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Summary

Summary

Switched systems are a particular kind of hybrid systems that consist of a

number of subsystems and a switching rule governing the switching among these

subsystems. Due to their importance in theory and potential in application, the

last two decades have witnessed numerous research activities in this field. Among

the various topics, the stability analysis and controller synthesis of switched

systems are studied in this thesis.

It is the existence of switching that makes the stability issues of switched

systems very challenging. Due to the conservativeness of the common Lyapunov

functions based methods, the worst case analysis (resp. best case analysis) ap-

proach has been widely used in establishing less conservative conditions for the

stability under arbitrary switching (resp. switching stabilizability) of second-

order switched linear systems in recent years. While significant progress has

been made, most of the existing results are restricted to second-order switched

linear systems with two subsystems. The first two main contributions of this

thesis are to derive easily verifiable necessary and sufficient conditions for the

stability under arbitrary switching and switching stabilizability of second-order

switched linear systems with any finite number of subsystems.

On the other hand, switched systems provide a powerful approach for the

identification and control of nonlinear systems with large operating range based

on the divide-and-conquer strategy. In particular, the piecewise affine (PWA)

models have drawn most of the attention in recent years. However, there are two

major issues for the PWA model based identification and control: the “curse of

VII



Summary

dimensionality” and the computational complexity. To resolve these two issues,

a novel multiple model approach is developed for the identification and control

of nonlinear systems, which is the third main contribution of this thesis. Both

simulation studies and experimental results demonstrate the effectiveness of the

proposed multiple model approach.
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Chapter 1

Introduction

It is well known that the traditional control theory has focused either on

continuous or on discrete behavior. However, many real-world dynamical sys-

tems display interaction between continuous and discrete dynamics, such as an

automobile with a manual gearbox [1], a furnace with on-off behavior [2], and a

genetic regulatory network consisting of a set of interacting genes [3], etc. Such

systems are called hybrid systems.

Hybrid systems have attracted the attention of people from different com-

munities due to their intrinsic interdisciplinary nature. People specializing in

computer science concentrate on studying the discrete behavior of hybrid sys-

tems by assuming a relatively simple form for the continuous dynamics. Many

researchers in systems and control theory, on the other hand, tend to regard hy-

brid systems as continuous systems with switching and place a greater emphasis

on properties of the continuous state. It is the latter point of view that prevails

in this dissertation.

Therefore, we are interested in continuous-time systems with discrete switch-
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Chapter 1. Introduction

ing events, which are referred to as switched systems. More specifically, switched

systems are a special kind of hybrid systems that consist of a finite number of

subsystems and a switching rule governing the switching among these subsys-

tems. One convenient way to classify switched systems is based on the dynamics

of their subsystems. For example, continuous-time or discrete-time, linear or

nonlinear, etc.

Mathematically, a continuous-time switched system can be described by a

collection of indexed differential equations of the form

ẋ(t) = fσ(x(t), u(t)) (1.1)

where the state x ∈ Rn, the control input u ∈ Rm, and σ : R+ → IN =

{1, 2, · · · , N} is a piecewise constant function, called a switching signal. R+

denotes the set of nonnegative real numbers. By requesting a switching signal

to be piecewise constant, we mean that the switching signal has a finite number

of discontinuities on any finite interval of R+, which corresponds to the no-

chattering requirement for continuous-time switched systems.

Similarly, a discrete-time switched system can be represented as a collection

of indexed difference equations of the form

x(k + 1) = fσ(x(k), u(k)) (1.2)

where the switching signal σ : Z+ → IN is a discrete-time sequence and Z+

stands for the set of nonnegative integers. Note that the piecewise constant

requirement for the switching signal is not an issue for the discrete-time case.

2



Chapter 1. Introduction

In general, the switching signal at time t may depend not only on the time

instant t, but also on the current state x(t) and/or previous active mode. Accord-

ingly, the switching logic can be classified as time-dependent (switching depends

on time t only), state-dependent (switching depends on state x(t) as well), and

with or without memory (switching also depends on the history of active modes)

[4, 5]. Of course, the combinations of several types of switching are also possible.

In particular, if all the subsystems are linear time-invariant (LTI) and au-

tonomous, we obtain the autonomous switched linear systems, which have at-

tracted most of the attention in the literature [6, 7, 8], given by

ẋ(t) = Aσx(t) (1.3)

x(k + 1) = Aσx(k) (1.4)

where Ai ∈ Rn×n (i ∈ IN ) is the matrix for the ith LTI subsystem ΣAi :

ẋ(t) = Aix(t) and the origin is an equilibrium point (maybe unstable) of the

system. The set of the state matrices for all the subsystems is denoted by

A = {A1, A2, · · · , AN}.

The study of switched systems is motivated by two main reasons. First, many

real-world systems can be modeled by switched systems, such as power systems,

biological systems and communication networks, etc. Second, there exists a large

class of nonlinear systems that can be stabilized by switching control schemes,

but cannot be stabilized by any continuous static state feedback control law [9].

Due to their importance in theory and great potential in application, the last two

decades have witnessed numerous studies on their controllability [10, 11, 12, 13],

3



Chapter 1. Introduction

observability [14, 15], stability [4, 16, 17, 18, 5] and controller design [19, 20, 21].

In this dissertation, we limit the scope of our study to the stability analysis

and controller synthesis of switched systems, for which a brief review of the

recent results is presented in this chapter.

1.1 Stability Analysis of Switched Systems

The stability is a fundamental issue for any control system. A control strat-

egy can find wide applications in industry only when its stability properties are

well understood. For the stability issues of switched systems, there are several

interesting phenomena. For example, even when all the subsystems are asymp-

totically stable, the switched systems may have divergent trajectories for certain

switching signals [17, 22]. Consider the trajectories of two second-order asymp-

totically stable subsystems, which are sketched in Fig. 1.1. It is shown that the

switched system can be made unstable by a certain switching signal. On the

other hand, even when all the subsystems are unstable, it may still be possible

to stabilize the switched system by an appropriately designed switching signal

[17, 22]. This fact is illustrated in Fig. 1.2.

As these examples suggest, the stability of switched systems depends not only

on the dynamics of each subsystem, but also on the properties of the switching

signals. Therefore, there are mainly two types of problems considering the sta-

bility analysis of switched systems. One is the stability under given switching

signals, while the other one is the stabilization for a given collection of subsys-

tems.

For the stability under given switching signals, there are mainly two types of

4



Chapter 1. Introduction

Figure 1.1: Switching between two stable subsystems

Figure 1.2: Switching between two unstable subsystems

switching signals that have been addressed in the literature, which are arbitrary

switching signals and restricted switching signals. The former case is mainly

investigated by constructing a common Lyapunov function for all the subsystems

[4]. For the latter case, the restrictions on switching signals may be either time

domain restrictions (e.g., dwell-time and average dwell-time switching signals)

[23] or state-space restrictions (e.g., abstractions from partitions of the state-

space) [24]. It is well known that the multiple Lyapunov function approach

is more efficient in offering greater freedom for demonstrating the stability of

switched systems under restricted switching [25].

As for the stabilization of switched systems, there are mainly two problems.

The first one is to design feedback controllers for each subsystem to make the

closed-loop system stable under a specific switching signal, which is referred

5
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to as the feedback stabilization problem of switched systems. Several types of

switching signals have been studied in the literature, such as arbitrary switching

[26, 27], slow switching [28] and restricted switching induced by partitions of the

state-space [29, 30]. On the other hand, another problem of interest is to design

stabilizing switching signals for a collection of subsystems, which is referred to

as the switching stabilization problem of switched systems.

In this dissertation, we focus on the stability under arbitrary switching and

the switching stabilization of switched linear systems.

1.1.1 Stability under Arbitrary Switching

One common question asked for a switched system is its stability condition-

s when there is no restriction on the switching signals, which is known as the

stability under arbitrary switching and is of great practical importance. For

example, when multiple controllers are designed for a plant to satisfy certain

performance requirements, it is important to guarantee that the switching a-

mong these controllers does not cause instability. Obviously, it is not an issue

if the closed-loop switched system is stable under arbitrary switching. For this

problem, it is necessary to require that all the subsystems are asymptotically

stable. Otherwise, the trajectory of the switched system can blow up by keeping

the switching signal on the unstable subsystem all the time. However, this condi-

tion is not sufficient for the stability under arbitrary switching. Therefore, some

additional conditions on the subsystems’ state matrices need to be determined.

6
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Common Lyapunov Functions

Lyapunov theory plays a vital role in the stability analysis of dynamical

systems [31, 32]. The key idea is to establish the stability of a dynamical system

by demonstrating the existence of a positive valued, norm-like function that

decreases along all trajectories of the system as time evolves. This is the basis

for most of the recent studies on the stability of switched linear systems.

If a candidate Lyapunov function V (x) decreases along all trajectories of a

switched linear system under arbitrary switching, it must be true for all constant

switching signals σ = i (i ∈ IN ). Therefore, such function V (x) is a common

Lyapunov function for each subsystem of the switched linear system. It was

well established [33, 34] that a switched system is uniformly exponentially sta-

ble under arbitrary switching if a common Lyapunov function exists for all its

subsystems. We now discuss different types of common Lyapunov functions for

switched linear systems in the literature.

Common Quadratic Lyapunov Functions The existence of a common

quadratic Lyapunov fucntion (CQLF) [35] for all its subsystems assures the

quadratic stability of a switched linear system. Quadratic stability is a special

class of exponential stability, which implies asymptotic stability. More specifi-

cally, if there exists a positive definite matrix P � 0 satisfying

PAi +ATi P ≺ 0, i ∈ IN , (1.5)

7



Chapter 1. Introduction

then all the subsystems admit a CQLF of the form

V (x) = xTPx, (1.6)

and the continuous-time autonomous switched system (1.3) is asymptotically

stable under arbitrary switching.

Remark 1.1. The geometric meaning of the existence of a CQLF is that, in the

domain of linearly transformed coordinates, the squared magnitudes of the states

of all the subsystems decay exponentially.

It is noted that the condition (1.5) is a linear matrix inequality (LMI) and can

be solved using standard convex optimization tools [36]. While LMIs provide an

effective way to verify the existence of a CQLF among a family of LTI subsystems,

they offer little insight into the relationship between the existence of a CQLF

and the dynamics of switched linear systems. Moreover, LMI-based methods

may become inefficient when the number of subsystems is very large. Therefore,

it is of great interest to determine algebraic conditions on the subsystems’ state

matrices for the existence of a CQLF.

A simple condition to guarantee the existence of a CQLF among a group of

LTI subsystems is that their state matrices commute pairwise.

Theorem 1.1. [37] A sufficient condition for the Hurwitz matrices A1, A2, · · · , AN

in Rn×n to have a CQLF is that they commute pairwise. Given a symmetric

positive definite matrix P0, let P1, P2, · · · , PN be the unique symmetric positive

definite matrices that satisfy the Lyapunov equations

ATi Pi + PiAi = −Pi−1, i = 1, 2, · · · , N, (1.7)

8



Chapter 1. Introduction

then the function V (x) = xTPNx is a CQLF for all the subsystems.

However, the above condition is too restrictive to be satisfied for switched

linear systems in general. Therefore, more general conditions need to be found.

By considering a second-order switched linear system with two subsystems,

Shorten and Narendra [38, 39] derived a necessary and sufficient condition for

the existence of a CQLF based on the stability of the matrix pencil. Given two

matrices A1 and A2, the matrix pencil γα(A1, A2) is defined as the one-parameter

family of matrices γα(A1, A2) = αA1 + (1− α)A2, α ∈ [0, 1]. The matrix pencil

γα(A1, A2) is said to be Hurwitz if all its eigenvalues are in the open left half

plane for all 0 ≤ α ≤ 1.

Theorem 1.2. [38, 39] Let A1, A2 be two Hurwitz matrices in R2×2. The

following conditions are equivalent:

1) there exists a CQLF for the switched linear system with A1, A2 as two

subsystems;

2) the matrix pencil γα(A1, A2) and γα(A1, A
−1
2 ) are both Hurwitz;

3) the matrices A1A2 and A1A
−1
2 do not have any negative real eigenvalues.

Theorem 1.2 provides an algebraic condition to verify the existence of a CQLF

based on the subsystems’ state matrices. However, it turns out to be difficult to

generalize this condition to higher-order switched linear systems.

In [40, 41], necessary and sufficient algebraic conditions were derived for the

non-existence of a CQLF for third-order switched linear systems with a pair of

subsystems. However, those conditions are not easy to be verified. For a pair of

nth-order LTI systems, a necessary condition for the existence of a CQLF was

derived in [42, 43] as follows.
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Theorem 1.3. [42, 43] Let A1, A2 be two Hurwitz matrices in Rn×n. A

necessary condition for the existence of a CQLF is that the matrix products

A1[αA1 + (1− α)A2] and A1[αA1 + (1− α)A2]
−1 do not have any negative real

eigenvalues for all 0 ≤ α ≤ 1.

As a special case, consider a switched linear system with two LTI subsys-

tems whose state matrices have rank one difference. A necessary and sufficient

condition for the existence of a CQLF was obtained in [44].

Theorem 1.4. [44] Let A1, A2 be two Hurwitz matrices in Rn×n with rank(A2−

A1) = 1. A necessary and sufficient condition for the existence of a CQLF

is that the matrix product A1A2 does not have any negative real eigenvalues.

Equivalently, the matrix A1 + γA2 is non-singular for all γ ∈ [0,+∞).

An independent proof for this condition was presented in [45] based on convex

analysis and the theory of moments.

So far, our discussion on the existence of a CQLF has been restricted to

switched linear systems with two subsystems. However, in general, switched

systems may have more than two modes. Obviously, a necessary condition for the

existence of a CQLF for a switched linear system with more than two subsystems

is that each pair of its subsystems admits a CQLF. Actually, the existence of a

CQLF pairwise may also imply the existence of a CQLF for the switched system

in certain special cases, e.g., second-order switched positive linear systems [46].

However, this is not true for general switched systems. The existence of a CQLF

for a finite number of second-order LTI systems was studied in [39] with the

following result.

10
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Theorem 1.5. [39] Let A1, A2, · · · , AN be Hurwitz matrices in R2×2 with a21i 6=

0 for all i ∈ IN . A necessary and sufficient condition for the existence of a CQLF

is that a CQLF exists for every 3-tuple of systems {Ai, Aj , Ak}, i 6= j 6= k for

all i, j, k ∈ IN .

Meanwhile, an equivalent necessary and sufficient condition for the existence

of a CQLF among a finite number of second-order LTI systems, which is simple

in computational complexity, was also proposed in [47] based on the topological

structure.

Alternatively, a sufficient condition for the existence of a CQLF among a

finite number of LTI systems was derived based on the solvability of the Lie

algebra generated by the subsystems’ state matrices.

Theorem 1.6. [22] If all matrices Ai, i ∈ IN are Hurwitz and the Lie algebra

{Ai, i ∈ INLA} is solvable, then there exists a CQLF.

This condition was extended to the local stability of switched nonlinear sys-

tems based on Lyapunov’s first method in [48]. See [49] for an overview of the

Lie-algebraic global stability criteria for nonlinear switched systems. However,

the Lie algebraic conditions are only sufficient for the existence of a CQLF and

are not easy to be verified.

In addition to the above elegant results, some special cases were also studied.

One special case is when all the subsystems are symmetric [50], i.e., ATi = Ai for

all i ∈ IN . Stability of Ai implies ATi + Ai ≺ 0, which means that V (x) = xTx

is a CQLF for the switched linear system. Similarly, if the subsystems’ state

matrices are normal, i.e., AiA
T
i = ATi Ai for all i ∈ IN , V (x) = xTx is also a

CQLF for the switched linear system [51].

11
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On the other hand, if the Hurwitz matrices A1, A2, · · · , AN are all in upper

triangular form, then it was shown in [52] and [53] that the collection of systems

ΣAi always admits a CQLF and the matrix P that defines the CQLF can be

chosen to be diagonal.

While numerous elegant results have been obtained for the existence of a

CQLF for switched linear systems, the problem of finding necessary and sufficient

conditions for the existence of a CQLF for general higher-order switched linear

systems is still open. Moreover, the existence of a CQLF is only sufficient for

the asymptotical stability of switched systems under arbitrary switching [6].

Therefore, it is of great interest to investigate other types of common Lyapunov

functions.

Converse Lyapunov Theorems Considering the globally uniformly asymp-

totically stable and locally uniformly exponentially stable continuous-time switched

systems under arbitrary switching, a converse Lyapuonv theorem was derived in

[34].

Theorem 1.7. [34] If the switched system is globally uniformly asymptotically

stable and in addition uniformly exponentially stable, the family of subsystems

has a common Lyapunov function.

This condition was extended to switched nonlinear systems that are globally

uniformly asymptotically stable with respect to a compact forward invariant set

in [54]. These converse Lyapunov theorems suggest the study of non-quadratic

Lyapunov functions.

Based on the equivalence between the asymptotic stability of switched sys-

tems under arbitrary switching and the robust stability of polytopic uncertain
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linear time-variant systems, some well-known converse Lyapunov theorems have

been introduced.

Theorem 1.8. [33] The switched linear system ẋ(t) = Aσx(t) is uniformly

exponentially stable for arbitrary switching signal if and only if there exists a

strictly convex, homogeneous (of second order), Lyapunov function V (x) of a

quasi-quadratic form

V (x) = xTL(x)x, (1.8)

such that

max
z∈Ax

∂V (x)

∂z
≤ −γ‖x‖2, γ > 0, (1.9)

where L(x) ∈ Rn×n, L(x)T = L(x) = L(cx) for all nonzero c ∈ R and x ∈ Rn.

Moreover, ‖x‖ is the Euclidean norm of vector x.

Polyhedral Lyapunov Functions Furthermore, we can focus on polyhedral

Lyapunov functions (also known as piecewise linear Lyapunov functions) [55] as

the following result pointed out.

Theorem 1.9. [33, 55] If a switched linear system is asymptotically stable under

arbitrary switching, then there exists a polyhedral Lyapunov function, which is

monotonically decreasing along the switched system’s trajectories.

Several numerical algorithms have been developed for automated construc-

tion of a common polyhedral Lyapunov function in the literature. In [56], the

Lyapunov function construction problem was converted to the design of a bal-

anced polyhedron satisfying some invariance properties. An alternative approach

was proposed in [33, 57], where linear programming based methods were devel-

oped for deriving stability conditions. Recently, a numerical approach, called
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ray-griding [58], was suggested to calculate polyhedral Lyapunov functions based

on uniform partitions of the state-space in terms of ray directions. However, it

has been found that the construction of such piecewise Lyapunov functions is,

in general, not simple.

Worst Case Analysis

It is noted that the stability of switched linear systems under arbitrary switch-

ing is closely related to the absolute stability and robust stability of differential

or difference inclusions. Therefore, the results in these fields can be used to study

the stability of switched systems under arbitrary switching. An interesting line of

research in the absolute stability literature is to characterize the “most unstable”

trajectory of a differential or difference inclusion through variational principles

[59]. The basic idea is simple: if the “most unstable” trajectory is stable, then

the whole system should be stable as well. By characterizing the “most unstable”

nonlinearity using variational calculus, Pyatnitskiy and Rapoport [60] derived a

necessary and sufficient condition for the absolute stability of second-order and

third-order systems. Unfortunately, this condition is difficult to be verified since

it requires the solution of a nonlinear equation with three unknowns. By intro-

ducing the concept of generalized first integrals, Margaliot and his co-workers

[61, 62] reduced the number of unknowns of the nonlinear equation from three to

one, and derived a verifiable necessary and sufficient condition for the absolute

stability of second-order systems, which was extended to third-order systems in

[63, 64]. However, these conditions are ad hoc, and offer little insight into the

actual stability mechanism of switched systems.

Recently, for second-order switched linear systems with two subsystems ΣA1
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and ΣA2 , where the eigenvalues of A1 and A2 have strictly negative real part

(diagonalizable), a necessary and sufficient condition for the stability under ar-

bitrary switching was proposed in [65] by studying the locus in which the two

vector fields A1x and A2x are collinear. This condition was extended to the non-

diagonalizable case in [66]. By combining the results of [65] and [66], a compact

necessary and sufficient condition was derived for the stability of second-order

switched linear systems with two subsystems under arbitrary switching in [67].

On the other hand, by denoting the switching signal that drives the switched

system to the “most unstable” trajectory as the worst case switching signal (WC-

SS) and deriving detailed WCSS criteria in polar coordinates, an easily verifiable

necessary and sufficient condition for the stability of second-order switched linear

systems with two subsystems under arbitrary switching was derived in [68, 69].

However, it should be noted that all these results are restricted to second-

order switched linear systems with two subsystems. To the best of the author’s

knowledge, to derive easily verifiable necessary and sufficient conditions for the

stability of second-order switched linear systems with more than two subsystems

under arbitrary switching has been an open problem, which is to be investigated

in this thesis.

1.1.2 Switching Stabilization

In addition to the stability under arbitrary switching, another problem of

interest is the switching stabilization of switched systems, which is to determine

stabilizing switching rules for a given collection of subsystems. For this prob-

lem, it is necessary to require that all the subsystems are unstable. Otherwise,

the trajectory of the switched system will converge to the origin by keeping
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the switching signal on the stable subsystem all the time. However, this condi-

tion is not sufficient for the switching stabilizability. Therefore, some additional

conditions on the subsystems’ state matrices need to be determined.

Quadratic Switching Stabilization

Early efforts in this field have focused on quadratic stabilization for certain

classes of switched systems. A switched system is called quadratically stabilizable

when there exist switching signals that stabilize the switched system along a

quadratic Lyapunov function V (x) = xTPx.

For continuous-time switched linear systems with two unstable subsystems,

it was shown in [70, 71, 72] that the existence of a stable convex combination of

the two subsystems’ state matrices is necessary and sufficient for the quadratic

stabilizability of the switched systems. Specifically,

Theorem 1.10. [70, 71, 72] A switched system that contains two LTI subsys-

tems, ẋ(t) = Aix(t), i = 1, 2, is quadratically stabilizable if and only if the matrix

pencil γα(A1, A2) contains a stable matrix.

In [73], a “min-projection” strategy was proposed to generalize the quadratic

stabilizing law to switched linear systems with more than two unstable subsys-

tems.

Theorem 1.11. [73] For the switched linear system ẋ(t) = Aσx(t), σ ∈ IN , if

there exist constants αi ∈ [0, 1], and
∑
i∈IN

αi = 1 such that

Aα =
∑
i∈IN

αiAi, (1.10)
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is stable, then the min-projection strategy

σ(t) = arg min
i∈IN

x(t)TPAix(t), (1.11)

quadratically stabilizes the switched system.

However, the existence of a stable convex combination matrix is only suffi-

cient for the quadratic stabilization of switched linear systems with more than

two modes. In other words, there exist certain switched linear systems that are

quadratically stabilizable without having a stable convex combination matrix.

For general switched linear systems, a necessary and sufficient quadratic sta-

bilizability condition was derived in [74].

Theorem 1.12. [74] The switched linear system ẋ(t) = Aσx(t), σ ∈ IN is

quadratically stabilizable if and only if there exists a positive definite real sym-

metric matrix P = P T � 0 such that the set of matrices {AiP + PATi } is

strictly complete, i.e., for any x ∈ Rn/{0}, there exists i ∈ IN such that

xT (AiP + PATi )x < 0. In addition, a stabilizing switching signal can be selected

as σ(t) = mini{x(t)T (AiP + PATi )x(t)}.

Obviously, the existence of a convex combination of state matrices, Aα, au-

tomatically satisfies the above strict completeness conditions due to convexity,

while the inverse is not true in general. Unfortunately, to check the strict com-

pleteness of a set of matrices is NP hard [74].

It is to be noted that all these conditions are conservative in the sense that

there exist a class of switched systems that can be asymptotically stabilized

without having a CQLF [15]. In order to derive less conservative results, some
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recent efforts tried to construct stabilizing switching signals based on multiple

Lyapunov functions, especially piecewise quadratic Lyapunov functions [17]. In

particular, a stabilizing switching law was proposed in [75] by employing piece-

wise quadratic Lyapunov functions for switched linear systems with two sub-

systems. Pettersson [76] studied the exponential stabilization of switched linear

systems based on piecewise quadratic Lyapunov functions and formulated the

switching stabilization problem as a bilinear matrix inequality (BMI) problem.

In [77], a probabilistic algorithm was proposed for the synthesis of a stabilizing

law for switched linear systems along with a piecewise quadratic Lyapunov func-

tion. Recently, exponentially stabilizing switching signals were designed based

on solving extended linear-quadratic regulator (LQR) optimal problems [78].

However, these conditions are still sufficient only for the existence of stabilizing

switching laws for a given collection of unstable LTI subsystems.

Best Case Analysis

In order to derive less conservative conditions for switching stabilizabili-

ty, several researchers attempted to find the “most stable” switching signal,

the stability under which is equivalent to the switching stabilizability of the

switched systems. By vector field analysis and geometric characteristics in two-

dimensional state-space, several switching stabilizability conditions for second-

order switched linear systems were proposed in the literature.

In particular, Xu and Antsaklis [79] proposed several necessary and sufficient

conditions for asymptotic stabilization of second-order switched linear systems

with two unstable subsystems ΣA1 and ΣA2 in the following cases: (1) both A1

and A2 have complex eigenvalues with positive real part; (2) both A1 and A2
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have real eigenvalues of opposite signs; (3) both A1 and A2 have real positive

eigenvalues. In addition, the switching stabilizability of second-order switched

linear systems consisting of two subsystems with unstable foci was discussed in

[80]. In [81], the constraint on one of the subsystems was released. However,

these stabilizability conditions are not general since not all the possible combi-

nations of subsystem dynamics were considered. Recently, detailed criteria to

determine the “most stable” switching signal, which was called the best case

switching signal (BCSS), was derived in polar coordinates in [82]. With these

criteria, easily verifiable necessary and sufficient conditions for the switching sta-

bilizability of generic second-order switched linear systems with two subsystems

were also derived in [82].

Similar to the stability under arbitrary switching problem mentioned earlier,

all these results are only applicable to second-order switched linear systems with

two subsystems. It has been also an open problem to derive easily verifiable

necessary and sufficient conditions for the switching stabilizability of second-

order switched linear systems with more than two subsystems, which is to be

studied in this dissertation.

1.2 Controller Synthesis of Switched Systems

It is well known that numerous techniques were developed to control simple

systems in an efficient manner during the period 1932-1960. In particular, us-

ing both frequency domain methods as well as time domain methods based on

pole-zero configurations of the relevant transfer functions, various design meth-

ods were developed for the control of linear systems described by difference or
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Figure 1.3: A multi-controller switched system

differential equations with known parameters.

While the linear control methods have been used extensively in the industry

to design controllers for innumerable systems and have been found to be ex-

tremely robust and reliable, they rely on the key assumption that the systems

are linear or at least linear within a small operating range. However, most real-

world systems are inherently nonlinear and are supposed to work over a wide

operating range. As such, we cannot expect a satisfactory performance with a

linear controller.

Switched systems, in this case, provide a switching control method for nonlin-

ear systems based on the divide-and-conquer strategy. The basic idea is to divide

the whole operating range of a nonlinear system into several sub-regions, identi-

fy a local submodel with a simple structure within each sub-region, and design

a corresponding sub-controller based on the local submodel. Switching among

the family of sub-controllers can be implemented by incorporating logic-based

decisions into the control law. This yields a multi-controller switched system, as

shown in Fig. 1.3.

In fact, the use of multiple models and switching is not new in control the-
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ory. The gain scheduling theory originated during the late 1960s, which utilizes

a divide-and-conquer type of design procedure and decomposes the nonlinear

control design task into a number of linear sub-problems, is one of the most pop-

ular approaches to nonlinear control design and has been widely and successfully

applied in fields ranging from aerospace to process control. For example, Stein

et al. [83] and Kallstrom et al. [84] used the gain scheduling approach in the

control of F-8 aircraft and tankers, in 1977 and 1979 respectively. See [85, 86]

for an overview of the gain scheduling approach. In the 1990s, Morse [87, 88]

proposed the supervisory control of families of linear set-point controllers, in

which multiple fixed models and optimization were used. Narendra and Balakr-

ishnan [89] proposed the idea of using multiple adaptive models and switching

to improve the performance of an adaptive system while assuring stability. This

framework was extended to the combination of a number of fixed models and a

reinitialized adaptive model in [90], and to the discrete-time case in [91]. The

idea of using multiple models to deal with rapidly time-varying systems was also

initiated by Narendra et al. in [92].

In this thesis, we focus on the identification and control of discrete-time

nonlinear systems using multiple models and switching. The primary reason to

consider discrete-time systems is that most complex nonlinear systems with large

operating range are controlled by computers that are discrete in nature.

1.2.1 Identification using Multiple Models

In order to identify nonlinear systems using multiple models, an accurate

multiple model architecture is necessary. Intuitively, the simplest case is when

all the submodels are linear/affine, which are called the piecewise linear/affine
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models [93, 94].

Piecewise affine (PWA) models are obtained by partitioning the state-input

domain (or the regressor domain, for systems in input-output form) into a finite

number of non-overlapping convex polyhedral, and by considering linear/affine

subsystems in each region [93]. PWA systems have drawn most of the attention in

recent years since they are equivalent to several classes of hybrid systems [95, 96],

and thus can be used to obtain hybrid models from data. More importantly, the

universal approximation properties of PWA maps [97, 98] make PWA models

attractive for the identification of nonlinear systems.

Identification of PWA models is a challenging problem that involves the esti-

mation of both the parameters of the affine submodels and the coefficients of the

hyperplanes defining the partition of the state-input domain (or the regressor

domain). The main difficulty is that the identification problem is coupled with

a data classification problem, wherein each data point needs to be associated

with the most suitable submodel. Concerning the partitioning, there are two

scenarios: (1) the partition is fixed a priori; (2) the partition is estimated along

with the submodels.

In the first scenario, data classification is simple, and estimation of the sub-

models can be carried out using standard linear identification techniques. How-

ever, due to the linearity requirement on the submodels, it is not easy to fix the

partition a priori in practice. In most times, we have to deal with the second

scenario, where the regions must be shaped to the clusters of data, and the strict

relation among data classification, parameter estimation and region estimation

makes the identification problem very challenging. Although complicated, sev-
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eral techniques have been proposed for the identification of PWA models in the

past decade [99, 100, 101, 102, 103, 104]. For an overview of the PWA identifica-

tion techniques, see [105, 106]. Recently, the identification of PWA models was

formulated as an optimization problem [107, 108]. In particular, the parameters

of the affine submodels were first estimated through a least-square-based identi-

fication method using multiple models, and the partition of the regressor space

was then estimated using standard pattern recognition techniques.

While PWA models provide an attractive model structure for the identifica-

tion of nonlinear systems, the number of submodels and the need for data grow

exponentially as the dimension of the regressor space increases, which is referred

to as the “curse of dimensionality” problem in the literature. The main reason

for this problem is that all dimensions of the regressor space are engaged in the

partitioning. Therefore, the PWA models are impracticable for high-dimensional

nonlinear systems and it is of great practical importance to develop a novel mul-

tiple model architecture for the identification of nonlinear systems to resolve this

problem.

1.2.2 Control using Multiple Models and Switching

With an accurate multiple model structure, we can control nonlinear systems

using a switching controller. In general, there are two steps for the switching con-

troller design. First, we need to design sub-controllers based on each submodel.

By far, the most popular control methodology for switched systems is the multi-

ple model predictive control (MMPC) [109, 110, 111, 112, 113, 114, 115, 116, 117].

Different from the conventional model predictive control based on a single model,

where the control signal is computed by minimizing a cost function that penalizes
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the future output error and the variation in control signal, the switching among

different local submodels and their corresponding sub-controllers also need to

be taken into consideration. By viewing the activation and deactivation of the

sub-controllers as a discrete state of one or zero, some researchers proposed to

include this discrete state in the cost function, and solve a mixed-integer lin-

ear/quadratic problem [19, 112]. However, it is challenging to implement these

controllers due to the complexity of the mixed-integer programming. In this

case, the optimization problem was recast as multi-parametric mixed-integer

programming in [109, 118], where the optimal control signal was first obtained

as an explicit function of the states by off-line calculation and recalculated via a

simple function evaluation in real-time implementation. However, this method

is not suitable for general tracking purpose. Most recently, the sub-controllers

design problem based on PWA models was transformed into several quadratic

optimization problems with complex nonlinear constraints in [107]. However,

the computational load is still too high to be used in real-time applications.

After having all the sub-controllers, the second step is to determine the

switching mechanism among them. In [87, 88], the “supervisor” determines

the best sub-controller to be used at a particular instant by evaluating certain

norm-squared output estimation errors of the local submodels. Moreover, [119]

evaluated the best sub-controller to be activated by comparing the “virtual”

closed-loop performance. In addition, it is also possible to weight the output of

each sub-controller based on some fuzzy or Bayisian rules and sum them up as

the final control signal [114]. In [107], the switching mechanism was determined

by evaluating the cost functions for all the sub-controllers and choosing the one
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with the smallest cost value at every time instant.

1.3 Objectives and Contributions

As discussed in the previous two sections, despite the extensive work in the

field of stability analysis and controller synthesis of switched systems, there are

still some challenges that have not been studied thoroughly. The principle aim of

this thesis is to extend the stability and stabilizability conditions for second-order

switched linear systems with two subsystems to the general case, and develop

a novel multiple model approach for the identification and control of nonlinear

systems. The main contributions of this thesis are as follows.

1) An easily verifiable necessary and sufficient condition for the sta-

bility of second-order switched linear systems with any finite number

of subsystems under arbitrary switching. While several stability condi-

tions have been derived for second-order switched linear systems under arbitrary

switching based on the worst case analysis [65, 66, 67, 68, 69], most of them are

only applicable to two-mode switched systems. However, in general, switched

systems may have more than two modes. Motivated by this limitation, this

thesis extends the worst case switching signal (WCSS) criteria for second-order

switched linear systems with two subsystems to the general case with any finite

number of subsystems, and derives an easily verifiable necessary and sufficient

condition for the stability of second-order switched linear systems with any finite

number of subsystems under arbitrary switching.

2) Easily verifiable necessary and sufficient conditions for the switch-

ing stabilizability of second-order switched linear systems with any fi-
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nite number of subsystems. Similarly, while the best case analysis approach

has been used to derive necessary and sufficient conditions for the switching sta-

bilizability of second-order switched linear systems [79, 80, 81, 82], most of the

results are restricted to systems with two modes. However, we may have higher

degree of freedom in designing stabilizing switching laws with more subsystems.

Motivated by this limitation, this thesis extends the best case switching signal

(BCSS) criteria for second-order switched linear systems with two subsystems to

the general case with any finite number of subsystems, and derives several easily

verifiable necessary and sufficient conditions for the switching stabilizability of

second-order switched linear systems with any finite number of subsystems.

3) A novel multiple model approach for the identification and con-

trol of nonlinear systems. While PWA models have drawn most of the at-

tention in the identification and control of nonlinear systems [99, 101, 103, 107],

there are two major issues for the PWA model based identification and control:

the curse of dimensionality and the computational complexity. To resolve these

two issues, a novel multiple model approach, which includes a multiple model

architecture and a switching control algorithm, is proposed for the identification

and control of nonlinear systems in this dissertation.

1.4 Thesis Organization

The rest of the thesis consists of two parts and is organized as follows.

The first part, which includes three chapters (Chapters 2, 3, and 4), focus-

es on the stability analysis of second-order switched linear systems. Chapter 2

presents some mathematical preliminaries for the stability analysis of second-
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order switched linear systems in polar coordinates. In Chapter 3, an easily veri-

fiable necessary and sufficient condition for the stability of second-order switched

linear systems with a finite number of subsystems under arbitrary switching is

derived by extending the WCSS criteria for the two-mode case to the general

case. Chapter 4, on the other hand, extends the BCSS criteria for the two-mode

case to the general case and drives several easily verifiable necessary and suffi-

cient conditions for the switching stabilizability of second-order switched linear

systems with a finite number of subsystems.

The second part, which consists of two chapters (Chapters 5 and 6), develops

a novel multiple model approach for the identification and control of nonlinear

systems. In particular, Chapter 5 derives a multiple model architecture, which

circumvents the curse of dimensionality problem, to identify nonlinear systems.

A theoretical upper bound for the estimation error is also obtained based on

the Taylor’s theorem. With the identified multiple model architecture, Chapter

6 then designs a computationally effective switching control algorithm for non-

linear systems using the weighted one-step-ahead predictive control method and

constrained optimization techniques. Both simulation studies and experimen-

tal results demonstrate the effectiveness of the multiple model architecture and

switching control algorithm.

Finally, Chapter 7 concludes the dissertation with a summary of the main

contributions and possible future research directions.
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Stability Analysis of Switched

Systems
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Chapter 2

Polar Coordinates Analysis

2.1 Introduction

As mentioned in Chapter 1, most of the stability (resp. stabilizability) results

based on the worst (resp. best) case analysis are restricted to second-order

switched linear systems with two subsystems. However, in general, switched

systems may have more than two modes. Moreover, we may have higher degree of

freedom in designing stabilizing switching laws with more subsystems. Therefore,

it is of vital importance to extend the existing results to general second-order

switched linear systems with any finite number of subsystems.

This chapter provides some mathematical preliminaries for the extensions

by analyzing second-order switched linear systems in polar coordinates (r − θ

coordinates). First, the analysis of second-order switched linear systems with

two subsystems in polar coordinates is extended to the general case with any

finite number of subsystems by considering all the subsystems pairwise. Then,

the polar coordinates space can be partitioned into several regions, in the interior

of which all the subsystems are classified into two groups based on the direction
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of trajectories for each subsystem in the interior of the corresponding region.

With a similar criterion, we can also have two groups of subsystems on each

boundary.

Mathematically, this chapter considers the following continuous-time second-

order switched linear system with N (N ≥ 2) subsystems of the form

ẋ(t) = Aσx(t) (2.1)

with

Ai =

 a11i a12i

a21i a22i

 (2.2)

where x(t) ∈ R2 is the state and σ : R+ → IN = {1, 2, · · · , N} is the switching

signal that determines the active mode of the system among N possible modes

in A = {A1, A2, · · · , AN}.

As mentioned in Chapter 1, all the subsystems are asymptotically stable in

studying the stability under arbitrary switching, while all the subsystems are

unstable in the switching stabilization problem. To simplify the analysis, three

special cases are excluded by the following assumptions. These three cases will

be discussed separately in Section 3.2 and Section 4.2 for the stability under

arbitrary switching and the switching stabilizability.

Assumption 2.1. Ai 6= cAj , where c ∈ R, c > 0, i, j ∈ IN , and i 6= j.

Assumption 2.2. Ai 6= c

 1 0

0 1

, where c ∈ R, c 6= 0, and i ∈ IN .

Assumption 2.3. There does not exist a common real eigenvector for all Ai ∈

A.
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2.2 A Single Second-order LTI System in Polar Co-

ordinates

Consider a single second-order LTI system of the form

ẋ = Ax =

 a11 a12

a21 a22

x (2.3)

where x = [x1, x2]
T .

Define x1 = r cos θ and x2 = r sin θ, it follows that

dr

dt
= r[a11 cos2 θ + a22 sin2 θ + (a12 + a21) sin θ cos θ], (2.4)

dθ

dt
= a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ. (2.5)

It is noted that the real vectors satisfying dθ
dt = 0 correspond to the re-

al eigenvectors of A. The solution of system (2.3) on a real eigenvector is

r(t) = r0e
λAt, θ(t) = θ0, where (r0, θ0) is the the initial state and λA is the

corresponding eigenvalue of the real eigenvector.

When dθ
dt 6= 0, we have

dr

dθ
= r

a11 cos2 θ + a22 sin2 θ + (a12 + a21) sin θ cos θ

a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ
. (2.6)

Denote

f(θ) =
a11 cos2 θ + a22 sin2 θ + (a12 + a21) sin θ cos θ

a21 cos2 θ − a12 sin2 θ + (a22 − a11) sin θ cos θ
, (2.7)
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(a) The real eigenvalue case. (b) The complex eigenvalue case.

Figure 2.1: The phase diagrams of second-order LTI systems in polar coordinates

we have

1

r
dr = f(θ)dθ. (2.8)

Lemma 2.1 ([69]). The trajectories of the second-order LTI system (2.3) in r-θ

coordinates, except the ones along the real eigenvectors, can be expressed as

r(t) = Cg(θ(t)) = Ce
∫ θ(t)
θ∗ f(τ)dτ (2.9)

where C, the constant of integration, is a positive constant depending on the

initial state (r0, θ0) and θ∗. Note that θ∗ can be chosen as any value except the

angle of any real eigenvector of matrix A.

Typical phase trajectories of second-order LTI systems in polar coordinates

are shown in Fig. 2.1.

Remark 2.1. It is noted that the constant of integration C only depends on the

initial state and θ∗. It remains invariant for the whole trajectory of the LTI

system (2.3). Geometrically, a larger C indicates an outer layer trajectory, as

shown in Fig. 2.1, where C1 < C2 < C3 < · · · < C6.
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Remark 2.2. It follows from (2.9) that

r(θ + π)

r(θ)
=
Ce

∫ θ+π
θ∗ f(τ)dτ

Ce
∫ θ
θ∗ f(τ)dτ

= e
∫ θ+π
θ f(τ)dτ (2.10)

which is a constant since f(θ) is a periodic function with a period of π. Therefore,

it is sufficient to analyze the stability of system (2.3) in an interval of θ ∈ [−π
2 ,

π
2 ).

2.3 The Switched System (2.1) with N = 2 in Polar

Coordinates

Consider the switched system (2.1) with N = 2. From Lemma 2.1, the

solutions of the two subsystems are r1(t) = C1g1(θ(t)) and r2(t) = C2g2(θ(t))

respectively. By combining them together, we can have a piecewise solution for

the switched system (2.1) with N = 2 of the form

r(t) =


C1(t)g1(θ(t)) σ(t) = 1

C2(t)g2(θ(t)) σ(t) = 2

(2.11)

where C1(t) and C2(t) are invariant during the period when the states move

along their own phase trajectories, which means

dC1(t)

dt

∣∣∣∣
σ=1

= 0,
dC2(t)

dt

∣∣∣∣
σ=2

= 0. (2.12)

Then, a compact solution for the switched system (2.1) with N = 2, except

the ones along the eigenvectors, can be obtained as

r(t) = h1(θ(t))g1(θ(t)), (2.13)
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Figure 2.2: The variation of h1 under switching

where

h1(θ(t)) =


C1(t) σ(t) = 1

C2(t)
g2(θ(t))
g1(θ(t))

σ(t) = 2

(2.14)

or similarly

r(t) = h2(θ(t))g2(θ(t)), (2.15)

where

h2(θ(t)) =


C1(t)

g1(θ(t))
g2(θ(t))

σ(t) = 1

C2(t) σ(t) = 2

. (2.16)

Equations (2.13) indicates that even when the actual trajectory follows ΣA2 ,

it can still be described by the same form as that of the solution of ΣA1 with a

varying h1. Therefore, the variation of h1 can be used to describe the behavior

of the switched system (2.1) with N = 2, as shown in Fig. 2.2.

For convenience, we denote

H12(θ(t)) =
dh1(θ(t))

dt

∣∣∣∣
σ=2

, H21(θ(t)) =
dh2(θ(t))

dt

∣∣∣∣
σ=1

. (2.17)

34



Chapter 2. Polar Coordinates Analysis

Remark 2.3. Geometrically, a positive H12(θ), or equivalently an increase of

h1(θ) when ΣA2 is active, means that the vector field of ΣA2 points outwards

relative to ΣA1 . In fact, the signs of H12(θ(t)) and H21(θ(t)) are indicators to

determine which subsystem is more “unstable” for every θ.

In addition, we also need to know how θ varies with time t, which is deter-

mined by the signs of Q1(θ(t)) and Q2(θ(t)) defined as

Q1(θ(t)) =
dθ

dt

∣∣∣∣
σ=1

, Q2(θ(t)) =
dθ

dt

∣∣∣∣
σ=2

. (2.18)

Remark 2.4. The geometrical meaning of the sign of Qi(θ) (i ∈ {1, 2}) is the

direction of trajectories for ΣAi in the x − y coordinates. A positive Qi(θ)

implies counterclockwise trajectories of ΣAi , and vice versa.

After defining H12(θ), H21(θ), Q1(θ) and Q2(θ) for the switched system (2.1)

with N = 2, we can have the following equalities by straightforward algebraic

manipulations.

Q1(θ + π) = Q1(θ) (2.19)

Q2(θ + π) = Q2(θ) (2.20)

sgn(H12(θ + π)) = sgn(H12(θ)) (2.21)

sgn(H21(θ + π)) = sgn(H21(θ)) (2.22)

where sgn(·) is the signum function.

Remark 2.5. It was proved in [69] that the WCSS (resp. BCSS) for the switched

system (2.1) with N = 2 is only determined by the signs of H12(θ), H21(θ),

Q1(θ) and Q2(θ). Based on equations (2.19)-(2.22), it is sufficient to study the
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WCSS (resp. BCSS) of the switched system (2.1) with N = 2 in an interval of

θ ∈ [−π
2 ,

π
2 ).

Since the interval of interest is θ ∈ [−π
2 ,

π
2 ), all the functions of θ can be

transformed to the functions of k by denoting k = tan θ (the special case when

θ = −π
2 can be considered as a boundary separately). Straightforward algebraic

manipulations yield

sgn(H12(k)) = sgn(
N12(k)

D1(k)
) (2.23)

sgn(H21(k)) = −sgn(
N12(k)

D2(k)
) (2.24)

sgn(Q1(k)) = −sgn(D1(k)) (2.25)

sgn(Q2(k)) = −sgn(D2(k)) (2.26)

where

D1(k) = a121k
2 + (a111 − a221)k − a211 (2.27)

D2(k) = a122k
2 + (a112 − a222)k − a212 (2.28)

and

N12(k) = (a121a222 − a221a122)k2 + (a121a212 + a111a222

−a211a122 − a221a112)k + a111a212 − a211a112. (2.29)

Definition 2.1. A region of k is a continuous interval of k where the signs of

H12(k), H21(k), Q1(k) and Q2(k) are constants for all k in that interval.

Remark 2.6. A region of k corresponds to two symmetric conic sectors (without

boundaries) in the x− y coordinates, as shown in Fig. 2.3.
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Figure 2.3: Two symmetric conic sectors for a region of k

Remark 2.7. The boundaries for the regions of k, if exists, are lines whose slopes

satisfy D1(k) = 0 (real eigenvectors of A1), D2(k) = 0 (real eigenvectors of A2),

or N12(k) = 0 (lines where the trajectories of the two subsystems are tangent to

each other).

