25 research outputs found

    MULTI-MODEL SYSTEMS IDENTIFICATION AND APPLICATION

    Get PDF

    Comparative performance of some popular ANN algorithms on benchmark and function approximation problems

    Full text link
    We report an inter-comparison of some popular algorithms within the artificial neural network domain (viz., Local search algorithms, global search algorithms, higher order algorithms and the hybrid algorithms) by applying them to the standard benchmarking problems like the IRIS data, XOR/N-Bit parity and Two Spiral. Apart from giving a brief description of these algorithms, the results obtained for the above benchmark problems are presented in the paper. The results suggest that while Levenberg-Marquardt algorithm yields the lowest RMS error for the N-bit Parity and the Two Spiral problems, Higher Order Neurons algorithm gives the best results for the IRIS data problem. The best results for the XOR problem are obtained with the Neuro Fuzzy algorithm. The above algorithms were also applied for solving several regression problems such as cos(x) and a few special functions like the Gamma function, the complimentary Error function and the upper tail cumulative χ2\chi^2-distribution function. The results of these regression problems indicate that, among all the ANN algorithms used in the present study, Levenberg-Marquardt algorithm yields the best results. Keeping in view the highly non-linear behaviour and the wide dynamic range of these functions, it is suggested that these functions can be also considered as standard benchmark problems for function approximation using artificial neural networks.Comment: 18 pages 5 figures. Accepted in Pramana- Journal of Physic

    How to Provide Accurate and Robust Traffic Forecasts Practically?

    Get PDF

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    State estimators in soft sensing and sensor fusion for sustainable manufacturing

    Get PDF
    State estimators, including observers and Bayesian filters, are a class of model-based algorithms for estimating variables in a dynamical system given sensor measurements of related system states. They can be used to derive fast and accurate estimates of system variables which cannot be measured directly (’soft sensing’) or for which only noisy, intermittent, delayed, indirect or unreliable measurements are available, perhaps from multiple sources (’sensor fusion’). In this paper we introduce the concepts and main methods of state estimation and review recent applications in improving the sustainability of manufacturing processes. It is shown that state estimation algorithms can play a key role in manufacturing systems to accurately monitor and control processes to improve efficiencies, lower environmental impact, enhance product quality, improve the feasibility of processing more sustainable raw materials, and ensure safer working environments for humans. We discuss current and emerging trends in using state estimation as a framework for combining physical knowledge with other sources of data for monitoring and control of distributed manufacturing systems

    Stability Analysis and Controller Synthesis of Switched Systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore