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Abstract

Delay management determines which connections should be maintained in

case of a delayed feeder train. Recent delay management models incorporate the

limited capacity of the railway infrastructure. These models introduce headway

constraints to make sure that safety regulations are satisfied. Unfortunately, these

headway constraints cannot capture the full details of the railway infrastructure,

especially within the stations. We therefore propose an iterative optimization

approach that iteratively solves a macroscopic delay management model on the

one hand, and a microscopic train scheduling model on the other hand. The

macroscopic model determines which connections to maintain and proposes a
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disposition timetable. This disposition timetable is then validated microscopi-

cally for a bottleneck station of the network, proposing a feasible schedule of

railway operations. This schedule reduces delay propagation and thereby mini-

mizes passenger delays. We evaluate our iterative optimization framework using

real-world instances around Utrecht in the Netherlands.

Keywords public transportation, railway operations, event-activity network, alterna-
tive graph

1 Introduction

Most regular train passengers will recognize the frustration of missing a connecting
train when their feeder train arrives at the transfer station with a small delay. In low-
frequency railway systems, missing a connection can have a severe impact on the travel
time of the passengers, even if the delay of the incoming train is only small. In such
cases, an alternative would be to delay the departure of the connecting train, so that
passengers from the delayed train can transfer to the connecting one. If a train waits
for passengers from a delayed feeder train, the punctuality will be reduced; if it does
not wait, passengers need to wait for the next service connecting to their destination.
Determining whether a train should wait for a delayed feeder train or should depart
on time is the subject of Delay Management (DM). Netherlands Railways, the largest
passenger operator in the Netherlands, endorses the importance of a reliable railway
system and has recently introduced the passenger punctuality as a new performance
indicator. The passenger punctuality measures the ratio of passengers who arrive at
their destination with a delay smaller than a certain threshold value.

We propose in this paper an innovative approach that computes a connection plan
that solves the DM problem, when the limited capacity of the railway infrastructure is
considered. This latter is modeled as the Train Scheduling (TS) problem at a micro-
scopic level, i.e. modeling the status of the signals and safety system. In our optimiza-
tion framework the DM solution and TS solution iteratively set boundary conditions
for each other. By coupling the two models, a solution is found that is locally feasible.
Furthermore, by iteratively solving the DM and TS problems, delays for trains and
passengers are reduced. The objective is multi-fold: (i) the computation of a feasible
train schedule inside the stations, (ii) the minimization of train delays in station areas,
(iii) the minimization of travel times for passenger flows at the network level.

We now review the main contributions on the DM and TS problems. In Schöbel
(2001), a first integer programming formulation for the DM problem is given. This for-
mulation is further developed in De Giovanni et al. (2008) and Schöbel (2007). In these
models, it is assumed that passengers will wait for one cycle time whenever they miss
a connection. Dollevoet et al. (2012) relax this assumption and assume that passen-
gers take the fastest route to their destination. They present an integer programming
formulation that allows for passenger rerouting and show that the delay is reduced sig-
nificantly with respect to earlier models. Dollevoet and Huisman (2011) develop several
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heuristics to solve the DM problem with passenger rerouting.
Other extensions of the classical DM model incorporate the limited infrastructure ca-
pacity. Schöbel (2009) proposes to apply headway constraints to model the limited
capacity on the tracks. An integer programming formulation that includes these head-
way constraints and several computational tests are given in Schachtebeck and Schöbel
(2010). In Dollevoet et al. (2011), a first attempt to take the limited number of plat-
forms in a station into account is presented.
The DM models described so far are all macroscopic. The detailed characteristics of
the railway infrastructure are abstracted to make sure that large parts of the network
can be considered at once. Such a global scope is necessary for DM, as the passengers
travel through large parts of the network. However, as a consequence, some of the
complications arising from the infrastructure layout cannot be taken into account.
On the contrary, the train scheduling (TS) problem is to compute precisely the effects
of delay propagation and the adjustments of train speed profiles at a microscopic level,
by considering the capacity of the infrastructure and the behavior of the signaling sys-
tem. This requires the definition of a microscopic scheduling problem, in which detailed
information about the tracks and the switches is taken into account. This way, all char-
acteristics of the infrastructure can be modeled.
Simulation models (see e.g. Hansen and Pachl (2008) for an overview) proved to be a
suitable tool to represent the dynamics of train operations, but they are still limited
especially when large stations and heavy traffic are considered, and are based on myopic
rules that might result in large delays.
Concerning the optimization models for the TS problem, Törnquist (2012) resorts on
heuristic procedures for computing schedules in a short time, compatible with oper-
ations. To this end, microscopic detail is considered for the most complex stations.
Studies on a test case in Sweden report that for a time horizon of traffic prediction
of 90 minutes, a feasible schedule is found within 30 seconds, even for instances where
commercial optimization suites fail in finding a solution.
A fully microscopic model is used in Corman et al. (2011) to model train traffic over a
complex and dense area of the Dutch railway network, with up to hundreds of trains.
A truncated branch and bound procedure (D’Ariano et al., 2007) is used that achieves
very often optimal solutions, substantially reducing delay propagation, compared to
practice or simple dispatching rules. Building on that result, a bi-level programming is
introduced in Corman et al. (2012) that allows control over very large instances, divided
into many local areas. A coordination level is in charge of defining constraints at the
border of the local areas to ensure a feasible global solution. The bi-level formulation
allows to check feasibility and optimality at local and global network levels, leading to
a branch and bound procedure that achieves quickly a good solution for up to one hour
of traffic prediction.
Only recently, the DM problem has attracted some attention in the train scheduling
literature. In Corman et al. (2010), a bi-objective TS model is developed that mini-
mizes the delay of the trains on the one hand and the number of missed connections on
the other hand. However, as only the connections and trains within a station area are
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considered, the global behavior of the passenger flows cannot fully be captured.
For the existing TS approaches, the size of instances solvable within a real-time com-
putation horizon is still smaller (in time horizon or geographical extent) compared to
the macroscopic DM models. Moreover, typical objectives of TS models regard the
reduction of (possibly weighted) delays and delay propagation, and generally exclude
passenger flows. Inclusion of continuous passenger flows would increase further the
complexity by taking into account multiple objectives.

This paper presents an iterative optimization framework based on DM and TS
models. It closes the gap between the theory on DM on the one hand, and on TS on
the other hand. In doing so, the global scope of DM is combined with the high level
of detail from TS. This way, we can model both the passenger flows at a network level
and the detailed infrastructure locally at the stations. To the best of our knowledge,
this is the first attempt to consider both levels in an integrated approach.
In a macroscopic DM model, we first determine which connections to maintain and
derive the departure and arrival times of trains at the stations. Given the connections
that should be maintained, these departure and arrival times are then validated using
a microscopic TS model. Given the outcome of this microscopic validation, the process
is repeated until a feasible solution is found. Doing so, we find solutions to the DM
problem that respect the limited capacity of the station infrastructure, even for some
of the most complicated and densely occupied stations in The Netherlands.

The remainder of this paper is organized as follows. First, Section 2 describes the
macroscopic DM model and Section 3 the microscopic TS model. Section 4 gives an
illustrative example for both models. Then, Section 5 shows how these models are cou-
pled in our iterative optimization framework. Section 6 reports the experimental setup
to evaluate the framework. Section 7 concludes the paper with remarks on the frame-
work and on the computational results. Further research directions are also outlined
for practical applications of the proposed methodology.

2 Delay management model

The central question of the DM models is which connections to maintain in case the
railway system faces delays. It is assumed that the original timetable and the passenger
demand are known. The passenger data is represented as a set of origin-destination
pairs (OD-pairs) P . Each OD-pair p ∈ P represents a group of np passengers who want
to travel from a common origin station to a destination station at a specified time.
Given a set of initial delays, the aim is to determine for each connection whether it
should be maintained or not. Besides, a so-called disposition timetable is determined
that prescribes the expected departure and arrival times of the trains at each station.
Finally, for each OD-pair we determine a passenger route that connects their origin and
destination, possibly including transfers at intermediate stations.

The DM problem is commonly modeled with an event-activity network. In this
directed graph, the nodes correspond to the events that have to be scheduled and are
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denoted by E . We distinguish between departure events Edep and arrival events Earr,
that correspond to the departure from and the arrival at a station, respectively. For
each event e ∈ E , we denote the time when the event is planned to take place by πe.
The variables π thus denote the timetable as it was planned to be operated. For each
event e ∈ E , the initial delay is denoted by de.
The arcs in the graph, denoted by A, represent precedence constraints (or activities)
between these events and ensure that a minimal time between the events is respected.
We distinguish between driving arcs, waiting arcs and changing arcs. Driving arcs in
Adrive connect a train’s departure from one station to its arrival at the next station.
Waiting arcs connect the arrival of a train at a station to its departure from that
same station and make sure that time is available for the passengers to get off and
on the train. We denote the set of waiting arcs by Await. Finally, changing arcs,
contained in Achange, allow passengers to transfer from one train to another. Driving
and dwell arcs correspond to operational constraints that cannot be neglected. On the
contrary, transfer arcs model possible transfers for the passengers. In case of delays,
the railway operator can decide to not maintain a transfer. For each activity a ∈
Adrive ∪ Await ∪ Achange, we denote the minimal time required for that activity by La.

In order to compute the delay for the passengers correctly, Dollevoet et al. (2012)
propose to determine a passenger route for each OD-pair explicitly. In order to do
so, the event-activity network is extended with auxiliary events and activities. For
each OD-pair p ∈ P , both an origin event Org(p) and a destination event Dest(p) are
added to the event-activity network. These auxiliary events act as a source and a sink
in a unit flow problem. The origin event is connected to the departure events from
the station where the passengers in p want to start their trip. Similarly, all arrivals
at the destination station are connected to the destination event. The set of origin
and destination arcs for OD-pair p ∈ P are denoted by Aorigin(p) and Adestination(p),
respectively. For notational convenience, we define

A(p) = Adrive ∪ Await ∪ Achange ∪ Aorigin(p) ∪ Adestination(p).

In the extended event-activity network, a possible passenger route corresponds to a unit
flow from the origin event to the destination event.

We are now ready to present an integer programming formulation for the DM prob-
lem with passenger rerouting. The main decision is which connections to maintain. We
therefore introduce a binary decision variable

za =

{

1 if connection a is maintained,
0 otherwise.

For each event e ∈ E , we determine the actual time xe that is in general equal to the
planned time πe plus a delay; the set xe thus defines the disposition timetable.
For each OD-pair p ∈ P , we determine a passenger route through the event-activity
network. This corresponds to determining a unit flow from the origin event Org(p)
to the destination event Dest(p) in the event-activity network. To model this, we
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introduce for each activity a ∈ A(p) a binary decision variable

qap =

{

1 if OD-pair p uses activity a,

0 otherwise.

For each OD-pair p ∈ P , we introduce an auxiliary variable Tp that represents the
arrival time for passengers in OD-pair p.
The integer program then reads as follows (see Dollevoet et al. (2012)).

min
∑

p∈P

npTp (1)

such that

xe ≥ πe + de, ∀e ∈ E , (2)

xe ≥ xe′ + La, ∀a = (e′, e) ∈ Await ∪ Adrive, (3)

M(1− za) + xe ≥ xe′ + La, ∀a = (e′, e) ∈ Achange, (4)

qap ≤ za, ∀p ∈ P , a ∈ Achange, (5)

1 =
∑

a∈δout(Org(p))

qap, ∀p ∈ P , (6)

∑

a∈δin(e)∩A(p)

qap =
∑

a∈δout(e)∩A(p)

qap, ∀p ∈ P , e ∈ E , (7)

∑

a∈δin(Dest(p))

qap = 1, ∀p ∈ P , (8)

Tp ≥ xe −M(1− qap), ∀a = (e,Dest(p)) ∈ Adestination, (9)

xe ∈ N, ∀e ∈ E , (10)

za ∈ {0, 1}, ∀a ∈ Achange, (11)

qap ∈ {0, 1}, ∀p ∈ P , a ∈ A(p), (12)

Tp ∈ N, ∀p ∈ P . (13)

The objective function (1) is to minimize the weighted sum of the passengers’ arrival
times. The planned arrival times are fixed, so this is equivalent to minimizing the
average or total passenger delay. Constraints (2) incorporate the initial delays and
make sure that no train departs earlier than planned. Constraints (3) propagate the
delay along driving and waiting activities. For maintained connections, Constraints (4)
propagate the delay from the arriving to the departing train. Constraints (5) make sure
that a connection can only be used by passenger if it is maintained. Constraints (6)-(8)
determine a unit flow from the origin event Org(p) to the destination event Dest(p), for
each OD-pair p ∈ P . Here δin(e) and δout(e) denote the set of arcs into and out of node
e ∈ E , respectively. Finally, Constraints (9) linearize the arrival times of the passengers.
In Constraints (4) and (9), the parameter M is a sufficiently large number. We refer to
Dollevoet et al. (2012) for more details on the integer programming formulation.
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3 Train scheduling model

Given the actual train delays, the train scheduling problem is to compute a new feasible
schedule compatible with the status of the network, with the signaling system, and the
dynamics of trains. Potential conflicts between train paths are detected by a conflict
detection procedure for a given period of traffic prediction. In case of fixed block
signaling, tracks are divided into block sections; each block section cannot host two
trains at the same time. A potential conflict occurs whenever two or more trains require
the same block section and a decision on the train order has to be taken. The train that
will traverse the block section as second will be held outside the block section by the
signaling system. In fact, while this train approaches the occupied block section, first a
yellow signal will be shown, prescribing to slow down to an approaching speed (e.g. 40
km/h); and finally the signal just before the block section will show a red signal that
prescribes a complete stop before the block section, as long as the preceding train has
not exited the block section and a minimum setup time has elapsed. A set of ordering
decisions might furthermore result in a deadlock. A deadlock is the situation in which
a set of trains is mutually waiting for a train in the set to move, and no movement for
the trains in the set is possible.

To model those situations, a microscopic model is required, that has a precision of
seconds in modeling the travel times and considers train movements at the level of block
sections. This is the level of detail required to model properly the triggers of the safety
system and represent the signal aspects of the signaling system. The final outcome is a
detailed schedule of train movements, without deadlock situations, where all potential
conflicts have been solved. In this way, precise times can be predicted and delays are
estimated accurately.

We use a job shop scheduling model of the TS problem that can be represented as an
event-activity network with additional constraints. Mascis and Pacciarelli (2002) show
that this so-called alternative graph is a suitable model for the job shop scheduling
problem with additional constraints, such as blocking, also occurring in the railway
context. The main value of this formulation is the detailed representation of the train
traffic, the network topology and the signaling system.
This formulation requires that a sequence of successive block sections is defined for
each train. The time required by each train to traverse each block section can be
computed in advance, except for a possible additional waiting time between operations
in order to solve train conflicts. In the alternative graph model, this results in a chain
of operations (passage of a train on a block section, modeled by nodes n ∈ N) and
associated precedence constraints (modeled by fixed arcs in Fix), similarly to the event-
activity network of the DM problem.

For every potential conflict, a passing order must be defined between the trains,
which is modeled in the graph by introducing a suitable pair of alternative arcs (in the
set Alt) for each pair of trains traversing a block section, that define each of the two
possible orders between the trains. Those arcs result in minimum headways between
different trains, according to the signaling system.
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A deadlock-free and conflict-free schedule is finally obtained by selecting one alter-
native arc from each pair, and updating the speed profile of the trains to the actual
aspects of the signaling system (Corman et al., 2011). Formally, the TS problem corre-
sponds to a particular disjunctive program, i.e., a linear program with logical conditions
involving operation “or” (∨, disjunction), as follows.

min tn − t0 (14)

such that

tj − ti ≥ wij, (i, j) ∈ Fix, (15)

(tj − tσ(i) ≥ wσ(i)j) ∨ (ti − tσ(j) ≥ wσ(j)i), ((σ(i), j), (σ(j), i)) ∈ Alt. (16)

In Problem (14)-(16), a variable ti, for i = 1, . . . , n− 1, is the start time of operation i

and corresponds to the entrance time of a train in the associated block section, similarly
to xe in the DM model. We use σ(i) to refer to the successor of operation i on the
route followed by a particular train, i.e. the operation on the block section after i.
Moreover, operation 0 is a dummy operation that precedes all the other operations, to
give a common temporal reference; and operation n is a dummy operation that follows
all the other operations, and is used to keep track of delays, as explained later. In the
scheduling model, all ti are expressed in seconds, while the precision of xe in the DM
model is in minutes.

Fixed constraints in Fix are a general family of constraints associated to character-
istic processes of railway operations, as follows.

• Running constraints naturally define a chain of driving operations between opera-
tion i of a train, and its successor σ(i) on the path followed by the train. For such
driving process, we consider precedence relations of the form tσ(i) ≥ ti + wiσ(i),
where wiσ(i) > 0 is the time required to traverse the block section associated to
that operation, at its actual speed profile.

• Dwell constraints at a station model the boarding and alighting of passengers,
where wiσ(i) is the minimal time required between the arrival operation and the
departure operation of the same train.

• Release constraints of the form ti − t0 ≥ w0i relate to operation 0 and represent
moreover minimal start time for operation i, i.e. model the entrance time of a
train into the area. This is analogous to the πe in the DM model.

• Due date constraints of the form tn− ti ≥ win relate to operation n and represent
a due date for operation i. Such constraints are used to compute the delay
associated to train traffic.

• Connection constraints, as defined in the DM problem, fix the departure time of
a connected train to be larger than the arrival of a feeder train, plus a given min-
imum connecting time. These constraints are the changing constraints specified
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by the DM problem (the variables za). Such connections are normally associated
to an arrival event of a train at a station platform, and a successive departure of
another train at another platform of the same station.

Differently, the set Alt is disjunctive, i.e., is composed by pairs of alternative con-
straints, each of them representing an ordering decision between trains. For each pair i
and j of operations associated with the entrance of two trains in the same block section,
we introduce the disjunction (tj − tσ(i) ≥ wσ(i)j) ∨ (ti − tσ(j) ≥ wσ(j)i), where wσ(i)j > 0
and wσ(j)i > 0 are the minimum headway times. Those headway times are a function of
a variety of factors, such as the length of the block section, the speed profile of the train,
the driver behavior, the length of the train, as specified by the blocking time theory
(see e.g. Hansen and Pachl (2008)). Finally, running and headway times are a func-
tion of the speed profiles of trains, that again depend on the ordering decisions taken.
The solutions computed are fully compliant with the operational rules, the dynamics
of trains, and the actual signal aspects shown.

A TS solution corresponds to fixing the start time of each operation. The schedule
is feasible if it satisfies all conjunctions in Fix and exactly a constraint for each dis-
junctive pair in Alt, and does not result in positive length cycles. Due to the structure
of the arcs (i, n), the (positive) train delay can be computed at a set of relevant points
(scheduled stops and the exit of the network). It is interesting to consider the con-
secutive delay only, i.e. the delay introduced when solving conflicts in the dispatching
area, caused by the propagation of the initial delays of late trains to the other trains in
the railway area. The objective function of the TS problem is the minimization of the
maximum consecutive delay, that corresponds to the length of the longest path between
the dummy nodes 0 and n, i.e. tn − t0.

4 Illustrative example

Figure 1 gives an illustrative example of the two models of Section 2 and 3. In the
top part of Figure 1, two trains V and T are running on a line connecting station P

with station Q. Train T stops at both stations, while train V stops only at station Q;
thus, at this latter station there is a possibility to enforce a connection between the two
trains. The dotted line defines the station area, i.e., a region in which switches connect
different tracks, that merge and cross each other. In fact, train T follows the lower path
in the network, while train V follows the upper path in the network; both are using
the block section b just before station Q. To ensure minimum train separation and safe
movements over the network, the fixed-block signaling system is used.

The middle part of Figure 1 refers to the macroscopic model used for the DM
problem. Events are represented as nodes, and activities in the set A as arcs connecting
them; train V is represented as the upper chain of events (including arrival event A3
and departure event D3), and train T as the lower chain (including A1, D1, A2, D2).
More in detail, the graph shows a Wait activity at station P for train T , a Drive

activity between station P and station Q for train T , and waiting activities at station
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Q for both trains (reported as Wait3 and Wait2). A connection activity in Achange is
also considered, resulting in the arc labeled Connection 3 → 2.

