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Abstract
The question of delay management (DM) is whether trains should wait for delayed feeder trains
or should depart on time. Solutions to this problem strongly depend on the capacity constraints
of the tracks making sure that no two trains can use the same piece of track at the same time.
While these capacity constraints have been included in integer programming formulations for
DM, the capacity constraints of the stations (only offering a limited number of platforms) have
been neglected so far. This can lead to highly infeasible solutions. In order to overcome this
problem we suggest two new formulations for DM both including the stations’ capacities. We
present numerical results showing that the assignment-based formulation is clearly superior to
the packing formulation. We furthermore propose an iterative algorithm in which we improve the
platform assignment with respect to the current delays of the trains at each station in each step.
We will show that this subproblem asks for coloring the nodes of a graph with a given number
of colors while minimizing the weight of the conflicts. We show that the graph to be colored is
an interval graph and that the problem can be solved in polynomial time by presenting a totally
unimodular IP formulation.
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1 Introduction and motivation

Passenger railway transport plays an important role in the European mobility. Especially
during peak hours and for distances between 20 and 800 kilometers, passengers often choose
to travel by train. In highly connected train systems passengers often have to change trains
since it is impossible to give a direct connection between all origin-destination pairs. In order
to minimize the inconvenience of changing from train A to train B, the timetable is often
constructed in such a way that train B departs shortly after train A arrives. However, if train
A has a delay during the operations, the question is whether train B should wait for train A
or depart on time. Such decisions are called delay management. Delay management (DM)
deals with (small) source delays of a railway system as they occur in the daily operations. In
case of such delays, the scheduled timetable is not feasible any more and has to be updated
to a disposition timetable. Note that since delays are often transferred if a connecting train
waits for a delayed feeder train it is not clear in advance if it is an overall improvement for
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the system to maintain such connections. In order to ensure safe operations and to take the
limited capacity of the track system into account, also priority decisions are necessary. They
determine the order in which trains are allowed to pass a specific piece of track.

There exist various models and solution approaches for DM. The main question, which
has been treated in the literature so far, is to decide which trains should wait for delayed
feeder trains and which trains better depart on time (wait-depart decisions). A first integer
programming formulation for this problem has been given in [15] and has been further
developed in [6] and [17]. The complexity of the problem has been investigated in [8] where
it turns out that the problem is NP-hard even in very special cases. Recently, re-routing of
passengers has been tackled in [7].

In railway transportation an important issue concerns the limited capacity of the track
system. This has been taken into account, see [16] for modeling issues and [14, 13] for an
integer programming formulation and heuristic approaches solving capacitated DM problems.
The idea is to add headway constraints which make sure that there is enough distance between
two train departures and hence prevent two trains from using the same piece of track at the
same time. A similar approach has been used in [3], where capacity constraints for tracks and
stations have been modelled in an alternative graph. In this paper, we additionally consider
the possibility of re-optimizating the assignment of trains to platforms in the stations.

Our first example shows, that it is important to take station capacities into account. As
a station only offers a given number of platforms, its capacity is limited. Ignoring the station
capacity leads to solutions that might not be feasible in practice since it is implicitly assumed
that infinitely many trains can wait in a station until there is room on the tracks such that
they can continue their journeys.

I Example 1. Assume a busy piece of track consisting of stations S1, S2 and S3 along which
every 10 minutes a train is running, and no shorter interval than 10 minutes between two
such trains is allowed. The original schedule can be read off in the following table where the
planned departure time in S1, the planned arrival time in S2, the planned departure time in
S2 and the planned arrival time in S3 are given for 5 trains.

station S1 S2 S3
dep arr dep (planned) dep (delayed) arr (planned)

train 1 00 15 17 17 32
train 2 10 25 27 57 42
train 3 20 35 37 67 52
train 4 30 45 47 77 62
train 5 40 55 57 87 72

Now assume that train 1 gains a delay of say 30 minutes due to technical problems
directly after leaving station S2. Without taking station capacities into account all trains
following this delayed one would wait in S2 until the track is free again and would then leave
one after another as can be seen in the column dep (delayed) in the above table. This means
that train 2, 3, and 4 need to wait in the station simultaneously, since they all arrive before
the track is freed. However, if there is only capacity for two trains in station S2, only trains
2 and 3 can enter station S2. Train 4 can therefore not enter the station at its planned time
45, but has to wait until either train 2 or train 3 has departed from station S2. This means
that train 4 will not arrive before 57 and thus arrives at station S2 with a delay. This arrival
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delay (which would be ignored if the station capacity is not taken into account) may even
force train 4 to stay longer in station S1 and hence effect other trains at earlier stations.

Note that the problem of taking station capacities into account is also relevant in
timetabling. Here one has to check for a given timetable if the capacity in every station is
sufficient. Instead of considering the number of platforms as the capacities of the stations it
is even more realistic to look at the train pathing problem, i.e., to find routes through the
stations for any of the trains using the detailed track topology. This feasibility problem has
been extensively studied. In [9] a set of inbound and outbound routes is given for each train.
If a train chooses one of these routes, all track sections of it are reserved at once but released
section-wise. It is shown that deciding whether a feasible schedule exists is NP-complete
already for three possible routes per train. Another line of research aiming at real-time
solutions is based on the alternative graph formulation [12], originally used to model job shop
variants. A branch-and-bound algorithm for finding a conflict-free train schedule, minimizing
the largest delay, is developed in [5, 1]. In [4], the authors suggest a tabu search to solve
both the train sequencing and train routing problem, where a set of possible routes is given
as input. The problem has been modeled using a set packing approach in [11]. In [2] the
problem is modelled as an ILP using clique inequalities in a conflict graph. For a recent
survey on railway track allocation problems, see [10].

2 Integer programming formulation

In this section we will present two different integer programming formulations that take the
capacities within stations into account. As basis for both models we will use the integer
programming formulation which describes the delay management problem including capacities
of the tracks as it was introduced in [14]. Note that other formulations of the DM problem
can analogously be extended to take the stations’ capacities into account.

For modelling DM problems as integer programs usually an event-activity network N =
(E ,A) is used as underlying directed graph. Its set of nodes E corresponds to all arrival and
departure events of all trains at all stations. The set A consists of the following activities:
Between the arrival i and the departure j of a train in the same station, there is a waiting
activity a = (i, j) ∈ Await, between a departure i of a train in a station and its arrival j in the
next station there is a driving activity a = (i, j) ∈ Adrive. The set A furthermore contains
changing activities Achange linking an arrival of a train in a station to a (later) departure of
another train in the same station. Finally, headway activities Ahead are needed for any pair
of trains competing for the same infrastructure after their departures. We will denote the
minimal duration of an activity a as La.

The most important decision is which connections need to be kept alive. For each changing
activity a ∈ Achange we thus introduce a binary decision variable za, which is defined as
follows.

za =
{

0 if connection a is maintained,
1 otherwise.

In order to take the capacity constraints on the tracks into account one defines a binary
decision variable gij for each (i, j) ∈ Ahead given as

gij =
{

0 if event i takes place before event j,
1 otherwise.

For each event i ∈ Earr ∪ Edep, we define xi ∈ N as the rescheduled time when event i takes
place. The variables x = (xi) therefore define the disposition timetable. If the wait-depart
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decisions za and the priority decisions gij are fixed, the values of xi, i ∈ E can easily be
calculated.

Given the original timetable πi, i ∈ E and a set of exogenous source delays di at events
and da at activities (being zero if there is no delay), the integer programming formulation
(DM) without station capacities reads as follows:

(DM) min f(x, z, g) =
∑

i∈Earr

ci(xi − πi) +
∑

a∈Achange

zacaT (1)

such that

xi ≥ πi + di ∀i ∈ E , (2)
xj − xi ≥ La + da ∀a = (i, j) ∈ Await ∪ Adrive, (3)

Mza + xj − xi ≥ La ∀a = (i, j) ∈ Achange, (4)
Mga + xj − xi ≥ La + da ∀a = (i, j) ∈ Ahead, (5)

gij + gji = 1 ∀(i, j) ∈ Ahead, (6)
xi ∈ N ∀i ∈ E , (7)
za ∈ {0, 1} ∀a ∈ Achange, (8)
gij ∈ {0, 1} ∀(i, j) ∈ Ahead. (9)

The objective function in this model counts the sum of delays of all events (weighted
with the number of passengers ci who arrive at their final destination at event i) and adds
a penalty of T for every passenger who misses a connection. In a periodic timetable, T is
often chosen as its cycle time. Also here we weight the changing activity a with the number
of passengers ca who planned to use it as a transfer. The objective is an approximation
for the overall delay of all passengers and rather commonly used in DM. It gives the exact
value if the never-meet property for headways holds (see [14]). A more realistic model taking
into account the real paths passengers would use in case of delays has been developed in
[7]. It can also be used as basis for our extension, but is technically more difficult and
computationally harder to solve. The interpretation of the constraints is as follows: (2)
makes sure that no train departs earlier than planned and that source delays at events are
taken into account. (3) propagates the delay along waiting and driving activities while (4)
propagates the delay along maintained changing activities. For each pair of events competing
for the same infrastructure (6) makes sure that exactly one of the two headway constraints
is respected and (5) propagates the delay along this headway activity.

2.1 A packing-based integer programming formulation
In order to take the limited capacity of the stations into account, the first integer programming
approach counts the number of trains in a station at a certain time and restricts this number
by the number of platforms Cs. To this end, let τ be the largest possible time an event can
take place in a reasonable timetable. We introduce binary variables yit for all events i ∈ E
and times t = 1, . . . , τ , that are defined as

yit =
{

1 if event i takes place before or at time t,
0 otherwise.

The following constraints ensure that yit takes the correct value for all events i and times t
where M is a sufficiently large number, e.g., M ≥ τ + 1.

yit ≥
t− xi + 1

M
and 1− yit ≥

xi − t
M

. (10)
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For xi ≤ t, the left equation forces yit to 1, while the right constraint is redundant. On
the other hand, for xi > t, the right constraint forces yit to zero while the left constraint is
redundant.

In order to limit the number of trains at station s at time t, we now count the number
of trains that are present at the station for each time t. It should be noted that a train
starts entering a station at a time hi before it stops there at time xi and passengers can
board. The time the train starts to enter the station will be called enter time. In the same
way, the departure time xi′ of a train is smaller than the leave time hi′ , which is the time
the last car of the train leaves the platform and hence the time the next train can start
to enter. Thus [hi, hi′ ] denotes the interval during which a platform is occupied. Define
li = xi − hi for arrival events and li′ = hi′ − xi′ for departure events. By construction, li
and li′ are non-negative. When counting the number of trains, we should not consider the
time xi that the arrival event i takes place, but the time hi that the train starts using the
platform. Observing that hi ≤ t⇔ xi ≤ t+ li, this can be done by shifting the y variables.
A similar remark holds for departure events. This leads to the following constraints, that
limit the number of trains in the stations.∑

i∈Es
arr

yi(t+li) −
∑

i∈Es
dep

yi(t−li) ≤ Cs ∀s ∈ S, t ∈ {1, . . . , τ}, (11)

where Es
arr and Es

dep denote the set of arrival and departure events at station s, respectively
and Cs represents the number of platforms in station s.

Adding the new constraints (10),(11), and yit ∈ {0, 1} for all i ∈ E , t ∈ {1, . . . , τ} to the
formulation (1)-(9) we obtain our first integer programming formulation (DM-Cap-1) for the
DM problem with capacity constraints.

2.2 An assignment-based integer programming formulation
The second integer programming formulation views a station as a set of platforms, and
introduces headway constraints for trains that make use of the same platform. As a
consequence, this formulation determines an explicit allocation of the events to the available
platforms.

In order to allocate the trains to the platforms, we first define the set Ps of platforms at
station s ∈ S. Then, we introduce binary decision variables yip for each event i ∈ Es

arr and
p ∈ Ps, that are defined as

yip =
{

1 if arrival i and corresponding departure are assigned to platform p,

0 otherwise.

Of course, each arrival event must be assigned to exactly one platform.∑
p∈Ps

yip = 1, ∀s ∈ S, i ∈ Es
arr. (12)

In order to model the limited capacity of the stations, we determine the order in which
the trains arrive at a certain platform. Consider two trains t1 and t2 that arrive at the
same station corresponding to two events i and j. If the two trains are assigned to the same
platform, we must determine the order in which the events i and j take place. To this end,
we introduce a pair of binary variables ḡij and ḡji that are defined as follows

ḡij =
{

0 if arrival i takes place before arrival j on the same platform,
1 otherwise.
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If the trains are assigned to the same platform, either t1 must have departed before
t2 arrives, or t2 must have departed before t1 arrives. Denoting ai = (i, i′) as the waiting
activity of train t1 and aj = (j, j′) as the waiting activity of train t2 this is modelled by the
following set of constraints.

xj − xi′ +Mḡij ≥ Lij = li′ + lj , (13)
xi − xj′ +Mḡji ≥ Lji = lj′ + li, (14)

ḡij + ḡji ≤ 3− yip − yjp ∀p. (15)

li is defined as in Section 2.1, hence Lij describes the time during which the platform is
occupied after the departure of i′ and before the arrival of train j (i.e., when it opens its
doors). These constraints can be interpreted in the following way: Assume first that trains
t1 and t2 are not assigned to the same platform. Then 3 − yip − yjp ≥ 2 for all p. Hence,
both ḡij and ḡji can be set to 1. On the other hand, if trains t1 and t2 are assigned to the
same platform p, then 3− yip − yjp = 1 for that p, forcing either ḡij or ḡji to zero. In that
case, one of the headway constraints must be satisfied.

The above constraints must be introduced for each pair of trains t1, t2 that dwell at a
common station s ∈ S. Note that this type of constraints has also been used to model
alternative graphs (see [12]).

Adding the constraints (12)-(15), and yip ∈ {0, 1} for all stations s ∈ S and i ∈ Es
arr, p ∈ Ps

to the formulation (1)-(9) we obtain our second integer programming formulation (DM-Cap-2)
for the DM problem with capacity constraints. Note that this formulation reduces to a
problem of type (DM) if the assignment of events to platforms is determined in advance.

I Lemma 2. For fixed variables yip for all i ∈ Es
arr, p ∈ Ps the formulation (DM-Cap-2)

reduces to an instance of (DM), i.e., can be solved as DM problem with headway constraints.

Proof. If all yip variables are fixed we have two possibilities for (15): Either both yip variables
are 1, then ḡij + ḡji ≤ 1 and (13)-(14) reduce to a headway constraint of type (5)-(6), or at
least one of the yip variables is 0, then (13)-(15) becomes redundant. J

Note that for a fixed assignment of trains to platforms this result can be interpreted as if
we introduced a track for each platform within the stations. This give rise to the following
two bounds which can easily be calculated using an algorithm that solves problem (DM).

First, it is clear that (DM) is a relaxation of (DM-Cap-2) (and of (DM-Cap-1)), hence its
objective value zDM is a lower bound. On the other hand, if we fix the assignment y of trains
to stations in (DM-Cap-2) we obtain an upper bound z∗(y) which can also be calculated by
any algorithm for (DM) according to Lemma 2. Hence we can compute an upper and a lower
bound, i.e., zDM ≤ z∗ ≤ z∗(y). We will denote the model with a fixed platform assignment
by DM-Fix.

2.3 Computational results
We have performed a computational test to see which of the above formulations performs
best. Our test considers the railway network in the Randstad, which is the mid-Western part
of the Netherlands, where the railway network is very dense. We have created two cases,
that contain all long distance trains on this network during a period in the evening. For each
case, we generated 100 delay scenarios and solved the corresponding DM problem with both
formulations. Table 1 gives an impression of the sizes of the instances and of the resulting
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Size of the program (DM-Cap-1) (DM-Cap-2)
Case Stations Trains |E| |Ahead| |Aplat| Bin. Con. Bin Con

I 10 117 344 623 3836 166323 172048 9927 23492
II 16 168 576 986 6265 266608 810188 16316 38457

Table 1 Some characteristics of the case and the resulting integer programs. Aplat denotes the
set of train pairs (t1, t2) that dwell at a common station. Bin. and Con. give the number of binary
variables and constraints in the integer program, respectively.

Case I Case II
Formulation Obj. Value Time (s) Obj. Value Time (s)

DM Neglecting capacity 248210 0.42 888908 0.65
DM-Cap-1 Packing-based 277959 781.9 - -
DM-Cap-2 Assignment-based 277959 9.95 1013300 54.46

DM-Fix Fixed platforms 330415 1.76 1146420 5.27

Table 2 The objective values and solution times for the various formulations.

integer programs for both formulations. It can be observed from the table that the second
formulation requires less variables and constraints than the first one. This suggests that the
second formulation will solve the problem much faster.
We have used Cplex 12.2 on an Intel Core i5-2410M with 4 GB of RAM to solve the integer
programs. We set the maximal running time of the algorithm to 20 minutes. As objective
value for a formulation, we take the average objective value over all 100 delay scenarios. Table
2 shows these objective values and the solution times for both formulations. For comparison,
we also included the objective value and solution time of the model that neglects the limited
station capacity. We see in the table that the objective value increases if we explicitly model
the limited capacity of the stations. This implies that the model that ignores the station
capacity finds a solution that is infeasible in practice. For Case I, we see that the second for-
mulation is much faster than the first one. For Case II, Cplex could not solve all instances with
the first formulation within the available computation time. Only in 63 instances, the optimal
solution is found. In 15 instances, a feasible solution was found but not a provably optimal one.
Finally, in the remaining 22 instances no solution was found at all. These results are in line
with what can be expected based on the number of binary variables, which is much smaller for
the second formulation. Finally, if the platform assignment is fixed as in the timetable, worse
solutions are found. This shows that it pays off to schedule the trains in a station dynamically.

3 An iterative approach

The integer programming formulation (DM-Cap-2) yielded a big improvement concerning the
running time. Still, for large instances, making wait-depart-decisions, priority decisions and
platform assignments simultaneously is intractable. We thus propose an iterative approach:
We first fix the assignment of trains to platforms as given in the original timetable. This
results in a problem of type (DM) which can be solved according to [14]. For the resulting
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solution we then try to improve the platform assignment within the stations and iterate until
no further improvement is found. Using formulation (DM-Cap-2) we obtain:

1. Fix the station assignment yip in (DM-Cap-2) according to the planned timetable.
2. Solve the resulting problem (DM-Cap-2) with fixed yip and obtain solution with disposition

timetable xi, wait depart decisions za and priority decisions gij and ḡij

3. For every station find a new platform assignment yip and new priority decisions ḡij within
the station such that (x, z, y, g, ḡ) is feasible.

4. Go to Step 2. Stop if no further improvement has been found.

If for big instances of DM decomposing the problem into two steps still results in long
running times, we can use the approach of [13] to decompose Step 2 of the algorithm further
into two smaller subproblems making first the priority decisions and the wait-depart decisions
afterwards.

In Step 3, a natural idea would be to adjust not only the platform assignment but also the
timetable locally. Unfortunately, this can lead to infeasible solutions. Therefore, in Step 3 of
the algorithm, we leave the timetable unchanged and adjust only the platform assignment in
a way that allows the subsequent DM step to shift events forward in time, if possible.

In the following we will discuss Step 3, i.e., how to find an assignment of trains to
platforms at a given station s which is feasible for the given disposition timetable x and will
hopefully yield a better disposition timetable in the next iteration of Step 2. Recall from
(13) and (14) that the headway times Lij between two trains are the sum of a headway time
li′ that is needed for the first train to leave the station after its departure event i′ and a
headway time lj representing the time that the second train needs to completely enter the
station before its arrival event j can take place, i.e., Lij = li′ + lj . Thus instead of scheduling
the arrival and departure events xi, we can instead schedule the enter time hi = xi − li for
arrival events i and the leave time hi′ = xi′ + li′ for departure events i′ in a way that the
intervals (hi, hi′) and (hj , hj′) do not overlap for two trains with arrival and departure events
i, i′ or j, j′, respectively, that are assigned to the same platform.

We process every station separately as follows: In a first step we identify for which arrivals
i ∈ E in this station a new assignment might be beneficial. These are arrivals of delayed
trains that directly follow another delayed train. For these train arrivals we determine their
wish (enter) times wi. In a second step we find a new assignment for all trains together
with new enter times qi ≥ wi for these trains which should be as close to the wish times as
possible. We first show how the wish times are identified:

Let Ps be the set of platforms and Es
arr be the set of arrival events in station s. Note that

every such event corresponds to one train. Let i′ be the departure event following i (i.e.,
(i, i′) ∈ Await describes the waiting activity of the train in the station). From the timetable
and the headway times we know that the train will be occupying the station during the time
interval (hi, hi′). If a train is delayed, we distinguish two cases:

There is another train which occupies the interval (hj , hj′) with hj′ = hi and which is on
the same platform p, i.e., yip = yjp = 1. In this case, a new assignment might help to
reduce the delay of i. Assuming that (k, i) ∈ Adrive is the preceding driving activity of
the train we define the wish time of i as wi := xk + Lki + dki − li.
If no other train is on the same platform directly before xi, the delay of i is not due to
the station assignment, and hence wi := hi.

Also if the train is not delayed we set wi := hi. The platform assignment problem (PA) can
now be formulated as follows:
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(PA) Given a set of platforms Ps = {1, . . . , P} and for every arrival event i ∈ Es
arr an

interval [hi, hi′ ] and a wish time wi ≤ hi as well as a weight ci corresponding to the affected
customers on the train, find numbers qi ∈ [wi, hi] for all i ∈ Es

arr and a new assignment yip

such that for all i, j ∈ Es
arr and p ∈ Ps

qj ∈ (qi, hi′) =⇒ yip + yjp ≤ 1 (16)

and
∑

i∈Es
arr
ciqi is minimal.

Note that qj ∈ (hi, hi′) or qi ∈ (hj , hj′)⇐⇒ (qi, hi′)∩ (qj , hj′) 6= ∅, i.e., if and only if the
two trains belonging to i and j cannot be scheduled on the same platform. This problem
can be formulated as mixed-integer program as it is but the formulation does not seem to be
promising due to condition (16). Instead we will show that (PA) is polynomially solvable
by first identifying a finite dominating set C for the qi variables. We then notice that for
every choice of the qi variables, we can check feasibility by solving a coloring problem. Since
checking all possible q ∈ C|Es

arr| would lead to an exponential number of coloring problems,
we will use that the considered graph is an interval graph and code the solvavability of the
coloring problem in the constraints of an IP formulation for which we are able to show that
its coefficient matrix is totally unimodular. Our first result concerns the finite dominating
set.

I Lemma 3. Let C :=
⋃

i∈Es
arr
{wi, hi, hi′} be the set of all given wish and planned arrival and

departure times. Then there exists an optimal solution (q, y) to (PA) with qi ∈ Ci := C∩[wi, hi]
for all i ∈ Es

arr.

Proof. Let (q, y) be a feasible solution to (PA). Clearly, wi ≤ qi ≤ hi for all i. Furthermore,
with p the platform for which yip = 1, qi ≥ max{hj′ : yj′p = 1 and hj′ ≤ qi}. Now assume
that qi 6∈ C for some i ∈ Es

arr. Let p the platform with yip = 1. Define

q̃i := max {wi,max{hj′ : yj′p = 1 and hj′ ≤ qi}} . (17)

Then q̃i ∈ [wi, hi] and for all j condition (16) is still satisfied. Hence, replacing qi by q̃i is
a feasible solution to (PA) with better objective value and with q̃i ∈ Ci. Doing this for all
values q shows the result. J

Now assume that some values qi ∈ Ci, i ∈ Es
arr are given. How can we check whether q

is feasible? This means we have to check if there is a platform assignment y such that (16)
is satisfied. To this end we transform our problem into a coloring problem in the following
graph G(q) = (Es

arr, E): For every i ∈ Es
arr we draw a node. We add an edge {i, j} between

two nodes if (qi, hi′) ∩ (qj , hj′) 6= ∅, i.e., if the two corresponding trains cannot be assigned
to the same platform. In order to find out whether there is a feasible platform assignment for
q we thus have to find out whether G(q) is P -colorable. Note that by construction this graph
is an interval graph and thus perfect (see e.g. [18, Chapter 65]). Thus χ(G(q)) = ω(G(q))
with χ(G(q)) denoting the chromatic number of G(q) and ω(G(q)) the number of nodes in
the biggest clique of G(q). We hence have to check whether the number of nodes in the
biggest clique in G(q) is not greater than P .

Let us order the values in C = {q1, . . . , q|C|} in increasing order and let us define intervals
Ik := (qk, qk+1) for k = 1, . . . |C| − 1. For a given q we define a matrix A(q) = (ail) with
|Es

arr| rows and |C| − 1 columns and entries

ail =
{

1 if (qi, hi′) ∩ Il 6= ∅,
0 otherwise. (18)

Then we can determine the chromatic number of G(q) as follows.
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I Lemma 4.
ω(G(q)) = max

l=1,...,|C|−1

∑
i∈Es

arr

ail.

Proof. Due to Lemma 3 we can assume that all values of qi are in C, hence there is an edge
between i and j in G(q) if and only if there exists an interval Il such that ail = ajl = 1. Now
let E ′ ⊆ Es

arr. As G(q) is an interval graph, E ′ is a clique in G(q) if and only if there exists
one interval Il such that ail = 1 for all i ∈ E ′. J

Now we can finally rewrite (PA) as an integer program in which we look for a choice of
q-values from the set C checking feasibility by Lemma 4 in the constraints. Denote by qk

i

the entries of the set Ci = {q1
i , q

2
i , . . . , q

|Ci|
i }. Then for every arrival event i and every choice

qk
i ∈ Ci we define the variables:

ηk
i =

{
1 if candidate qk

i ∈ Ci is chosen,
0 otherwise.

These will be the variables of our integer program. In order to directly see properties of
the resulting constraint matrix, we order our variables such that all variables ηk

i having the
same index i stand together. We need to extend the matrix defined in (18) to all possible
choices of q. To this end for every qk

i ∈ Ci we define a row with

ãk
il =

{
1 if (qk

i , hi′) ∩ Il 6= ∅,
0 otherwise.

Doing this for all i = 1, . . . , |Es
arr| we obtain a matrix Ã = (ãk

il) with
∑

i∈Es
arr
|Ci| rows and

|C| − 1 columns. Note that qk
i = qk′

j with qk
i ∈ Ci, qk′

j ∈ Cj is possible but would lead to two
(maybe different) rows in Ã. (PA) can hence be rewritten as

min
∑

i∈Es
arr

ci

|Ci|∑
k=1

qk
i η

k
i (19)

such that
|Ci|∑
k=1

ηk
i = 1 for all i ∈ Es

arr, (20)

∑
i∈Es

arr

|Ci|∑
k=1

ãk
ilη

k
i ≤ P for all l ∈ 1, . . . , |C| − 1, (21)

ηk
i ∈ {0, 1} for all ∀i ∈ Es

arr, ∀k ∈ Ci. (22)

I Lemma 5. The constraint matrix A′ defined by the inequalities (20)-(21) is totally unim-
odular.

Proof. We will show that A′ is totally unimodular by showing that every subset J of
rows of A′ can be partitioned into two sets J1, J2 with J1 ∩ J2 = ∅, J1 ∪ J2 = J and∑

j∈J1
a′jl −

∑
j∈J2

a′jl ∈ {−1, 0, 1} for all columns l (see for example [18, Chapter 5]). The
columns of A′ are associated to the variables of our integer program. For every i = 1, . . . , Es

arr
we will denote by C(i) the indices of the columns of A′ associated to a variable ηk

i . The rows
represent the constraints. For the first rows i = 1, . . . , |Es

arr| we thus have

a′il =
{

1 if the column l belongs to variable ηk
i for a k,

0 otherwise.
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Starting from row |Es
arr|+ 1, the matrix A′ consists of the matrix ÃT . We notice that Ã has

the consecutive ones property and that for a given i = 1, . . . , |Ci|, all columns of ÃT with
index in C(i) have their last 1-entry in the row that represents the constraint for the interval
with end point hi′ .

Let J be an index set of rows of A′ and JA = J \ {1, . . . , |Es
arr|}, that is the part of the

chosen subsets that is contained in ÃT . For each subset J of rows, we now define

S(J, l) =
∑
j∈J

a′jl.

We then alternately assign the rows JA to two sets JA
1 and JA

2 . Then for every i and every
column associated to a variable ηk

i either

S(JA
1 , l)− S(JA

2 , l) ∈ {0, 1} or S(JA
1 , l)− S(JA

2 , l) ∈ {−1, 0}, (23)

because of the consecutive ones property and because for every i the last 1-entry of C(i) is
in the same row. We set J1 := JA

1 and J2 := JA
2 and add the indices of the first |Es

arr| rows
in the following way to these sets: If for row i the left inclusion in (23) holds, we assign the
i-th row to J2, if the right inclusion holds, we assign it to J1. We obtain

S(J1, l)− S(J2, l) ∈ {−1, 0} or S(J1, l)− S(J2, l) ∈ {0, 1},

respectively. This proves total unimodularity. J

I Corollary 6. (PA) can be solved by linear programming.

4 Conclusion and further research

In this paper, we introduced a DM model that incorporates the limited capacity of railway
stations. We have given two approaches that can be used to extend any integer programming
formulation for the DM problem. Our first approach determines the number of trains in a
station at each time and requires this number to be smaller than the station capacity. The
second approach views a station as a set of parallel tracks and determines an assignment
of trains to platforms explicitly. In a computational test, the second formulation strongly
outperforms the first one.
As solutions to the DM models should be available within a very short computation time, we
also proposed an iterative solution method for the DM model with station capacities. This
heuristic iterates between solving the DM problem with a given platform assignment and
optimizing the platform assignment given the timetable and wait-depart decisions. We show
that determining an improving platform assignment can be done in polynomial time. Two
main directions for further research should be considered. First, the second integer program
should be tested on larger real-world instances and the performance of the iterative heuristic
should be evaluated. Also other heuristics, e.g., exchange heuristics, could be implemented
and compared. Second, after assigning platforms to the trains, a route through the station
has to be determined for each train. Solving the DM and routing problem simultaneously
might be computationally intractable. However, we plan to integrate the routing decisions in
the platform assignment step of the iterative heuristic.
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