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THESIS ABSTRACT
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Modeling of dynamical systems is an important task that cut across many dis-

ciplines. Model has been found to be indispensable for rapid development of new

systems, analyses of existing systems, simulation of process monitoring, predic-

tion, fault detection and design of process control. Modeling of real life industrial

systems is however not a trivial task due their inherent nonlinearities with wide

operating ranges and large set point changes. In recent years, much attention has

been given to multi-model-based alternative approach to describe nonlinear sys-

tems. In contrast to conventional modeling technique, a system is represented by

a set of models, that are combined, with different degree of validity, to form the

global model. Each model represents the system in a specific region of operation.

This thesis concerns with the multi-model identification of nonlinear systems and

its applications. Some of the key challenges encounter in representing a nonlinear

xvi



system with interpolated multiple models is addressed. One of the challenges of

multi-model approach is the partitioning of the system’s operating space to a num-

ber of sub-spaces. This translate to finding the submodels that can adequately rep-

resent the entire operating region of the nonlinear system when combined within

the multi-model framework. We presented a heuristic and meta-heuristic data

based partition methods for multi-model identification of nonlinear systems. In

the proposed approach the structure and the number of submodels are not known

a priori. The proposed method consists of two stages. The first stage deals with

initial estimate of the number of submodels and their parameters while the final

submodels are obtained in the second stage. Another issue of important is finding

the weight contribution of the submodels for combining them to completely form

multi-model representation of the nonlinear system. In this study, a constrained

Kalman filter (CKF) validity computation is developed for interpolation of sub-

models. The presented method overcomes some of the drawback of commonly used

validity computations such as sensitivity to parameter selection, and restriction to

partition strategy. The proposed CKF showed good performance and better than

some commonly used validity computation. Finally, two important application

areas namely, control and fault diagnosis, are investigated on the proposed multi-

model framework. In the first case, multi-model weighted one-step ahead reference

tracking control algorithms are designed for some of the identified systems. In the

second case, the suitability of the CKF algorithm under multi-model framework is

tested for fault detection and isolation . In all cases simulated nonlinear systems

xvii



examples that had been studied previously in the literature are provided to illustrate

the improved performance of the proposed methods.
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 ملخص الرسالة
  

  احمد اديبولى ادينيران :الاسم الكامل
  

  : تطبيقات وتعريف للأنظمة بواسطة طريقة النماذج المتعددة :عنوان الرسالة
  

 قسم ھندسة النظم التخصص:
  

   ٢٠١٥ :تاريخ الدرجة العلمية
 
 
 

تعد نمذجة الانظمة الديناميكية خطوة مھمة لإنجاز العديد المجالات. النموذج الرياضي لا غني عنه لمواكبة التطوير 

المتسارع في الانظمة، وتحليل ودراسة الانظمة الحالية، ومحاكاة ادارة العمليات، والتوقع المستقبلي لمخرجات 

الأنظمة والاعطال المستقبلية وتصميم المتحكم لھذة العمليات. على الرغم من ذلك فإن نمذجة للعمليات الصناعية 

على أرض الواقع ليست مھمة سھلة، ويرجع ذلك الى الطبيعة الاخطية للأنظمة بالإضافة للمجال الواسع للمتغيرات 

والقيم التي تحدد عمل الانظمة. في السنوات الاخيرة, كثر الأھتمام بتمثيل الأنظمة الاخطية بواسطة طريقة النماذج 

المتعددة. والتي تختلف عن الطريقة التقليدية بأن الانظمة تمثل بمجموعة من النماذج لمختلف حالات النظام بحيت 

تكون مجتمعة تمثل النموذج الكلي للنظام. كل نموذج من ھذه النماذج يمثل النظام في مجال عمل صغير ومحدد. ھذه 

الاطروحة تتناول طريقة تعريف الأنظمة وتمثيلھا بواسطة النماذج المتعددة للأنظمة اللاخطية وتطبيقاتھا. وتتناول 

بعض التحديات الرئيسية التي تواجه تمثيل الأنظمة اللاخطية عند التشابك بين ھذه النماذج المتعددة. يعد تقسيم مجال 

عمل النظام الى عدد من المجالات الصغيرة المنبثقة عنه من التحديات التي تواجه طريقة النمذجة بواسطة النماذج 

المتعددة. وھذه الخطوه تتوج بالحصول على نماذج فرعيه التي تكفي لتمثيل كامل مجال عمل النظام الاخطي عندما 

تجتمع معا. نعرض ھنا تعريف الانظمة اللاخطية بواسطة طريقة تجريبية أرشادية وطريقه فوق تجريبية أرشادية. 

في ھذا الطرح نفترض أن ھيكلية وعدد النماذج الفرعية معلوم من البداية. وھذا الطرح يتكون من مرحلتين. 

المرحلة الأولى تتناول التقدير الأولى لعدد النماذج الفرعية ومعطياتھا بينما النماذج الفرعية النھائية نحصل عليھا من 

المرحلة الثانية. أمر مھم أخر ھو ايجاد نسب الاھمية للنماذج الفرعية لدمجھم معا في نموذج متعدد واحد للنظام 

فلتر محدود. ھذه   Kalman اللاخطي. في ھذه الدراسة تم تطوير طريقة التحقق لعملية ربط الانظمة الفرعية ب

الطريقة تحل المشاكل المصاحبة لعملية التحقق المعتادة مثل الحساسية للاختيار القيم، والقيود في استرتيجية 



xx 
 

المقترحة أداء جيدا أفضل من بعض الطرق التقليدية في حسابات التحقق.أخيرا،  CKF التقسيم.  أظھرت طريقة

تمت دراسة مجالين مھمين باستخدام الانظمة المتعددة وھما التحكم وتحديد الاخطاء في النظام. في الحالة الأولى يتم 

تغيير قيم نظام النماذج المتعدده خطوة واحده الى الأمام بناءا على اشارة من المتحكم المصمم  و بناء على النماذج 

مع نظام النماذج المتعددة لتحديد الأخطاء وعزلھا. وفي  CKF  المعرفة. في الحالة الثانية، تم التأكد من الاستدامة

جميع الحالات تم عمل محاكاة تشابه المحاكاة المعمول بھا في البحوث السابقة لھذه الدراسة لبيان التحسن والتقدم 

 الذي حصل باستخدام الطرح المقدم في ھذه الرسالة

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



CHAPTER 1

INTRODUCTION AND

MOTIVATION

1.1 Background

Modeling of dynamical systems is an important task that cuts across many disci-

plines. Model has been found to be indispensable for rapid development of new

systems, analyses of existing systems, simulation of process monitoring, predic-

tion, fault detection and design of process control. Modeling of real life systems

is however not a trivial task due to their complexity and inherent nonlinearities.

First-principle models and their analytical approximations for such systems can

be very difficult to derive, because they require detailed expert knowledge, which

may be lacking. The resulting models are often very complex, labor-intensive,

time consuming and hence expensive. Moreover, these models are not always

very accurate, because it is difficult to decide which parameters are relevant and

1



must be included in the model. Therefore, system identification which is a more

flexible type of modeling has been embraced.

In system identification, the aim is to estimate mathematical models of a

dynamical system directly from observed input and output data with little expert

knowledge. System identification often yields compact representative models that

are accurate enough to be suitable for optimization, fault detection and model-

based control, which has found widespread use in process industry. Over the past

years, great number of efforts has been devoted to modeling and identification.

Generally, five steps are carried out in system identification process. The first

step involves selection of type of model considered suitable for the application at

hand. The second step is the design of input perturbation that will influence the

ability of the model to capture important system’s behavior. Next is to carry

out identification experiments to obtain input and output measurements. Then,

the parameters of the model selected are estimated from the collected input and

output measurements. Finally, the validation of the obtained model is done to

ensure correct description of the system.

As noted earlier, the selection of the type of model to represents the sys-

tem is crucial in system identification process. This decision is usually based on

knowledge of the system under study. Although many real-life phenomena have

inherent nonlinearities, in practice, the linear time-invariant model is usually used

to approximate the behavior of nonlinear systems disregarding a possible nonlin-

earities. The use of linear model is attractive because they are easy to understand
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and interpret. Building linear models usually requires significantly less effort than

the estimation of nonlinear models. In addition, the research community provides

well established collection of tools suitable for their analysis, monitoring, opti-

mization, identification, and control. Several attractive identification methods for

linear system can be found in [1].

Despite these attractive features in linear model, unfortunately their approx-

imations of nonlinear systems are only valid within a small range of input and

output. Hence, there has been a considerable efforts towards the development of

efficient identification methods for nonlinear systems.

Contrary to linear system identification that may not be adequate for com-

plex nonlinear systems, there exits several nonlinear systems structures in the

literature. Some proposed modeling and identification structures including Block-

oriented (e.g Wiener and Hammerstein) [2, 3, 4, 5], Volterra [6], and polynomials

NARX [7, 8], black-box models, for instance, support vector machine [9], wavelet

[10], and neural networks [11, 12, 13] have been proposed. Recent comprehensive

survey on these techniques can found in [14]. While these models have proven to

be successful in different scenarios, they still suffer from certain limitations. The

drawback of these models is that they are complex, and difficult to estimate and

analyze. Therefore, other model structures have received considerable attention

over the years.

In recent times, interest in multi-model approach has risen as alternative to

conventional modeling and identification of complex nonlinear systems, to over-
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come the difficulties encountered as mentioned previously. This technique is seen

as an effective way of system modeling that relies on problem decomposition strat-

egy. It involves combining a set of models, called local models, with different de-

gree of validity to form the system output. Each local model represents a specific

region of operation of the global system model [15, 16]. In control application,

it is easier to design a local controller for each of the simplified local model in-

stead of a global model. The past years have witnessed lot of contributions in this

effective area of modeling and identification, and has gained lots of momentum

in many fields like biochemical [17], process [18], communication [19], power [20],

etc. Multi-model approach is appealing owing to its simplicity and transparency.

The approach is mathematically tractable and allow direct incorporation of qual-

itative plant knowledge [21]. In control application, well matured linear model

and control analysis can be exploited when the local models are selected linear.

The dissertation is concerned with multi-model identification of nonlinear sys-

tems, where complex nonlinear systems can be identified using several models,

that can be combined in a particular form such that each model contributes to

the system output according to a certain degree of validity. This doctoral thesis

has three aims:

• Design of partition strategy for nonlinear system identification in multi-

model framework

• Design of validity computation for interpolation of multiple models in multi-

model framework
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• Apply Multi-model in control and fault detection.

1.2 Outline of thesis

Chapter 1 introduces the problem to be studied in this thesis in a comprehen-

sive manner, by motivating the reader about the significance of modeling and

identification of dynamic systems and nonlinearity in real industrial systems.

Chapter 2 presents comprehensive background and detailed literature review

to provide insights into avenues, where research is still lacking and where this

work can help bridging the gaps in providing a novel methodology for identifying

nonlinear systems based on multi-model framework.

Multi-model design involves three steps. The first step involves partitioning of

the operating system into smaller regions. In the second step, both the structure

and the parameters of the submodel associated with each subregion are deter-

mined. Finally, the local models are combined together using weighting function

that defines the contribution of each submodel to the representation of real sys-

tem. These steps might be dependent on one another depending on the adopted

approach in the partitioning stage. The first and the second step are discussed in

chapter 3 while the third is handled in chapter 4.

Chapter 3 presents new algorithms for the effective partitioning of nonlinear

systems from data without prior knowledge of the operating conditions. The

algorithm handles the optimization of both the number of submodels and the

effective number of parameters needed to identify the original nonlinear system
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in the multi-model framework.

In chapter 4, new algorithm for computing the validities of submodels is pro-

posed. We developed constrained Kalman filter (CKF) algorithm to compute the

weight needed for interpolating the submodels obtained through the algorithm

proposed in the chapter 3. Hence, this chapter completes the steps necessary for

the development of multi-model framework. To improve robustness and perfor-

mance of the algorithm, a methodology on how to select the parameters of the

algorithm is suggested. In addition, comparative study is carried out with other

commonly used validity computation to highlight its performance.

Chapter 5 extends the partition algorithm proposed in chapter 3 to handle a

situation where the number of parameters for each submodels is unknown.

Chapter 6 presents multi-model control and fault diagnosis problems for non-

linear systems. Two multi-model controller designs based on weighted one-step

ahead controller are developed for reference tracking and investigated using the

methods and algorithms developed in the preceding chapters. Furthermore, the

CKF algorithm is analyzed for fault detection and isolation of a three tank non-

linear system.

Finally, the thesis is concluded in Chapter 7, summarizing the contributions

of this work along with future research directions.
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1.3 Thesis Contribution

The major concern of this thesis is the use of multi-model framework for identifica-

tion of complex systems. In addition, this dissertation also consider its application

in some areas of interest such as nonlinear system control and fault diagnosis. In

this context, the contributions of our work are as follows:

• Optimize the number of partitions (submodels) needed for effective repre-

sentation of nonlinear systems in multi-model framework.

• Determine the structure and estimate the parameters of the submodels with-

out prior knowledge.

• Develop a method to compute the validity of submodels for effective inter-

polation.

• Design multi-model control strategy for nonlinear system

• Apply the proposed validity computation for fault diagnosis.

The contributions of this research resulted in the following peer-reviewed

works:

1. Ahmed A. Adeniran, Sami El Ferik,"Modeling and Identification of Non-

linear Systems: A Review of the Multi-Model Approach" SUBMITTED

TO IEEE Transactions on Systems, Man and Cybernetics: Systems (ISI,

IF:2.169)
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2. Ahmed A. Adeniran and Sami Elferik, “Validity Estimation For Multi-Model

Identification Using Constrained Kalman Filter”, IASTED on Modeling

Identification and Control ( MIC) 2014

3. Sami El Ferik, Ahmed A. Adeniran, "Constrained Kalman Filter as Validity

for Multi-Model Identification and Fault Diagnosis of Nonlinear Systems" ,

Submitted to Journal of the Franklin Institute (ISI, IF:2.260)

4. Ahmed A. Adeniran, Sami El Ferik,"A Modified Combinatorial PSO based

Multi-model Identification of Nonlinear Systems",Submitted to Journal of

Artificial Intelligence for Engineering Design, Analysis and Manufacturing

(ISI, IF:0.553)

5. Ahmed A. Adeniran, Sami El Ferik,"One step Ahead controller design for

nonlinear systems using multi-model approach ", (Under Preparation)
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CHAPTER 2

BACKGROUND AND

LITERATURE REVIEW

The efficacy of the multi-model framework in modeling and identification of com-

plex, nonlinear and uncertain systems has been widely recognized in the literature

owing to its simplicity, transparency and mathematical tractability, allowing the

use of well known modeling analysis and control design techniques. The approach

proved to be effective in addressing some of the shortcomings of other modeling

techniques such as those based on a single NARX model or neural networks. Great

number of researchers have contributed to this active field. In order to provide

background for subsequent chapters, this chapter attempt to provides a com-

prehensive coverage of the multi-model approach for modeling and identification

of complex systems. The study contains a classification of different methods, the

challenges encountered, as well as recent applications of multi-model framework in

various fields. In the literature survey, our main focus is on the multi-model frame-
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work where the final system’s representation and behavior is generated through

the interpolation of several possible local models. This is of prime importance to

control designers. All through this chapter, background to multimodel represen-

tation of complex systems, different active research areas and open problems are

discussed.

2.1 Introduction

In recent years great efforts have been devoted to modeling and identification of

nonlinear systems due to inherent nonlinearity in real life industrial plants and

processes. For such systems assumption of linearity fails and accurate mathe-

matical model is infeasible as a result of large number of parameters and lack of

knowledge of some parameters [22]. In many real applications, approximate linear

models have been adopted even though they may not adequately represent the

real system and its nonlinearities. Consequently, a great effort has been devoted

to the modeling, identification and analysis of nonlinear systems in the literature.

Several nonlinear model structures and methods such as Block-oriented [2,

3, 4, 5], Volterra [6], and polynomials NARX [7, 8] models have been proposed.

While these models have proven to be successful in different scenarios, they still

suffer from certain limitations. Recent comprehensive survey on these techniques

can found in [14]. Alternatively, black-box models, for instance, support vector

machine [9], wavelet [10], and neural networks [11, 12, 13] have been proposed.

This type of modeling approach mainly lacks transparency and also experiences
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curse of dimensionality [23]. In addition, utilizing such models for control design

might even pose problems and in some cases may be impossible to implement.

Multi-model framework (e.g., [15, 24, 25]) is another approach towards mod-

eling and identification of complex nonlinear systems. It relies upon problem

decomposition strategy. In this approach, a global system model is formed by a

set of local models integrated with different degree of validity. Each local model

represents the dynamic of the system in a specific region of the operating space

[16]. Although the multi-model approach has been criticized for creating sub-

optimal and input dependent models [26, pp.29], it has continued to attract many

researchers because of it potential benefits. The approach is simple, mathemat-

ically tractable, and like other techniques, it allows direct incorporation of qual-

itative plant knowledge [16]. Most importantly, well matured linear model and

control analysis can be exploited when the local models are assumed to be linear

[21].

The past years have witnessed lot of contributions in this area of modeling

and identification, and has gained a great deal of interest in many fields, both in

academia and industries. The idea of multi-model has been presented in different

context including, regime based multi-model [27], local model networks [28], local

radial basis function network [29], Takagi-Sugeno (T-S) fuzzy local model [30],

piecewise continuous system [31], etc. Since modeling is an important task in

many areas, multi-model approach has found its way into process optimization [32]

control [33, 34], fault detection and isolation [35, 36, 37, 38], as well as prediction
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[39]. Some of the early developments in multi-model approach can be found in

[40]. Also, the analysis of differences and similarities between radial basis function

networks, T-S fuzzy models and local model networks can be found in [41].

This chapter presents analysis and review of recent developments to the design

challenges encountered in multi-model framework for modeling and identification

of nonlinear system. We shall focus on the multi-model framework where the

final system’s representation and behavior is generated through the interpolation

of several possible submodels (or local models). As shown in Fig. 2.1, the scope

includes different strategies of operating space partition, submodel structures and

validity computations of multi-model, challenges and recent developments in solv-

ing them. This chapter provides a basis for the contributions in this thesis.

The rest of this chapter is organized as follows: Section 2.2 describes the

general multi-model concept. Recent partition strategies for interpolated multi-

model framework (MMF) are discussed in section 2.3. In section 2.4, we discuss

the internal structure of MMF and parameter estimation techniques. Validity

computations is discussed in section 2.5. In section 2.6, applications of multi-

model in various areas are highlighted. Finally, a brief discussion and conclusion

are given in section 2.7.

2.2 General Concept of Multi-model Approach

Multi-model framework (MMF) employs a strategy that partitions the entire op-

erating space of the system into a number of operating regions (see for example
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Figure 2.1: Scope of review of Multi-model framework
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Fig. 2.2), where each region is associated with a submodel (local model) that

depicts the behavior of the system in that specific region. In interpolated MMF,

however, a weighted combination of these local models are blended to form the

global output of the system. For example, suppose there is a nonlinear system of

the form:

y(k) = F (y(k− 1), y(k− 2), . . . , y(k− n), u(k− 1), u(k− 2), . . . , u(k−m)) (2.1)

where u(k) ∈ <m is the input and y(k) ∈ <n is the output of the system. The

integer m and n are the time lag of the input and output respectively, the multi-

model formulation of the system can be represented as

y(k) =
M∑
i=1
Mi(k)φi(z(k)) (2.2)

where Mi(k) = fi(ϕi(k),Θi) with ϕ(·) and Θ as the regression and parameter

vectors respectively. M are the ith submodel (local model) and number of sub-

models, respectively. φi(z(k)) is the ith weight or validity function. The variable

z(k), called scheduling variable, is a subset of the information space, ϕ(k) (re-

gression vector), that defines the operating space of the system. The validity

function, φi(·), represents the contribution of each submodel in the composition

of y(k). Such function allows smooth dynamic transition in the dynamics when

moving from one region to another in the operating space. In order to provide

right interpretation of the validity function, it is desirable that the contribution
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Figure 2.2: Operating space partition

of all submodels sum up to unity anywhere across the operating space. Hence the

validity function satisfies the convexity property:

M∑
i=1

φi(z(k)) = 1 ∀k (2.3a)

0 ≤ φi(z(k)) ≤ 1 ∀k, ∀i ∈ [1, . . . ,M ] (2.3b)

In general, multi-model approach is a framework that accommodate different

types of algorithms and models (either input-output models or state space mod-

els). Therefore, several paradigms exist in the literature that relate to the princi-

ple of multi-model, such as T-S fuzzy model, piecewise continuous model (PWC),

piecewise affine (PWA), linear parameter varying model (LPV), local model net-

work (LMN), etc.. Although these structures have been categorized into homoge-

neous and heterogeneous [42, 43] based on the submodels in a broad sense, they

can be distinguished with respect to four features:
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1. Partition strategy: One of the main differences between various approaches

is the operating space partition strategy, which defines the operating space

and structure of the local models. Popular partition strategies include op-

erating point, axis-orthogonal, axis-oblique and clustering partition. In the

partition process, optimizing the number of local models and their parame-

ters is very essential for the correct representation of the system.

2. Submodel structural identification: This involves associating the sub-spaces

with local models. The submodels can be selected to be linear, nonlinear or

combination of the two. Also linear in-parameter models are preferred, es-

pecially in control applications due to their simplicity and evident extension

to linear control theory.

3. Transition between models: This is the validity computation that determines

the degree of contribution of each local models and more importantly sub-

sumed the nonlinearities in the system. The choice of validity computation

play crucial role in the accuracy of the multi-model identification approach

[44, 45]. Transition between local models can either be hard or soft. For

hard switching between the models, it is required that φi(z(k)) is either 1

or 0, depending on whether a model is active or not at any instant. Soft

switching allows a smooth transition between the models at the switching

boundaries thereby allowing φi(z(k)) to assume any value between 0 and

1, as in (2.3b). The value of 0 means no contribution and 1 for maximum

contribution. In this review, our focus shall mainly be on multi-model tech-
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niques where submodels are interpolated (soft switching).

4. Method of realization: This involves how the submodels are combined along

with their validities to form the global system. One realization shown in Fig.

2.3 is the weighted sum of the submodel outputs to form the global system

output. The discrete time state-space representation of this realization can

be written as:

xi(k + 1) = fi(xi(k), u(k)) (2.4)

yi(k) = hi(xi(k), u(k))

y(k) =
m∑
i=1

φi(k)yi(k)

where f(·) is the state transition function, and h(·) is the output function.

xi,∈ <ni is the state vector of the ith submodel, u ∈ <l is the input, y ∈ <m

is the output vector. This realization can cope with either homogeneous or

heterogeneous sub-models. The weighted parameters is another realization

when homogeneous submodels are utilized:

x(k + 1) =
m∑
i=1

φi(k)fi(xi(k), u(k)) (2.5)

y(k) =
m∑
i=1

φi(k)hi(x(k))

where f(·) is the state transition function, and h(·) is the output function.

xi,∈ <n is the state vector of the ith submodel, u ∈ <l is the input, y ∈ <m
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Figure 2.3: Multi-model identification

is the output vector. The linear submodels’ case has been treated in [46].

The pros and cons of weighted outputs and weighted parameters realizations

are discussed in [41]. Another possible realization in Equation (2.6) is the

weighted input [47, 48].

xi(k + 1) = fi(xi(k), φi(k)u(k)) (2.6)

yi(k) = hi(xi(k), u(k))

y(k) =
m∑
i=1

yi(k)

where f(·) is the state transition function, and h(·) is the output function.

xi,∈ <ni is the state vector of the ith submodel, u ∈ <m is the input, y ∈ <m

is the output vector.
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Essentially, multi-model design involves three steps. The first is the parti-

tioning of the operating system into smaller regions based on a selected strategy.

In the second step, both the structure and the parameters of the local model

associated with each subregion are determined. Finally, the local models are com-

bined together using weighting function that defines the contribution of each local

model to the real system. These steps might be dependent on one another de-

pending on the adopted approach in the partitioning stage. It is interesting to

know that challenges in the design of interpolated MMF lies in these three steps

since its inception to present. Many attempts have been conducted to specify dif-

ferent approaches. In what follows, we shall make an attempt to examine recent

contributions in these three key steps.

2.3 Multi-model Partition Strategy

Partitioning of the operating space system to different regions is the first and most

critical step in MMF since other steps may depend on the type of partition used.

Partitioning involves decomposing the operating space into a number of regions

and describe the dynamic of the system using local models for each region. In

some literature, this is called model base or model set design. The partition strat-

egy can be categorized into prior-knowledge and non prior-knowledge partition.

The prior-knowledge based partitions are sub-categorized into model-based and

experimental-based, while the non-prior knowledge based may simply be referred

to as data-based partition.
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2.3.1 Model-Based Partition

Model-based partition takes into account prior knowledge of the system’s nonlinear

model and possibly its operating conditions. This partition includes operating

point linearization, velocity-based linearization and sector nonlinearity partition.

Operating Point Linearization (OPL)

Partitioning with OPL involves local linearization of the systems’s nonlinear model

at different operating points covering the entire operating space of the system.

OPL can be dynamic (linearization along a trajectory) as found in [49] or off-

equilibrium [50] linearization. In dynamic OPL, linearization is based on nominal

trajectory of the system to produce a linear time-varying system. The resulting

model presents some difficulties during controller design [40]. Off-equilibrium

linearization is based on a set of points in the off-equilibrium points to produce an

affine local linear model. Although the scheme is more flexible than the dynamic

linearization, it lacks direct relationship between the dynamics of the blended

multiple model system and that of the local models. In addition, there is lack of

linearity (in the sense of linear control theory) of the local models [45].

The gap metric concept has also been used as guide for selecting linearization

points on steady state map of nonlinear system [51]. One important problem that

arises here is the selection of optimal number of operating points that will be

adequate representation of the original system. Recent solutions to this problem

via the use of gap metric concept can be found in [52, 53, 54, 55, 56], where the
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selection of sufficient numbers of submodels from different operating points of a

nonlinear system are integrated into submodels controller design.

Velocity Based Linearization (VBL)

[45] developed VBL partition to circumvent previously mentioned drawbacks as-

sociated with off-equilibrium linearization that produces affine local linear model.

VBL provides local models that are velocity based, linear and continuous in time.

The global dynamics are directly related to the local model. It represents the

system at every operating point in contrast to only equilibrium point in OPL.

[44] investigated VBL approach by implementing continuous stirred tank (CSTR)

with VBL and proposed construction of VBL from process data. They concluded

that the approach is promising but unable to accurately model the steady state

of the system. They also proposed alternative validity function (piecewise linear

weighting function) and in [57] they showed that Gaussian validity function is not

always the best option. [58] developed a discrete-time version of VBL which is

originally a continuous time approach.

Despite its performance, VBL has some challenging requirements such as the

need for the derivative of the input signal, the determination of validity function

and the scheduling mechanisms, which can affect the accuracy of the approach.

To address these difficulties, a fixed structure Gaussian process (GP) model [59]

is recently proposed, which merges VBL with the GP modeling approach. Each

GP model is used to represent an element of the unknown parameters of the

local models from the VBL, thus, producing an LPV model. The approach has
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automatic mechanisms for interpolating the values of the local model parameters

owing to smoothness property of GP models. Furthermore, the selection of the

scheduling variable is based on relevance-parameter detection capability of GP

models. However, this approach fails to identify model outside the equilibrium

regions [59].

Sector Nonlinearity Transformation (SNT)

Sector nonlinearity first appeared in [60] as a possible partition for T-S fuzzy model

construction. It has since caught the attention of many researchers especially in

the control community [61, 62, 63, 64, 65, 66, 67, 68]. SNT is a systematic and an-

alytical procedure to transform a nonlinear system into a quasi-linear parameter

varying (quasi-LPV) using a convex polytopic transformation with unmeasurable

premise variable. This transformation is considered not suffers any loss of infor-

mation and produces a system having the same trajectory as the original one [69].

Each quasi-LPV is associated with a particular set of premise variables. One draw

back of this scheme is the non-uniqueness of the transformation as several equiv-

alent quasi-LPV forms can be constructed for a given nonlinear system. Since

each quasi LPV is associated with a particular set of premise variables, hence the

selection of a paricular premise variable is critical for it affects both the number of

submodel, as well as the global model.Recently, a generalized sector nonlinearity

approach has been proposed in [70, 71, 72] to make the selection of quasi-LPV

easier. The obtained system is tailored along a particular objective such as sta-

bility or performance analysis, controller or observer design. The approach gives
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a systematic procedure to choose the best quasi-LPV form that leads to a spe-

cific property needed in the global model. The contributions in [73, 74] worth

mentioning for modeling T-S fuzzy with sector nonlinearity using input-output

data.

2.3.2 Experimental-Based Partition

The experimental-based partition [e.g., 75, 76, 17, 77] assumes prior knowledge of

the operating conditions of the system. It involves careful design of experiments for

each known region of the operating space. An input excitation signal is designed

around some chosen operating point of the process. Data are collected and local

models are identified for each operating region. This type of partition is common

with multi-model LPV system (MM-LPV) [see for example, 78, 79, 80, 81, 82, 83].

Static characterization [23, 41] is one of the strategies used in experimental-based

partition. The system is excited only in the region of the operating space close

to the target operating point. The curve of equilibria is plotted and a minimum

number of operating point is carefully selected to cover the entire operating space.

Separate sets of data are collected close to the vicinity of these operating points to

identify submodels with centers lying on the equilibrium curve. Similar to other

partition strategies, the choice and number of operating region to completely rep-

resent the system is challenging. One effort to this direction can be found in [84],

where the authors gave the experimental conditions for the linear identfication at

each operating point to optimize the location of the operating points at which
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local linear models can be identify.

2.3.3 Data-Based Partition

Data-based partition is the one that has attracted most attention in the liter-

ature. The entire system input-output data is used for identification of system

while extracting the operating regions (partition) of the system from the data. In

contrast to experimental partition, there is very little or no prior knowledge asso-

ciated with partition extracted. Many approaches exist in the literature such as

axes-orthogonal, axes-oblique, clustering and learned partition. In general these

strategies can be categorized into Incremental, clustering and learned partition.

Incremental partition

Incremental partition are tree based algorithms where the system’s data is parti-

tion iteratively in order to add a submodel at a time based on some criteria. Two

common incremental partition are axis-orthogonal and axis-oblique partition.

Axis-orthogonal partition

Axis-orthogonal partition strategy involves splitting the data in a direction paral-

lel to the axis of the input space hyper-rectangle(see Figure 2.4a). The algorithm

in [24], subsequently refer to as (J&F) algorithm, and local linear model Tree

(LOLIMOT) algorithm for training Local Linear Neuro-Fuzzy (LLNF) Model [29]

are the two early partitions utilizing this strategy. Both algorithms produce local

linear model weighted by normalized Gaussian function. Although the two algo-
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rithms seems similar, they do have significant differences in the determination of

which regime to decompose. In J&F algorithm many decompositions along the

axis of the hyper-rectangle are possible and the search is within the sets of posi-

tion leading to minimum error. On the other hand, LOLIMOT algorithm splits

the input space is only into two halves along the hyper-rectangle axis. The par-

allel direction selected for splitting is determined by the minimum global error.

Further decomposition is done by considering the region with the highest local

error. Another difference resides in the estimation of the local model parameters.

LOLIMOT employs weighted least square while singular value decomposition is

used in J&F algorithm. Although LOLIMOT has the advantage of being com-

putationally efficient compared to J&F algorithm it gives suboptimal model [85]

and is very sensitive to curse of dimensionality [86].

[87] proposed an improved algorithm called Polynomial Model Tree (POLY-

MOT). Unlike LOLIMOT, a linearly parameterized higher degree polynomial

based local models are used. The idea stems from the fact that, as the degree of

the polynomial increases, the number of local models required for a given accu-

racy decreases. The main improvement in the algorithm is that at every iteration,

there is a choice of either to split the worse local model or increase its number

of parameters, whichever tends to lower the global model error. POLYMOT has

been shown to give better accuracy and less local model compared to LOLIMOT

. [88] also proposed similar algorithm to POLYMOT, where choice is made to

either increase the complexity of the local model or the number of local models.
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Table 2.1: Some modification to LOLIMOT algorithm

Author Technique Modification Problem solved

[89] expectation maximization (EM) Use EM algorithm for
identification of local models

provide covariance information
about the model mismatch

[90] Particle Swarm Optimization
(PSO)

Use PSO to optimize the
parameters of LOLIMOT

the unknown standard deviation
of Guassian validity function is

optimized

[91] particle swarm optimization
(PSO)

Use PSO to find the best divisions
of input space

search for the best axis-orthogonal
partition of the input space

[92] Simulated Anneling (SA)
Use SA to find the best divisions
and provide merging of local

models

Reduce the number of models in
LOLIMOT

[93] combine Piecewise Linear Network
(PLN) and LOLIMOT algorithm

provide pruning strategy in form
of merge and split to formerly
divided local linear models

Reduce the number of models in
LOLIMOT

[94] state space identification
apply subspace identification

method of N4SID to optimize the
paramters of the local models

input-output local linear models is
transformed to the Locally Linear
State Space models (LLSSM)

[95] EM and generalized total least
squares (GTLS)

Use GTLS for parameter
optimization and EM for

determination of the region of
validity for the local models

provide consistent estimate with
input and output noisy data

[96] LLNF as local models

use LLNF as local models to
reduce both the number of models

and paramters usually
experienced in complex systems

fewer local models and parameters

[97] clustering and model statistics

use clustering for partition and
provide local model statistic
which helps to estimate the

reliability of the obtained model

less computational effort, fewer
local models and generally
uniform confidence intervals

However, the way this choice is made is different. They introduced a mechanism

of orthogonal least square (OLS) with A-optimality to make that decision, by

determining the significant terms of the two local models emanating from the

split action. If the selected terms belong to both local models, then the number

of local model is increased otherwise the complexity of the model is increased.

The authors also showed that the algorithm is more accurate with less effective

parameters than LOLIMOT. Generally, axis-orthogonal partition strategy tends

to be sensitive to curse of dimensionality. As shown in Table 2.1, several other

modifications to the LOLIMOT algorithm have been proposed in the literature,

either for specific improvement or to be able to tailor it to a specific application.
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Axis-oblique partition

Contrary to parallel splitting in axis-orthogonal, axis-oblique strategy splits the

data at an angle to the axes of the input space. Figure 2.4 shows the difference be-

tween axis othorgonal and axis oblique partion with two dimensional input space.

The axis-oblique strategy is first introduced in [98] using the hinging hyperplanes

concept. The hinges hyperplanes are based on hinged basis function that are

composed of two hyperplanes joined together at the point of intersection called

hinge. The major task is to approximate the basis functions through function

expansion, while optimizing the position and direction of the hinges. The local-

ization of the hinges is actually an axis-oblique partition of the operating space.

This is one of the strategies used in the concept of continuous piecewise linear

(CPWL) models (e.g.,[31, 99, 100]) which is out of scope of this study due to lack

of interpolation of the submodels generated. To overcome hinging hyperplanes

drawback of non-differentiability at the hinge point, [101] extended the hinges hy-

perplanes to the concept of LMN by interpolating the hinges with Sigmoid smooth

function. [102] further modified the smooth hinging plane in [101] by introducing

hinges hyperplanes tree, to decouple the parameters of the local models and the

hinge directions (input space partition). Ernst’s algorithm utilized a binary tree

construction motivated by LOLIMOT algorithm. At each iteration the operating

range is partition along the hinge into two halves representing two local submodels

and the worst local model is replaced by a new hinge function. Since the hinge

functions are nonlinear, a nonlinear optimization (gradient descent) is required to
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estimate unknown parameters. This makes the algorithm more computationally

demanding than LOLIMOT.

Hierarchical Local Model Tree (HILOMOT) is introduced in [103] by modify-

ing Ernst’s algorithm. In HILOMOT, the idea of hinging function optimization is

eliminated. In a binary tree construction, sigmoid function is introduced to split

the worst local model and to automatically determine the validity region of the

local models. The direction of split is optimized by using a nonlinear optimiza-

tion to estimate the parameters of the Sigmoid function. The approach eliminates

both the curse of dimensionality as well as local minima problems experienced

in LOLIMOT. [104] proposed a refinement to HILOMOT algorithm to remove

the unpleasant effect of overlap of the validity functions. In contrast to a prior

fixed smoothness of the parameters, an automatic smoothness adjustment of the

validity function parameters is developed. Further improvement to the algorithm

is carried-out in [105] to reduce the training time of the nonlinear optimization

(quasi-Newton) used for split position. This is achieved by replacing the numer-

ical gradient calculation in the quasi-Newton method with analytical gradient.

In [106], a similar strategy called supervised hierarchical clustering (SuhiClust)

is developed. However, it differs from HILOMOT by only the method used to

optimize the direction of split. Indeed, instead of using the sigmoid function for

the split, Gustafson-Kessel (GK) fuzzy clustering is used to split the worst local

model into two halves. Consequently, normalized membership function from the

GK clustering result is used as weighting function for the local models created
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by the split. This idea is similar to that used in [107], where fuzzy c-regression

clustering is used to optimize the position of the hinges. A seemingly related idea

is the modification of the classification and regression tree (CART) suggested by

[108], where the decomposition of the tree is based on regression error and the

parameters of the sigmoidal membership function are tuned by back propagation

algorithm taking into consideration the global error.

(a) Axis othorgonal partition (b) Axis oblique partition

Figure 2.4: Axis-orthogonal and oblique partition for two dimensional input space
(u1, u2)

Clustering partition

Clustering is another commonly used strategy that have also been exploited for

the partitioning of process data. Clustering is based on unsupervised classifica-

tion of a set of identification data set related to the underlying system. As a

partition strategy, it enables the division of the complex nonlinear region into

simpler subspaces, which are then associated with submodels. A number of clus-

tering algorithms such as fuzzy c-mean [22], fuzzy k-mean [109], K-mean [110],

Gustafson-Kessel [106, 111], Gath-Geva [112] etc. have been used for multi-model
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identification. Broadly, they can be divided into two categories: input space clus-

tering and product space clustering.

Input space clustering are those clustering algorithms that are based only on

the input space data. One drawback of this strategy is that the local model form

is based on input data distribution which is devoid of the process behavior [103].

Another drawback is the determination of sufficient number of input variables to

adequately partition the data. For example in [109], the number of variables used

for clustering is based on a try and error approach. This can also be seen as

a scheduling variable problem (which will be discuss in next section), where the

variables from the information space has to be determined for use in the validity

function.

Product space clustering (e.g. Gustafson-Kessel (GK) and Getha-Geva (GG)),

which is commonly used in the T-S fuzzy model [113, 114, 112], tries to overcome

the drawbacks of the input space clustering by jointly considering both the input

and the output data in the clustering process. It has the ability to identify local

hyperplanes characterized by linear clusters. Thus, each cluster is suitable to

model a local linear region of the complex nonlinear process. A possible drawback

of GG and GK algorithm respectively is that of high sensitivity to initial value and

inability to identify clusters of approximately unequal volumes [115]. Sensitivity

to initialization can be reduced by using other input-space clustering techniques

such as fuzzy c-mean clustering result as initialization of the prototype [115].

Similar to other partition strategies, a general challenge in using clustering
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algorithms for partitioning of operating space is the determination of number

of clusters to sufficiently represent the underlying system. Clustering into large

number of partitions may represent the system behavior accurately but in a non-

parsimonious way. In control applications, such representation can make controller

design cumbersome. Also, a very small number of clusters may not represents

the system adequately. In recent time, several methods have been proposed to

solve the problem. [22] utilized both cluster validity (e.g. partition coefficient,

partition entropy, partition density, Xie-Ben, etc) and model validity (Akaike

Information Criterion (AIC), Bayesian Information Criterion (BIC), and Final

Prediction Error (FPE)) methods to find the optimal number of clusters. [116]

proposed a loss function, linear model based reconstruction error (LMRE), to

determine optimal number of clusters resulting to minimum model error. Since

both LMRE and model validity methods are based on model construction, they

are time consuming and the computational effort increases with number of data

samples and model dimensions. [117, 118] utilized a heuristic method based on

the number of neurons in the output layer of Kononen network. This approach

may not be free of the drawback of the previous methods as the training of the

network has to be repeated manually until a satisfactory number of clusters is

obtained. Moreover, the training of the network is very slow and increases with

data samples.

[21, 119, 120] utilized subtractive clustering that automatically determines the

number of clusters. The accuracy of this algorithm has also been known to depend
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Table 2.2: Recent Clustering techniques for multi-model partition

Type of Clustering Category Papers
Fuzzy C-means Input space [22]
Fuzzy K-means Input space [110, 109]
k-means Input space [ 110, 109]
G.K Product space [116, 111, 123, 124]
Gath-Geva Product space 112

on proper selection of its parameters [121, 122]. In [123, 124] large number of

clusters is initially assumed and later reduced by merging similar clusters. Unlike

in [125], where merging based on euclidean distance is suggested, the authors

considered the merging based on stability of the local models using predictor

error and gap metric criteria. [111] proposed an iterative incremental partitioning

algorithm using G-K clustering. Number of clusters are iteratively increased by

splitting the worst modeled cluster if its standard deviation error is greater than

a certain threshold. [109] proposed the use of a separate clustering algorithm

called rival penalized competitive learning (RPCL) neural network. Adequate

number of clusters are determined by considering only clusters’ centers that are

enclosed by the data distribution when the initial number of cluster is larger than

the real number of operating clusters. With all these proposals over the years,

determination of optimal number of clusters is still an open area for research.

Learned Partition

This type of partition is based on parameterization of the operating partitions

along with the parameters of the submodels. The parameters of the submodels
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along with their partitions, and that of the validity function are learned directly

from data. The submodels are usually specified and interpolated in traditional

T-S fuzzy model fashion. Contributions in this area only differ in the approach

used for estimation of parameters, such as gradient methods [126, 43].

2.4 Multi-model Internal Structure and Param-

eter Estimation

This section presents the identification of the submodels within the multi-model

framework, when the partition of the system is derived from experimental and

data-based partitions. In the literature, several structures, such as linear, non-

linear, mechanistic, empirical, neural networks, polynomial,or hybrid, have been

proposed. Recently, Gaussian process (GP) models is introduced as a local model

structure [23, 76]. This approach gives a number of advantages like robustness

to ill-conditioning, and provides a measure of uncertainty in the prediction. The

structure of the submodels is the most flexible part of the multi-model framework,

for there are no specific requirements other than a satisfactory approximation of

the local regime [24].

In general, the submodels can be homogeneous or heterogeneous. Homoge-

neous submodels refers to models of the same structure, such as the one used

in the well known Takagi-Sugeno (TS) models [30], while heterogeneous refers to

submodels of different structure, commonly used in local model networks [41, 109].
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Homogeneous submodels are mostly favored because their learning and optimiza-

tion techniques are the same. On the other hand, heterogeneous submodels may

require different learning and optimization techniques appropriate to each sub-

model. However, heterogeneous submodels are more flexible and can cope with

curse of dimensionality unlike homogeneous submodels [43].

The estimation of local model’s parameters given a particular model structure

is generally done by either a global or local learning cost function [27, 41]. The

objective of global learning is to minimize the error between the system’s output

and that of the multi-model’s output. Hence, global learning estimates all the

local models’ parameters together. In (2.2), if N is the number of training data,

the global learning criterion can be expressed as:

JG = 1
2

N∑
k=1

(ŷ(k)− y(k))2 (2.7)

where y(k) and ŷ(k) represent the actual system output and estimated system’s

output respectively . Global learning is accurate for a well chosen model struc-

ture. However, it is usually difficult to obtain a suitable model. In addition,

it required large computational efforts for large training samples and produces

less transparent models, since each submodel cannot be interpreted separately

[127, 125].

Local learning as an alternative takes care of the disadvantages of global learn-

ing by focusing only on locally useful information from data. It minimizes the error

between the system’s output and all local model’s outputs. Thus, it produces in-
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dependent estimation of parameters of each submodel. The local learning can be

defined as:

JL = 1
2

M∑
i

N∑
k=1

φi(k)(ŷi(k)− yi(k))2 (2.8)

where yi(k) and ŷi(k) are respectively the actual system’s output and estimated

output corresponding to the ith submodel. Although local learning demonstrates

superior performance to global learning, it has a disadvantage of discarding the

useful global information from data. A comprehensive comparison between the

two learning schemes can be found in [127].

Combined local and global learning has been suggested by [128] to make a

compromise and also take advantage of the strength of both learning schemes.

The combined criterion is defined as:

J = αJG(θ) + (1− α)JL(θ), α ∈ [0, 1] (2.9)

In recent times, efforts have been made to further investigate this idea in a dif-

ferent multi-model structure. [129] investigated the combined learning algorithm

as a multi-objective optimization on T-S fuzzy model multi-model paradigms. In-

fluence of α on the interpretation of the global model is examined and indicates

some modeling conflict/sensitivity issues. Suggestions on detection and solutions

to these conflicts are also pointed out. [18] presented a combined learning algo-

rithm on polynomial local model with implementation on a thermal process. The

algorithm combined both local and global cost functions to provide a trade-off
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between local interpretation and global fitting. [43] further investigated three

learning algorithms (local, global, and combined) on heterogeneous state-space

models and advised that combined learning algorithm is well suited for a strongly

overlapped Gaussian validity function.

In order to solve any of the optimization criteria (Equation 2.7, 2.8,2.9), differ-

ent algorithms can be used for the estimation of submodels parameters depending

on the structure of the submodels. Most commonly used identification algorithm

is the least square (LS) algorithm or its recursive version (RLS) for linear in

parameters models. Other algorithms employed as of recent include prediction

error [82], expectation maximization (EM) algorithm [78, 80, 83, 130, 130, 131],

gradient based algorithm [126, 132, 43] and sub-space method [94].

2.5 Validity Computation

Determination of the validity computation is another challenge in the interpolated

multi-model framework. As discussed earlier, the weight or validity function in

(2.2) describes the contributions of all the local models to the multi-model output

and allows smooth transition between the local models. Thus the choice of this

function can affect the accuracy of the representation [133, 45]. In general, two

categories of validity computation can be identified in the literature. The first is

pre-validity computation where the determination of the validity is done during

the partition of the operating space. Its computation is therefore dependent on

the partition strategy employed. The validity may be employed directly in the
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estimation of the local model parameters, for example, by using weighted least

square (WLS) where the weights in the WLS are the validities of the local mod-

els. The other category called post-validity computation is when the validity is

computed after the local models have been identified and therefore independent

of the partitioning strategy. Central to the two categories is the determination

of the scheduling variable vector, that define the operating region of multi-model

system and assist in its blending. It is required that scheduling vector should

be a subset of the information space (e.g. regression variable) [134] to reduce

the curse of dimensionality. However, [41] showed that reduced dimension of the

vector can result in a decrease of accuracy and sometimes produces a discontin-

uous global model. On the other hand, an extended scheduling vector can result

to an off-equilibrium problem. Therefore, an automatic way of identifying the

best variables in the information space is still a challenging task. However, there

are some validity computation, such as simple and reinforced residues, that are

not specified as function of a scheduling variable. Such computations remove the

burden of the determination of the scheduling variable. Table 2.3 highlight some

recently used validity computation and their categories. Although several meth-

ods of computing validity, such as polynomial function [135, 80, 46], cubic spline

function [136, 137], piecewise linear function [133, 48], continuously differentiable

function [138], gap metric [139, 140, 141], exist in the literature, in what follows

we discuss recent commonly used validity computations.
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2.5.1 Gaussian validity

This is one of the most commonly used validity function. Its popularity is due to

its smooth property. It is mainly a pre-validity computation which can be used in

the determination of the parameters of the local model. However, it may be used

like a post-validity computation. Although other forms are possible, commonly

used Gaussian function can be define as:

φi(k) = exp(−1
2(z(k)− ci)Tσ−2

i (z(k)− ci)) (2.10)

where ci and σi are the center and width of the Gaussian function for the ith local

model respectively. z is the scheduling variable. The determination of the center

and the width is quite important in the accuracy of the identified system. For

experimental-based partition, the center can be selected as the operating point of

the data collected [e.g., 48, 136, 80, 78, 82]. However, this can be challenging for

other partition strategies, hence different strategies have been adopted in their

determination. In [75] the center of data is used as the center of a Gaussian

function and optimized the width of the function by minimization of a mean

square error over the training data. [88] used the center and the width of the

hypercube of the data to determine the center and the width of the Gaussian

function respectively. In [111, 124] the cluster center and fuzzy covariance matrix

are utilized for the center and width of the Gaussian function, respectively. [81]

used steepest descent method to determine the width while [83] uses expectation

maximization algorithm. This indicates that there are no specific approach to
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determine these variables.

2.5.2 Sigmoid validity

The Sigmoid function has been used in [103, 142] as a splitting function in axes-

oblique partitioning algorithm. The Sigmoid function use in [103, 142] is :

φi(z) = 1
1 + e−κ(vi,o+vi,1z1+...+vi,nznz) (2.11)

where the vector vi determines the direction of the soft split, the offset term vi,o

determines the position of the split, and κ determines the smoothness of the split.

While parameter κ is chosen heuristically, a nonlinear optimization technique is

used to optimize the vector vi, which make it computationally expensive.

2.5.3 Residue Approach

Residue approach [143, 110, 109, 144, 117] utilized the distance between the cur-

rent output of the system and that of the local models. This validity computation

is commonly used as post-validity, for the output of the local models are used in

the computation. The residue is computed as :

ri = ‖y − yi‖ i = 1, . . . ,M (2.12)

where y is the output of the system and yi is the output of the local model.

Commonly used residue approach are highlighted below.
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Simple Residue Approach

The simple residue is given by

φi = 1− r̄i
M − 1 (2.13)

where r̄i is the normalized residue is given by

r̄i = ri∑M
j=1 rj

(2.14)

Reinforced Residue Approach

The reinforced computation is expressed as

Φ̄i = vi
M∏

j=1,j 6=i
(1− vj) (2.15)

where vi = 1− r̄i. The actual reinforced validity is given by normalizing Φ̄i as

φi = Φ̄i∑M
j=1 Φ̄j

(2.16)

The residue approach is simple and free of the scheduling variable problem. How-

ever, it sometimes lack precision and not recommended for use in complex and

ill-defined systems [144].
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Quadratic Form

The quadratic form validity computation is proposed by [144, 118]. The idea is

inspired by fuzzy c-means objective function based on minimization of quadratic

criterion. The validity is shown to perform better than both simple and reinforced

residues. However, it can only be used if clustering techniques are employed for

the partitioning. The Quadratic validity computation can be written as

φi(k) = 1∑M
l=1(A2

i (k)/A2
l (k))

(2.17)

where A2
i (k) = ‖y(k) − ci‖2, y is the output of the systems, and ci is the cluster

center of the ith local model.

Bayessian Validity

The Bayesian validity [145, 146] employed the past history of residuals to obtain

posterior probability of each model. A normalized posterior probability is then

assigned to each model. The Bayesian validity is computed as:

Pri(k) =
exp(−1

2ε
T
i (k)Γεi(k))Pri(k − 1)

∑M
j=1 exp(−

1
2ε

T
j (k)Γεj(k))Prj(k − 1)

(2.18)

where ε = y(k)− yi(k) represents the residual between the measurement and the

output prediction of the ith local model at the kth instant. pri(k) is the posterior

probability of the measurement. Γ is a time invariant weighting matrix known as

convergence matrix and typically chosen to be diagonal. In the sense of normal

41



distribution, Γ is interpreted as the inverse of the residual covariance matrix.

Higher values of diagonal elements of K indicate a small residual variance and

thus greater confidence in the residual of each model. The higher the values of

the elements of Γ , the faster is the rejection of models with large residuals. The

user-defined Γ allows strategies ranging from a winner-take-all approach (large

Γ ) to a non-discriminating averaging approach (small Γ ). Finally, the validity

corresponding to each model may be obtained as:

φi, (k) = Pri(k)∑M
j=1 Prj(k)

(2.19)

Neural Network and Fuzzy logic Validity

Neural networks and fuzzy logic validities are proposed in [119] and [147] respec-

tively. Both methods use the residue and its variance for the prediction of model

validity. In both methods, each local model validity is computed separately (a

neural network and a fuzzy logic model for each local model is designed) and all

the validities are normalized to satisfy the partition of unity. The idea is depicted

in Fig. 2.5, where ri is the residue, ∆ri is the variance of the residue and vi is the

estimated validity of the ith local model, i = 1, . . . ,M .

2.6 Applications

As mentioned earlier, due to the importance of modeling in many disciplines,

multi-model approach has been applied in many areas. The rising number of
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Figure 2.5: Neural Network and Fuzzy logic Validity computation

Table 2.3: Recently used Validity Computation

Validity Computaion Category Paper
Gaussian function Pre-validity [75, 48, 136, 80, 78, 82, 81, 88, 111]
Sigmoid function Pre-validity [ 103, 142]
cubic spline Pre-validity [136, 137]
polynomial function Post-validity [80, 46]
Piecewise linear function Post-validity [133, 48]
Simple residue Post-validity [110, 109, 144, 117]
Reinforced residue Post-validity [110, 109, 144, 117]
Bayessian Post-validity [145, 146]
Neural network Post-validity [119]
Fuzzy logic Post-validity [ 147]
Quadratic criterion Post-validity [144, 118]
Gap metric Post- validity [139, 140, 141]
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these applications is due to the increased awareness of the different communities in

exploring the flexibility of the multi-model-based design. The range of applications

of multi-model is getting wider and has been implemented among others in process

optimization, prediction, fault detection, state estimation and control areas. In

the remainder of this section, contributions on control application of interpolated

multiple models is briefly discussed.

2.6.1 Multi-model control

multi-model framework has been exploited for nonlinear system control in order

to avoid substantial demand in terms of design and implementation presented

by nonlinear controls. Multi-model controller usually employ linear control to

benefit from their easy implementation and rich linear control methodologies. In

general interpolated multi-model framework deals with nonlinear system control

through a fusion procedure of previously designed local controllers. At first, the

nonlinear system is decomposed into a set of local linear models using any of

the partitions and parameter estimations discussed earlier in section 2.3 and 2.4

respectively. Based on each local model fi(·), a corresponding local controllers

ci is designed using well-known linear control techniques. Subsequently these

controllers are fused together using their respective validity (weight) to form a

global controller. Two popular methods exist for fusion controllers: partial fusion

between the controllers and a fusion of the control-parameters.

In the partial fusion of controllers (for examples see [148, 149, 150] ), the
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outputs of local controllers are weighted, based on the contribution of each model,

to obtain the final control signal for the system. Thus, the overall controller can

be described by

u(k) =
m∑
i=1

ui(k)φi(k) (2.20)

where φi(k) is the validity of each model obtained from the validity computation

and ui is the output of controller ci. A pictorial description of this method is

shown in Figure 2.6. This configuration allows different control algorithms to be

design for each model representing the system. In fusion of the control-parameters

Figure 2.6: Fused controller multi-model control

(see [151]), the global control is computed by a fusion of the parameters of the

local controllers weighted by the respective validity indexes.The global controller

in this case is described by

p(k) =
m∑
i=1

Pi(k)φi(k) (2.21)

where pi is a control parameter of the model fi(·) and p is the global control
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parameter. It should be noted that in order to be able to do fusion of controller

parameters, same type of controller must be used for all local models. Figure 2.7

shows a pictorial representation of this methods. Another similar method of ob-

Figure 2.7: Fused parameters multi-model control

taining a global controller is by designing a single global controller from weighted

multi-model output representation of the nonlinear system, rather than designing

multiple controllers. This is scheme is commonly used in model predictive con-

troller [152, 146, 124, 153, 154, 155]. This method can ease the computational

load in MPC optimization algorithm by solving only one control input sequence.

2.7 Discussion and Conclusion

Multi-model techniques for modeling and identification of complex nonlinear sys-

tems have attracted lots of attention over the years with different paradigms in

the literature. In this chapter, we reviewed recent development in interpolated

multi model techniques where the operating space is decomposed into a number

of operating regimes and associated submodels in these regions are weighted and
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combined in a way that represents the current system. Rather than enumerating

all methodologies in this area, we have focused on three key challenging areas of

multi-model design, which we are going be our focus in this thesis, namely: parti-

tioning, internal structure and parameter estimation as well as validity computa-

tion. We also review recent applications of interpolated multi-model framework.

In general, it is observed that recent algorithms and methods are mainly in the

partition and validity computation aspect of the multi-model framework.

The partition strategy has been broadly categorized into prior knowledge-based

and non-prior knowledge-based. The prior knowledge partition includes experi-

mantal and model-based while the non-prior knowledge is basically the data-based

partition. After evaluating a large number of papers, we observed that the current

research trend in partition strategies is focused on data-based partition where no

prior knowledge of the operating space is assumed. However, for all partition

strategies, future research still needs to focus on optimizing the number of par-

titions which is directly related to the number of submodels. Another area that

has not be giving much attention is the online partitioning scheme for online

identification. Two efforts in this direction include [156] and [157] which utilized,

respectively, evidential evolving GustafsonKessel algorithm and adaptive substra-

tive clustering for online partitioning of the operating region.

Validity computation is another design area that has several contributions due

to its effect on accuracy of the multi-model representation. We have categorized

all contributions into pre-validity and post-validity based on the dependency on
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the partition strategy employed. It is therefore important to note that the parti-

tion strategy is one of the driving force in the determination of suitable validity

computation. Therefore, future research in this area would necessarily focus on

design and selection of suitable validity computation with respect to partition

strategy. For example, the Gaussian function has become the de-facto for the

homogeneous T-S multi-model and the local model network representation. How-

ever, as mentioned in section 2.3.1 this may not necessarily be the best choice.
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CHAPTER 3

A MODIFIED

COMBINATORIAL PSO

BASED MULTI-MODEL

IDENTIFICATION OF

NONLINEAR SYSTEMS

Chapter 3 proposes a two-stage approach for the operating space partition, in

order to obtain representative submodels for identification of a nonlinear system

in multi-model framework. The approach uses a modified combinatorial particle

swarm optimization and hybrid K-means to determine the number of submodels

and their parameters. The main advantage of the proposed framework is in its

automatic optimization of the number of submodels with respect to the submodel
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complexity. This allows partitioning the operating space and generate a parsimo-

nious number of submodels with little prior knowledge. Simulation examples are

given to illustrate the effectiveness of the proposed algorithms.

3.1 Introduction

Several industrial systems are characterized by high nonlinearities with wide op-

erating ranges and large set point changes. Identification and representation of

these systems represent a challenge especially for control engineers. In recent

years, much attention has been given to multi-model-based alternative approach

to describe nonlinear systems. In contrast to conventional modeling technique, a

system is represented by a set of models, that are combined, with different de-

gree of validity, to form the global model. Each model represents the system in a

specific region of operation. Owing to its potential benefits, this effective field of

research has received several contributions, and has gained lots of interest in many

fields of application such as biochemical [17], process control [18], communication

[19], power systems [20], etc. Despite its benefits, the approach still faces several

challenges.

As mentioned earlier, One major challenge of multi-model approach is the par-

titioning of the system’s operating space to a number of sub-spaces. This further

raises the question of how many submodels are required to adequately represent

the entire operating region of the nonlinear system when combined within the

multi-model framework. One solution to this problem is the design of identifi-
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cation experiments for known operating spaces [e.g; 75, 76, 17, 77]. Data are

collected for each operating space and a submodel is identified for each a priori

known region. However, the knowledge involved in any industrial systems and

processes, especially chemical process, is often incomplete. In addition they may

be subjected to unknown parameter variations and exhibit wide operating ranges.

Therefore, in such situations, partitioning of the operating space and identifica-

tion of the submodels can be very challenging due to lack of prior information on

the system’s operating conditions.

Indeed, the problem of identifying the parameters of the submodels is coupled

with the data partition problem, whereby each data point needs to be associated

with the most suitable submodel. In the partitioning process, optimization of

number of submodels and their parameters is very crucial for the correct iden-

tification of the system. While too few submodels can deteriorate the systems,

increasing the number of submodels does not necessarily improve the performances

obtained [158].

In the literature, many interesting algorithms have been proposed to address

this challenge. [22] used fuzzy clustering for operating space partition and utilized

both cluster and model validities methods to find the optimal number of clusters.

The approach is manual and repeats the procedure for a number of submodels

until a satisfactory number is obtained. [116] proposed a loss function, linear

model based reconstruction error (LMRE), to determine the optimal number of

clusters resulting to minimum model error. [117, 118] utilized a heuristic method
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based on the number of neurons in the output layer of Kononen network. In this

approach the network has to be trained repeatedly until a satisfactory number

of clusters is obtained. Moreover, the training of the network is very slow and

increases with the number of data samples. [21, 119, 120] utilized subtractive

clustering that automatically determines the number of clusters. The accuracy of

this algorithm was known to depend on proper selection of its parameters [122].

In [123, 124] large number of clusters was initially assumed and later reduced

by merging similar clusters. [111] proposed an iterative incremental partitioning

algorithm using G-K clustering. Number of clusters are iteratively increased by

splitting the worst modeled cluster if its standard deviation error is greater than a

certain threshold. [109] proposed the use of a separate clustering algorithm called

rival penalized competitive learning (RPCL) neural network. Adequate number

of clusters are determined by visual consideration of only clusters’ centers that are

enclosed by the data distribution when the initial number of clusters is larger than

the real number of operating clusters. In general, all the aforementioned methods

partitioned the operating space and/or determined the number of submodels based

on data distribution only which may not reflect the complexity of the system’s

behavior.

In this chapter, an efficient method for obtaining the operating space partition

without prior knowledge of the operating conditions is proposed. The proposed

method utilized a two-stage method to obtain the partition and parameters of

the submodels in the multi-model representation. In the first stage, estimation of
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initial parameters and number of submodels are both obtained through a modified

combinatorial Particle Swarm Optimization (PSO). To identify more efficient sub-

models hybrid K-means is used to obtain the final submodels in the second stage.

The main advantage of the proposed framework lies in its automatic optimization

of the number of submodels with respect to submodel complexity. This implies

that the operating space of the system can be partitioned into a parsimonious

number of submodels and the structure of the submodels can be assumed without

prior knowledge. Thus, the algorithm can automatically find a good compromise

between the number of submodels and complexity. Another interesting advantage

is that the partition and selection of number of submodels are not only based on

data distribution but also on the linearity of the operating region with respect

to the linear submodels structure assumed. Benchmark simulation examples are

provided to illustrate the effectiveness of the proposed method.

The rest of this chapter is organized as follows: section 3.2 describes problem

formulation. In section 3.3, the first stage of the proposed multi-model approach

is discussed, followed by the second stage in section 3.4. Simulation examples are

provided in section 3.5, to demonstrate the effectiveness of the proposed method.

Finally, a brief conclusion is given in section 3.6.

3.2 Problem Formulation

Generally, multi-model representation of complex nonlinear system involves inter-

polation of a number of submodels to form the global system (see Figure 3.1).
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Considering a nonlinear system of the form:

y(k) = F (y(k−1), y(k−2), . . . , y(k−na), u(k−1), u(k−2), . . . , u(k−nb)) (3.1)

where u(k) ∈ <nb is the input and y(k) ∈ <na is the output of the system. The

integer nb and na are the time lag of the input and output respectively. The

multi-model representation of the system can be describe by

y(k) =
m∑
i=1

fi(x(k))φi(k) (3.2)

where m is the number of submodels, fi(·) and φi(k) are the ith submodel and

validity function, respectively. The validity function describes the contribution of

each submodel to the observed output and allows smooth transition between the

local models when the system moves from one operating point to another. For easy

interpretation, the validity function satisfies the convexity property [159, 132]:

m∑
i=1

φi(k) = 1 ∀k (3.3)

0 ≤ φi(k) ≤ 1 ∀k, ∀i ∈ 1, . . . ,M (3.4)

Given a set of input-output data, the problem of obtaining the representative

submodels is coupled with the data partition problem, whereby each data point

needs to be associated with the most suitable submodel. In the partitioning

process, optimization of number of submodels and their parameters is very crucial
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Figure 3.1: output blended multi-model identification structure

for the correct identification of the system. This is to estimate (i) number of

submodels (M), and (ii) the parameters of each submodel (local model) (f(·)).

Note that submodel f(·) can be linear, nonlinear or combination of the two

submodels. In this study linear submodels are considered in order to exploit the

linear control methodology when necessary. Therefore, the function f(xi(k)) can

be written as

fi(x(k)) = xi(k)θTi (k) (3.5)

where θi is the vector of parameters of ith the submodel which can be estimated

from the data pairs:

z(k) = {x(k), y(k) : k = 1, . . . , N} (3.6)

where x(k) = [y(k − 1), y(k − 2), . . . , y(k − na), u(k − 1), u(k − 2), . . . , u(k − nb)]

is the regressor vector. It is also possible that the regressor, x(k), is affine such

that x(k) = [1, y(k− 1), y(k− 2), . . . , y(k− na), u(k− 1), u(k− 2), . . . , u(k− nb)].
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Obtaining the submodels representative for multimodel identification of com-

plex nonlinear systems from a finite set of input-ouput data is quite involving

since the submodels’ identification is dependents on the data partition. In order

to solve the aforementioned problem, a two stage algorithms is proposed:

1. Obtaining the number of submodels and the initial submodels’ parameters.

This stage involves application of modified combinatorial particle swarm

optimization (MCPSO) to obtain m number of partitions and the represen-

tative data sets for each partition. The m number of clusters obtained from

MCPSO is then used to estimate the initial submodels and initial cluster

centers.

2. Obtain the final submodels. In this stage hybrid K-means criterion is applied

to the result of the previous stage to refine the submodels, which can be

presented for interpolation.

3.3 Stage 1: Obtain the number of submodels

and the initial partition

The aim of this stage is to determine the number of partitions and to evolve a

partition representing a possible grouping of the given data set. That is, given

a data set Z = [z1, z2, . . . , zN ]T in Rd, i.e. N points each with d dimension

(d = na + nb), we need to simultaneously find the number of partition (m) and

divide Z into m exhaustive and mutually exclusive clusters P = [p1, p2, . . . , pm]
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with respect to a predefined criteria such that:

1. pi 6= ∅ i = 1, . . . ,m;

2. pi ∩ pl = ∅ i = 1, . . . ,m, i 6= l;

3. ∪mi=1pi = Z

To achieve this objective with partitional algorithm, a modification to combina-

torial particle swarm optimization (CPSO) [160] is proposed. The modification is

necessary since the CPSO algorithm required the number of clusters to be fixed

a prior. In what follows, particle swarm optimization, CPSO and its modification

for the determination of the initial submodels are described.

Remark: Notice that the regression matrix for the whole data space Z is

constructed before the partition take place, since the order of the model is assumed

known. This is to keep the time dependency of the data and hence keep the

structure of each data point. Otherwise, the time dependency of each data point

would be lost if the input and output data are used.

3.3.1 Particle swarm optimization

Particle swarm optimization (PSO) [161] is a metaheuristic search algorithm,

mimicking the movement of organisms in a bird flock or fish school. Due to

its simple concept and quick convergence, PSO has attracted much attention and

wide applications in various fields, including systems identification problem [e.g.,

162, 163, 164, 165, 166, 13, 167]. PSO combines self and social experience for
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directing search to an optimal solution. The position of individuals referred to as

particles is influenced by: its best position ever attained called Pbest, the posi-

tion of the best in the swarm called the Gbest, and the current velocity vi that

drives the particles. At each generation t, each particle i, adjusts its velocity vtij

and position xtij for each dimension j by referring to its personal best, Pbest, and

the global best, Gbest. The following equations are used by the original PSO for

velocity and particle update:

vt+1
ij = wvtij + c1r1(Pbesttij − xtij) + c2r2(Gbestt − xtij) (3.7)

xt+1
ij = xtij + vt+1

ij (3.8)

where vtij and xtij are the jth element of the ith velocity and particle vector re-

spectively at generation t. Gbestt and Pbesttij are the global and personal best

position of ith particle during iterations 1 to t, respectively. w is the inertia weight

that controls the impact of the previous velocities on the current velocity. r1 and

r2 are uniformly distributed random variables in range [0, 1], c1 and c2 are the

acceleration constants.

3.3.2 CPSO based partition

CPSO [160] is an extension to the original PSO to be able to cope with clustering

problem. It has similar procedure as the original PSO except that it differs in two

characteristics: particle and velocity representation. In CPSO particles Xi are
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encoded with label-based representation, where Xi = [xi1, xi2, . . . , xiN ] provides

integer numbers representing the cluster number of data points, such that xij ∈

{1, 2, . . . ,m} and m is the number of cluster. The velocity of each particle uses

a dummy variable that permit transition from combinatorial to continuous state

and vice versa. Thus, the velocity and particle are updated through the following

equations :

vt+1
ij = wvtij + r1c1(−1− ytij) + r2c2(1− ytij) (3.9)

where yij is a dummy variable defined by:

ytij =



1 if xtij = Gbestt,

−1 if xtij = Pbesttij

−1 or 1 randomly ifxtij = Gbestt = Pbesttij

0 otherwise

(3.10)

After velocity update, the position of each particle is updated through the dummy

variable according to the following equations:

λt+1
ij = ytij + vt+1

ij (3.11)

yt+1
ij =



1 if λt+1
ij > α,

−1 if λt+1
ij < α,

0 otherwise

(3.12)
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xt+1
ij =



Gbest if yt+1
ij = 1,

P best if yt+1
ij = −1,

a random number otherwise

(3.13)

where α is determined by the user.

3.3.3 Modified CPSO (MCPSO) based partition

This section introduced the MCPSO and how it is used to determine the number

of submodels and the initial partition. As mentioned earlier, the CPSO algorithm

is modified since contrary to our case, the number of partitions in the algorithm

is fixed a priori. Four features that are introduced and distinguish MCPSO from

CPSO are discussed as follows:

1. Particles encoding: Similar to CPSO, MCPSO uses the label-based integer

encoding to represent each particle. However, instead of assigning the same

number of clusters to all particles, in MCPSO each particle evolve with

its own number of clusters. Each particle position Xi = [xi1, xi2, . . . , xiN ],

characterized by N elements, where N is the number of data points, provides

integer numbers representing the cluster number of each data point, such

that xij ∈ {1, 2, . . . ,mi} represents the cluster number of jth data point in

ith particle and mi is the number of clusters associated with ith particle. mi

is assumed to lie in the range [mmim,mmax], where mmin is 2 by default and

mmax is manually specified by the user. The particle and velocity updates
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follow that of CPSO (Equation 3.9 through 3.13).

2. Avoiding empty clusters: In the label-based representation, it is possible

to generate a solution with empty cluster if the number of its clusters is

smaller than the largest cluster number associated with the particle solution.

To avoid this, new positions of particles are checked. At each generation,

particles with empty cluster are corrected by changing the largest cluster

number to the smallest unused cluster number.

3. Fitness function: The fitness criterion used in CPSO are the variance ratio

criterion (VRC) and sum of square error (SSE) of the cluster. The SSE is not

appropriate when the number of clusters is not known in advance. This is

because the maximum number of clusters will always be favored as its value

will decrease as the number of cluster increases. On the other hand, VRC has

been used when the number of clusters is not known. However, in order to

reflect the peculiarity of the problem at hand in MCPSO, a fitness function

based on cluster regression error fused in minimum descriptive length (MDL)

[168] framework is used. Given the data set Z defined in equation(3.6), the

cluster regression error is defined by:

CRE =
m
′
max∑
i=1

SE (3.14)

where

SE = ( 1
ni

ni∑
j=1

(yj − xjθTi )2) 1
2 (3.15)
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m
′
max is the maximum number of clusters assigned to a solution, ni is the

number of data points in the ith cluster and θi is the parameter of the linear

model associated with the ith cluster. This can be obtained using the least

square technique as follows:

θi = [
ni∑
j=1

xjx
T
j ]−1[

ni∑
j=1

yjxj] (3.16)

Finally, the fitness function is defined by:

fitness = (m′max logN +N log(CRE2))/2 (3.17)

where N is the total number of data points. The smaller the fitness value,

the better is the clustering solution.

4. Avoiding small size data: A situation may occur where the number of data

points assigned to a cluster is too small. On one hand, if the number of data

points ni is less than the dimension of the data, d = na+nb, then the model

obtained from the cluster will be singular. On the other hand, if ni ≥ d

but ni < td, where td signifies a reasonable minimum number of data points

(i.e 5% of data points), then the model obtained may not be well define. In

order to avoid these two situations, when ni < 0.05N the SE in equation

(3.15) is not calculated from the data. Rather, a penalty value of 1000 is

assigned to the SE. This penalty value is used to discourage having small

size of data points in a cluster. As such, it can be any value higher enough
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than the SE value for acceptable number of data points.

After the encoding of the particles as discussed above, the execution of MCPSO

to obtain number of clusters and the initial partition is done according to the

following steps:

Step 1: Initialize particle position vector X and associated velocity V in the popu-

lation randomly. For each particle i, the number of clusters mi is randomly

generated in the range [mmin,mmax], then each data point is randomly as-

signed to one cluster.

Step 2: Evaluate the fitness function for each particle using equation (3.17)

Step 3: Compare the fitness value of each particle with it previous best solution

(Pbset) fitness and update Pbest with the current solution if it is better

than the previous value (Pbest ).

Step 4: Compare fitness value with the overall previous best (Gbest) fitness. Update

Gbest to the current solution if its fitness values is better than Gbest fitness

value.

Step 5: Update positions and velocities of particles using equation (3.9) to (3.13).

Step 6: Check for empty cluster in all particle solutions and correct if exist.

Step 7 Repeat Step 2 to Step 6 until the maximum number of iterations is com-

pleted.
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3.3.4 Estimation of the initial submodels

Given a set of cluster representatives z̃ = {z̃i = (x̃i, ỹi), i = 1, . . . ,m} from the

MCPSO algorithm, wherem is the number of clusters, the next task is to estimate

the initial submodels. For this purpose, a least square estimation is applied to the

data set in each cluster to find the initial submodel. The coefficients vector θi for

each submodel is computed through the formula:

θ̃i = (Φ̃Ti Φ̃i)
−1
Φ̃Ti yi (3.18)

where Φ̃i = [xi(1), . . . , xi(ni)]T and yi are the regression matrix and output vector

belonging to ith cluster, respectively. ni is the number data in the ith partition.

In addition, the centers of the data are calculated by finding the mean of the

data in each cluster produced by the previous stage. The center of each cluster is

given as :

c̃i = 1
ni

ni∑
j=1

x̃ij i = 1, 2, . . . ,m. (3.19)

3.4 Stage 2: Obtain the final submodels

This stage involves a refinement to the submodels produced in the previous stage.

In order to achieve this objective, a hybrid K-means criterion [169] is adopted.

Given a data set Z = [z1, z2, . . . , zN ] in Rd, K-means algorithm group the data Z

into k clusters pi i = 1, . . . , k such that an objective function is minimized. The

K-means objective function is defined as the sum of square error between each
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data point and the corresponding cluster center:

J1(c) =
m∑
i=1

∑
zj∈ui

(zj − ci)2 (3.20)

where zj and ci are the data point and cluster center, respectively. The objective

function is minimized using an alternating optimization procedure. It starts with

an arbitrary k number of centers and assign each data point to the nearest center.

The assignment of each data is define by a binary membership matrix U, such

that:

uij =


1 if (zj − ci)2 ≤ (zj − ck)2, i 6= k

0 otherwise

(3.21)

Next, each center is updated as the mean of all points assigned to it. These two

steps are carried-out iteratively until a predefined termination criterion is met,

which occurs when there is no change in the objective function.

In the same spirit of K-mean algorithm, the following linear regression loss

function can also be formulated:

J2(θ) =
m∑
i=1

∑
x̃j∈ui

(yj − x̃jθTi )2 (3.22)

Thus, instead of minimizing the cluster error objective function, a linear regression

objective function is minimized. Combining the two objectives J1 and J2, the
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hybrid K-means objective can be written as:

J(θ, c) = λJ1 + J2 (3.23)

where λ ∈ [0, 1] is a constant term to be defined by the user to specify a relative

weight of the objective function. This formulation allows not only partitioning

of the data set but also associating a submodel to each partition. In addition,

the partitions formed are guided toward linear regions. This fits perfectly into

the problem definition, since the aim of partitioning the input space is to form

linear submodel for each partition. Furthermore, the inclusion of J1 will allow us

to assign new data to a partition in a situation where the submodels need to be

updated online.

The description of how this stage utilizes the hybrid K-means algorithm is

shown in Table 3.1. It begins with using the previously estimated cluster centers

and associated model parameters as initialization of the algorithm. This eliminates

the burden of the determination of the number of clusters, diminishes the effect

of initialization as well as increases the convergence rate of K-means algorithm .

Line 2 starts a loop which repeats itself for as long as there is a significant change

in the objective function. It begins by determining the membership matrix U

by Equation (3.21), which assign each data point to a cluster. Line 4 estimates

the parameter vector θi and the center ci for each cluster. Next, from line 5 to

13, undefined clusters are detected and removed from subsequent update. An

undefined cluster is characterized by singular cluster, that may result when the
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size of the cluster falls below the number of regressor.

Line 8 to 13 remove a cluster from the pool if the number of data points in

the cluster is less than the number of regressor. Also the number of cluster is

reduced by 1. The break statement in line 12 ensures only one cluster is removed

at each iteration when undefined cluster is detected. This is to allows other

undefined clusters, if exist, to readjust during the next iteration and probably

able to circumvent undefined status. Line 15 computes the objective function J

according to equation (3.23) while line 16 increments the number of iteration.

Next the loop goes back to line 3 to repeat the procedure.

Once the algorithm is completed, the final parameters θ of each submodel are

obtained along with their associated centroid ci. The submodels are now ready

for interpolation to obtain the final global model that will represent the system

under consideration.

3.5 Simulation Examples

The effectiveness of the proposed partition method is demonstrated in this section.

Five simulation examples were carried out. Since it is assumed that the number

of parameters of submodels is not known, two and four parameters submodel

structures are examined with the proposed approach to illustrate its flexibility on

the number of parameters selected for the submodels. The assumed two and four
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Table 3.1: Stage 2: estimating final submodels

1: Initialize ci = c̃i, θi = θ̃i i = 1, . . . ,m, l = 1
2: repeat
3: Assign data to a cluster such that

uij =


1 if (yj − x̃jθTi )2 + λ(x̃j − ci)2

≤ (yj − x̃jθTk )2 + λ(x̃j − ck)2, i 6= k

0 otherwise

4: compute center θi and ci

θi =
 ∑
xj∈ui

xjx
T
j

−1  ∑
xj∈ui

xjyj

 , i = 1, . . . ,m

ci = 1
|Ui|

∑
xj∈ui

xj, i = 1, . . . ,m , and |Ui| =
ni∑
j=1

uij

5: Remove undefined cluster as follows
6: for i = 1.....m do
7: if ni < na+ nb then
8: ci = ∅
9: θi = ∅

10: m = m− 1
11: break
12: end if
13: end for
14: Compute J l
15: l = l + 1
16: until ||J l−1 − J l ≤ ε||

parameters submodel structures are respectively given by:

yi(k) = ai1y(k − 1) + bi1u(k − 1) (3.24)

yi(k) = ai1yi(k − 1) + ai2yi(k − 2) + bi1u(k − 1) + bi2u(k − 2) (3.25)
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where ai1, ai2, bi1, bi2 are the ith submodel scalar parameters to be identified by

stage 1 and stage 2 above. The two structures in equation (3.24) and equation

(3.25) subsequently refer to as 2-parameters and 4-parameters structure respec-

tively. Except stated otherwise, the parameter settings of MCPSO used are given

in Table 3.2. Also λ = 0.01 is selected in stage 2 throughout the simulations.

In order to form the multi-model representation of system we need to estimate

the validity of the submodels, which is not the goal of this chapter. Therefore,

it is sufficient for us to use some of the validity estimation in the literature:

simple residue, reinforced residue, bayessian and quadratic methods, mentioned

in chapter 2 to test the results of our simulation. Subsequently in chapter 4 we

shall design another suitable validity estimation algorithm to be used for the same

system for easy comparison.

The obtained multi-model is evaluated based on the validation data using

the mean square error (MSE), percentage model fitness (PMF) and variance-

accounted-for (VAF) performance measures:

MSE = 1
N

N∑
i=1

(y(i)− ŷ(i)) (3.26)

PMF = max((1− ‖(y − ŷ)‖
‖(y −mean(y))‖)× 100) (3.27)

V AF = max(100× (1− var(y − ŷ)
var(y) ), 0) (3.28)

where y is the real system output, ŷ is the multi-model estimated output, ‖·‖

denotes norm and var(·) denotes the variance. All simulations are performed
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using MATLAB 2012b on a 2.4 GHZ i3 64-bits Windows machine with 4 G RAM.

Table 3.2: MCPSO parameter settings

parameters values
Swarm size 20
Max. Iterations 2000
w, α 0.4, 0.35
c1, c2 2, 2
mmin,mmax 2, 20

3.5.1 Example 1

In the first example, a discrete-time system from [109] is considered. The system

is described by

y(k) = a1(k)y(k − 1) + a2(k)y(k − 2) + b1(k)u(k − 1) + b2u(k − 2)

The variation laws of different parameters of the process as shown in figure 3.2 is

given by

a1(k) = 0.04sin(0.035k)− 0.8

a2(k) = 0.005sin(0.03k) + 0.1

b1(k) = 0.02sin(0.03k) + 0.5

b2(k) = 0.01sin(0.035k) + 0.2

The system was excited with uniform random signal u(k) on the range [−1, 1].

600 data points were generated for the two submodel structures above. The
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Figure 3.2: output blended multi-model identification structure

initial submodels and centers obtained in stage 1 is as shown in Table 3.3 while

Table 3.4 shows the final submodels and centers obtained in stage 2. It can be

observed from the Table 3.3 that four and two submodels were identified in stage

1 for 2-parameters and 4-parameters structures, respectively. The convergence

paths of the objective function in the developed MPSO are shown in Figure 3.3.

The figures show faster convergence with 4-parameters structures than with 2-

parameters structures.

In the validation stage, a different input signal (u(k) = 1 + sin(0.06k)) was

injected into the real systems and the identified submodels. The submodels were

interpolated with the validity estimation methods mentioned previously to form

the multi-model output. The real system’s output and the multi-model output for
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Table 3.3: Results of Stage 1(initial submodels)

2-parameters structure 4-parameters structure
Initial submodels a1 b1 a1 a2 b1 b2

1 0.80021 0.46683 0.90904 -0.17929 0.50286 0.13472
2 0.79705 0.50171 1.041831 -0.2762 0.50508 0.05015
3 0.81370 0.42337 – – – –
4 0.75039 0.61168 - - - -

Initial centers

1 0.11698 0.05276 0.1198 0.11971 0.05152 0.05091
2 0.11998 0.05119 0.11543 -0.11181 0.04611 -0.05522
3 0.11966 0.052531 - - - -
4 0.121169 0.04929 - - - -

Table 3.4: Results of Stage 2 (final submodels)

2-parameters structure 4-parameters structure
a1 b1 a1 a2 b1 b2

Final submodels
1 0.79812 0.48362 0.93806 -0.19068 0.51385 0.10845
2 0.82082 0.55976 0.80392 -0.12192 0.52162 0.18125
3 0.75896 0.42027 – – – –
4 0.64245 0.84146 - - - -

Final centers
1 0.13079 0.07222 0.14561 0.14268 0.05090 0.06226
2 0.12940 0.04096 0.09846 0.10036 0.05154 0.04208
3 0.10844 0.05039 - - - -
4 0.09359 0.03171 - - - -

the two assumed submodels’ structures are compared using the MSE and VAF.

The multi-model identification results for the different validity estimation are

shown in Table 3.5 and Figures 3.4 to 3.5. As can be observed, the proposed

multi-model can well approximate the real system with either 2-parameters or

4-parameters structures. Simple and reinforced residue methods perform better

than both Bayesian and Quadratic criterion methods.
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(a) 2-paramters structure (b) 4-paramters structure

Figure 3.3: MCPSO objective function convergence plot

Table 3.5: Validation performance test on common validity estimations

2-parameters structure 4-parameters structure
Validity Estimation MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
simple Residue 0.0403 87.87 98.54 0.0277 89.91 99.00
Reinforced residue 0.0444 87.23 98.40 0.0277 89.91 99.00
Bayessian 0.0751 83.40 97.35 0.0576 85.46 97.89
Qaudratic 0.0765 83.24 97.35 0.0576 85.46 97.891

3.5.2 Example 2

A nonlinear dynamical system taken from [43] is considered for multi-model iden-

tification:

y(k + 1) = (0.6− 0.1a(k))y(k) + a(k)u(k) (3.29)

a(k) = 0.6− 0.06y(k)
1 + 0.2y(k) (3.30)

The identification was carried out using the proposed approach with data set

of 600 samples of uniform random signal within the range of [−0.9, 0.9]. Tables

3.6 and 3.7 show the initial and final submodels parameters with their associated
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(a) 2-paramters structure with simple residue (b) 2-paramters structure with reinforced residue

(c) 2-paramters structure with Bayesian (d) 2-paramters structure with Quadratic

Figure 3.4: Multi-model identification outputs using validation data

centers. The proposed multi-model partition identified two submodels for both

2-parameters and 4-parameters structures. Figure 3.6 shows the convergence of

the objective function in the developed MPSO. In this case both structures have

similar convergence.

To form the multi-model representation with the previously mentioned validity

estimation, a validation data under the following input was used:

u(k) = sin(2π
25k)
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(a) 4-paramters structure with simple residue (b) 4-paramters structure with reinforced residue

(c) 4-paramters structure with Bayesian (d) 4-paramters structure with Quadratic

Figure 3.5: Multi-model identification outputs using validation data

Table 3.6: Results of Stage 1 (initial submodels)

2-parameters structure 4-parameters structure
Initial submodels a1 b1 a1 a2 b1 b2

1 0.54650 0.60674 0.47613 0.03870 0.60722 0.04359
2 0.56813 0.58940 0.61421 -0.04158 0.57869 -0.040053

Initial centers

1 -0.01412 -0.00080 -0.01639 -0.01316 -0.01488 -0.01593
2 0.07727 -0.16727 0.12038 0.05947 0.10028 0.13306

Figures 3.7 and 3.8 show the output of the multi-model representation compared

with the real system output using the validation data. Table 3.8 shows the values

of the performance measures. One can observe that all the methods have close

75



Table 3.7: Results of Stage 2 (final submodels)

2-parameters structure 4-parameters structure
a1 b1 a1 a2 b1 b2

Final submodels
1 0.48004 0.60620 0.46668 0.04022 0.64528 0.04504
2 0.59707 0.60308 0.49261 0.03074 0.56777 0.03306

Final centers
1 0.01067 0.45786 -0.34414 -0.09591 -0.00413 -0.48350
2 -0.02951 -0.46991 0.29115 0.06810 -0.01360 0.41844

(a) 2-paramters structure (b) 4-paramters structure

Figure 3.6: MCPSO objective function convergence plot

performance in this case.

3.5.3 Example 3

In the third example, the following highly nonlinear dynamical system is consid-

ered for identification:

y(k) = (y(k − 1)/(1 + y(k − 1)2)) + u(k − 1)3; (3.31)

It is a benchmark system proposed in [170]. The system was excited by uniformly

distributed random signal in the interval [−1, 1]. The identification was carried
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Table 3.8: Validation performance test on common validity estimations

2-parameters structure 4-parameters structure
Validity Estimation MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
simple Residue 0.0221 83.89 98.39 0.0313 80.84 98.19
Reinforced residue 0.0221 83.89 98.39 0.0313 80.84 98.19
Bayessian 0.0357 79.55 98.18 0.0354 79.64 98.21
Qaudratic 0.0249 82.91 98.43 0.0303 81.17 98.26

(a) 2-paramters structure with simple residue (b) 2-parameter structure with Reinforced residue

(c) 2-parameter structure with Bayesian (d) 2-parameter structure with Quadratic

Figure 3.7: Multi-model identification outputs using validation data

out with data set of 800 samples.

Using the proposed multi-model partition method, four and two submodels

were identified for 2-parameter and 4-parameter structure respectively. The con-

vergence of the objective function in the developed MPSO for both structures
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(a) 2-paramters structure with simple residue (b) 2-parameter structure with Reinforced residue

(c) 2-parameter structure with Bayesian (d) 2-parameter structure with Quadratic

Figure 3.8: Multi-model identification outputs using validation data

are shown in Figure 3.9. The initial and final submodels’ parameters with their

associated centers are shown in Tables 3.9 and 3.10 respectively.

Validation of the multi-model identification was done with second data set of

500 samples generated by an input signal given by:

u(k) = sin(2π
25k) + 0.2sin(2π

10k)

Simulation results obtained using different validity estimation for the valida-

tion data set are shown in Figures 3.10 and 3.11. The figures show that the
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Table 3.9: Results of Stage 1 (initial submodels)

2-parameters structure 4-parameters structure
Initial submodels a1 b1 a1 a2 b1 b2

1 0.04262 2.38398 -0.08706 0.04869 2.38490 0.38678
2 0.08510 2.38842 -0.05318 0.03350 1.82057 0.21705
3 0.01367 2.18292 – – – –
4 0.05480 2.03856 - - - -

Initial centers

1 0.14603 0.03785 0.11443 0.11181 0.03658 0.03908
2 0.05709 0.07277 0.28165 0.40862 0.12559 0.09584
3 0.15296 -0.01998 - - - -
4 -0.084650 0.06599 - - - -

Table 3.10: Results of Stage 2 (final submodels)

2-parameters structure 4-parameters structure
a1 b1 a1 a2 b1 b2

Final submodels
1 -0.0045 2.75430 -0.09400 0.07937 3.06291 0.40508
2 0.08208 3.65709 -0.09741 0.02515 1.19728 0.44751
3 -0.07079 1.82638 – – – –
4 0.06738 0.74981 - - - -

Final centers
1 0.64153 0.13734 0.06135 -0.06274 0.10813 0.01715
2 -0.12759 0.06961 0.14812 0.20475 0.01336 0.05213
3 0.19983 0.03261 - - - -
4 -0.03128 0.00691 - - - -

estimated model outputs closely follow the system output for both submodels’

structures. However, as we will show in the next chapter, the estimation can

still be improved further with better validity estimation. In addition, it can be

concluded from Table 3.11 that, generally, the 4-parameter structure shows the

better performance.
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(a) 2-paramters structure (b) 4-paramters structure

Figure 3.9: MCPSO objective function convergence plot

Table 3.11: Validation performance on common validity estimations

2-parameters structure 4-parameters structure
Validity Estimation MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
simple Residue 0.8224 65.75 88.28 0.4309 75.21 93.88
Reinforced residue 0.9480 63.23 86.49 0.4309 75.21 93.88
Bayessian 1.2033 58.58 82.85 1.1679 59.19 83.35
Qaudratic 1.1827 58.93 83.15 1.1657 59.23 83.38

3.5.4 Example 4

The next example considered for identification is another highly nonlinear dy-

namical system, also proposed in [170] as a benchmark system and has been used

subsequently in [171, 126, 172, 43]. The system is described by

y(k + 1) = u(k)
1 + y2(k − 1) + y2(k − 2)

+ y(k)y(k − 1)y(k − 2)u(k − 1)(y(k − 2)− 1)
1 + y2(k − 1) + y2(k − 2) (3.32)

The system was excited by uniformly distributed random signal in the interval

[−1, 1]. The identification was carried out with data set of 800 samples.
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(a) 2-paramters structure with simple residue (b) 2-parameter structure with Reinforced residue

(c) 2-parameter structure with Bayesian (d) 2-parameter structure with Quadratic

Figure 3.10: Outputs of multi-model identification using validation data

Using the proposed multi-model partition method, four and two submodels

were identified for 2-parameter and 4-parameter structures respectively. The con-

vergence of the objective function in the developed MPSO for both structures

are shown in Figure 3.12. The initial and final submodels parameters with their

associated centers are shown in Tables 3.12 and 3.13 respectively.

Validation of the multi-model identification was done with second data set of
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(a) 4-paramters structure with simple residue (b) 4-parameter structure with Reinforced residue

(c) 4-parameter structure with Bayesian (d) 4-parameter structure with Quadratic

Figure 3.11: Outputs of multi-model identification using validation data

Table 3.12: Results of Stage 1 (initial submodels)

2-parameters structure 4-parameters structure
Initial submodels a1 b1 a1 a2 b1 b2

1 -0.00935 0.74062 -0.11662 0.03551 0.74416 0.08480
2 -0.00839 0.72822 0.40609 0.01631 0.74891 -0.25511
3 -0.03470 0.79774 – – – –
4 0.05112 0.80693 - - - -

Initial centers

1 -0.01530 -0.00774 -0.00143 -0.00626 - 0.00842 0.00377
2 -0.00240 -0.00645 -0.14715 -0.06505 0.01370 -0.24046
3 -0.00191 0.00308 - - - -
4 0.06674 -0.01483 - - - -
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Table 3.13: Results of Stage 2 (final submodels)

2-parameters structure 4-parameters structure
a1 b1 a1 a2 b1 b2

Final submodels
1 -0.01637 0.65325 -0.05385 0.03735 0.86452 0.02908
2 0.04630 0.47067 -0.09456 0.04253 0.59664 0.06760
3 -0.03507 0.87663 – – – –
4 0.00081 0.87200 - - - -

Final centers
1 -0.19101 -0.05831 0.13269 0.02336 -0.00636 0.18525
2 0.20190 0.13531 -0.17305 -0.04705 -0.00841 -0.23354
3 0.09209 0.59731 - - - -
4 0.02161 -0.59013 - - - -

(a) 2-paramters structure (b) 4-paramters structure

Figure 3.12: MCPSO objective function convergence plot

800 samples generated by an input signal given by:

u(k) =


sin( 2π

250k) if k ≤ 500

0.8sin( 2π
250k) + 0.2sin(2π

25k) if k > 500

Simulation results obtained using different validity estimation for the valida-

tion data set are shown in Figures 3.13 and 3.14. The figures show that the

estimated model outputs closely follow the system output for both submodels’
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Table 3.14: Validation performance on common validity estimations

2-parameters structure 4-parameters structure
Validity Estimation MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
simple Residue 0.0037 87.52 99.00 0.0013 92.57 99.54
Reinforced residue 0.0045 86.16 98.78 0.0013 92.57 99.54
Bayessian 0.0066 83.35 98.22 0.0082 81.37 97.68
Qaudratic 0.0062 83.79 97.83 0.0110 78.47 97.91

structures. However, we shall show in the next chapter that the estimation can

still be improve further with better validity estimation. In addition, it can be

concluded from Table 3.14 that, generally, the 4-parameter structure shows bet-

ter performance.

3.5.5 Example 5

In this example a benchmark continuous stirred tank reactor (CSTR) nonlinear

chemical system is considered. The system is described by the following equations

in which all variables are dimensionless [51, 173]:

ẋ1 = −x1 +Da · (1− x1) · exp( x2

1 + x2/γ
),

ẋ2 = −x2 +B ·Da · (1− x1) · exp( x2

1 + x2/γ
) + β · (u− x2) (3.33)

y = x2

where x1 is the reagent conversion, x2 is the reactor temperature and u is

the coolant temperature. u and x2 are the input and output of the system,

respectively. The nominal values for the constants are Da = 0.072, γ = 20, B = 8,
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(a) 2-paramters structure with simple residue (b) 2-parameter structure with Reinforced residue

(c) 2-parameter structure with Bayesian (d) 2-parameter structure with Quadratic

Figure 3.13: Outputs of multi-model identification using validation data

and β = 0.3. The operating range of the system is {y ∈ [0, 6]}. The system

exhibits output multiplicity and according to [51] two stable and one unstable

models can be obtained when the systems is linearized around three steady state

points corresponding to u = 0.

To test the proposed multi-model partition method on previous validity esti-

mations, a random white noise step signal between [−1.5, 1.5] is used as input to

the system. The system is simulated with a sampling time of 0.2 min, 700 pairs

of input-output data were collected for the identification process and another 300

pairs for validation.
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(a) 4-paramters structure with simple residue (b) 4-parameter structure with Reinforced residue

(c) 4-parameter structure with Bayesian (d) 4-parameter structure with Quadratic

Figure 3.14: Outputs of multi-model identification using validation data

Based on the proposed method, three submodels were identified for 4-

parameter structures only. For the 2-parameter structure, it was found that the

MCPSO algorithm did not converge most of the time even after increasing the

number of iteration to 10000. And when it converges, it does so with very poor

result. Due to this, it is concluded that the 2-parameter structure is inadequate

to estimate the system. The initial and final submodels parameters with their as-

sociated centers are shown in Tables 3.15 and 3.16 respectively. The convergence

of the objective function in the developed MPSO is shown in Figure 3.15. Notice

also that submodel 1 is unstable model for the 4-parameter structure.
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Table 3.15: Results of Stage 1 (initial submodels)

4-parameters structure
a1 a2 b1 b2

Initial submodels
1 0.41435 0.28499 -0.13038 -0.45585
2 0.38424 0.15863 0.25568 0.25428
3 0.33236 0.48919 0.05200 -0.11514

Initial centers

1 0.88647 0.97696 0.00436 -0.18552
2 1.02903 0.99540 0.03286 0.09124
3 0.99887 0.97750 0.04890 0.10564

Table 3.16: Results of Stage 2 (final submodels)

4-parameters structure
a1 a2 b1 b2

Final submodels
1 0.52332 0.60225 -0.79173 -1.45343
2 0.37017 0.05227 1.00263 1.22693
3 0.30684 0.37524 -0.15508 0.10070

Final centers
1 0.84523 1.00344 0.02873 -0.07783
2 1.10918 0.90721 0.14359 0.18742
3 0.98968 1.03175 -0.05245 -0.00450

The validation results using the second data pairs are shown in Figure 3.16 and

Table 3.17 for 4-parameter structures. It can be observed that only interpolation

of the submodels with simple residue validity computation can estimate the system

while the other three validity computations were unstable. This might be as a

result of one unstable model in the identified submodels. Subsequently in the next

chapter, it shall be shown that the estimation result can be improved.
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Figure 3.15: MCPSO objective function convergence plot for 4-paramters struc-
ture

3.6 Conclusion

This chapter presents a novel meta-heuristic partition method for multi-model

identification of nonlinear systems. In the proposed approach the number as well

as the structure of the submodels are not known a priori. The proposed method

consists of two stages. In the first stage, an initial estimate of the number of

submodels and their parameters are obtained. The final submodels are obtained

in the second stage. Four simulated nonlinear systems examples that had been

studied previously in the literature are used to illustrate the performance of the

method under different validity estimation methods in the literature for combining
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Table 3.17: Validation performance test on common validity estimations

4-parameters structure
Validity Estimation MSE PAF(%) VAF(%)
simple Residue 0.0570 84.23 97.53
Reinforced residue 17.0351 0 0
Bayessian 1.38E+19 0 0
Qaudratic 1.31E+19 0 0

(a) 4-paramters structure with simple residue (b) 4-parameter structure with Reinforced residue

(c) 4-parameter structure with Bayesian (d) 4-parameter structure with Quadratic

Figure 3.16: Outputs of multi-model identification using validation data

the submodels generated. In the next chapter we shall introduce another validity

estimation to improve on the performance obtained by these validity estimation

methods.
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CHAPTER 4

CONSTRAINED KALMAN

FILTER FOR VALIDITY

ESTIMATION

Another important challenge in multimodel framework is the computation of the

validity associated with each sub-models. Validity computation is crucial to the

correct identification of the system at hand in order to optimize its performance.

In addition, it is a key decision making in multi-model-based fault diagnostic.

Chapter 4 proposes a constrained Kalman Filter for the estimation of validity of

submodel in multi-model framework. This is achieved by reformulating the multi-

model output equation as an estimation problem. Simulation examples used in

the previous chapter are utilized to illustrate the effectiveness of the proposed

validity computation and compared to other commonly used ones.
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4.1 Introduction

Multi-model frame is an appealing that composes of three steps: the first is the

partitioning of the operating system into smaller regions based on a selected strat-

egy. In the second step, both the structure and the parameters of the local model

associated with each subregion are determined. Finally, the submodels are com-

bined together by weight that defines the contribution of each local model to the

real system. This signifies that a suitable validity estimation method needs to

be added to the method for generating submodels developed in the chapter 2 to

successfully form the multi-model representation. Although in the simulations

given in chapter 2, some validity estimation methods were used to combined the

submodels. Could these methods be the best for the partition method developed?

The choice of the validity computation plays a crucial role in the accuracy of the

multi-model identification approach [133, 45]. Due to this importance, various

types of validity computations have been proposed in the literature.

One of the most commonly used validity computations is Gaussian function

[24, 75, 88, 111, 124] due its smoothness property. However, determination of

its center and width, which both affect the accuracy and interpretation of the

identified model, is quite challenging. In [103, 142], sigmoid function is used

as validity computation in axes-oblique partitioning algorithm. A nonlinear op-

timization technique is required to optimize its variables. Residue approach

[143, 110, 109, 117] is another validity computation that relies on the computation

of the distance between the current output of the system and that of the local
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models. Simple and reinforced are the most commonly used of residue approaches.

The two approaches, though simple, lack precision and are not recommended for

use in complex and ill-defined systems [144]. Other validity based on residue ap-

proach such as minimization of quadratic criterion [144, 118] can only be used with

clustering partition, Bayesian validity [146, 145] also lack precision, and Neural

networks [119] and fuzzy logic [147] required special design for each submodel.

In this chapter, constrained Kalman filter (CKF) is developed for validity com-

putation of output blended multi-model systems identification of nonlinear process

systems. This is achieved by reformulating the multi-model output equation as

an estimation problem. The method overcomes some of the drawback of the va-

lidity computations mentioned previously such as lack of precision, sensitivity to

parameter selection, and restriction to partition strategy. Previous examples used

in chapter 3 are re-investigated with the developed CKF interpolation algorithm

and its performance is compared with other validity computation methods used

in the chapter.

The rest of this chapter is organized as follows: section 4.2 describes the prob-

lem formulation. In section 4.3 Constrained Kalman Filter validity computation is

developed to the problem at hand. In section 4.4, simulation results are provided

to illustrate the performance of the proposed method. Finally a brief conclusion

is given in section 4.5.
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4.2 Problem Formulation

Consider the previous nonlinear system again:

y(k) = F (y(k−1), y(k−2), . . . , y(k−na), u(k−1), u(k−2), . . . , u(k−nb)) (4.1)

where u(k) ∈ <nb is the input and y(k) ∈ <na is the output of the system. The

integer nb and na are the time lag of the input and output respectively. The

multi-model representation of the system can be describe by

y(k) =
m∑
i=1

fi(x(k))φi(k) (4.2)

where m is the number of submodels, fi(·) and φi(k) are the ith submodel and

validity function, respectively. The validity function describes the contribution of

each submodel to the observed output and allows smooth transition between the

local models when the system moves from one operating point to another. For easy

interpretation, the validity function satisfies the convexity property [132, 159]:

m∑
i=1

φi(k) = 1 ∀k (4.3)

0 ≤ φi(k) ≤ 1 ∀k, ∀i ∈ 1, . . . ,m (4.4)

Given a set of input-output data, the multimodel identification problem is to

estimate (i) number of submodels (m), (ii) the parameters of each submodel (local

model) (f(·)) and (iii) the validity function (φ) for each submodel.
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As described previously, in output blended multi-model representation of com-

plex systems, the entire operating space of the system is partitioned into a number

of operating region. For each operating region a local model is associated to de-

picts the behavior of the system within that region. A weighted sum of the output

of the local models is then used to form the global output of the systems. In chap-

ter 3, we have been able to find m, and f(·). In this chapter estimation of φ is our

paramount concern. This will be achieved by constrained Kalman Filter (CKF).

4.3 Constrained Kalman Filter (CKF) for Va-

lidity Computation

4.3.1 Constrained Kalman Filter (CKF)

Consider a controllable and observable linear discrete time system of the form

x(k + 1) = F (k + 1)x(k) + w(k)

y(k) = H(k)x(k) + v(k) (4.5)

where F (k + 1) is the transition matrix, x(k) is the state at time instant k, H(k)

is measurement matrix, and y(k) is the measurement data at time k. w(k) and

v(k) are respectively the process and measurement noise assumed to be white

and Gaussian, with zero mean and covariance matrix Q and R. The state es-

timation problem is stated as using the entire observed data, consisting of the

94



vector y(1), y(2), . . . , y(k) to find for each k ≥ 1 the minimum mean square error

estimate of the state x(k) [174]. The Kalman Filter equations are given as follows:

x̂−(k) = F (k)x̂−(k − 1)

P−(k) = F (k)P−(k − 1)F T (k) +Q(k − 1)

x̂(k) = x̂−(k) +K(k)[y(k)−H(k)x̂−(k)] (4.6)

K(k) = P−(k)HT (k)[H(k)P−(k)HT (k) +R(k)]−1

P (k) = [I −K(k)H(k)]P−(k)

where the filter is initialized with x̂(0) = E[x(0)] and P (0) = E[(x(0) −

x̂(0))T (x(0)− x̂(0))] and E[· · · ] denotes the expectation operator.

Suppose there are linear constraints on the state of system such that given the

system (4.5), the following constraints are given :

Ax(k) = a (4.7)

Bx(k) ≤ b (4.8)

where A and B are known matrix of dimension s×n, s is the number of constraints

and n is the number of state variables. a and b are known vectors. That is, the

state estimate, x̂, is required to satisfies the equality constraint (4.7) and the

inequality constraint (4.8).

Several approaches have been presented in the literature for incorporating the

equality constraint to the Kalman filter equation (4.6). Model reduction approach
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[175] reduces the equality constrained problem to unconstrained one by system

model parameterization. A perfect measurement [176, 177] is another approach

where the equality constraint, taken as zero measurement noise, is augmented with

the measurement equation. Another popular approach is the projection of the

unconstrained estimate of the filter on the constraint surface [178]. Yet another

method is the modification of standard Kalman filter gain by projecting it to

the constraint surface [179, 180]. Other approaches include, projected system

representation, [181], and the use of descriptor system theory [182]. Although

these methods are fundamentally different, they are mathematically equivalent

[183].

Concerning the inequality constraint (4.8), some of the approaches for the

equality constraint problem have been adapted. These include state estimate

projection [184] and gain projection [185]. Probability Density Function (PDF)

truncation [186] is another methods where the PDF of the constraint edges is

truncated to update the filter. Yet another approach is to truncate the state

estimate into the feasible state [187]. This is a simple approach that avoid the

quadratic program problem of the state estimation and the complication that

arises from PDF method [188]. A more detailed survey of these methods can

be found in [188]. In what follows, a CKF approach is proposed for multi-model

weights computation, using the projection and truncation methods for the equality

and inequality constraints, respectively.
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4.3.2 Constrained Kalman Filter (CKF) for Validity Esti-

mation of local models

Kalman filter as a well known optimal state estimator can be reformulated as a

parameter estimation problem (e.g. [174, 189] ). Therefore, reformulating the

validity in (2.2) as a parameter estimation problem can be solved by Kalman

filter as follows:

Given the multi-model output in Equation (2.2)

y(k) =
M∑
i=1

fi(ϕi(k),Θi)φi(k)

Taking the vector form of Equation (2.2) is written as:

y(k) = ȳ(k)Φ(k) (4.9)

where ȳ = [y1, y2, . . . , yM ] is the known vector of local model outputs and Φ =

[φ1, φ2, . . . , φM ]T is the unknown vector of weights for the local models.

Casting the parameter estimation problem to state estimation problem, we

have the following state estimation equation :

Φ(k + 1) = Φ(k) (4.10)

y(k) = ȳ(k)Φ(k) + v(k)
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where Φ(k) is the vector of unknown parameter (validity) to be estimated, and

v(k) is the measurement noise with covariance Ev2 = R(t), as in equation (4.5).

In the case where v(k) is a white and gaussian, the Kalman filter theory says that

the posterior distribution of φ(k), given all the observation up to k−1, is gaussian

mean value φ̂(k) and covariance matrix P . One should note that an artificial noise

w(k), with variance Ew(k)wT (k) = Q could be added to Φ(k + 1) in the case of

time-varying parameters and also to ensure persistence excitation and avoid ill

conditioned numerical computation.

Furthermore, in order for the validity computation (Φ) to satisfy the partition

of unity, the equality constraint in (2.3a) need to be added. Also, since at any time

instant it is possible for any local model to fully contribute or not to contribute

to the system’s output, there is a need to impose an inequality constraint (2.3b).

Therefore, these two constraints need to be included in the estimation of (Φ) to

give the following full state estimation equation:

Φ(k + 1) = Φ(k) + w(k)

y(k) = ȳ(k)Φ(k) + v(k)

such that (4.11)

βΦ(k) = 1

0 ≤ φi(k) ≤ 1

where β is a row vector of [1, 1, . . . , 1, 1]. The problem is thus formulated as giving
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a state equation in (4.10), minimize the minimum mean square error estimate of

the state Φ(k).

minimize
Φ

E[(Φ(k)− Φ̂(k))2]

such that

βΦ(k) = 1

0 ≤ φi(k) ≤ 1

(4.12)

Where E is the expectation operation, β is a row vector of [1, 1, . . . , 1, 1], Φ is the

unknown parameter and Φ̂ is the estimated one.

The above problem can be solved in two steps. In the first step, the equality

constraint is solved using the projection techniques [178, 190], where the un-

constrained estimate Φ̂(k) is projected onto the constraint space. The equality

constrained optimization problem can be written as

minimize
Φ

E[(Φ(k)− Φ̂(k))TW (Φ(k)− Φ̂(k))] (4.13)

such that

βΦ(k) = 1 (4.14)

where β is a row vector of [1, 1, . . . , 1, 1], and Φ(k) is [φ1(k), φ2(k), . . . , φM(k)]T
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and W is a positive define matrix. The solution to this problem is given as

Φ̂?(k) = Φ̂(k) +K?(k)[1− βΦ̂(k)]

K?(k) = W−1βT [R + βW−1βT ]−1 (4.15)

P ?(k) = [I −K?(k)β]W−1 +Q

where Φ̂ is the unconstrained estimate, Φ̂?(k) is the updated equality constrained

estimate that satisfy (2.3a) and W is a positive definite matrix weight. Set-

ting W = P−1(k) in (4.15) results in minimum variance estimate and setting

W = I gives least square estimate of Φ(k) [188]. Both settings are implemented

in this study. This implies that the unconstrained problem is first solved with

standard solution of kalman filter after which the obtained unconstrained esti-

mate, Φ̂ is used to update the constrained estimate in (4.15). Given observations

y(k), y(k − 1), . . . , y(1) and local model outputs ȳ(k), ȳ(k − 1), . . . , ȳ(1) the op-

timal unconstrained estimate, φ̂, can be computed using the following Kalman

filter equation

Φ̂−(k) = Φ̂−(k − 1)

P−(k) = P−(k − 1) +Q(k − 1)

Φ̂(k) = Φ̂−(k) +K(k)[y(k)− y(k)Φ̂−(k)] (4.16)

K(k) = P−(k)yT (k)[y(k)P−(k)yT (k) +R(k)]−1

P (k) = [I −K(k)y(k)]P−(k)
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Lastly, in the second step truncation and normalization [187] are adopted for

the inequality constraints. The truncation is used to readjust each element of

Φ̂?(k) in order not to violate the inequality constraint in (4.12) as follows.

φ̂??i (k) = 0 If φ̂?i (k) < 0

Finally, φ̂??(k) is normalized since the truncation can violate the equality con-

straint in (2.3a) and to satisfy the other part of the inequality constraint.

φ̂???i (k) = φ̂??i (k)∑
i=1 φ̂

??
i (k)

(4.17)

Φ̂???(k) = [φ̂???1 (k), . . . , φ̂???M (k)]T is the final estimated validity computation at

time k. The summary of CKF algorithm is shown in Table 4.1.

4.3.3 Estimating Q and R in CKF algorithm

As it will be observed in the next section, the values of R and Q in the CKF

algorithm can influence the estimation of the models’ validity computation. This

has been well-known drawback of Kalman filter as the process and measurement

noise statistic are generally not known. Therefore R and Q are often considered

as turning parameters. Since doing this manually can constitute a considerable

burden, there is need to find a systematic way of estimating these parameters. Al-

though several methods such as Bayesian [191], fuzzy logic [192], genetic algorithm

[193], neural networks [194], self turning [195], autocovariance[196, 197, 198], etc,
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Table 4.1: Validity estimation of submodels

1: Initialize Φ = [φ1, . . . , φm], P
Require: Q, R
2: Compute unconstrained estimate Φ̂ of Φ

Φ̂−(k) = Φ̂−(k − 1)
P−(k) = P−(k − 1) +Q(k − 1)

Φ̂(k) = Φ̂−(k) +K(k)[y(k)− y(k)Φ̂−(k)]
K(k) = P−(k)yT (k)[y(k)P−(k)yT (k) +R(k)]−1

P (k) = [I −K(k)y(k)]P−(k)

3: Compute equality constrained estimate, Φ̂? of Φ

Φ̂?(k) = Φ̂(k) +K?(k)[1− βΦ̂(k)]
K?(k) = W−1βT [R + βW−1βT ]−1

P ?(k) = [I −K?(k)β]W−1 +Q

4: Truncation of Φ̂?(k)

φ̂??i (k) = 0 If φ̂?i (k) < 0

5: Finally normalized φ̂??(k)

φ̂???i (k) = φ̂??i (k)∑
i=1 φ̂

??
i (k)

6: The final estimated validity computation at k is
7: Φ̂???(k) = [φ̂???1 (k), . . . , φ̂???m (k)]T

have been proposed in the literature for turning R and Q in relation to Kalman

filter, there is still need to estimate these parameters in the context of constrained

Kalman filter for validity estimation. Although estimating R is not critical as

it can be chosen by taken the variance of the measurement or using the sensor

characteristics, however,the tuning of the process noise covariance Q is considered

to be critical.
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Now, if Q is considered has the parameter that incorporate the modeling errors

and uncertainties as well as noises affecting the process [199], then it value can be

computed as a factor due to the submodel estimation and that due to the final

output estimation during the interpolation.

As for the one due to the submodel estimation, since each submodel were

estimated from the least square criterion (i.e. Equation 3.23), then it can be

estimated from data by computing the empirical covariance from the classical

result in least square theory [1]

qai = ‖ 1
ni − (d+ 1)

ni∑
j=1

(yj − ŷj)
ni∑
j=1

[ϕjϕTj ]−1‖ (4.18)

where ϕj are the vector of the regressors for ith model and ni is the number of data

points used for estimating the ith model. d is the number of parameters,y and ŷ

are the actual and predicted output, respectively. The first part of estimating Q

is therefore

Qa =



qa1 0 . . . 0

0 . . . . . . 0

0 0 . . . qam


(4.19)

Using the idea in [195], although with different rationale, the second part can

be computed from the model error taken at every time instant k. From the
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unconstrained Kalman filter solution in Equation 4.16 this would be

qb(k) = Φ̂(k)− Φ̂−(k) = K(k)[y(k)− y(k)Φ̂−(k)] (4.20)

Translating into the constrained form

qb(k) = Φ̂???(k)− Φ̂???(k − 1) (4.21)

Unlike in [195], each component of qb represents lack of accuracy due to a sub-

model. Hence, for all the submodels, a diagonal matrix, Qb(k) = diag[qb(k)2], is

constructed.

Both Qa and Qb can be seen as the confidence associated with estimating the

parameters and the validities of the models. Following the two components above,

the time varying covariance matrix Q(k) is estimated as

Q(k)=Qa +Qb(k) (4.22)

4.4 Simulation Examples

The effectiveness of the CKF validity computation is demonstrated in this section.

In the first subsection, the suitability of CKF algorithm as validity computation

is tested with the two settings of W = P−1(k) and W = I. In the second

subsection, the algorithm is tested on previously used examples in chapter 3 and

compared with the commonly used validity computations used in that chapter.
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In the implementation of the CKF algorithm, setting W = P−1(k) and setting

W = I are both utilized. All simulations are performed using MATLAB 2012b

on a 2.4 GHZ i3 64-bits Windows machine with 4 G RAM.

4.4.1 Case 1: Suitability of CKF Algorithm as Validity

Computation

Here the suitability of CKF algorithm is tested by considering an arbitrary non-

linear systems. Note that the aim here is not to identify the system but to show

by simulation that CKF is well suited as validity. In fact, this can be considered

as a convergence test for the CKF algorithm. Therefore either static or dynamic,

linear or nonlinear function can be used. The actuator dynamics input-output

data [88] are used in this case.

The system output is segmented sequentially into three. Each segment repre-

sents the system output data for a particular time duration. The first segment is

the system output for the duration 1 to 300, the second and the third segments

are for duration 301 to 600 and 601 to 1024 respectively. The three segments are

used to form three separate outputs such that random values are assigned to the

time duration for which there are no original output value. For example, in the

first segment random values are assigned to time duration 301 to 1024. Fig. 4.1

shows the real system output and the segmented outputs. These three outputs

are then run simultaneously and combined together using the two CKF validity

computation, setting W = P−1(k) and W = I. For acceptable performance it
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is expected that the CKF combined output will equal that of the system output

with minimum error. Furthermore, the profile of CKF should reach unity only

within the time duration for which each segment has the real system output value.

This will indicate that CKF is ignoring the random signal of a particular segment

output and converging to the true output of the system from another segment.

The simulation results shown in Fig. 4.2 indicates that the two settings of

proposed CKF algorithm can adequately be used for validity computation as the

validity values of each segment in Fig. 4.2c and Fig. 4.2d reach unity only within

the time duration corresponding to that of original system output and tending to

zero outside the duration. This characterized the suitability of the CKF algorithm

as validity computation.

However, it is observed that the two settings are not of the same accuracy. It

is found that setting W = I took 9 seconds each to converge to the true output

in the second and third segments, while setting W = P−1(k) took 8 seconds each.

In addition, we can observed from Fig. 4.2b that setting W = P−1(k) does not

response quickly to change in the output compared to setting W = I, causing

more error at the point of switching. This is due to the way the segments are

generated as the random number added to the segments is far away from the

real output. Also, the validity profiles ( Figures4.2c and 4.2d) show that setting

W = I is less sensitive to initialization of the validity values.

Furthermore, to determine the effect of Q and R on both CKF settings, dif-

ferent values of Q and R are used. It is observed that the setting W = P−1(k)
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Figure 4.1: Actuator Output and segmented outputs

became numerically unstable when Q is zero and also slightly sensitive to choice

R. Setting W = I is however remain numerically stable with Q = 0 and less

sensitive to the value R.

In addition, another system output shown in Figures4.3 [109] using similar

segmentation procedure is considered. The first segment in this case is the system’s

output for duration 1 to 160. The second and the third segments are respectively

duration 161 to 320 and 321 to 500.

The result is as shown in Figure4.4. One can observe that setting W = I took

7 seconds and 19 seconds to converge to the true output in the second and third

segments respectively, while setting W = P−1(k) took 4 seconds each to converge

in both segments. This actually confirmed faster convergence of setting W =
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(a) The combined segment outputs with CKF (b) The combined segment Error with CKF

(c) CKF Profile setting W = P−1(k) (d) CKF Profile setting W = I

Figure 4.2: Estimated combined output and validity profiles

P−1(k) as observed in the previous case. Furthermore, it is observed that there are

less error at the point of switching, which suggests closer segment outputs, making

the setting W = P−1(k) to give better output than setting W = I. Although the

former is still less sensitive to initialization as in the previous simulation.

To summarize, the CKF algorithm has shown to be well suitable as validity

computation. It is generally observed that setting W = P−1(k) converge faster

than setting W = I but sensitive to initialization, the value of Q and R. Further-

more, setting W = P−1(k) would be more appropriate when the output of the

sub-models are closer.
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Figure 4.3: System Output

4.4.2 Case 2: Multi-model Identification

In this subsection, the developed CKF validity estimation is used for interpo-

lation of the submodels developed for examples in the chapter 3. The output

blended multi-model framework with CKF validity computation is shown in Fig-

ure 4.5. The obtained multi-model is evaluated based on the validation data

using the mean square error (MSE), percentage model fitness (PMF) and variance-

accounted-for (VAF) performance measures as described in chapter 3. The results

obtained using the CKF algorithm is compared with other validity estimations

used in chapter 3.
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(a) The combined segment outputs with CKF (b) The combined segment Error with CKF

(c) CKF Profile setting W = P−1(k) (d) CKF Profile setting W = I

Figure 4.4: Estimated combined output and validity profiles

Figure 4.5: CKF based validity computation for output blended multi-model
framework

Example 1

Consider a discrete-time system from [109] described by

y(k) = a1(k)y(k − 1) + a2(k)y(k − 2) + b1(k)u(k − 1) + b2u(k − 2)
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The variation laws of different parameters of the process is given by

a1(k) = 0.04sin(0.035k) + 0.8

a2(k) = 0.005sin(0.03k) + 0.1

b1(k) = 0.02sin(0.03k) + 0.5

b2(k) = 0.01sin(0.035k) + 0.2

The submodels representation of the system was identified in section 3.5.1 for 2-

parameter and 4-parameter structures with four and two submodels, respectively.

Now using the same validation data in section 3.5.1, the submodels were in-

terpolated with CKF validity estimation as described in section 4.1 to form the

multi-model output. The real system’s output and the multi-model output for

the two assumed submodels’ structures are compared using the MSE, PMF, and

VAF.

The multi-model identification results are shown in Figures 4.6 to 4.7. As can

be observed, the proposed multi-model can well approximate the real system with

either 2-parameters or 4-parameters structures using both CKF settings. How-

ever, the 2-parameters structure shows better performance than the 4-parameters

structure. Also, the CKF with setting W = I has better performance values in

2-parameters submodel structure and similar performance in 4-parameters sub-

model structure. Table 4.2 shows the comparison of CKF algorithm with the

validity estimations used previously. We can conclude from the table, especially

in the MSE and PMF columns, that interpolation of the submodels with the CKF
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Table 4.2: Performance Measures Comparison of Different Validity Computations

2-parameters structure 4-parameters structure
Validity Estimation MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
simple Residue 0.0403 87.84 98.54 0.0277 89.91 99.00
Reinforced residue 0.0444 87.23 98.39 0.0277 89.91 99.00
Bayessian 0.0751 83.40 97.35 0.0576 85.46 97.89
Qaudratic 0.0765 83.24 97.35 0.0576 85.46 97.89
CKF( W = P−1(k)) 0.0075 94.74 99.73 0.0150 92.57 99.46
CKF(W = I) 0.0053 95.58 99.81 0.0151 92.57 99.46

algorithm gave the best results compared to other methods. Furthermore, it can

be pointed out that our methods achieved fewer parameters (8) in comparison to

the multi-model approach adopted in [109] (12 parameters).

(a) 2-paramters structure with CKF W = P−1(k) (b) 2-paramters structure with CKF W = I

(c) 4-paramters structure with CKF W = P−1(k) (d) 4-paramters structure with CKF W = I

Figure 4.6: Multi-model identification outputs using validation data
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(a) Error with CKF setting W = P−1(k) (b) Error with CKF setting W = I

Figure 4.7: Multi-model identification error using validation data

Example 2

Next, consider a nonlinear dynamical system taken from [43]:

y(k + 1) = (0.6− 0.1a(k))y(k) + a(k)u(k) (4.23)

a(k) = 0.6− 0.06y(k)
1 + 0.2y(k) (4.24)

This system was identified with two submodels for both 2-parameters and 4-

parameters structures in section 3.5.2. To verify the accuracy of the proposed

CKF validity, these submodels were interpolated with the CKF validity using

during validation using the same validation data in section 3.5.2.

Figures 4.8 and 4.9 show the output of the multi-model and the error obtained,

respectively, using the CKF algorithm for interpolation of the submodels with the

validation data. One can observe that both submodels’ structures can effectively

approximate the real system. In addition, both CKF settings show the same

performance. Table 4.3 shows the values of the performance measures for different

113



Table 4.3: Performance Measures Comparison of Different Validity Computations

2-parameters structure 4-parameters structure
Validity Estimation MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
simple Residue 0.0221 83.89 98.39 0.0313 80.84 98.19
Reinforced residue 0.0221 83.89 98.39 0.0313 80.84 98.19
Bayessian 0.0357 79.55 98.18 0.0354 79.64 98.21
Qaudratic 0.0249 82.91 98.42 0.0303 81.17 98.26
CKF(W = P−1(k)) 0.0124 87.97 99.02 0.0225 83.77 98.81
CKF(W = I) 0.0124 87.96 99.02 0.0227 83.68 98.82

validity methods including the CKF algorithm. Just as observed in the previous

example, The CKF algorithm outperforms other methods.

(a) 2-paramters structure with CKF W = P−1(k) (b) 2-parameter structure with CKF W = I

(c) 4-parameter structure with CKF W = P−1(k) (d) 4-parameter structure with CKF W = I

Figure 4.8: Multi-model identification outputs using validation data
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(a) Error with CKF setting W = P−1(k) (b) Error with CKF setting W = I

Figure 4.9: Multi-model identification error using validation data

Example 3

In the third example, the following nonlinear dynamical system is considered for

identification:

y(k) = (y(k − 1)/(1 + y(k − 1)2)) + u(k − 1)3 (4.25)

Using the proposed approach in chapter 3, four and two submodels were iden-

tified for 2-parameter and 4-parameter structures respectively. Based on these

submodels, The CKF algorithm was used to interpolated the submodels during

validation stage using the same validation data in section 3.5.3

Simulation results obtained from Figures 4.10 and 4.11 show that the model

outputs closely agree with the system output for both submodels’ structures using

the CKF algorithm. Table 4.4 shows the performance measures of CKF compared

with other validity methods used previously. In general, it can be seen that the

CKF validity clearly outperforms other methods.
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Table 4.4: Performance Measures Comparison of Different Validity Computations

2-parameters structure 4-parameters structure
Validity Estimation MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
simple Residue 0.8224 65.75 88.28 0.4309 75.21 93.88
Reinforced residue 0.9480 63.23 86.49 0.4309 75.21 93.88
Bayessian 1.2033 58.58 82.85 1.1679 59.19 83.35
Qaudratic 1.1827 58.93 83.15 1.1657 59.23 83.38
W = P−1(k) 0.1400 85.87 98.00 0.1954 83.31 97.23
W = I 0.1001 88.05 98.58 0.1969 83.24 97.21

Example 4

Next, the following highly nonlinear dynamical system is considered for identifi-

cation:

y(k + 1) = u(k)
1 + y2(k − 1) + y2(k − 2)

+ y(k)y(k − 1)y(k − 2)u(k − 1)(y(k − 2)− 1)
1 + y2(k − 1) + y2(k − 2) (4.26)

Using the proposed approach in chapter 3, four and two submodels were iden-

tified for 2-parameter and 4-parameter structures respectively. Based on these

submodels, The CKF algorithm was used to interpolated the submodels during

validation stage using the same validation data in section 3.5.4

Simulation results obtained as depicted in Figures 4.12 and 4.13 show that the

model outputs closely agree with the system output for both submodels’ structures

using the CKF algorithm. Table 4.5 shows the performance measures of CKF

compared with other validity methods used previously. It can be seen that the

simple and reinforced validity methods are slightly better than the CKF validity
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(a) 2-parameter structure with CKF W = P−1(k) (b) 2-parameter structure with CKF W = I

(c) 4-parameter structure with CKF W = P−1(k) (d) 4-parameter structure with CKF W = I

Figure 4.10: Outputs of multi-model identification using validation data

with settingsW = P−1(k) in the 2-parameter structure and the same performance

in the 4-parameter structure.

In addition, it can be concluded from the table that the 2-parameter structure

with CKF setting W = I shows the best performance. As mentioned earlier, this

system has been identified with other multi-model approach in the literature. Us-

ing the same validation data set, [126] achieved MSE of 0.0002 and VAF of 99.9%

with four third-order models (24 parameters), [172] achieved MSE of 0.112 and

VAF of 97.9% with with 10 BPWA functions (306 parameters) and [43] achieved

MSE of 0.00067 and VAF of 99.7% with 16 parameters. It is quite noteworthy to
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(a) Error with CKF setting W = P−1(k) (b) Error with CKF setting W = I

Figure 4.11: Multi-model identification error using validation data

Table 4.5: Validation performance on common validity estimations

2-parameters structure 4-parameters structure
Validity Estimation MSE PMF (%) VAF(%) MSE PMF(%) VAF (%)
simple Residue 0.0037 87.52 99.00 0.0013 92.57 99.54
Reinforced residue 0.0045 86.16 98.78 0.0013 92.57 99.54
Bayessian 0.0066 83.35 98.22 0.0082 81.37 97.68
Qaudratic 0.0062 83.79 97.83 0.0110 78.47 97.91
W = P−1(k) 0.0054 84.90 98.19 0.0012 92.84 99.54
W = I 0.0001 97.37 99.93 0.0004 95.45 99.83

point out that the proposed multi-model approach does yield close performances

to other techniques in the literature but with fewer parameters (8).
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(a) 2-parameter structure with CKF W = P−1(k) (b) 2-parameter structure with CKF W = I

(c) 4-parameter structure with CKF W = P−1(k) (d) 4-parameter structure with CKF W = I

Figure 4.12: Outputs of multi-model identification using validation data

Example 5

The last example is the continuous stirred tank reactor (CSTR) nonlinear chemical

system described by in section 3.5.5. The input-output relationship of the system

was identified in section 3.5.5 only for 4-parameter structure with three submodels.

We also need to remember that submodel 1 is unstable model.

The CKF validity algorithm was used to interpolate the submodels as done

previously for other validity methods used in section 3.5.5. The results of the

simulation are shown in Figure 4.14. It can be observed that the estimated output

matched the real output using the CKF algorithm.
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(a) Error with CKF setting W = P−1(k) (b) Error with CKF setting W = I

Figure 4.13: Multi-model identification error using validation data

Table 4.6: Performance Measures Comparison of Different Validity Computations

4-parameters structure
Validity Estimation MSE PAF (%) VAF (%)
simple Residue 0.0570 84.2310 97.54
Reinforced residue 17.0351 0 0
Bayessian 1.38E+19 0 0
Qaudratic 1.31E+19 0 0
W = P−1(k) 0.0005 98.52 99.98
W = I 0.0037 96.00 99.84

Table 4.6 shows the comparison of CKF validity with other validity methods.

The table revealed the clear outstanding performance of CKF validity estimation

despite the presence of unstable model in the submodels.
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(a) 4-parameter structure with CKF W = P−1(k) (b) 4-parameter structure with CKF W = I

Figure 4.14: Outputs of multi-model identification using validation data
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4.5 Conclusion

This chapter focused on validity computation of submodels which is an impor-

tant issue of the multi-model technique for interpolation of submodels. In this

study, a constrained Kalman filter (CKF) validity computation is proposed for

multi-model design. The method overcomes some of the drawback of commonly

used validity computations for output blended multi-model such as sensitivity to

parameter selection, and restriction to partition strategy. The proposed CKF

has been implemented and tested for multi-model systems identification using the

proposed submodels identification method developed in chapter three. Simulation

results show that CKF is of good performance and better than other commonly

used validity such as simple residue, reinforced residue, quadratic criterion, and

Bayesian validity computations.
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CHAPTER 5

OPTIMIZATION OF THE

NUMBER OF SUBMODELS’

PARAMETERS

Chapter 5 extends the algorithms presented in chapter 3. Here instead of optimiz-

ing only the parameters and number of submodels, the order of the submodels are

also included. This allows partitioning the operating space and generate a parsi-

monious number of submodels without prior knowledge. Simulation examples are

given to illustrate the effectiveness of the proposed algorithms.

5.1 Introduction

As mentioned earlier, multi-model design involves three steps. The first is the par-

titioning of the operating system into smaller regions based on a selected strategy.

123



In the second step, both the structure and the parameters of the local model asso-

ciated with each subregion are determined. Finally, the local models are combined

together using weighting function that defines the contribution of each local model

to the real nonlinear system. In chapter 3, it was mentioned that the partition-

ing process involves optimization of number of submodels and their parameters.

Therefore, a modified combinatorial particle swarm optimization (MCPSO) and

hybrid K-means algorithms are proposed to obtain the partitions and their associ-

ated submodels, only with prior knowledge of the submodels’ order or submodels’

number of parameter. The knowledge of the submodels’ order is to allow the us

to incorporate the system’s knowledge into the algorithms as well as to provides

learning efficiency in the algorithm. However, having prior knowledge of the order

of the submodels might be difficult, since the knowledge based on the nonlinear

system may not generally translate to the submodels. Hence, there is need to in-

corporate estimation of submodels’ order into our previously presented partition

algorithm.

Under this consideration, the main goal of this chapter is to extends the

MCPSO algorithm presented in section 3.3 to include estimation of submodels’

order (number of parameters). Previous benchmark dynamic systems are used to

illustrate the effectiveness of the extension.

The rest of this chapter is organized as follows: section 5.2 describes problem

formulation. In section 5.3, the extension of the first stage of the previously

proposed partition approach is discussed, and simulation examples are provided
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in section 5.4 to demonstrate the effectiveness of the proposed method. Finally a

brief conclusion is given in section 5.5.

5.2 Problem Formulation

Again, we consider multi-model system of the form

y(k) =
m∑
i=1

fi(x(k))φi(k) (5.1)

where fi(·) and φi(k) are the ith submodel and validity function, respectively

and m is the number of submodels. The validity function satisfies the convexity

property [159, 132]:

m∑
i=1

φi(k) = 1 , ∀k (5.2)

0 ≤ φi(k) ≤ 1 , ∀k, ∀i ∈ 1, . . . ,m (5.3)

The system (5.1) can be used to approximate a nonlinear system

y(k) = F (y(k−1), y(k−2), . . . , y(k−na), u(k−1), u(k−2), . . . , u(k−nb)) (5.4)

where u(k) ∈ <nb is the input and y(k) ∈ <na is the output of the system. The

integer nb and na are the time lag of the input and output respectively.

For identification, the first goal is to obtain the representative submodels from

a given set of input-output data, by estimating (i) number of submodels (m), and
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(ii) the parameters of each submodel (local model) (f(·)).

As noted in chapter 3, the function f(xi(k)) is chosen as linear models de-

scribed by

fi(x(k)) = xi(k)θTi (k) (5.5)

where θi is the vector of parameters of ith submodel which can be estimated from

the data pairs:

z(k) = {x(k), y(k) : k = 1, . . . , N} (5.6)

where x(k) = [y(k − 1), y(k − 2), . . . , y(k − na), u(k − 1), u(k − 2), . . . , u(k − nb)]

is the regressor vector. An affine x(k) is also possible, such that x(k) = [1, y(k −

1), y(k − 2), . . . , y(k − na), u(k − 1), u(k − 2), . . . , u(k − nb)] .

However, In some cases when na and nb are not known a priori, then the

regressor vector x(k) can not be formed. In that case na and nb need to be

estimated to be able to form the regressor vector x(k) for each submodel. There-

fore, Obtaining the submodels representative for the multi-model identification of

complex nonlinear systems (5.4) is to determine (i) number of submodels (m), (ii)

the time lag of the input (nb) and output(na) and (iii) the parameters of each

submodel (local model) (f(·)).

Indeed this problem is similar to the one solved in chapter 3, however with

the inclusion of the number of parameters in θ (i.e. nb+ na). Therefore, the two

stage algorithms proposed in chapter 3 shall be extended to solve this problem as

follows:
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1. Obtain the number of submodels, the number of parameters and the initial

submodel. This stage involves application of modified combinatorial parti-

cle swarm optimization (MCPSO) to obtain m number of partitions, the

time lag of the input (nb) and output (na) and the representative data sets

for each partition. The m number of clusters obtained from MCPSO is

then used to estimate the initial submodels, each with nb + na number of

parameters, and initial cluster centers.

2. Obtain the final submodels. In this stage hybrid Kmeans criterion is applied

to the result of the previous stage to refine the submodels, which can be

presented for interpolation. Since this second stage is exactly the same as

the one presented in chapter 3, it will not be repeated here.

5.3 Obtain the number of submodels, number

of parameters of submodels and the initial

partition

The aim of this stage is to determine the number of partitions and to evolve a

partition representing a possible grouping of the given data set. That is, given

a data set Z = [z1, z2, . . . , zN ]T in Rd, i.e. N points each with d dimension, we

need to simultaneously find the number of partition (m), number of parameters

(na + nb) and divide Z into m exhaustive and mutually exclusive clusters P =

[p1, p2, . . . , pm] with respect to a predefined criteria such that:
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1. pi 6= ∅ i = 1, . . . ,m;

2. pi ∩ pl = ∅ i = 1, . . . ,m, i 6= l;

3. ∪mi=1pi = Z

Remark: Note that z in this case is not as in Equation (5.6). Instead, z is

the input- output data pair given by

z(k) = {u(k), y(k) : k = 1, . . . , N} (5.7)

where u(k) and y(k) are the input and output of the nonlinear system.

To achieve this objective the modified CPSO (MCPSO) based partitional al-

gorithm presented in chapter 3 is extended as described in section 5.3.1

5.3.1 Obtain the initial partition using MCPSO

The four features of MCPSO are extended as follows:

1. Particles encoding: Each particle position Xi = [xi1, xi2, . . . , xiN , xiN+1],

characterized by N + 1 elements, where N is the number of data points. Its

N elements provide integer numbers representing the cluster number of each

data point and N + 1 element provide the number of parameters for each

submodel, such that xij ∈ {1, 2, . . . ,mi}, j = 1, . . . , N, represents the cluster

number of jth data point in ith particle and mi is the number of clusters

associated with ith particle. Also, xiq ∈ {1, 2, . . . , pi}, q = N + 1 represents

the na = nb for all submodels in ith particle . mi and pi are assumed to lie
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in the range [mmim,mmax] and [pmim, pmax] respectively. mmin and pmim are

2 by default and mmax and pmax are manually specified by the user.

2. Avoiding empty clusters: To avoid empty cluster as stated in the previous

chapter, new positions of particles are checked. At each generation, particles

with empty cluster are corrected by changing the largest cluster number

to the smallest unused cluster number. Note that for each particle Xi,

dimension xi1, xi2, . . . , xiN , xiN only has to be consider for this operation.

3. Fitness function: The fitness criterion used in the MCPSO algorithm of

chapter 3 is still used except that it has to reflect the given data in

Equation(5.7) and estimation of na and nb. Therefore, given the data set Z

defined in Equation(5.7), the cluster regression error is defined by:

CRE =
m
′
max∑
i=1

SE (5.8)

Where

SE = ( 1
ni

ni∑
j=1

(yj − xijθTi )2) 1
2 (5.9)

m
′
max is the maximum number of clusters assigned to a solution, ni is the

number of data points in the ith cluster and θi is the parameter of the linear

model associated with the ith cluster. This can be obtained using the least

square technique as follows:

θi = [
ni∑
j=1

xijx
iT
j ]−1[

ni∑
j=1

yjx
i
j] (5.10)
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Where xi = [y(k−1), y(k−2), . . . , y(k−na), u(k−1), u(k−2), . . . , u(k−nb)]

is the regressor vector associated with the ith cluster. we take na = nb = p
′
i.

p
′
i is the last element of Xi, representing the order of the submodels.

Remark: Note that at this point the order of the model for each particle

is now available from the last element of Xi (i.e. p
′
i ). Hence the regression

matrix for the whole data point N should be constructed before the partition

take place, to keep the time dependency of the data. Otherwise, the time

dependency of each data point would be lost if the input and output data

in (5.7) are partitioned before the construction of the regressor vector.

Finally, the fitness function is defined by:

fitness = (W logN +N log(CRE2))/2 (5.11)

whereW = m
′
max+p′i and N is the total number of data points. The smaller

is the fitness value, the better is the clustering solution.

4. Avoiding small size data: This is the exactly the same as the one chapter 3

and need not to be repeated here.

After the encoding of the particles as discussed above, the execution of MCPSO

to obtain number of clusters, number of parameters and the initial partition is

done according to the following steps:

Step 1: Initialize particle position vector X and associated velocity V in the pop-

ulation randomly. For each particle i, the number of clusters mi and the
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number of parameters () are randomly generated in the range [mmin,mmax]

and [pmim, pmax],respectively. Then each data point is randomly assigned to

one cluster.

Step 2: Use pi = na = nb to construct the regression matrix for the whole data

points and evaluate the fitness function for each particle according to Equa-

tion (5.11).

Step 3: Compare the fitness value of each particle with it previous best solution

(Pbset) fitness and update Pbest with the current solution if it is better

than the previous value (Pbest ).

Step 4: Compare fitness value with the overall previous best (Gbest) fitness. Update

Gbest to the current solution if its fitness values is better than Gbest fitness

value.

Step 5: Update positions and velocities of particles using Equation (3.9) to (3.13).

Step 6: Check for empty cluster in all particle solutions and correct if exist.

Step 7 Repeat Step 2 to Step 6 until the maximum number of iterations is com-

pleted.

5.3.2 Estimation of the initial submodels

Once the MCPSO search process is terminated, the regression matrix for the

whole data (x(k) = [y(k− 1), y(k− 2), . . . , y(k−na), u(k− 1), u(k− 2), . . . , u(k−

nb)], k = 1 . . . N) is first constructed, to preserve the time dependency, using
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the last element(pi = na = nb) of the global solution during the search process.

Also by using the global solution from the MCPSO search process, each cluster

representatives z̃ = {z̃i = (x̃i, ỹi), i = 1, . . . ,m} is obtained, where m is the

number of clusters. Subsequently, we estimate the initial submodels for each

cluster using the least square algorithm, as done in chapter 3. The coefficients

vector θi for each submodel is computed through the formula:

θ̃i = (Φ̃Ti Φ̃i)
−1
Φ̃Ti yi (5.12)

where Φ̃i = [xi(1), . . . , xi(ni)]T and yi are the regression matrix and output vector

belonging to ith cluster, respectively. ni is the number of data points in the ith

partition.

In addition, the centers of the data are calculated by finding the mean of the

data in each cluster produced by the previous stage. The center of each cluster is

given as :

c̃i = 1
ni

ni∑
j=1

x̃ij i = 1, 2, . . . ,m. (5.13)

Once the estimation of the initial submodel and their associated centers has

been obtained, the final parameters θ of each submodel are obtained along with

their associated centroid ci using the procedure in section 3.4. Finally, the sub-

models are now ready for interpolation to obtain the final global model that will

represent the nonlinear system under consideration.
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5.4 Simulation Examples

The effectiveness of the proposed partition method without prior knowledge of

number of parameters for submodels is demonstrated in this section. Two simula-

tion examples were carried out. Except stated otherwise, the parameter settings of

MCPSO used are given in Table 5.1. Also λ = 0.01 is selected in stage 2 through-

out the simulations. The CKF validity computation presented in chapter 4 is used

for the interpolation of the submodels, to form the multi-model representation of

nonlinear system.

The obtained multi-model is evaluated based on the validation data using

the mean square error (MSE), percentage model fitness (PMF) and variance-

accounted-for (VAF) performance measures:

MSE = 1
N

N∑
i=1

(y(i)− ŷ(i)) (5.14)

PMF = max((1− ‖(y − ŷ)‖
‖(y −mean(y))‖)× 100) (5.15)

V AF = max(100× (1− var(y − ŷ)
var(y) ), 0) (5.16)

Where y is the real system output ŷ is the multi-model estimated output, ‖·‖

denotes norm and var(·) denotes the variance. All simulations are performed

using MATLAB 2012b on a 2.4 GHZ i3 64-bits Windows machine with 4 G RAM.
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Table 5.1: MCPSO parameter settings

parameters values
Swarm size 20
Max. Iterations 5000
w, α 0.4, 0.35
c1, c2 2, 2
mmin,mmax 2, 20
pmin, pmax 2, 7

5.4.1 Example 1

The first example considered is the previously presented highly nonlinear dynam-

ical system describe by

y(k) = y(k − 1)
1 + y(k − 1)2 () + u(k − 1)3; (5.17)

The system was excited by uniformly distributed random signal in the interval

[−1, 1]. The identification was carried out with data set of 800 samples.

With the proposed extension we are able to obtain two submodels with four

parameters each in the learning process. The convergence of the objective function

in the extended MCPSO is shown in Figure 5.1. The initial and final submodels

parameters with their associated centers are shown in Table 5.2 and 5.3 respec-

tively.

Validation of the multi-model identification was done with second data set of

500 samples generated by an input signal given by:

u(k) = sin(2π
25k) + sin(2π

10k)
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Table 5.2: Results of Stage 1 (initial submodels)

Initial submodels a1 a2 b1 b2

1 -0.10673 0.04935 2.62918 0.42943
2 -0.05355 0.03074 1.92930 0.30293

Initial centers

1 0.04696 -0.01651 -0.01008 0.02466
2 0.21073 0.29268 0.10032 0.06193

Table 5.3: Results of Stage 2 (final submodels)

Final submodels a1 a2 b1 b2

1 -0.09183 0.06339 3.09449 0.41960
2 -0.09659 0.02118 1.24222 0.45112

Final centers

1 0.28352 -0.04442 0.13273 0.09495
2 0.06090 0.19251 0.00573 0.02149

Simulation results obtained using the CKF validity estimation for the vali-

dation data set are shown in Figures 5.2 and 5.3. The figures show that the

estimated model outputs closely follows the system output for both submodels’

structures. The result of CKF validity computation for setting W = I is the

same as that obtained in example 3 of chapter 4 with the 4-parameter structure,

which has the same number of submodels and parameters. However, It would have

been expected that the result of this extension algorithm should be 4 and 2 for

number of submodels and parameters respectively (2-paramter structure), since

this gave better performance in example three of chapter 4. This confirmed our

statement previoulsy that given the user the opportunity to pre-select the number
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Figure 5.1: MCPSO objective function convergence plot

of parameters would provides learning efficiency in the MCPSO algorithm.

Table 5.4: Validation performance for system 1

CKF settings MSE PMF (%) VAF(%)
W = P−1(k) 0.3432 77.86 95.12
W = I 0.2046 82.90 97.10
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(a) Using CKF W = P−1(k) validity computation (b) Using CKF W = I validity computation

Figure 5.2: Outputs of multi-model identification using validation data for system
1

5.4.2 Example 2

The next example considered for identification is another highly nonlinear dynam-

ical system described by

y(k + 1) = u(k)
1 + y2(k − 1) + y2(k − 2)

+ y(k)y(k − 1)y(k − 2)u(k − 1)(y(k − 2)− 1)
1 + y2(k − 1) + y2(k − 2) (5.18)

The system was excited by uniformly distributed random signal in the interval

[−1, 1]. The identification was carried out with data set of 800 samples as done

previously.

Using the proposed extension, two submodels were identified with four param-

eters each. The convergence of the objective function in the extended MCPSO

is shown in Figure 5.4. The initial and final submodels parameters with their

associated centers are shown in Table 5.5 and 5.6 respectively.
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Figure 5.3: Multi-model identification error using validation data for system 1

Table 5.5: Results of Stage 1 (initial submodels)

Initial submodels a1 a2 b1 b2

1 -0.27894 0.05235 0.70949 0.20132
2 0.13377 0.00174 0.80020 -0.10636

Initial centers

1 -0.03936 0.00353 0.00595 -0.05240
2 0.03067 -0.02556 -0.02435 0.04807

Validation of the multi-model identification was done with second data set of
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Table 5.6: Results of Stage 2 (final submodels)

Final submodels a1 a2 b1 b2

1 -0.10342 0.04138 0.59581 0.07318
2 -0.05368 0.03737 0.86455 0.02884

Final centers

1 -0.16968 -0.04723 -0.00707 -0.22956
2 0.12770 0.02303 -0.00751 0.17897

Figure 5.4: MCPSO objective function convergence plot

800 samples generated by an input signal given by:

u(k) =


sin( 2π

250k) if k ≤ 500

0.8sin( 2π
250k) + 0.2sin(2π

25k) if k > 500
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Table 5.7: Validation performance on common validity estimations

CKF settings MSE PMF (%) VAF(%)
W = P−1(k) 0.0012 93.00 99.56
W = I 0.0004 95.72 99.84

Simulation results obtained using CKF validity estimation for the validation

data set are shown in Figures 5.5 and and 5.6. The figures show that the estimated

model outputs follows the nonlinear system output. Also, it can be observed from

Table 5.7, that the results obtained are almost the same as that obtained in

section 4.4.2 with 4-parameter structure. similarly as observed in the example 1,

its is expected that the number of submodels and parameters would be 4 and 2

respectively (2-parameter structure), since this gave better performance in chapter

4. This did not happen,as the learning efficiency has been reduced with inclusion

of estimation of number of parameters.

(a) Using CKF W = P−1(k) validity computation (b) Using CKF W = I validity computation

Figure 5.5: Outputs of multi-model identification using validation data
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Figure 5.6: Multi-model identification error using validation data

5.5 Conclusion

Chapter 5 presents an extension of the meta-heuristic partition method for multi-

model identification of nonlinear systems presented in chapter 3. Unlike in chapter

3, it is assumed that the number of parameters of the submodels are not known.

Hence, the first stage of the procedure presented in chapter 3 is modified to in-

clude estimation of number of parameters for the submodels. Simulations example

carried out showed the capability of the extension.
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CHAPTER 6

APPLICATION IN CONTROL

AND FAULT DIAGNOSTICS

Chapter 6 focused on the applications of the proposed multi-model framework

developed in the previous chapters. Two important application areas namely,

control and fault diagnosis, are investigated on the multi-model framework. In

the first, some of the systems identified in the previous chapter are evaluated for

reference tracking control, using weighted one-step ahead control algorithm. In

the second, the suitability of the CKF algorithm under multi-model framework is

tested for fault detection and isolation on a three-tank system.

6.1 Multi-model control of nonlinear systems

Increase in the research of modeling and control of nonlinear systems have been

steady over several years, due to the inherent nonlinearity and wide operating

conditions in virtually all the industrial processes. However, nonlinear controls
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present substantial demand in terms of design and implementation compared to

linear controls. Therefore control engineers usually opt for linear controllers to

control a linear approximation of the nonlinear system, in order to benefit from

it easy implementation and rich linear control methodologies.

Unfortunately in practice, a linear controller for a nonlinear system may ex-

hibits performance limitation especially when applied to the entire operating con-

ditions of the system. One promising remedy, which continued to gain acceptance,

to overcome this problem is the multi-model control . In this approach linear con-

trollers are designed for different sub-operating regions of the nonlinear system.

There can either be switching among the controllers or interpolation of the con-

trollers. In switching multi-model control, a supervisor is designed to select an

appropriate controller at every instant based on the state of the system. This

scheme has been used in [200, 201, 202, 203, 155]. One concern about the switch-

ing scheme is the stability of the system especially during the transient period

[200, 204].

Interpolation of multiple controllers is another possible scheme where the out-

put or parameters of multiple controllers are weighed and summed up according to

a rule to form the final control. Several contributions to the interpolation scheme

can be found in the literature. In [139], a PI controllers are designed as local con-

trollers based on operating point linearization of the nonlinear system and their

output are weighted as a function of defined closed-loop gap metric. PID local

controllers are also reported in [148, 149, 150] with Gaussian weighting function
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for interpolation of the outputs of the controllers. In [55, 56, 53, 54] the local

controller utilized loop shaping H∞ control and their output are weighted with a

trapezoidal function. In [141] an optimal roboust controller is designed with gap

metric weighting function. Internal model multiple controllers is utilized in [34]

with Gaussian weighting function for interpolation of the outputs. In [151], RST

controller are reported with residue weighting both for outputs and parameters

interpolation.

Model predictive control (MPC) is another control methodology that has be-

come popular with the multi-model framework. Usually two methods are adopted

in the interpolation scheme. In the first, multiple linear models are interpolated

to predict the output of the nonlinear system that will be used in the control

optimization stage [205, 152, 146, 124, 153, 154]. In the second, the multiple

MPC are designed and interpolated to form the global control of the nonlinear

system [206, 207]. Interpolation of multiple MPC is less attractive due to compu-

tational load on the optimization algorithms for all the controllers, depending on

the system complexity. Different interpolation rules have also been applied in the

multi-model MPC. Gaussian function is applied in [205, 207, 124, 153, 152] while

Bayessian and triangular function rules are utilized respectively in [146, 154].

In this section, a model-based controllers will be derived to control nonlin-

ear systems for reference tracking. The multiple models are generated using the

heuristic and meta-heuristic approach as proposed in the previous chapter. In

the study two multi-model controls configurations are investigated with weighted
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one-step-ahead controller. The first configuration is the fusion of controller out-

puts, while in the second the parameters of the models are fused together to

generate the final control signal. In both configurations, the weights needed for

interpolation are generated online using the CKF validity proposed in chapter 4.

Simulation studies on previously identified systems verified the efficacy of both

control algorithms.

6.1.1 Weighted One-Step-Ahead Controller

Given an input-output linear model expressed in the following form:

y(k + 1|k) = a0y(k) + a1y(k − 1) + · · ·+ ana + y(k − na) (6.1)

+ b0u(k) + b1u(k − 1) + · · ·+ bnbu(k − nb) (6.2)

To ensure that the output of the model, y(k + 1), tracks the a reference signal

r(k+1), we can minimizing the square of the difference between the output of the

model and that of the reference at every instant with respect to u(k). Therefore,

minimizing the following cost function with respect to u(k):

J = (r(k + 1)− y(k + 1))2 + λu2(k) (6.3)

yields a weighted one-step-ahead control law as follows
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u(k) = b0

b2
0 + λ



r(k + 1)

−a0y(k)− a1y(k − 1)− · · · − anay(k − na)

−b1u(k − 1)− · · · − bnb
u(k − nb)


(6.4)

The λ in the cost function is a user tunning parameter to achieve a balance

between the control magnitude and tracking accuracy.

6.1.2 Fusion of Weighted One-Step-Ahead Controllers

In the fusion of controllers, the outputs of multiple controllers are weighted based

on the contribution of each model, to obtain the final control signal of the nonlinear

system. Although this configuration allows different control algorithms to be

designed for each model that represents the system, same control algorithms are

used in this thesis.

Given a nonlinear system

y(k) = F (y(k − 1), . . . , y(k − na), u(k − 1), . . . , u(k − nb)) (6.5)

The control problem is to ensure that y(k+1), tracks the a reference signal r(k+1)

. Therefore, as depicted in Figure 6.1, given the submodels that are obtained from

the nonlinear system, a weighted one-step-ahead controller is designed based on

Equation (6.4) for each submodel and weighted to form the final control signal to

excite the nonlinear system. That is, given the cost function for each submodel
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as

Ji = (r(k + 1)− yi(k + 1))2 + λu2(k) (6.6)

The weighted one-step-ahead controller for each submodel can be written as:

ui(k) = bi0
b2
i0 + λ



r(k + 1)

−ai0yi(k)− ai1yi(k − 1)− · · · − ainayi(k − na)

−bi1u(k − 1)− · · · − binb
u(k − nb)


(6.7)

Finally, the final control signal for the nonlinear system is obtained as :

u(k) =
m∑
i=1

ui(k)φi(k) (6.8)

where φi(k) is the validity of each model obtained from the CKF algorithm, de-

veloped in Chapter 4.

Figure 6.1: Fused controller multi-model control configuration
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6.1.3 Fusion of Model Parameters for Weighted One-Step-

Ahead Controller

In this configuration, rather than designing multiple controllers and merging them,

a single controller is designed by considering the weighted multi-model output rep-

resentation of the system. Hence the cost function in Equation (6.3) is rewritten

as:

J = (r(k + 1)−
m∑
i

yi(k + 1)φi(k + 1))2 + λu2(k) (6.9)

As shown in Chapter 2, the global output of multi-model representation is given

as

y(k) =
m∑
i=1

yi(k)φi(k) , (6.10)

where m is the number of submodels, yi(·) and φi(k) are the ith submodel’s output

and validity, respectively. Note that the output of the each submodel can be

written as

yi(k + 1|k) =
na∑
j=0

aijyi(k − j) +
nb∑
j=0

biju(k − j) (6.11)

Hence, Equation (6.10) becomes

y(k + 1) =
m∑
i=1

φi(k + 1)
 na∑
j=0

aijyi(k − j) +
nb∑
j=0

biju(k − j)
 (6.12)

Factoring out the u(k) term yields

y(k + 1) =
m∑
i=1

na∑
j=0

φiaijyi(k − j) +
m∑
i=1

nb∑
l=1

φibilu(k − l) +
m∑
i=1

φibi0u(k) (6.13)
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where the k + 1 index of φi has been dropped for easy notation.

Substituting Equation (6.13) into the cost function in Equation (6.9), and min-

imizing with respect to u(k) yields a weight one-step-ahead controller as follows:

u(k) =
∑m
i=1 φibi0

(∑m
i=1 φibi0)2 + λ



r(k + 1)

−∑m
i=1

∑na
j=0 φiaijyi(k − j)

−∑m
i=1

∑nb
l=1 φibilu(k − l)


(6.14)

Figure 6.2 gives the schematic representation of the fusion of model parameters

for weighted one-step-ahead controller.

Figure 6.2: Fused parameters multi-model control configuration

6.1.4 Simulation Examples

Two controller designed in sections 6.1.2 and 6.1.3, subsequently refer to as Type

A and Type B respectively, were evaluated on some of the benchmark systems

presented in the chapters 4. The CKF settings W = P−1(k) and W = I are refer

to as CKFP and CKFW respectively. The results of the controllers were assessed

by MSE, PMF and VAF.
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Example 1

Consider the following discrete time varying system described by :

y(k) = a1(k)y(k − 1) + a2(k)y(k − 2) + b1(k)u(k − 1) + b2u(k − 2)

where the parameters variation laws are:

a1(k) = 0.04sin(0.035k) + 0.8

a2(k) = 0.005sin(0.03k) + 0.1

b1(k) = 0.02sin(0.03k) + 0.5

b2(k) = 0.01sin(0.035k) + 0.2

The above system was identified in section 4.4.2 with 2-parameter and 4-parameter

structures, with good accuracy, using four and two submodels, respectively. Now,

the time varying system is controlled using the Type A and Type B controllers

while tracking the reference signal

r(k) = 0.5 sin(0.2k) + 0.7 sin(0.04k)

The performance of the two controllers are shown in Table 6.2, Figure 6.3 and

Figure 6.4. The control signals are shown in Figure 6.5 and Figure 6.6 respectively

for Type A and Type B controllers. The controller turning parameters are shown

in Table 6.1. The R and Q parameters of the CKF algorithm was estimated
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using the proposed method in section 4.3.3. Although, both controllers were able

to track the signal, some little differences can be noticed. We can observe from

Table 6.2 that there is slightly better performance when the CKFW is used. Also,

the 2-parameter is better in performance than 4-parameter structure and lastly,

the Type B controller is slightly better in performance than Type A despite it is

a single controller.

Furthermore, the effect of R and Q parameters in the CKF algorithm was

investigated by randomly optimizing the two parameters. The results is as shown

in Table 6.3. It can be observed that there is a slight improvement in the results

of both controllers when CKFP validity computation is used, due to change in the

value of Q. Recall that the parameter Q is added to avoid numerical instability,

particularly for the CKFP and can be omitted for CKFW. Therefore, the estima-

tion of R and Q using the method presented in session 4.3.3 may be sufficient, at

least for the CKFW.

Table 6.1: Controllers’ parameters (λ)

CKF setting 2-parameters structure 4-parameters structure
Type A controller
CKFP 0.03 0.009
CKFW 0.03 0.0009
Type B controller
CKFP 0.04 0.002
CKFW 0.004 0.002
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Table 6.2: Performance of controllers

2-parameters structure 4-parameters structure
CKF setting MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
Type A controller
CKFP 0.0021 92.47 99.49 0.0020 92.578 99.52
CKFW 0.0014 93.83 99.64 0.0037 89.96 99.28
Type B controller
CKFP 0.0036 90.16 99.17 0.0015 93.64 99.76
CKFW 0.0002 97.92 99.96 0.0012 94.25 99.80

Table 6.3: Performance of controllers for optimized R and Q in CKF

2-parameters structure 4-parameters structure
CKF setting MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
Type A controller
CKFP 0.0021 92.47 99.49 0.0020 92.60 99.52
CKFW 0.0014 93.83 99.64 0.0037 90.02 99.28
Type B controller
CKFP 0.0011 94.45 99.71 0.0011 94.52 99.80
CKFW 0.0002 97.94 99.96 0.0011 94.52 99.80
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(a) control using 2-paramters structure with CKFP (b) control using 2-paramters structure with CKFW

(c) control using 4-paramters structure with CKFP (d) control using 4-paramters structure with CKFW

Figure 6.3: Control of time varying system using Type A controller
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(a) control using 2-paramters structure with CKFP (b) control using 2-paramters structure with CKFW

(c) control using 4-paramters structure with CKFP (d) control using 4-paramters structure with CKFW

Figure 6.4: Control of time varying system using Type B controller
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(a) using 2-paramters (CKFP) (b) using 2-paramters (CKFW)

(c) using 4-paramters (CKFP) (d) using 4-paramters (CKFW)

Figure 6.5: Control inputs for Type A controller
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(a) using 2-paramters (CKFP) (b) using 2-paramters (CKFW)

(c) using 4-paramters (CKFP) (d) using 4-paramters (CKFW)

Figure 6.6: Control inputs for Type B controller
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Example 2

Considered the highly nonlinear benchmark system [170] described by

y(k + 1) = u(k)
1 + y2(k − 1) + y2(k − 2)

+ y(k)y(k − 1)y(k − 2)u(k − 1)(y(k − 2)− 1)
1 + y2(k − 1) + y2(k − 2) (6.15)

This system, with reasonably accuracy, was identified in section 4.4.2 with 2-

parameter and 4-parameter structures using four and two submodels, respectively.

It is required that the system track the following reference signal:

r(k) = 0.4 sin(2π
10k) + 0.2 sin(2π

25k)

Table 6.5, Figure 6.7 and Figure 6.8 show the results of using the Type A and

Type B controllers for the tracking problem respectively. Figure 6.9 and Figure

6.10 show the control inputs. Judging from the table and figures, both controllers

can be said to have reasonably good tracking performance. The trend noticed

in the Example 1 can also be observed here. Similarly, from Table 6.6 further

optimization of Q and R can be seen to slightly improved the performance of the

CKFP especially in the Type B controller.

157



Table 6.4: Controllers’ parameters (λ)

CKF setting 2-parameters structure 4-parameters structure
Type A controller
CKFP 0.15 0.06
CKFW 0.1 0.06
Type B controller
CKFP 0.08 0.055
CKFW 0.07 0.065

Table 6.5: Performance of controllers

2-parameters structure 4-parameters structure
CKF setting MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
Type A controller
CKFP 0.0016 87.27 98.46 0.0018 86.31 98.21
CKFW 0.0014 88.04 98.64 0.0019 86.23 98.21
Type B controller
CKFP 0.0018 86.54 98.28 0.0013 88.47 98.73
CKFW 0.0011 89.60 98.97 0.0013 88.37 98.72

Table 6.6: Performance of controllers for optimized R and Q in CKF

2-parameters structure 4-parameters structure
CKF setting MSE PMF(%) VAF(%) MSE PMF(%) VAF(%)
Type A controller
CKFP 0.0021 92.47 99.49 0.0014 87.91 98.60
CKFW 0.0014 93.83 99.64 0.0014 87.94 98.61
Type B controller
CKFP 0.0016 87.04 98.41 0.0011 89.20 98.88
CKFW 0.0011 89.60 98.97 0.0012 88.88 98.80
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(a) control using 2-paramters structure with CKFP (b) control using 2-paramters structure with CKFW

(c) control using 4-paramters structure with CKFP (d) control using 4-paramters structure with CKFW

Figure 6.7: Control of time varying system using Type A controller
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(a) control using 2-paramters structure with CKFP (b) control using 2-paramters structure with CKFW

(c) control using 4-paramters structure with CKFP (d) control using 4-paramters structure with CKFW

Figure 6.8: Control of time varying system using Type B controller
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(a) using 2-paramters (CKFP) (b) using 2-paramters (CKFW)

(c) using 4-paramters (CKFP) (d) using 4-paramters (CKFW)

Figure 6.9: Control inputs for Type A controller
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(a) using 2-paramters (CKFP) (b) using 2-paramters (CKFW)

(c) using 4-paramters (CKFP) (d) using 4-paramters (CKFW)

Figure 6.10: Control inputs for Type B controller
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6.2 Fault detection and Isolation

Knowledge based multi-model method has been employed for fault diagnosis [36,

37, 38]. This approach to fault diagnosis uses a model bank composed of dynamical

models of the systems in normal and fault situations, and the integration of these

models (see Figure 6.11 ). According to multi-model concept, the state of the

system is determined by running the model bank online and computing the validity

of the models. In this way, fault isolation is achieved by representing the individual

faults using different models. In what follows, multi-model fault detection and

isolation is carried out using the CKF algorithm to compute the validity of the

dynamical models of a system in normal and fault modes. Comparative study

between the CKF algorithm and two other commonly use validity computations

are also carried out.

Figure 6.11: Multi-model Fault Diagnosis

Consider a three-tank system shown in Figure 6.12. The mass balance equation
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of the system ([208, see]) is represented by

S1
dh1(t)
dt

= q1(t)− q12(t) , (6.16)

S2
dh2(t)
dt

= q12(t)− q23(t)− q10(t) ,

S3
dh3(t)
dt

= q2(t) + q23(t)− q20(t) ,

where hi(t), i = 1, 2, 3, is the liquid level in tank i, Si, i = 1, 2, 3, is the cross

section of tank i, g is the constant of gravity, and qij(t) is the flow rate from tank

i to j, i, j = 1, 2, 3. The flow rate according to Torricelli’s rule is given by

qij(t) = µispsign(hi(t)− hj(t))
√

2g|hi(t)− hj(t)| ,

where µi, i = 1, . . . , 4 is the output flow coefficient which represents the state of

the valve. It has a value of unity when the valve is open and zero otherwise. sp

is the section of all valves, and qi(t), i = 1, 2, is the input flow rate controlled by

two pumps. q10 and q20 represents the outflow rate given by

qi0(t) = µisp
√

2ghi(t) i = 1, 2.

The normal mode of this system is to keep constant quantities of water for

two consumer’s mass through valve v2 and v3. That is, while the two pumps

continuously pump in water through q1 and q2 , all the four valves are opened.

The system output measurement is y(t) = h3. Six failure modes can occur in this
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Figure 6.12: The Three-Tanks System

system; two from the failure of the two pumps and four from each of the valves .

However, two possible failures are considered in this simulation; failure in the valve

v2 and/or v3. This implies that at the point of failure the valve is closed (i.e. µi =

0, i = 2, 3 ). The system is discretized at sampling time of 5s with the parameters;

sp = 0.00065m2, S1 = S3 = 0.0491m2, S2 = 0.0616m2, q1 = 0.000154m3s−1,

q1 = 0.00025m3s−1 , g = 9.81Nm2 , h(0) = [0.40116 0.10249 0.05124].

In the simulation, model bank consisting of models of normal system mode and

the two fault mode are compared with the simulated system output to determine

not only the existence of a fault but also the kind of fault. Figure 6.13 shows

the schematic diagram of a multi-model fault detection and isolation. Different

validity computations namely, simple residue, reinforced residue and the CKF

algorithms are examined to detect possible fault in the system. The fault diagnosis

simulation for the two faults are given below.
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Figure 6.13: Multi-model Fault Detection of Three-Tanks System

Normal mode

In this case the system is allowed to run in normal mode without any failure.

The model bank was run online along with the simulated system to compute the

contribution of each model (validity computation) as shown in Figure 6.13 . The

profile of the validity computations from aforementioned algorithms are shown in

Figure 6.14. It is observed from the figures that all the validities reached their

maximum value of unity except with simple validity with value of 0.5. There is

however slow convergence of CKF with W = I due to the high weight.

Failure of valve v2

In this case the system is allow to run with fault in v2. The failure of valve v2

is simulated at time instant of 150 seconds. It is observed from Figure 6.15 that

the validity profile allows us to determine that there is a fault at valve v2 in all

the validity computations. This can be noticed at instant 155 seconds by the
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(a) Simple residue validity profile (b) Reinforced residue validity profile

(c) CKF (W = P−1 ) validity profile (d) CKF (W = I ) validity profile

Figure 6.14: Validity profiles for normal mode

simple and reinforced residue, instant 170 seconds by CKF setting W = P−1,

and instant 175 seconds by CKF setting W = I. Irrespective of the time they

reach the maximum value, we can notice that the validity of normal model starts

decreasing at exact time instance of failure, and the validity of the v2 fault model

starts increasing. This is essentially needed for a good fault detection. Hence, the

state of the system can be determined by the model that has validity value of at

least 0.6 at any time instant.
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(a) Simple residue validity profile (b) Reinforced residue validity profile

(c) CKF (W = P−1 ) validity profile (d) CKF (W = I ) validity profile

Figure 6.15: Validity profiles for fault on valve v2

Failure of valves v2 and v3 at different time

Here failure of valve v2 and valve v3 are considered at time instant of 75 and

120 seconds respectively. The result is as shown in Fig. 6.16. All the validity

computation were able to detect the fault at the exact instant by the decrement

of validity value of the system’s previous state. However, similar to previous fault,

it is observed that CKF shows slow convergence rate to reach the maximum value

of unity.
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(a) Simple residue validity profile (b) Reinforced residue validity profile

(c) CKF (W = P−1 ) validity profile (d) CKF (W = I ) validity profile

Figure 6.16: Validity profiles for fault on valve v2 and v3 at different time

Failure of valves v2 and v3 simultaneously

In this scenario valve v2 failed at time instant of 75 seconds while both valves

( v2 and v3 ) failed at time instant of 120 seconds. Note that we do not have

model for simultaneous fault of v2 and v3 in the model library. As shown in

Fig. 6.17 all the validity computation were able to detect the simultaneous fault

differently despite non availability of its model in the library. It is however noted

that the CKF validity profiles are more reasonable than others as they show

fluctuations in normal mode of operation when both faults occur simultaneously

which represents a good indication of the presence of problem in the system. In
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the case of reinforced validity profile, the result shows that none of the model

represents the real system behavior (validity value of all the library models are

less than 0.5).

(a) Simple residue validity profile (b) Reinforced residue validity profile

(c) CKF (W = P−1 ) validity profile (d) CKF (W = I ) validity profile

Figure 6.17: Validity profiles for fault on valves v2 and v3 simultaneously

Failure of valves v2 with noise on the system output

In this case the previous simulation of failure of valve v2 at instant of 150 seconds

is carried out with noise added to the output of the system at very instant. The

noise generated is normally distributed random noise scaled at some percentage

of the system output. The scale of 5% to 30% is used. For the 5% scale all
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the four validity computations were able to detect the fault, though a little false

detection (indicated with red circle) can be noticed in the profile of simple and

reinforced residue validity computation as shown in Figure 6.18a and Figure 6.18b

respectively. The results of 10% and 20% scaled noise are as shown in Figure 6.19

and Figure 6.20 respectively. One can observe that as the percentage of noise

increases, the false detections (indicated with red circle) in the profile of simple

and reinforced residue validity computations also increases. However, as for the

CKF validity computations there is no false detection can be noticed (see Figures

6.19c, 6.19d, 6.20d, and 6.20c). Although it is becoming difficult for the validity of

the library models to reach their maximum value in both CKF validity settings,

this does not make the fault decision obscure. As explained earlier, the state

of the system can be determine by validity above 0.5. Therefore, unlike simple

and reinforced residue, CKF validity computation is robust to noise environment

which is common in many industrial processes.

In summary, the CKF validity computation has been found to be adequate

for fault diagnosis. Although it is observed that it has slow convergence to reach

its maximum validity value (one), this does not degrade its performance as the

state of the system can be determine at any instance. Moreover, the CKF validity

has shown to be robust to noise which is very common in the practical process

environments.

171



(a) Simple residue validity profile (b) Reinforced residue validity profile

(c) CKF (W = P−1 ) validity profile (d) CKF (W = I ) validity profile

Figure 6.18: Validity profiles for fault on valve v2 with 5% scaled noise

6.3 Conclusion

Chapter 6 presents multi-model control and fault diagnosis of a complex nonlinear

system. In the control case, two multi-model controller schemes were designed

for tracking problem, and were found to have good performance. In the fault

diagnosis application, the CKF validity computation was investigated on a three

tank system to detect and isolate the system fault. Simulation results show that

CKF algorithm is of good performance and better than other commonly used

validity estimation methods. Also, it has shown to be robust to noisy situation.
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(a) Simple residue validity profile (b) Reinforced residue validity profile

(c) CKF (W = P−1 ) validity profile (d) CKF (W = I ) validity profile

Figure 6.19: Validity profiles for fault on valve v2 with 10% scaled noise
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(a) Simple residue validity profile (b) Reinforced residue validity profile

(c) CKF (W = P−1 ) validity profile (d) CKF (W = I ) validity profile

Figure 6.20: Validity profiles for fault on valve v2 with 20% scaled noise
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CHAPTER 7

CONCLUSION AND

RECOMMENDATION

" Research never ends but Researchers do"......Anonymous

Chapter 7 summarizes the contributions of the thesis to the existing research

works on multi-model identification of nonlinear systems, and points out the pos-

sible future extensions of the research.

7.1 Main Contribution

Several industrial systems are characterized by high nonlinearities with wide oper-

ating ranges and large set point changes. Identification and representation of these

systems represent a challenge especially for the control engineers. In recent years,

much attention has been given to the multi-model-based alternative approach to

describe nonlinear systems. In contrast to conventional modeling technique, a

system is represented by a set of models, that are combined, in a certain way,
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to form the global model. This intuitive idea comes with several paradigms such

as T-S fuzzy model, piecewise continuous model (PWC), piecewise affine (PWA),

linear parameter varying model (LPV), local model network (LMN), etc.. Owing

to its potential benefits, this effective field of research has received several contri-

butions, and has gained lots of interest in many application areas, particularly in

control and fault diagnosis. Despite its benefits, the approach still faces several

challenges.

This dissertation focuses on identification of nonlinear systems using multi-

model approach, as well as it application for control and fault diagnosis. To this

end, background and detailed review to interpolated multi-model representation

of nonlinear system was provided in chapter 2. An exposition and review of recent

developments to the design challenges encountered in multi-model framework for

modeling and identification of nonlinear system is presented. Rather than enu-

merating all methodologies in the area, we have focused on three key challenging

areas of multi-model design namely: operating space partition strategies, internal

structure and parameter estimation as well as validity computation.

One major challenge of multi-model approach is the partitioning of the sys-

tem’s operating space to a number of sub-spaces. This translate to finding the

submodels that can adequately represent the entire operating region of the non-

linear system. In chapter 3, a two-stage method to obtain the partition and pa-

rameters of the submodels in the multi-model representation is presented. In the

first stage, we modified the combinatorial Particle Swarm Optimization (CPSO)
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to find the number of submodels and their initial parameters. Hybrid K-means

algorithm was used to obtain more efficient submodels in the second stage. This

proposed approach provided us with automatic optimization of the number of

submodels with respect to submodel complexity. This implies that the original

nonlinear system can be partitioned into a parsimonious number of submodels

and the structure of the submodels can be assumed a priori. Furthermore, the

partition and selection of number of submodels is not only based on data distri-

bution but also on the linearity of the operating region, and that of the assumed

submodel structure. Indeed this made the submodels to have few effective param-

eters, stable with better accuracy. Benchmark simulation examples were provided

to illustrate the effectiveness of the proposed method.

Chapter 4 deals with the issue of combining the submodels to completely form

multi-model representation of the nonlinear system. Although during simulation

studies in chapter 3 the submodels estimated were interpolated using existing

validity computations in the literature. These methods have been reported to have

some drawback such as lack of precision, sensitivity to parameter selection, and

restriction to partition strategy. In order to overcome some of these drawbacks,

constrained Kalman filter (CKF) was developed for interpolating the outputs of

the submodels. The algorithm was obtained by reformulating the multi-model

output equation as an estimation problem. Extensive simulation studies indicated

that CKF algorithm can indeed contributes towards accurate identification of

nonlinear systems. This was demonstrated by comparison studies between the
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CKF and other commonly used methods.

In chapter 5, the modified combinatorial Particle Swarm Optimization algo-

rithm in chapter 3 was extended to include estimation of order of the submodels

(number of parameters), which was assumed known previously.

In chapter 6, applications of our proposed multi-model framework were in-

vestigated for nonlinear systems control and fault diagnosis. For the control ap-

plication, two multi-model controller schemes, based on weighted one-step-ahead

controller design, were derived to control nonlinear systems for reference tracking.

The first scheme presented a fusion of the multiple weighted one-step-ahead con-

troller outputs while in the second, fusion of submodels’ parameters was used to

derive a weighted one-step-ahead controller. The weights needed for the interpo-

lation in both schemes were generated online using the CKF validity. Simulation

studies on the previously identified systems verified the efficacy of both the control

schemes. In the fault diagnosis application, the suitability of the CKF algorithm

under multi-model framework was tested for fault detection and isolation on a

three-tank system.

7.2 Future Recommendation

Some areas for further research may include the following:

• In chapter 2 the submodels were identified with input-output models. We

recommend extending the algorithm presented to be able to cope with state

space models, which is model suitable for multi-input multi-output systems.
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This can be done for example by incorporating algorithm like the N4SID

into the framework presented.

• We observed that using the CKF algorithm for validity estimation can some-

time defy the known principle that the interpolated output will be unstable

if atleast one of the submodels is unstable. This has to be investigated fur-

ther as we noticed that sometimes the interpolated output is stable when

only one submodel is unstable.

• Only the offline estimation of the submodels is addressed in this thesis. An

important area that should be addressed in future research is online partition

scheme for online identification of submodels. Although for the approach

that were presented, the submodels could be updated online by using the

cluster center of the partition that is the closest to a new observation, direct

online partition are needed for higher dimensional problems.

• Application consideration in operating space partition may also needs to be

given more attention. This may allow the submodels created, for example in

control, to have inherent closed loop characteristics that will enhance control

performance.

• Multi-model is versatile approach that can handle many real life process.

therefore, this approach should be exploited in other application areas like,

fault tolerance control, multiphase flow, systems’ health management etc
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Although there remains much to do, significant steps towards improving the

methodology of multi-model identification, control and fault diagnosis for complex

nonlinear dynamic systems have been presented in this work.
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