The bottom part of Figure 1 considers instead the microscopic model as used for the
TS problem, only for the area around station Q. The trains considered in the example
define two chain of nodes and arcs (again, the upper chain for train V and the lower
one for train T ), plus the two dummy nodes 0 and n. Successive nodes of each train are
connected by arcs representing Run activities, plus the two Dwell activities at station
Q. The ordering decision on the block section b is modeled by a pair of alternative,
dotted arcs, representing the two possible orders between trains. The same connection
constraint (Connection 3 → 2) as in the DM model is included, constraining train
T not to leave station Q before train V has arrived and a minimal time has passed.
There are four release arcs, that connect dummy node 0 to the first node of a train,
representing the entrance time of the train in the area considered, and to the departure
from the stations, modeling the published departure time. Finally, two due date arcs
connect the exit from the area considered to dummy node n.

A1 D1

A3

A2 D2

D3

Connection 3->2

Connection 3->2

Wait 1

Wait 3

Wait 2Drive 1->2

Dwell 3

Dwell 2Run Run Run Run Run

RunRunRun
Run

Release

Release

DueDate

DueDate

Station P Station Q

0 n

Ordering
decisions

Train T

Train V

block section b

A3

A2 D2

D3

Train T

Train V

Train T

Train V

Release

Release

Figure 1: (top) Network of the illustrative example; (center) Macroscopic model used
in the DM problem; (bottom) Microscopic model used for the area of station Q, in the
microscopic model for the TS problem
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Iterative optimization framework

Macroscopic delay 
management problem

Microscopic train
scheduling problem

Timetable+
Passenger demand+
Initial Delays

Disposition timetable

Accurate estimation 
        of train delays

Passenger delays

Expected
 entrance/exit
   times

Propagated delays

Connection
      plan

Figure 2: Schematic representation of the optimization framework.

5 Iterative DM and TS optimization approach

The previous sections presented the DM and TS models individually. We now introduce
the optimization framework that iterates between solving a macroscopic DM problem
on the one hand and a microscopic TS problem on the other. We will first give a general
overview of the combined system and then an example is presented.
A schematic outline of our optimization framework is presented in Figure 2. The
original timetable and the passenger demands are used as input for the algorithm. The
passenger demand is given as a set of OD-pairs p ∈ P , each of them representing np

passengers who want to travel from an origin to a destination at a specified time. The
timetable prescribes for each arrival and departure at a station at what time and at
which platform it should take place. Furthermore, a set of initial delays is given. We
assume that only the arrival events in the network have an initial delay. Equivalently,
we assume that the initial delays are zero for all departure events.
The upper (macroscopic) part solves a DM problem to determine the connections to
be maintained and computes a macroscopic disposition timetable. The DM solution
minimizes the total delay for the passengers. In doing so, it allows the passengers to
change their routes through the network.
The DM solution results in a set of passenger connections that should be maintained
(i.e. a set of variables za) and an expected macroscopic timetable (corresponding to a set
of event times xe for all events e). Those variables are used to define a TS problem. To
this end, we focus on those stations in the network where the infrastructure capacity is a
bottleneck, and the possibility of facing conflicts for the scarcely available infrastructure
is the highest.
Each TS problem considers part of the railway network around a station, in order to
represent most of the potential train conflicts. The release time for an arriving train
e ∈ Earr into the area is computed based on the expected arrival time xe of that train
in the DM solution, minus a fixed time τe that corresponds to the minimal running
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A1

A2

D1

D2

A3 D3

tA2 = xA2 + d̄A2

tA1 = xA1

tA3 = xA3

La + d̄A2

La − d̄A2

La + d̄A2

Figure 3: Part of the event-activity network within a station. d̄A2 is the extra delay
computed by the TS model.

time between the entrance of the microscopic network and the arrival at the station
platform. Similarly, we associate due dates to departing trains e ∈ Edep, based on xe,
the expected departure time computed by the DM solution, plus a time τe equal to the
minimal running time from the platform until the exit of the microscopic network. The
set of connections to be maintained, i.e. those for which za = 1, is also used in the TS
problem. These transfer activities are added as fixed arcs to the set Fix.
The solution to the TS problem is a set of starting times of all operations, that are
feasible with regard to the signaling system and the dynamics of trains. In particular,
the solution contains starting times for the arrival and departure events e ∈ E , that are
considered in the DM problem. We will denote these starting times by te for all e ∈ E .

This updated plan of operations will in general have conflicts in the station area
and propagate some of the delays. The actual arrival and departure times t are going
to be different from those original times x considered in the DM model. We thus find
additional delays d̄e = te−xe for each event e ∈ E that is considered in the DM problem
of the next iteration. To take these deviations into account, we update the minimal
duration of the process times La for activities a ∈ Achange ∪ Adrive, while avoiding to
explicitly fix variables in the DM model.
To explain how these additional delays are incorporated, consider a train that departs
later from a station than it was expected in the previous iteration. In that case, more
passengers are able to transfer to that departing train. Furthermore, the train will
probably arrive later at the next station in the macroscopic network.
We explain how we incorporate these intuitive ideas using Figure 3 that refers to a
DM model. Part of an event-activity network is shown, that contains the arrivals and
departures of three trains (respectively, A1, D1; A2, D2; A3, D3). The diagonal lines
connect events of different trains and represent possible transfers for the passengers.
We assume that the solution computed by the TS model contains some propagated
delays d̄A2 and d̄D2, i.e. the actual times tA2 and tD2 are different from the plan xA2

and xD2, respectively. All other events e have d̄e = 0, i.e. they occur at their planned
time xe. There are two possible connections represented (between A1 and D2; and
between A2 and D3). Recall that La denotes the minimal transfer time for a transfer
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Orders
to be decided

Connection 3->2

0 n

Release3 =

Release2 = 

DueDate3 = 

DueDate2 = 

Order V->T

0 n

Connections
to be decided

A3

A2

D3

D2

A3

A2

D3

D2

A3

A2

D3

D2

A3

A2

D3

D2

xA3
xA3 xD3

xA2

xA2

xD2

tA3 tD3

tA2 tD2

xD3+

τD3

−τA2

−τA3

xD2 + τD2

Figure 4: Iterative solution approach for the combined DM (left column) and TS (right
column) problems. Iterations increase clockwise.

activity a = (e, e′) ∈ Achange. This means that the connection is maintained if and
only if xe′ − xe ≥ La. Our aim is now to anticipate the delays from the TS model in
the DM model. In the microscopic timetable, the transfer time for passengers equals
te′ − te. Incorporating the delays from the TS model, we thus find that the connection
is maintained, if and only if

La ≤ te′ − te = xe′ + de′ − xe − de ⇔ La − de′ + de ≤ xe′ − xe.

This suggests to use La−de′ +de as the minimal transfer time in the next iteration. For
the transfer to the delayed train (i.e. A1 → D2), the transfer time is thus decreased by
the propagation of delays, as more passengers will be able to transfer. For the transfer
from the delayed train (i.e. A2 → D3), the transfer time is increased by the amount of
delay. Finally, for the driving activity that connects the departure D2 to the arrival at
the next station, the minimal driving time La is increased with the amount of delay.

We next illustrate the steps graphically, referring to Figure 4. We start from the
top-left of Figure 4, which shows a solution to the DM problem, corresponding to a
decision to maintain connection 3 → 2, and a proposed disposition timetable computed
at macroscopic level, that corresponds to expected arrival and departure times (respec-
tively, xA3, xD3, xA2, and xD2) for the two trains of the example reported in Figure 1.
We use this solution to define a TS problem, in which only some station area is consid-
ered. This is reported in the top-right of Figure 4. The two trains enter the network at
their release times (Release3 for the upper path corresponding to train V , and Release2
similarly for the lower path and train T ), that are computed based on the expected
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Figure 5: A large and busy part of the Dutch railway network

arrival time (xA3 and xA2 respectively) and the fixed times τA3 and τA2 related to run-
ning between the entrance of the microscopic network and the arrival at the station
platform. Similarly, due dates are computed based on the expected departure time
(xD3 and xD2) and fixed times τD3 and τD2 related to running time from the platform
to the exit of the microscopic network.
The TS problem is to compute the times of each operation, and orders between trains
on shared infrastructure elements, that are represented by alternative arcs. The con-
nections defined by the DM solution are included in the TS problem as fixed arcs.
A solution to the TS problem is shown in the bottom-right figure, showing the order
V → T chosen (i.e. train V precedes train T on block section b). This defines a micro-
scopically feasible arrival time of the trains at the platform (respectively tA3 and tA2),
and similarly feasible departure times from the platform (tD3 and tD2, respectively).
We then use the microscopically feasible times of the TS solution to define a new in-
stance of the DM problem in the bottom-left of Figure 4. In general there will be a
difference between the actual times t and the expected times x that were considered
at the previous iteration, as trains might face yellow or red signals to avoid potential
conflicts. Those differences result in propagated delays, that define new process times
for driving and changing activities. Based on these updated data, the DM solution
might keep the same set of connections as in the iteration before, or choose for new
ones. The resulting solution would be the one shown on the top-left of Figure 4, leading
to another iteration.

6 Computational experiments

We assess the performance of our optimization framework using real-world instances
from the Netherlands. Railway activities in the Netherlands are split between an in-
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Characteristics of the macroscopic model
Time horizon 4 hours

Stations 46
Trains 377

Train driving activities |Adrive| 1221
Dwell activities |Await| 844

Connections activities |Achange| 9643
OD-pairs |P| 7086

Table 1: Some characteristics of the delay management model

frastructure manager (ProRail) on the one hand and several railway operators on the
other hand. We obtained detailed information on the infrastructure from ProRail and
the timetable and passenger information from Netherlands Railways. Netherlands Rail-
ways is the largest passenger operator in the Netherlands and transports over a million
passengers per day.
We now first describe the instances that we used to evaluate our optimization frame-
work. Then we present the computational results. In all our experiments, our main
objective will be to minimize the total passenger delay.

6.1 Instances

The instances consider the railway network that is depicted in Figure 5. This picture
shows a dense part of the railway network that contains Utrecht Central Station, which
is in the centre of the Netherlands. The dots in the picture represent larger stations,
where passengers have the possibility to transfer from one train to another. Two sta-
tions are connected by a line if there is a direct train between them. On most lines,
both long distance trains and regional trains are operated with a high frequency. The
long distance trains stop at the stations in the picture only. On the contrary, regional
trains stop on smaller stations along the line, too. In total, we consider 46 stations.
Because there are both long distance trains and regional trains with a high frequency,
the station infrastructure in major stations is utilized heavily, especially in Utrecht
Central Station.
In order to assess the performance of the iterative approach, we generate a set of delay
scenarios and solve the corresponding delay management problem with the proposed
optimization framework. We generate two samples: one sample with small initial de-
lays and one with large initial delays. Both samples contain ten scenarios. We have
generated the delay scenarios as follows. In all scenarios, each arrival of a train at
a station has a probability of 10% to be delayed. If an arrival is delayed, the initial
delay is uniformly distributed between 1 and 5 minutes in the sample with small initial
delays. Similarly, in the sample with large initial delays, the initial delay is uniformly
distributed between 1 and 15 minutes.
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Figure 6: Microscopic detail in the area around Utrecht Central Station, and location
of the borders.

In Table 1, we first present some characteristics of the resulting delay management
problem. In total, 377 trains are considered. Together, these correspond to 1221
departure events, 1221 arrival events and 1221 driving arcs. Besides, there are 844
dwell arcs, leading to 2065 operational activities. Furthermore, the network contains
9643 possible connections. We consider 7086 OD-pairs, of which 1732 have a direct
train from their origin to their destination. This shows that 76% of the OD-pairs
should transfer at least once. It turns out that OD-pairs with a direct trip attract
much more passengers: Only 20% of the passengers in the railway network have to
transfer.
Considering the microscopic validation of the solution of the DM model, we focus on
the bottleneck of Utrecht Central Station, that is the station in which the infrastructure
is used most heavily. In fact, five main lines arrive and depart from the 14 platforms
of Utrecht Central Station, passing through two large interlocking areas at the sides
of the station with a total of about a hundred switches. The TS model refers to a
railway network that includes the station area of Utrecht Central Station, and about
10 kilometers of the railway lines, as in Figure 6.

The network considered results in train scheduling problems with the characteristics
reported in Table 2. On top of the main station of Utrecht, 10 more minor stations are
considered along the lines. Compared to the DM problem, for the same time horizon,
only the trains passing through the area are considered; anyway, the microscopic detail
leads to more individual operations considered, with about 22 operations considered
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Characteristics of the microscopic model
Time horizon 4 hours

Stations 11
Block sections 531

Trains 257
Operations |N | 5681

Ordering decisions |Alt| 52600

Table 2: Some characteristics of the train scheduling model

for each train, on average. The amount of ordering decisions increase exponentially
with the amount of trains running on the block sections, resulting in more than 52,000
variables defining the order of trains.

6.2 Results for instances with small delays

Typical behavior of the iterative optimization framework for instances with small de-
lays is presented in Figure 7. This figure shows the objective value in each iteration
for a single case. Along the vertical axis is the total delay for the passengers in min-
utes. The solid line gives a lower bound on the optimal objective value, obtained by
solving the delay management problem without considering the station capacity. The
objective values from the DM model in each iteration are represented by asterisks and
connected by the lower dashed line. Recall that the corresponding solutions are in gen-
eral microscopically infeasible. In order to obtain feasible solutions, we apply the TS
model, obtaining a set of consecutive delays for the trains in Utrecht Central Station.
By propagating these delays through the network, we obtain a solution to the DM
problem that is microscopically feasible. The objective value for this solution can be
found by computing for each OD-pair the earliest arrival time and the corresponding
delay. Adding these delays over all OD-pairs gives the objective value for this solution.
These objective values are indicated by the crosses in the figure.
We start the iterative approach with a solution in which no connections are main-
tained. In the second iteration, the possibility to maintain a connection is included and
the solution value for the DM problem decreases significantly. However, the gap to the
solution of the TS problem is rather large. In the next iteration, the consecutive delays
found by the TS algorithm are anticipated, leading to a solution that is slightly better.
From then onwards, the algorithm oscillates between two solutions.
The average objective values over 10 scenarios are presented in Table 3. In the second
column we report the objective value that is found in a specific iteration. The iterative
procedure does not improve the solution in every iteration. The third column there-
fore contains the best objective value that is obtained until that iteration. Finally, we
present the best normalized passenger delays in the last column. As can be seen, in
the second iteration the delay is reduced with 26% with respect to the first iteration.
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Figure 7: The total delay for the passengers in each of the iterations for a scenario with
small delays

In the next iterations, the total passenger delay is reduced by another 1.0%. The best
solution is found in the second iteration for 3 instances, in the third iteration for 5
instances and once in the fourth and sixth iteration.

Characteristics of the solution procedure for instances with small delays are reported
in Table 4. Solutions to the DM problem can be found in 125 seconds on average.
Solving an instance of the TS problem takes on average 240 seconds of computation
time. The resulting solutions have a maximum consecutive delay of 212 seconds and
an average consecutive delay of 4 seconds. In the first iteration, the solution value
after solving the TS problem is about 6% worse than the objective value from DM. In
other iterations, the solution value is increased by about 9%. The gap between the final

Iteration Objective Best objective Best normalized objective
1 324734 324734 100
2 240836 240836 74.2
3 241027 238985 73.6
4 241205 238793 73.5
5 242023 238793 73.5
6 239075 237670 73.2

Table 3: The average objective value over 10 instances with small delays
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Characteristics of the solution procedure
Computation time for one DM iteration (seconds) 125
Computation time for one TS iteration (seconds) 240
Average consecutive train delay in Utrecht (seconds) 4.0
Gap between DM and TS solution (total passenger delay) 8%
Gap to the lower bound (total passenger delay) 15%
Difference between first and best solution (average train delay) 20%

Table 4: Some characteristics of the solution procedure for the instances with small
delays

Iteration Objective Best objective Best normalized objective
1 900634 900634 100
2 903771 878029 97.5
3 907546 874899 97.1
4 892270 871588 96.8
5 897342 871588 96.8
6 909596 871588 96.8

Table 5: The average objective value over 10 instances with large delays

solution and the lower bound is on average 15%. Recall that the lower bound is obtained
by solving the DM problem from Section 2 without considering the station capacity.
We also compare the average train delay between the first iteration and the iteration
in which the best solution is found. For instances with small delays, the average train
delay is increased with 20%.

6.3 Results for instances with large delays

For the scenarios with larger delays, the algorithm behaves less consistently. In Figure
8, we show the solution values for an instance where the iterative approach improves
over the first solution. Again, we start the process with a solution that maintains no
connections. In the following three iterations, the solution value decreases. After that,
worse solutions are found. Such behavior is observed for 40% of the scenarios.
For the other instances we find worse solutions after the first iteration. A typical
example is given in Figure 9. The course of the solution values for these instances is
very unstable. Furthermore, the iterative approach does not improve over the start
solution.
In Table 5 we report the average objective values in each iteration. Only in the third and
fourth iterations, the average objective value is better than that of the start solution. In
the fourth column we report for each iteration the best relative solution value obtained
until that iteration. Here we see that, on average, the solutions in the final iteration are
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Figure 8: The total delay for the passengers for an instance with large delays where the
iterative approach improves over the start solution
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Figure 9: The total delay for the passengers for an instance with large delays where the
iterative approach cannot improve over the start solution
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Characteristics of the solution procedure
Computation time for one DM iteration (seconds) -
Computation time for one TS iteration (seconds) 300
Average consecutive train delay in Utrecht (seconds) 8.7
Gap between DM and TS solution (total passenger delay) 10 %
Gap to the lower bound (total passenger delay) 13 %
Difference between first and best solution (average train delay) 21%

Table 6: Some characteristics of the solution procedure for instancs with large delays

3.2 % better than the solutions found in the first iteration. The gap between the DM
and TS solution is 4% in the first iteration and on average 11% in the other iterations.

In Table 6, some characteristics of the solution procedure are reported. Solving an
instance of the train scheduling problem takes on average 300 seconds of computation
time for large delays. The resulting solution has a maximum consecutive delay of 354
seconds and an average consecutive delay of 8.7 seconds. Solving the delay management
problem to optimality takes much time. Therefore, we limit the time for the DM
problem for each iteration to 20 minutes. Within this time, solutions are found that
are close to optimal, with gaps smaller than 1% for all instances. Furthermore, the best
solution is found within several minutes. Comparing the average train delay between
the first and the best iteration, we observe an increase of 21%.

7 Conclusions

In this paper we developed an iterative optimization framework for delay management
and train scheduling. We propose a mechanism to incorporate consecutive delays from
the train scheduling solution in the delay management problem. By combining the
global scope of delay management and the local scope of train scheduling, we were able
find solutions to the delay management problem that respect the limited capacity of
the station infrastructure. Besides these wait-depart decisions, the solution framework
provides a feasible train schedule at the stations, where the infrastructure is used heav-
ily. This train schedule allows for the precise evaluation of train delays, and thus also
the passenger delays.
We first consider scenarios with small initial delays. For those scenarios, our framework
obtains a solution to the DM problem that is microscopically feasible. In the iterative
optimization procedure, the delay for the passengers is reduced by 27% with respect
to a naive approach where only one iteration is performed. For scenarios with larger
delays, the behavior of the solution procedure is less consistent. However, we are able
to compute and evaluate a solution to the delay management problem that is feasible
at the station level.

Several directions for further research are available. First, the interaction between
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the models should be investigated in more detail for scenarios with large delays. Consid-
ering a more general feedback mechanism could potentially lead to better solutions. For
example, one could define weights on the connections in the train scheduling model or
penalize changes in the wait-depart decisions in the delay management model. Second,
the iterative framework could be tested on a railway network with more bottlenecks.
For each station where the infrastructure is scarce, a local scheduler could be applied
to compute a feasible train schedule. As the updates from different station can be
conflicting, these updates should be fully coordinated.
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A. Schöbel. A model for the delay management problem based on mixed-integer pro-
gramming. Electronic Notes in Theoretical Computer Science, 50(1):1–10, 2001.
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