2.4 The Switched System (2.1) with N ≥ 2 in Polar

Coordinates

Based on the analysis of the switched system (2.1) with N = 2 in polar

coordinates, we can analyze the switched system (2.1) with N ≥ 2 in polar coor-

dinates by considering every two subsystems pairwise. For any two subsystems

ΣAi and ΣAj (i, j ∈ IN , i < j), we can define the following four terms according

to equations (2.17) and (2.18).

Qi(θ(t)) =
dθ

dt

∣∣∣∣
σ=i

, Qj(θ(t)) =
dθ

dt

∣∣∣∣
σ=j

(2.30)
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Hij(θ(t)) =
dhi(θ(t))

dt

∣∣∣∣
σ=j

, Hji(θ(t)) =
dhj(θ(t))

dt

∣∣∣∣
σ=i

(2.31)

where

hi(θ(t)) =


Ci(t) σ(t) = i

Cj(t)
gj(θ(t))
gi(θ(t))

σ(t) = j

(2.32)

and

hj(θ(t)) =


Cj(t) σ(t) = j

Ci(t)
gi(θ(t))
gj(θ(t))

σ(t) = i.

. (2.33)

It is noted that equations (2.19)-(2.22) are still true for every two subsystems

ΣAi and ΣAj of the switched system (2.1) with N ≥ 2, which means

Qi(θ + π) = Qi(θ) (2.34)

Qj(θ + π) = Qj(θ) (2.35)

sgn(Hij(θ + π)) = sgn(Hij(θ)) (2.36)

sgn(Hji(θ + π)) = sgn(Hji(θ)) (2.37)

Similarly, we can have the generalization of equations (2.23)-(2.26) with the

form of

sgn(Hij(k)) = sgn(
Nij(k)

Di(k)
) (2.38)

sgn(Hji(k)) = −sgn(
Nij(k)

Dj(k)
) (2.39)

sgn(Qi(k)) = −sgn(Di(k)) (2.40)

sgn(Qj(k)) = −sgn(Dj(k)) (2.41)
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where

Di(k) = a12ik
2 + (a11i − a22i)k − a21i (2.42)

Dj(k) = a12jk
2 + (a11j − a22j)k − a21j (2.43)

and

Nij(k) = (a12ia22j − a22ia12j)k2 + (a12ia21j + a11ia22j

−a21ia12j − a22ia11j)k + a11ia21j − a21ia11j . (2.44)

Definition 2.2. A generalized region of k, is a continuous interval of k in the

interior of which the signs of Hij(k), Hji(k), Qi(k) and Qj(k) are constants for

any i, j ∈ IN , and i < j.

Remark 2.8. A generalized region of k also corresponds to two symmetric conic

sectors (without boundaries) in the x− y coordinates.

Remark 2.9. Based on Remark 2.7, the boundaries for the generalized regions of

k include lines whose slopes are real roots of Di(k) = 0 (i ∈ IN ) and lines whose

slopes are real roots of Nij(k) = 0 (i, j ∈ IN , and i < j).

Remark 2.10. According to equations (2.38)-(2.41), the signs of Hij(k) and

Hji(k) are opposite if Qi(k) and Qj(k) have the same sign in the interior of

a generalized region of k.

According to Definition 2.2, the direction of trajectories for any subsystem

in the interior of a generalized region of k keeps invariant. Therefore, all the

subsystems in A can be classified into two groups in a generalized region of k

based on the direction of trajectories for each subsystem: the clockwise subsys-
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tems group Arc and the counterclockwise subsystems group Arcc in the interior

of that region. Then, we have three types of generalized regions of k as follows.

• Type (a) Region: Arc 6= ∅, and Arcc 6= ∅

• Type (b) Region: Arc = ∅, and Arcc 6= ∅

• Type (c) Region: Arc 6= ∅, and Arcc = ∅

Similarly, on any boundary, all the subsystems in A except the ones with

eigenvectors on this boundary can also be classified into two groups based on

the direction of trajectories for each subsystem on that boundary. They are the

clockwise subsystems group Abc and the counterclockwise subsystems group Abcc

on that boundary. Similarly, we have three types of boundaries as follows.

• Type (a) Boundary: Abc 6= ∅, and Abcc 6= ∅

• Type (b) Boundary: Abc = ∅, and Abcc 6= ∅

• Type (c) Boundary: Abc 6= ∅, and Abcc = ∅

Different types of regions and boundaries can be described by the diagrams

in Figs. 2.4 and 2.5, where the vertical dashed lines represent the boundaries

of regions. In Fig. 2.4, a dashed (resp. solid) horizontal line with arrows in

a generalized region of k means that the clockwise (resp. counterclockwise)

subsystems group Arc (resp. Arcc) in the interior of that region is nonempty.

In Fig. 2.5, a solid circle with an arrow pointing to the left (resp. right) on a

boundary means that the clockwise (resp. counterclockwise) subsystems group

Abc (Abcc) on that boundary is nonempty.
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k2k1k

Type (a) Region

k2k1k

Type (c) Region

k2k1k

Type (b) Region

Figure 2.4: Different types of regions

Type (a) Boundary Type (c) BoundaryType (b) Boundary

Figure 2.5: Different types of boundaries

From Fig. 2.4 and Fig. 2.5, it is obvious that the two boundaries of a Type

(b) (resp. Type (c)) Region are both Type (b) (resp. Type (c)) Boundaries.

However, the two boundaries of a Type (a) Region can be of any type.

2.5 Summary

In this chapter, the polar coordinates analysis for second-order switched lin-

ear systems with two subsystems was extended to the general case with any

finite number of subsystems by considering all the subsystems pairwise. After

partitioning the polar coordinates space into several regions, all the subsystems

were classified into two groups in the interior of a region or on a boundary based

on the direction of trajectories for each subsystem in the interior of the corre-
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sponding region or on the corresponding boundary. The contents in this chapter

provide important basis for the stability analysis of second-order switched linear

systems with a finite number of subsystems in the next two chapters.
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Chapter 3

Stability of Second-order

Switched Linear Systems

under Arbitrary Switching

3.1 Introduction

Based on the results in Chapter 2, this chapter aims to extend the worst case

switching signal (WCSS) criteria for second-order switched linear systems with

two subsystems in [69] to the general case with any finite number of subsystems

and derive an easily verifiable necessary and sufficient condition for the stability

under arbitrary switching. The key idea is to compare the subsystems for each

group in the interior of a region pairwise, and determine the most “unstable”

subsystem for the corresponding group. Based on this idea, the worst case

analysis among all the subsystems in the interior of a region can be reduced

to the worst case analysis between the two most “unstable” subsystems in the
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interior of that region.

The contents of this chapter are organized as follows. Section 3.2 presents a

unified statement of the problem. In Section 3.3, the WCSS criteria for second-

order switched linear systems with two subsystems are extended to the general

case with a finite number of subsystems. An easily verifiable necessary and

sufficient condition for the stability of second-order switched linear systems with

any finite number of subsystems under arbitrary switching is proposed in Section

3.4. Finally, in Section 3.5, a summary is given.

3.2 Statement of the Problem

Motivated by the limitations of the existing results outlined in Chapter 1,

our aim is to derive an easily verifiable necessary and sufficient condition for

the stability of second-order switched linear system with any finite number of

subsystems under arbitrary switching. In particular, we consider the continuous-

time second-order switched linear system with N (N > 2) asymptotically stable

subsystems under arbitrary switching signal of the form

ẋ(t) = Aσx(t) (3.1)

with

Ai =

 a11i a12i

a21i a22i

 (3.2)

where x(t) ∈ R2 is the state, and σ : R+ → IN = {1, 2, · · · , N} is the arbitrary

switching signal that determines the active mode of the system among N possible

modes in A = {A1, A2, · · · , AN}.
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Recall the three assumptions made in Section 2.1 and rewrite them for the

switched system (3.1) in the following form.

Assumption 3.1. Ai 6= cAj , where c ∈ R, c > 0, i, j ∈ IN and i 6= j.

When Assumption 3.1 is violated, the trajectories of ΣAi and ΣAj are identi-

cal for the same initial state. Therefore, only one of them needs to be considered

in the worst case analysis.

Assumption 3.2. Ai 6= c

 1 0

0 1

, where c ∈ R, c < 0, and i ∈ IN .

When Assumption 3.2 is violated, any switching to Ai can only make the

trajectories of the switched system (3.1) become more “stable” (θ keeps invariant

and r becomes smaller). In this case, there is no need to take Ai into account in

the worst case analysis.

Assumption 3.3. There does not exist a common real eigenvector for all Ai ∈

A.

When Assumption 3.3 is violated, all matrices inA are simultaneously similar

to upper triangular matrices, and thus they admit a CQLF [120]. In this case, the

switched system (3.1) is always asymptotically stable under arbitrary switching.

3.3 Worst Case Analysis for the Switched System

(3.1)

In this section, we generalize the WCSS criteria for the switched system (3.1)

with N = 2 in [69] to the general case when N ≥ 2.
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3.3.1 WCSS Cretiria for the Switched System (3.1) with N = 2

Lemma 3.1. [69] For the switched system (3.1) with N = 2, we have

1) The switched system is not asymptotically stable under arbitrary switching

if there exists a region of k where both H12 and H21 are positive;

2) In regions where H12 > 0, H21 < 0, the switching signal staying on ΣA2

is the local WCSS;

3) In regions where H12 < 0, H21 > 0, the switching signal staying on ΣA1

is the loacl WCSS.

Lemma 3.2. For the switched system (3.1) with N = 2, the local WCSS cannot

have any switch between the two subsystems in regions where both H12(k) and

H21(k) are negative.

This lemma can be easily proved based on the definition of H12 and H21.

3.3.2 WCSS Criteria for the Switched System (3.1) with N ≥ 2

WCSS criteria in the interior of generalized regions of k

According to Remark 2.10 and Lemma 3.1, we can determine the more “un-

stable” subsystem for any two subsystems belonging to the same group in a

generalized region of k. For all the subsystems in Arc (resp. Arcc), by compar-

ing pairwise, the most “unstable” clockwise (resp. counterclockwise) subsystem

in the interior of that region can then be determined.

Definition 3.1. In the interior of a generalized region of k, the most “unstable”

clockwise (resp. counterclockwise) subsystem is called the worst clockwise (resp.

counterclockwise) subsystem in that region.
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Remark 3.1. According to Lemma 3.1, the worst clockwise (resp. counter-

clockwise) subsystem in the interior of a generalized region of k is ΣAp (re-

sp. ΣAq) whose Hip (Hjq) terms are all positive with Ai ∈ Arc, i 6= p (resp.

Aj ∈ Arcc, j 6= q).

Lemma 3.3. The local WCSS in a generalized region of k only relates to the

worst clockwise subsystem and the worst counterclockwise subsystem in that re-

gion.

Proof. First, let us assume the local WCSS in a generalized region of k relates to a

third subsystem. Then, a switching signal that is more “unstable” can always be

constructed by replacing the portion on this third subsystem with Ap (clockwise

part) or Aq (counterclockwise part), which contradicts to the definition of the

WCSS.

From Lemma 3.3, we know that the local WCSS in the interior of a Type

(b) (resp. Type (c)) Region is the switching signal staying on the worst coun-

terclockwise (resp. clockwise) subsystem in that region. For a Type (a) Region,

we have the following two lemmas.

Lemma 3.4. The switched system (3.1) with N ≥ 2 is not asymptotically stable

under arbitrary switching if there exists a Type (a) Region where both Hpq(k)

and Hqp(k) are positive.

Lemma 3.5. In the interior of a Type (a) Region where both Hpq(k) and Hqp(k)

are negative, the local WCSS for the switched system (3.1) with N ≥ 2 cannot

have any switch between Ap and Aq.

These two lemmas can be easily proved based on Lemmas 3.1-3.3.
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Definition 3.2. In the worst case analysis, a Type (a) Region where both Hpq

and Hqp are positive (resp. negative) is called an unstable (resp. a stable) Type

(a) Region.

WCSS criteria on boundaries of generalized regions of k

It is obvious that the WCSS on the eigenvector of a stable subsystem cannot

be the switching signal staying on this subsystem. Therefore, the subsystems on

their corresponding eigenvectors can be ignored in the worst case analysis, and

the worst case trajectory of the switched system (3.1) with N ≥ 2 cannot stay on

any boundary of the regions. According to the properties of linear systems, the

time spent on any boundary is zero. Therefore, we only need to study whether

the direction of the worst case trajectory will change after reaching a boundary.

For a Type (b) Boundary or a Type (c) Boundary, there is no doubt since only

one direction is possible. For a Type (a) Boundary, we have

Lemma 3.6. If there does not exist any unstable Type (a) Region, the direction

of the worst case trajectory for the switched system (3.1) with N ≥ 2 will keep

invariant after reaching a Type (a) Boundary.

Proof. It is obvious that the two adjacent regions sharing a Type (a) Boundary

are both stable Type (a) Regions. Let’s assume that the worst case trajectory

for the switched system (3.1) with N ≥ 2 changes direction after reaching a

Type (a) Boundary. Then, the switching signal would have infinite number of

discontinuities on a finite interval of time, which contradicts to the no-chattering

requirement for continuous-time switched systems.
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3.4 A Necessary and Sufficient Condition for the Sta-

bility of the Switched System (3.1) with N ≥ 2

under Arbitrary Switching

Before proceeding, several notations and lemmas need to be given. For every

subsystem ΣAi , we can define the following two regions

Eic = {θ|Qi(θ) ≤ 0} (3.3)

Eicc = {θ|Qi(θ) ≥ 0} (3.4)

where Eic (resp. Eicc) represents the regions in the interior of which subsystem

ΣAi travels clockwise (resp. counterclockwise). Denote Eoic (resp. Eoicc) as the

interior of Eic (resp. Eicc), we have the following lemma.

Lemma 3.7.
⋃N
i=1E

o
ic = R2 if and only if there is no Type (b) Boundary in

the polar coordinates space.
⋃N
i=1E

o
icc = R2 if and only if there is no Type (c)

Boundary in the polar coordinates space.

Proof. Without loss of generality, only the first part of this lemma is proved.

The second part follows the similar line and is thus omitted.

Sufficiency: If there is no Type (b) Boundary in the polar coordinates space,

all the boundaries are of Type (a) or Type (c). In this case, there cannot exist

any Type (b) Region and therefore
⋃N
i=1E

o
ic = R2.

Necessity: Let’s assume that there exists a Type (b) Boundary in the polar

coordinates space. Then, there does not exist a subsystem whose trajectory

direction is clockwise on this boundary and therefore
⋃N
i=1E

o
ic 6= R2.
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If
⋃N
i=1E

o
ic = R2 (resp.

⋃N
i=1E

o
icc = R2), the trajectory of the switched

system (3.1) with N ≥ 2 under the switching signal staying on the corresponding

worst clockwise (resp. counterclockwise) subsystem in each region will be a

clockwise (resp. counterclockwise) spiral around the origin for any non-zero

initial state x(t0) in the x − y coordinates. To determine the convergence or

divergence of such trajectories, we can define the worst clockwise ratio γwc(x(t0))

(resp. the worst counterclockwise ratio γwcc(x(t0))) between the magnitudes of

the state after one full clockwise (resp. counterclockwise) circle and the non-zero

initial state x(t0) in the x− y coordinates with the form of

γwc(x(t0)) =
‖Φwc(x(t0))x(t0)‖

‖x(t0)‖
(3.5)

γwcc(x(t0)) =
‖Φwcc(x(t0))x(t0)‖

‖x(t0)‖
(3.6)

where Φwc(x(t0)) (resp. Φwcc(x(t0))) represents the state transition matrix for a

full clockwise (resp. counterclockwise) spiral under the switching signal staying

on the corresponding worst clockwise (resp. counterclockwise) subsystem in each

region for the initial state x(t0).

Due to the symmetric property of the WCSS, we only need to consider half

plane. Denote the worst clockwise (resp. counterclockwise) subsystems from the

ray that x(t0) falls on as A1, A2, · · · , Am in clockwise (resp. counterclockwise)

direction before reaching the opposite ray where−x(t0) falls on. According to the

isochronism property of linear systems, the time Ti spend in the ith subsystem
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is a constant and can be calculated by

Ti =

∫ θi+1

θi

1

Qi(θ)
dθ (3.7)

where θi and θi+1 are the angles of the two boundaries for the region in the

interior of which Ai is the worst clockwise (resp. counterclockwise) subsystem.

Then, we have

Φwc(x(t0)) = (exp(AmTm) · · · exp(A2T2) exp(A1T1))
2 (3.8)

Φwcc(x(t0)) = (exp(AmTm) · · · exp(A2T2) exp(A1T1))
2 (3.9)

Lemma 3.8. γwc(x(t0)) and γwcc(x(t0)) are invariant for any initial state x(t0).

Proof. Without loss of generality, we only give the proof for the invariance of

γwc. The proof for the invariance of γwcc follows the similar line and is thus

omitted.

First, we need to show that γwc is invariant for different initial states on the

same ray. Based on equation (3.8), it is obvious that Φwc(x(t0)) is a constant

matrix for all initial states on ray l1, as shown in Fig. 3.1. After finishing

a full clockwise spiral around the origin under the switching signal staying on

the corresponding worst clockwise subsystem in each region, the state becomes

x(tf ) = Φwc(x(t0))x(t0). Since x(tf ) and x(t0) are on the same ray, there exists

a positive constant λ such that x(tf ) = λx(t0). Thus, x(t0) is an eigenvector of

the matrix Φwc(x(t0)), and λ is the corresponding eigenvalue. Then, we have

γwc(x(t0)) =
‖x(tf )‖
‖x(t0)‖

=
‖Φwc(x(t0))x(t0)‖

‖x(t0)‖
=
‖λx(t0)‖
‖x(t0)‖

= λ. (3.10)
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Figure 3.1: Invariance property of γwc

Then, consider another initial state on another ray l2. Since γwc is invariant

for any initial state on the same ray, we can choose x̂(t0) as the intersection of

l2 and the previous trajectory. Denote the transition matrix for the clockwise

rotation from l1 to l2 under the switching signal staying on the corresponding

worst clockwise subsystem in each region as Φ1, and we have x̂(t0) = Φ1x(t0).

After finishing a full clockwise spiral from x̂(t0) under the switching signal staying

the corresponding worst clockwise subsystem in each region, the state becomes

x̂(tf ). According to the symmetry property of the WCSS, we know x̂(tf ) =

Φ1x(tf ) = Φ1Φwc(x(t0))x(t0). Therefore,

γwc(x̂(t0)) =
‖x̂(tf )‖
‖x̂(t0)‖

=
‖Φ1Φwc(x(t0))x(t0)‖

‖Φ1x(t0)‖
=
‖λΦ1x(t0)‖
‖Φ1x(t0)‖

= λ. (3.11)

Overall, γwc is a constant for any initial state. The proof is done.

Next, we give the principal result of this chapter.

Theorem 3.1. The switched system (3.1) with N ≥ 2 is asymptotically stable
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k

 

   V V VI

Figure 3.2: Case 3.1: All the boundaries are of Type (a)

under arbitrary switching subject to Assumptions 3.1-3.3 if and only if all of the

following three conditions are satisfied.

1) There does not exist any unstable Type (a) Region;

2) If
⋃N
i=1E

o
ic = R2, then γwc < 1;

3) If
⋃N
i=1E

o
icc = R2, then γwcc < 1.

3.4.1 Proof of Theorem 3.1

Proof of Sufficiency

If the first condition is satisfied, all the Type (a) Regions are stable Type (a)

Regions. In addition, Lemmas 3.5 and 3.6 indicate that the worst case trajectory

never changes direction. According to different types of boundaries, we have the

following four cases.

Case 3.1. All the boundaries are of Type (a), as shown in Fig. 3.2. In this case,

all the regions are Type (a) Regions. Based on Lemma 3.7, we have
⋃N
i=1E

o
ic =

R2 and
⋃N
i=1E

o
icc = R2. Moreover, the satisfaction of the latter two conditions

indicates that γwc < 1 and γwcc < 1.

For any initial state, the global WCSS for this case is either the switching

signal staying on the corresponding worst clockwise subsystem in each region or
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the switching signal staying on the corresponding worst counterclockwise subsys-

tem in each region. It is obvious that the trajectories under these two switching

signals are spiralling around the origin, and the stability of the switched system

under these two switching signals only depends on the values of γwc and γwcc.

Since both γwc and γwcc are smaller than one, the trajectories under these two

switching signals will contract after one full circle (clockwise or counterclockwise)

and converge to the origin finally for any initial state.

Therefore, the switched system (3.1) with N ≥ 2 belonging to Case 3.1 is

asymptotically stable under arbitrary switching if all of the three conditions are

satisfied.

Case 3.2. At least one boundary is of Type (b) and none of the boundaries

is of Type (c). Based on Lemma 3.7, we have
⋃N
i=1E

o
ic 6= R2 and

⋃N
i=1E

o
icc =

R2, which means that the second condition is already satisfied. Besides, the

satisfaction of the third condition indicates that γwcc < 1.

(a) All the regions are Type (a) Regions. Without loss of generality, we

only consider the scenario with one Type (b) Boundary, as can be seen from

Fig. 3.3(a). Note that the Type (b) Boundary is the eigenvector for the worst

clockwise subsystems in Regions II and III.

If the initial state is on the Type (b) Boundary, the global WCSS is the

switching signal staying on the corresponding worst counterclockwise subsystem

in each region. Similar to Case 3.1, the switched system is asymptotically stable

under this switching signal since γwcc < 1.

If the initial state is in the interior of any Type (a) Region or on any Type (a)

Boundary, there are two possibilities for the global WCSS. The first one is the
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Figure 3.3: Case 3.2: At least one boundary is of Type (b) and none of the
boundaries is of Type (c)

switching signal staying on the corresponding worst counterclockwise subsystem

in each region, under which the switched system is asymptotically stable since

γwcc < 1. The other possibility is the switching signal staying on the correspond-

ing worst clockwise subsystem in each region. Since the Type (b) Boundary is

the eigenvector for the worst clockwise subsystem in Region III, the trajectory

under this switching signal will converge to the origin in Region III and the

switched system is asymptotically stable under this switching signal.

(b) There exists at least one Type (b) Region. Without loss of generality,

we only consider the scenario with one Type (b) Region, as can be seen from

Fig. 3.3(b). Note that the two boundaries of the Type (b) Region are both Type

(b) Boundaries and they are eigenvectors for the worst clockwise subsystems in

Region I and Region III respectively.
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If the initial state is in the interior of the Type (b) Region or on any Type

(b) Boundary, the global WCSS is the switching signal staying on the corre-

sponding worst counterclockwise subsystem in each region. Similar to Case 3.1,

the switched system is asymptotically stable under this switching signal since

γwcc < 1.

If the initial state is in the interior of any Type (a) Region or on any Type

(a) Boundary, there are two possibilities for the global WCSS. The first one is

the switching signal staying on the corresponding worst counterclockwise sub-

system in each region, under which the switched system is asymptotically stable

since γwcc < 1. The other possibility is the switching signal staying on the cor-

responding worst clockwise subsystem in each region. Since the two Type (b)

Boundaries are eigenvectors for the worst clockwise subsystems in Region I and

Region III respectively, the trajectory under this switching signal will converge

to the origin in Region III and the switched system is asymptotically stable under

this switching signal.

Therefore, the switched system (3.1) with N ≥ 2 belonging to Case 3.2 is

asymptotically stable under arbitrary switching if all of the three conditions are

satisfied.

Case 3.3. At least one boundary is of Type (c) and none of the boundaries is

of Type (b). Based on Lemma 3.7, we have
⋃N
i=1E

o
ic = R2 and

⋃N
i=1E

o
icc 6= R2,

which means the third condition is already satisfied. Besides, the satisfaction of

the second condition indicates that γwc < 1.

(a) All the regions are Type (a) Regions. Without loss of generality, we

only consider the scenario with one Type (c) Boundary, as can be seen from
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Figure 3.4: Case 3.3: At least one boundary is of Type (c) and none of the
boundaries is of Type (b)

Fig. 3.4(a). Note that the Type (c) Boundary is the eigenvector for the worst

counterclockwise subsystems in Regions IV and V.

If the initial state is on the Type (c) Boundary, the global WCSS is the

switching signal staying on the corresponding worst clockwise subsystem in each

region. Similar to Case 3.1, the switched system is asymptotically stable under

this switching signal since γwc < 1.

If the initial state is in the interior of any Type (a) Region or on any Type (a)

Boundary, there are two possibilities for the global WCSS. The first one is the

switching signal staying on the corresponding worst clockwise subsystem in each

region, under which the switched system is asymptotically stable since γwc < 1.

The other possibility is the switching signal staying on the corresponding worst

counterclockwise subsystem in each region. Since the Type (c) Boundary is the
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eigenvector for the worst counterclockwise subsystem in Region IV, the trajectory

under this switching signal will converge to the origin in Region IV and the

switched system is asymptotically stable under this switching signal.

(b) There exists at least one Type (c) Region. Without loss of generality, we

only consider the scenario with one Type (c) Region, as can be seen from Fig.

3.4(b). Note that the two boundaries of the Type (c) Region are both Type (c)

Boundaries and they are eigenvectors for the worst counterclockwise subsystems

in Region IV and Region VI respectively.

If the initial state is in the interior of the Type (c) Region or on any Type (c)

Boundary, the global WCSS is the switching signal staying on the corresponding

worst clockwise subsystem in each region. Similar to Case 3.1, the switched

system is asymptotically stable under this switching signal since γwc < 1.

If the initial state is in the interior of any Type (a) Region or on any Type (a)

Boundary, there are two possibilities for the global WCSS. The first one is the

switching signal staying on the corresponding worst clockwise subsystem in each

region, under which the switched system is asymptotically stable since γwc < 1.

The other possibility is the switching signal staying on the corresponding worst

counterclockwise subsystem in each region. Since the two Type (c) Boundaries

are the eigenvectors for the worst counterclockwise subsystems in Region IV and

Region VI respectively, the trajectory under this switching signal will converge

to the origin in Region IV and the switched system is asymptotically stable under

this switching signal.

Therefore, the switched system (3.1) with N ≥ 2 belonging to Case 3.3 is

asymptotically stable under arbitrary switching if all of the three conditions are
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satisfied.

Case 3.4. At least one boundary is of Type (b) and at least one boundary is of

Type (c). According to Lemma 3.7, we have
⋃N
i=1E

o
ic 6= R2 and

⋃N
i=1E

o
icc 6= R2,

which means the latter two conditions are already satisfied.

(a) All the regions are Type (a) Regions. Without loss of generality, we only

consider the scenario with one Type (b) Boundary and one Type (c) Boundary,

as can be seen from Fig. 3.5(a). Note that the Type (b) Boundary is the

eigenvector for the worst clockwise subsystems in Regions II and III, and the

Type (c) Boundary is the eigenvector for the worst counterclockwise subsystems

in Regions IV and V.

If the initial state is on the Type (b) Boundary, the global WCSS is the

switching signal staying on the corresponding worst counterclockwise subsystem

in each region. In Region IV, the trajectory under this switching signal will

converge to the origin and the switched system is asymptotically stable under

this switching signal.

If the initial state is on the Type (c) Boundary, the global WCSS is the

switching signal staying on the corresponding worst clockwise subsystem in each

region. In Region III, the trajectory under this switching signal will converge to

the origin and the switched system is asymptotically stable under this switching

signal.

If the initial state is in the interior of any Type (a) Region or on any Type

(a) Boundary, there are two possibilities for the global WCSS. Similar to the

above two situations, the trajectories under both these two switching signals

will converge to the origin and the switched system is asymptotically stable
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Figure 3.5: Case 3.4: At least one boundary is of Type (b) and at least one
boundary is of Type (c)
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under both these two switching signals.

(b) There exists at least one Type (b) Region and no Type (c) Region.

Without loss of generality, we only consider the scenario with one Type (b)

Region and one Type (c) Boundary, as can be seen from Fig. 3.5(b).

Similar to Case 3.4(a), the switched system in this subcase is asymptotically

stable under the global WCSS for any initial state.

(c) There exists at least one Type (c) Region and no Type (b) Region.

Without loss of generality, we only consider the scenario with one Type (c)

Region and one Type (b) Boundary, as can be seen from Fig. 3.5(c).

Similar to Case 3.4(a), the switched system in this subcase is asymptotically

stable under the global WCSS for any initial state.

(d) There exists at least one Type (b) