 

boundaries would however require evaluation of two or more unit combinations to check which 

has minimum cost of operation. Fig. 3.6 shows a flow chart to illustrate DP process for the 

economic dispatch problem solved in this research work. 
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 Fig. 3.6 Flow diagram of DP procedure for economic dispatch 
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Fig. 3.7 Flow diagram of DP procedure 
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Fig. 3.7 presents steps to generate table TS. Evaluation of all unit combinations and determining 

least cost of satisfying possible load levels is done in a table format. Table TS represents a ‘look-

up’ table for all optimal unit combinations and load levels the system can serve. Units’ outputs 

and load levels in this research work are presented in discrete form using step size lstep = 0.1. 

Hourly optimal dispatch of units is found by tracing a path of minimum cost from the end of an 

evaluation which is the total load level to be satisfied back to the beginning.  

3.6 Summary 

This Chapter has described approach proposed in this thesis to solve a GENCO’s problem of 

making profit-maximizing offers in electricity markets. It started with a mathematical 

formulation of the GENCO’s problem as an optimization problem and solution process listed in 

steps: MCP prediction, estimation of offer quantity with an optimization algorithm, economic 

dispatch of units.  Electricity price forecasting is discussed and application of DSHW model to 

short-term MCP forecasting was explained. With estimated MCP as input variable in the 

objective function, associated offer quantity can be obtained with GSSO algorithm as described. 

The DP procedure for dispatch of generating units as to minimize fuel cost was also described in 

this Chapter. 
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CHAPTER 4 

OPTIMAL BIDDING IN DAY-AHEAD AND SPOT ENERGY MARKETS 

4.1 Introduction 

The steps in the proposed approach to solving a GENCO’s optimal participation in electricity 

market problem as discussed will be tested in this Chapter with a sample practical GENCO 

consisting of twelve generating units. Forecasts of MCP for a trade day are computed. A range of 

scenarios will be considered for profit-maximizing supply offers in the DAM and SM. SM being 

a market operating in real-time have higher prices than the DAM auction. This can be due to 

short time frame between the trade process and supply/delivery of agreed generation quantity. 

More expensive units are also usually operated to supply energy for the SM. Two situations that 

can affect nature of offers which should be considered in the decision process will be introduced 

in this Chapter. First would be the effect of SR which is a capacity allocation for GENCO’s 

system security. Having some capacity on reserve is important for a reliable operation of the 

system. However, maintaining a reserve requirement would increase operating cost of the facility. 

Accurate scheduling of reserve and increment in cost should thus be considered in supply offers 

and balancing between both markets. The other factor to be considered is the effect of LFU. 

Variability in demand forecast affect actual quantity of energy generation needed on the trade day 

which in turn affect market prices. LFU is also what determines quantity of demand to be 

satisfied by the SM.  

4.1.1 Load Model and Test System 

The unit commitment process for GENCOs reported in this thesis is based on an hourly approach 

integrated with economic dispatch. It is assumed that the GENCO already has its generating units 

in a priority list arranged from the cheapest to the most expensive to run. A test system consisting 

of twelve thermal generating units of different sizes [103] is used to demonstrate the proposed 

approach. Total system maximum and minimum capacity are 3450 MW and 1166 MW 

respectively. The priority order, fuel cost coefficients and generating limits of each unit are 
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shown in Table 4.1. Transmission loss is neglected within the GENCO’s system. Other 

constraints such as units’ ramp rates, minimum up time and minimum down time are ignored at 

this point. Effects of transmission congestion/line capacity are also not considered. The utility’s 

commitment is thus based on maximizing benefit with maximum possible capacity as determined 

by hourly demand since transmission loss is excluded.  

       Table 4.1 Data for test system 

Unit ID Loading 

Order 

ai bi ci Pmax 

(MW) 

Pmin 

(MW) 

10 1 0.03073 8.336 170.44 80 40 

11 2 0.02028 7.0706 309.54 120 60 

6 3 0.01142 8.0543 222.33 140 68 

1 4 0.00942 8.1817 369.03 190 80 

4 5 0.00357 8.0323 287.71 300 110 

12 6 0.25098 13.052 1207.8 70 20 

5 7 0.00605 12.908 722.82 300 130 

3 8 0.00313 7.9691 647.85 500 220 

2 9 0.00515 12.986 635.2 375 94 

7 10 0.00569 12.796 654.69 375 94 

9 11 0.00708 9.1575 1728.3 500 125 

8 12 0.00421 12.501 913.4 500 125 

 

The trade day considered in this thesis has forecast load profile shown in Fig. 4.1. This is usually 

made publicly available by ISOs and is estimated days prior to the trade day, making necessary 

adjustments in forecasts as needed before actual day. Having this information is important for 

proper planning and offer scheduling by GENCOs. The profile shown represents 24-hourly 

demand for a typical day in winter in Ontario’s electricity market.  



 

48 
 

 

Fig. 4.1 Demand forecast for the trade day 

4.2 Bidding in Day-ahead Market 

As described in the previous Chapter, the first step of the proposed approach to maximizing a 

GENCO’s market benefits is to estimate hourly MCPs for the trade day. The DAM typically 

opens up to 7 to 10 days prior to the trade day and closes a day before the trade day. Competing 

GENCOS submit offers to supply consisting of price and quantity pairs, stating the time offer is 

available for dispatch. Price prediction done is thus on a short-term basis, estimating the clearing 

price for energy in the DAM auction for the trade day which is determined in short intervals by 

an ISO from offers to supply and demand bids. Price predictions made are marked as offer price 

for maximum benefit and used as input in the optimization algorithm to determine offer quantity. 

A good estimate of the MCP would limit risk of the GENCO not being scheduled to dispatch and 

return maximum benefits from market participation. GSSO method described in Section 3.4.1 is 

applied at this point to estimate the corresponding profit maximizing quantity for each hour of the 

trade day.  The search interval used in the GSSO algorithm is represented by the maximum and 

minimum generating limit for each unit with the objective function as maximizing result of 

revenue minus operating cost. Table 4.2 lists the price/quantity hourly offer pairs from the 
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GENCO at the DAM auction process, minimizing cost at each hour. Quantities from the GSSO 

algorithm is seen to be high at points where prices are high which follows the economic principle 

of higher price relates to higher supply quantity. From hour 4 to 5, with a lower estimated price 

comes a decrease in offer quantity while at hour 22 GENCO is offering all its capacity as 

estimated MCP is high.  

          Table 4.2 Profit-maximizing hourly price/quantity offers 

Hour p ($/MWh)         Q (MW) 

1 23.04 3380 

2 36.64 3380 

3 45.85 3380 

4 30.88 3380 

5 14.36 1330 

6 14.33 1330 

7 14.35 1330 

8 14.36 1330 

9 14.31 1330 

10 14.33 1330 

11 21.87 3380 

12 30.18 3380 

13 28.99 3380 

14 14.35 1330 

15 14.85 1330 

16 29.66 3380 

17 37.55 3380 

18 38 3380 

19 37.86 3380 

20 37.79 3380 

21 42.72 3380 

22 64.47 3450 
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23 45.4 3380 

24 35.72 3380 

 

Making these offers during the DAM auction would give the profit presented in Fig. 4.2. The 

operating cost which is total fuel cost of units running to produce offer quantity is deducted from 

the revenue. At hour 22 where MCP is at the highest, the revenue increases and despite the 

increase in offer quantity which would raise the operating cost, there is a surge in benefits from 

supplying at that hour. Market returns are seen at the lowest between hours 5 and 10 and hour 14, 

where the MCP is low. Increasing offer quantity above what is estimated to be scheduled at that 

price would result in the GENCO operating at a loss.  

 

 

Fig. 4.2 GENCO’s benefits from DAM auction process 
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4.2.1 Effect of Spinning Reserve for Security 

When ISO decides on dispatch schedules for the trade day, GENCOs scheduled are under 

obligation to make allocated generation available and supply as stated by dispatch 

schedule/instructions. Inability to deliver scheduled supply would attract fines; GENCOs pay for 

undelivered power.  To plan for unforeseen events such as sudden loss of generation that could 

cause the GENCO to fall short with scheduled supply, a method of risk assessment is 

incorporated in the decision process for making offers. Risk is estimated by the probability of the 

system not satisfying the load [104]. The unit commitment risk which is associated with having 

enough online capacity to meet demand at a given period of time is evaluated in this research 

work. For each hour, some quantity of SR is designated through a probabilistic method as reserve 

capacity to accommodate contingencies. As previously stated, SR is generating capacity that is 

synchronized to the system and ready to supply load within a few minutes. In regulated 

environments, some utilities use deterministic criteria such as a fixed percentage of system load, 

fixed capacity margin, with the most commonly used being largest online generating unit, to 

deduce reserve requirements. Although easy to implement, it has been shown that these 

deterministic methods do not properly represent the stochastic nature of system load and other 

system parameters [4][105]. They can be inconsistent, uneconomic and unreliable by 

overscheduling or not having enough capacity on reserve [4]. These shortcomings are important 

considerations in a competitive environment. 

The PJM method [106] is the probabilistic technique employed in this research work. The 

method is based on calculating probability of online generating capacity supplying or not 

supplying system load for a period of time during which an additional generating unit cannot be 

made available. This timeframe is referred to as the lead time. The PJM method assumes a 

constant load within the lead time, thus the load model is ignored. A pre-set acceptable risk level 

is used to define system risk of satisfying or not satisfying load during this period. The method 

works by convolving generating units to create a capacity outage probability table (COPT). SR is 

determined from the COPT for units within the system and included in the unit commitment 

process. A COPT is a list of possible capacity levels and corresponding probability of existence 

by the combination of all generating units owned by a facility [4]. To build the COPT, units can 

be combined by binomial distribution if they are identical or by other basic probability techniques 
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[107]. In the operating phase, the outage replacement rate (ORR) is the generating unit parameter 

used to evaluate the probability of having a certain capacity on outage. ORR represents the 

probability of a generating unit going on outage without the possibility of repair or replacement 

during the lead time [4]. Repair process is neglected during system operation since time to repair 

is usually considerably longer than the lead time. The two-state model for generating units 

commonly used in reliability studies [108] which define unit operating state and unit failed state 

as shown in Fig. 4.3 is used to determine the equation for ORR. 

 

Unit up Unit down

λ 

µ  

 Fig. 4.3 Two-state model for a generating unit 

Where λ is the failure rate which is a reciprocal of the mean time to failure, and µ is the rate of 

repair which is a reciprocal of mean time to repair. For a system with M units, there would be 2𝑀 

capacity states. Following the model, [107] describes the probability of finding a unit in a failed 

state at a time t, given that at t = 0 the unit was operating, as: 

Pr(down) = 
𝜆

𝜆+µ
 −  

𝜆

𝜆+µ
𝑒−(𝜆+µ)𝑡     (4.1) 

Neglecting the repair process as previously stated would mean µ = 0, 

Pr(down) = 1 −  𝑒−𝜆𝑡       (4.2) 

Equation (4.2) represents the ORR of the unit. The ORR is a time-dependent quantity since it is 

affected by the lead time. Using the ORR, the cumulative probability section of the COPT can be 

generated with the recursive algorithm below [4] : 

Pr(X) = (1 - U)Pr`(X) + (U)Pr`(X - C)    (4.3) 

Pr`(X) = {
1, 𝑖𝑓 𝑋 ≤ 0

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (4.4) 

Where C represents capacity of a unit in MW, U is the ORR value of the unit, X is a capacity 

outage state in MW, Pr`(X) is the cumulative probability of X MW before the unit is added, and 



 

53 
 

Pr(X) is the cumulative probability after the unit is added. The expression in Equation (4.3) 

evaluates the cumulative probability of X MW capacity on outage after adding a unit of C MW 

capacity while Equation (4.4) defines the initial stage of the expression. An example of a COPT 

is shown in Table 4.4 from committed generating units’ data given in Table 4.3. Lead time of 2 

hours is used to calculate ORR given in Table 4.3. In Table 4.4, the second column presents the 

capacity on outage, the third column has the capacity available, corresponding probabilities of 

having the outage or available states are in the fourth column while the fifth column has the 

cumulative probabilities as defined by Equation (4.3). 

      Table 4.3 Units’ data 

Unit no. Capacity 

(MW) 

λ (f/yr) ORR 

1 80 2 0.000457 

2 120 3 0.000685 

3 140 3 0.000685 

    

        Table 4.4 Capacity outage probability table 

Capacity In 

(MW) 

Capacity Out 

(MW) 

Individual 

Probability 

Cumulative 

Probability 

340 0 0.998174 1 

260 80 0.000456 0.001826 

220 120 0.000684 0.00137 

200 140 0.000684 0.000685 

140 200 3.13E-07 1.09E-06 

120 220 3.13E-07 7.82E-07 

80 260 4.69E-07 4.69E-07 

0 340 2.14E-10 2.14E-10 
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For a set acceptable risk level of 0.001, Table 4.4 shows that the committed system can supply 

load up to 220 MW with required SR of 120 MW. If the UC risk from the generation model is 

greater than the acceptable risk value, additional generating unit would be committed by merit 

order (operational cost increasing down the list) and the COPT recomputed until the expected 

load can be met at a risk value less than or equal to the set acceptable value. It is possible to 

reduce SR quantity by reducing the lead time for thermal units through ‘banking’ which was 

discussed in Chapter 2. Having a large SR capacity or maintaining units on hot reserve would be 

an economic decision for the GENCO [4]. 

This approach is extended to the test system in use with data given in Table 4.1, hourly offer 

quantity and associated SR is shown in Fig. 4.4. An increase in offer quantity would have a 

corresponding increase in reserve quantity to accommodate possible outage. To implement SR as 

part of hourly schedules, an additional constraint to be considered in optimizing the objective 

function as previously described is given as: 

   Qh + SRh = PUC
h        (4.5) 

The equality constraint describes the total capacity of units committed at hour h as sum of offer 

quantity and SR. This constraint would ascertain SR is included in the unit commitment process. 
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Fig. 4.4 Hourly offer quantity and reserve capacity  

Inclusion of SR is to maintain GENCO’s system security. It is important to note that the SR 

committed here is not reserve capacity for the general ISO-controlled grid, operating reserve for 

the entire power grid is purchased and committed through a different process described in 

Chapter 2. Since allocating reserve capacity would increase GENCO’s operating cost, method 

employed to determine SR is essential. The choice of a probabilistic technique over the use of a 

deterministic criterion would reduce the possibility of over-forecasting the SR requirement, 

giving a sub-optimal solution with unnecessarily high operating cost. There would be a slight 

decrease in maximum offer quantity possible since with reserve requirement, all generation 

capacity is no longer available for sale in the electricity markets. Although this would translate to 

a reduction in market benefits (Fig. 4.5), reliability is a critical issue in electric power systems. 
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Fig. 4.5 GENCO’s benefits from DAM auction process considering reserve capacity for system 

security 

4.2.2 Effect of Load Forecast Uncertainty 

As explained in Chapter 1, uncertainty in load forecast can be represented by a normal 

probability distribution with the distribution mean as forecast peak load and standard deviation as 

level of uncertainty. Accuracy desired is thus described by the number of steps (class intervals) in 

the distribution. In this thesis, a 5-step distribution approach is used with 3% uncertainty as 

shown in Fig. 1.2. This representation of the load model is seen to be adequate for the work done 

[9][109]. The area of each class interval is the probability of the load being in the class interval 

[4] and the summation of all probabilities is  equal to 1. Variability in market demand presented 

in Fig. 4.1 is shown in Fig. 4.6, load curves representing step shift in the original demand µ under 

3% uncertainty. Optimal market benefit for each load profile is calculated from the objective 

function while considering SR. A variation in load could relate to difference in prices. As an 

essential commodity electricity demand is relatively inelastic, an increase in price may translate 

to very little or no decrease in demand. Different prices were considered as the MCP for the 5 
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load profiles for each step of LFU. An aggregate hourly market benefit is shown in Fig. 4.7 

obtained from the weighted sum of benefit with 5 estimated MCPs based on the load profiles. 

 

 

Fig. 4.6 Demand forecast for trade day considering LFU 
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Fig. 4.7 GENCO’s aggregate benefits from DAM auction process 

Comparing results from the three scenarios, Fig. 4.8 show difference in hourly market benefits. 

Although generating units are usually built with high reliability, ignoring the probability of an 

outage is an optimistic appraisal of the GENCO’s system. Contingencies such as unscheduled 

outages make risk assessment and provision for system security critical parts of the decision 

process for making offers in electricity markets. The figure also shows the output of the scenario 

with SR and that of aggregate from LFU to be within a close range. This is as a result of the 

approach being largely dependent on MCP estimates. Also, with the nature of electricity markets 

a slight increase in demand could make a large increase in price, depending on the mix of 

generating units within the system.  
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Fig. 4.8 Comparison of GENCO’s benefits from DAM auction process 

4.3 Bidding in Day-ahead and Spot Markets 

Transaction for power supply to satisfy real-time increase in market demand which could not 

have been scheduled in the DAM is done by an ISO in the SM. Energy procured from this market 

is at a different price; the spot market price, which can be very high when compared to the DAM 

prices. Increase in demand can be met either through the SM or operating reserve. The choice of 

which to access first usually depend on the incremental energy cost of the source, quantity 

increase in demand and other operational constraints. Market for operating reserve and the SM 

can be operated in parallel, thus separate commitment process and pricing. Since operating 

reserve is a form of capacity on standby, the ISO pays a fixed maintenance fee which increases 

overall cost of scheduling operating reserve capacity. This isn’t the case with energy procured 

from the SM. A SM operates within a short timeline, with energy transaction and delivery 

happening within minutes to a few hours. Fig. 4.9 shows hourly aggregate market benefits from 

the SM if the GENCO’s participation in DAM auction takes precedence over its offers in the SM. 

It is important to note that quantity of energy transacted in a SM is lower when compared with 
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energy traded in DAM. The DAM auction process is where bulk of energy needed on the trade 

day is bought/sold. Also, since energy is only required from a SM if real-time demand is higher 

than forecast, it is important to estimate probability of such occurrence and amount of deviation. 

The results for the SM would thus be considering the +σ half of the LFU modelling. 

 

 

Fig. 4.9 GENCO’s aggregate benefits from SM 

Hours with profit of $0 stems from zero revenue. This is as a result of the GENCO not 

participating in the SM at these periods as all its available capacity has been committed in the 

DAM auction. SR requirement is maintained and actually increases with commitment in the SM. 

Benefits from the DAM and the SM considering one step deviation from forecast is presented in 

Fig. 4.10. Hours where commitment in the DAM is low show more returns from the SM. At this 

level, the GENCO is operating at maximum capacity with full commitment at every hour.  
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Fig. 4.10 GENCO’s benefits for a step deviation 

4.3.1 Effect of Allocating Percentages 

The scenario in the previous section commits capacity left from bidding in the DAM in the SM. 

However, due to efficient forecasting methods, difference in real-time demand and forecast is 

usually not very large. Thus, the volume of energy traded in the SM is low as compared to the 

DAM. With high prices as a feature of the SM, an allocation of the GENCO’s generation 

capacity to both the DAM and the SM auction is considered. Since the SM participation is only 

feasible when demand is more than forecast, capacity for the SM is included for +σ steps 

deviation only. To consider both markets concurrently at every hour, 95% of generation is 

committed in the DAM auction at periods where commitment was previously maximum and 5% 

in the SM for an uncertainty of µ+σ in demand. For a deviation of µ+2σ, 90% and 10% of 

generation are committed in the DAM and the SM respectively. Fig. 4.11 shows hourly aggregate 

market benefits from the SM. The GENCO has a commitment for the SM at every hour unlike 

what can be observed in Fig. 4.9. Although the GENCO’s benefits is lower with percentage 
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allocation considered, committing very large quantity of generation in the SM is rather optimistic 

and can result in a loss for the GENCO. 

 

 

Fig. 4.11 GENCO’s aggregate benefits from SM with percentage allocation 

GENCO’s benefits from both the DAM and the SM auctions at µ+σ and µ+2σ are shown below. 

The day profit from the DAM auction process decreases when compared with previous scenarios 

since generation quantity committed is lesser. However overall day benefits from both markets is 

an improvement on this due to high energy prices feature of the SM. 
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Fig. 4.12 GENCO’s benefits for a step deviation with 95/5 ratio 

 

Fig. 4.13 GENCO’s benefits for 2-step deviation with 90/10 ratio 
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Estimated benefits at the end of the trade day from participation in both day-ahead and spot 

electricity markets are presented in Fig. 4.14. SR for GENCO’s system security is kept as a 

requirement for all periods and in both markets with capacity on reserve increasing with increase 

in load level. The initial case of aggregate day profit represents GENCO trading only in DAM 

considering LFU (Fig. 4.7). LFU is thus considered from two aspects in this research work. First 

is variability in market demand for DAM auction process with GENCO making commitments 

only in the DAM. The LFU is considered in the decision process for supply offers in the DAM. 

Second is participation in SM as a result of uncertainty in demand. In this situation the 

commitment for DAM remains as decided but decision process includes SM at +σ uncertainty. 

 

 

Fig. 4.14 GENCO’s estimated benefits at the end of trade day 
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4.4 Summary 

Together the results discussed in this Chapter provide important insights into strategies that can 

be employed by GENCOs for maximum benefits from their participation in electricity market. 

The proposed approach estimates the short-term hourly MCP based on past market observations 

and behaviour of competing GENCOs. Estimated MCPs are inputs to the optimization problem 

of determining profit-maximizing supply quantity by a GENCO. An economic load dispatch 

algorithm is run to ensure generating units are running at minimum operating cost. This is 

especially important when considering technical and operational constraints. A test system of a 

GENCO with twelve thermal generating units is used to simulate the proposed approach and 

assess the offers and corresponding benefit from market for each hour of the trade day. Effects of 

having reserve capacity for GENCO’s system security has been evaluated. SR for each supply 

level has been determined through a probabilistic method. Capacity on reserve needs to be 

carefully assessed as it increases the system operating cost. Another important factor considered 

was load forecast uncertainty. Uncertainty in market demand forecast for the trade day would 

affect the general operation of the energy markets, the MCP, and the market clearing volume, 

which would extend to GENCO’s supply offers. These factors in different scenarios have been 

analyzed for the day-ahead  and spot energy markets. 
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CHAPTER 5 

CONCLUSIONS 

5.1 Conclusions 

This research work set out to examine strategies that could be used by GENCOs to maximize 

profits from their involvement in electricity markets. Electric power industry in many regions 

operate as deregulated entities, moving from the traditional vertical integrated structure. Main 

reason for deregulation in this sector is to satisfy the increasing demand for electricity in an 

efficient manner and also lower electricity price. Power generating plants are owned by GENCOs 

who manage these facilities and compete to supply electric power in the various electricity 

markets. Competition, a product of deregulation, drives innovation which is a necessity in a 

dynamic industry. An ISO manages the operation of the electricity markets, accepting offers to 

supply from GENCOs and demand bids from consumers. Supply curve is built by ranking 

GENCOs’ offers in order of increasing price while the demand curve is obtained in a similar 

fashion with bids ranked in a decreasing order of price. The MCP for the interval under 

consideration is the price at the point of equilibrium between demand and supply and is 

determined by the ISO. GENCOs with bids below and at this price are paid the MCP and are 

scheduled to supply for the interval. A sealed-bid auction process is usually followed, thus, 

participating GENCOs have no information on rivals’ supply offer curve. This makes the task of 

determining offer quantity and corresponding price an important one for a GENCO in order to 

maximize its market returns and also minimize the risk of not being scheduled to supply. A factor 

considered in this research work is a GENCO’s ability to concurrently participate in more than 

one electricity market. 

Analyses have been performed on strategic bidding by a GENCO in electricity markets using 

optimization models. Many of the methods are based on estimating rivals’ bidding behaviour by 

determining their bid coefficients. These techniques rely on having access to sufficient data on 

bidding history in the market. This may be difficult to obtain in practice. The approach proposed 
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in this thesis takes incomplete market information on auction process into consideration for a 

short-term analysis of a GENCO’s activities in electricity markets.  The period considered is ≤14 

days prior to a trade day. The approach is divided into three steps: estimating hourly MCP, 

determining the profit-maximizing offer quantity with the MCP as an input, and running a DP 

process for economic dispatch of generating units to minimize operating cost. There are several 

studies on electricity market demand and price forecasting. An ISO as the market operator 

continuously makes short-term to long-term market demand forecasts, making necessary 

adjustments as consumption day draws closer. This information is usually made available to 

market participants. Market participants such as GENCOs can also make demand and price 

predictions with historical data readily available from the market.  The DSHW method is applied 

in this research work for short-term MCP prediction. The method is based on the principle of 

exponential smoothing for forecasting time series with dual seasonal pattern. Electricity market 

demand and price show seasonal variations. The problem of determining the hourly offer quantity 

was defined as an optimization problem with the objective function as profit maximization 

subject to generating units’ limits constraint. The fuel cost is the cost associated with power 

generation considered and it is defined as a quadratic function. This problem was solved for each 

generating unit using a priority list to obtain the profit-maximizing supply offer. The GSSO 

method was applied to solving the optimization problem. The method adequately represents the 

one-variable optimization problem, searching for solution within a boundary defined by 

constraints. Dispatching scheduled generating units to supply power and satisfy other operational 

constraints in a manner that the running cost (fuel cost) is minimum is an important step in 

determining a GENCO’s market benefits. The economic dispatch of GENCO’s generating units 

is an optimization problem solved by DP process in this research work. The exhaustive search 

feature of the DP procedure is an advantage in its application to the economic dispatch problem. 

A GENCO’s outlook for a typical trade day was simulated using a test system as described in 

Chapter 4. With a demand forecast from the ISO, previously described steps were followed to 

make supply offers in the DAM as one of the electricity markets. The DAM is a forward market 

for bulk energy needed the following day. Although the DAM timeline differs in regions, the 

market usually closes a day prior to the trade day. Results show estimated profit-maximizing 

supply quantity to be dependent on predicted hourly market prices. GENCO’s system security 

and market demand forecast uncertainty are two factors whose effects on bidding process and 
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market operation are considered in the evaluation of GENCO’s benefits from the electricity 

markets. Since there are rules guiding operation of electricity markets, GENCOs are obligated to 

supply at periods they are scheduled. Having some part of the GENCO’s capacity on reserve to 

withstand contingencies such as loss of generation which would affect the GENCO’s ability to 

deliver scheduled supply was examined. SR which is generating capacity synchronized to the 

system is the type of operating reserve considered for unit commitment risk. Many utilities use 

some deterministic criteria to assess SR requirements. While they offer security and are easy to 

apply, using these fixed/deterministic techniques may give a sub-optimal solution. Since having 

reserve capacity would affect the system running cost, a proper estimation of the SR is important 

in determining maximum market benefits. A probabilistic technique was used in this research 

work to determine hourly SR quantity. This technique gives a better representation of the system 

parameters and solves limitations of the deterministic methods such as overscheduling of reserve 

capacity. With a set risk level, SR quantity is estimated from a COPT for units within the system. 

The SR requirement adds a constraint to the hourly unit commitment and economic dispatch 

process done by the GENCO. In the optimization problem of minimizing the system running 

cost, total capacity of units committed in an interval should equal sum of previously evaluated 

supply quantity and SR requirement for such load (generation quantity) at the interval. The SR 

requirement changes with change in load level. It increases with increase in load and decreases as 

estimated load reduces. Although the SR requirement generally increases running cost and 

reduces the generation quantity available to the GENCO for bidding in the electricity markets 

thereby reducing benefits, it is necessary for a reliable operation of the GENCO’s system. The 

market demand forecast uncertainty also referred to as load forecast uncertainty relates to the 

variability associated with making predictions for market demand of electricity. Factoring in this 

uncertainty is pertinent to maximizing market benefits as it affects unit scheduling, dispatch and 

thus system reliability. The LFU was described by a 5-step normal distribution with the mean as 

the forecast load and standard deviation as level of uncertainty. With 3% uncertainty, offer 

quantity and price were evaluated for load profiles representing each step deviation. Variation in 

load could lead to change in MCP. This would affect profit-maximizing offer quantity calculated. 

Thus, there could either be an increase or decrease in hourly estimated benefits depending on the 

direction of the uncertainty (+σ or -σ).  These scenarios were examined for the DAM only at first.  
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After looking into the effects of LFU on the DAM and market demand in general, GENCO’s 

participation in a second type of energy market called the spot market was introduced. The SM is 

a real-time market to maintain continuous balance between energy demand and supply on the 

trade day. The SM is for responding to shortage in supply when real-time demand is more than 

previously scheduled supply done with demand forecast. It can also help with contingencies such 

as congestion and unscheduled loss of generation within the ISO’s grid.  The market timeline is 

usually very short and electricity price is much higher than what can be gotten in the DAM.  

Since energy from SM is needed when real-time demand is more than forecast, the SM is 

considered for positive step deviations in the normal distribution (+σ). At these instances, the 

variability is an increase in market demand. As bulk of the energy needed has been settled in the 

DAM auction process, the quantity traded in the SM is small.  Parallel participation of GENCOS 

in both the DAM and SM was examined. To take good advantage of the high energy price feature 

of the SM, an instance of apportioning supply ratios for each market was considered. This was 

done bearing in mind the level of uncertainty in the market. Although GENCO’s benefits with 

this process is better than when operating in the DAM only, it is lesser than having all of the 

remaining generating capacity after bidding in the DAM and keeping SR requirement offered in 

the SM. Following the latter would be a rather overly optimistic appraisal of the SM with the 

level of uncertainty defined and total energy volume traded in the market. 

The findings of this research work add to the rapidly expanding field of economic operation of 

independent power producers in deregulated electric power industry. Notwithstanding the 

governing market rules such as having bid price caps and operating mode limitations usually put 

in place by an ISO (market operator) and which vary with regions, the approach proposed in this 

study would prove useful in expanding the understanding of market participants and other 

stakeholders in analyzing the operation of GENCOs in electricity markets. The results address the 

salient question of what a single GENCO’s supply offer price and quantity could be in each of 

the daily energy markets at each period or market interval (usually hourly) for it to maximize 

benefits from its operation at the end of a business day. GENCOs may base their offer price on 

market price predictions, adjusting offer quantity through time as necessary. The DAM and SM 

are the two markets covered in this research work since they are the markets for the bulk trade of 

electricity. 
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5.2 Suggestions for Future Work 

With the growing popularity of hybrid approaches to forecasting, this study could be repeated 

using one of such methods for the MCP prediction. Also worthy of note is the effect of price 

spikes. To improve forecast accuracy, spike data points are exempted before applying a 

forecasting model which lessen their effect on the approximation of the model parameters.  

However, since electricity prices can be volatile, an analysis of price spikes may be a significant 

step for GENCOs to maintain efficient operation in the competitive electricity markets. The issue 

of ensuring GENCO’s system security by keeping a reserve is an intriguing one which could be 

usefully explored in further research. A cost/benefit analysis can be done to assess the option of 

having some of the thermal generating units on hot reserve (‘banking’) to reduce lead time as 

oppose to maintaining what could be a large SR for each market interval. These would be fruitful 

areas for further work. 
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