11 research outputs found

    MANAGEMENT OF PUBLIC PASSENGER TRANSPORT SERVICES DURING ECONOMIC CRISIS

    Get PDF
    Urban transport and especially its core component, local public transport of passengers, is one of the most important functions of a city, because through it is ensured the unity and coherence of all its activities. In this context, the article presents the main characteristics of urban transportation in Romania.public transport, passenger transport, cities, Romania.

    Delay management including capacities of stations

    Get PDF
    The question of delay management (DM) is whether trains should wait for delayed feeder trains or should depart on time. Solutions to this problem strongly depend on the capacity constraints of the tracks making sure that no two trains can use the same piece of track at the same time. While these capacity constraints have been included in integer programming formulations for DM, the capacity constraints of the stations (only offering a limited number of platforms) have been neglected so far. This can lead to highly infeasible solutions. In order to overcome this problem we suggest two new formulations for DM both including the stations' capacities. We present numerical results showing that the assignment-based formulation is clearly superior to the packing formulation. We furthermore propose an iterative algorithm in which we improve the platform assignment with respect to the current delays of the trains at each station in each step. We will show that this subproblem asks for coloring the nodes of a graph with a given number of colors while minimizing the weight of the conflicts. We show that the graph to be colored is an interval graph and that the problem can be solved in polynomial time by presenting a totally unimodular IP formulation

    Optimization Methods in Modern Transportation Systems

    Get PDF
    One of the greatest challenges in the public transportation network is the optimization of the passengers waiting time, where it is necessary to find a compromise between the satisfaction of the passengers and the requirements of the transport companies. This paper presents a detailed review of the available literature dealing with the problem of passenger transport in order to optimize the passenger waiting time at the station and to meet the requirements of companies (maximize profits or minimize cost). After a detailed discussion, the paper clarifies the most important objectives in solving a timetabling problem: the requirements and satisfaction of passengers, passenger waiting time and capacity of vehicles. At the end, the appropriate algorithms for solving the set of optimization models are presented

    An Iterative Optimization Framework for Delay Management and Train Scheduling

    Get PDF
    Delay management determines which connections should be maintained in case of a delayed feeder train. Recent delay management models incorporate the limited capacity of the railway infrastructure. These models introduce headway constraints to make sure that safety regulations are satisfied. Unfortunately, these headway constraints cannot capture the full details of the railway infrastructure, especially within the stations. We therefore propose an iterative optimization approach that iteratively solves a macroscopic delay management model on the one hand, and a microscopic train scheduling model on the other hand. The macroscopic model determines which connections to maintain and proposes a disposition timetable. This disposition timetable is then validated microscopically for a bottleneck station of the network, proposing a feasible schedule of railway operations. This schedule reduces delay propagation and thereby minimizes passenger delays. We evaluate our iterative optimization framework using real-world instances around Utrecht in the Netherlands

    Delay Management Including Capacities of Stations

    Full text link
    The question of delay management is whether passenger trains should wait for delayed feeder trains or should depart on time. Solutions to this problem strongly depend on the available capacity of the railway infrastructure. Although the limited capacity of the tracks has been considered in delay management models, the limited capacity of the stations has been neglected so far. In this paper, we develop a model for the delay management problem that includes the capacities of the stations. This model allows rescheduling the platform track assignment. Furthermore, we propose an iterative heuristic in which we first solve the delay management model with a fixed platform track assignment, and then improve this platform track assignment in each step. We show that the latter problem can be solved in polynomial time by describing it as a minimum cost flow model. Finally, we present an extension of the model that balances the delay of the passengers on one hand and the number of changes in the platform track assignment on the other. All models are evaluated on real-world instances from Netherlands Railways

    Strengthened Formulations and Valid Inequalities for Single Delay Management in Public Transportation

    Get PDF
    International audienceThe Delay Management Problem arises in Public Transportation networks, often characterized by the necessity of connections between different vehicles. The attractiveness of Public Transportation networks is strongly related to the reliability of connections, which can be missed when delays or other unpredictable events occur. Given a single initial delay at one node of the network, the Delay Management Problem is to determine which vehicles have to wait for the delayed ones, with the aim of minimizing the dissatisfaction of the passengers. In this paper, we present strengthened mixed integer linear programming formulations and new families of valid inequalities. The implementation of branch-and-cut methods and tests on a benchmark of instances taken from real networks show the potential of the proposed formulations and cuts

    A risk mitigation framework for construction / asset management of real estate and infrastructure projects

    Get PDF
    The increasing demand on residential, office, retail, and services buildings as well as hotels and recreation has been encouraging investors from both private and public sectors to develop new communities and cities to meet the mixed demand in one location. These projects are huge in size, include several diversified functions, and are usually implemented over many years. The real estate projects’ master schedules are usually initiated at an early stage of development. The decision to start investing in infrastructure systems, that can ultimately serve fully occupied community or city, is usually taken during the early development stage. This applies to all services such as water, electricity, sewage, telecom, natural gas, roads, urban landscape and cooling and heating. Following the feasibility phase and its generated implementation schedule, the construction of the infrastructure system starts together with a number of real estate projects of different portfolios (retail, residential, commercial,…etc.). The development of the remaining real estate projects continues parallel to customer occupancy of the completed projects. The occurrence of unforeseen risk events, post completing the construction of infrastructure system, may force decision makers to react by relaxing the implementation of the remaining unconstructed projects within their developed communities. This occurs through postponing the unconstructed project and keeping the original feasibility-based sequence of projects unchanged. Decision makers may also change the sequence of implementing their projects where they may prioritize either certain portfolio or location zone above the other, depending on changes in the market demand conditions. The change may adversely impact the original planned profit in the original feasibility. The profit may be generated from either real estate portfolios and/or their serving Infrastructure system. The negative impact may occur due to possible delayed occupancy of the completed real estate projects which in turn reduces the services demand. This finally results in underutilization of the early implemented Infrastructure system. This research aims at developing a dynamic decision support prototype system to quantify impacts of unforeseen risks on the profitability of real estate projects as well as its infrastructure system in the cases of changing projects’ implementation schedules. It is also aimed to support decision makers with scheduled portfolio mix that maximizes their Expected Gross Profit (EGP) of real estate projects and their infrastructure system. The provided schedules can be either based on location zone or portfolio type to meet certain marketing conditions or even to respect certain relations between neighbor projects’ implementation constraints. In order to achieve the research objectives, a Risk Impact Mitigation (RIM) decision support system is developed. RIM consists mainly of four models, Real Estate Scheduling Optimization Model RESOM, Sustainable Landscape Optimization Model SLOM, District Cooling Optimization Model DCOM and Water Simulation Optimization Model WSOM. Integrated with the three Infrastructure specialized models SLOM, DCOM, WSOM, RESOM provides EGP values for individual Infrastructure systems. The three infrastructure models provide the demand profile that relate to a RESOM generated implementation schedule. RESOM then uses these profiles for calculating the profits using the projects’ capital expenditure and financial expenses. The three models included in this research (SLOM, DCOM and WSOM) relate to the urban landscape, district cooling and water systems respectively. RIM is applied on a large scale real estate development in Egypt. The development was subjected to difficult political and financial circumstances that were not forecasted while preparing original feasibility studies. RIM is validated using a questionnaire process. The questionnaire is distributed to 31 experts of different academic and professional background. RIM’s models provided expected results for different real life cases tested by experts as part of the validation process. The validation process indicated that RIM’s results are consistent, in compliance with expected results and is extremely useful and novel in supporting real estate decision makers in mitigating risk impacts on their profits. The validation process also indicated promising benefits and potential need for developed commercial version for future application within the industry

    Theory and Engineering for Shortest Paths and Delay Management

    Get PDF
    corecore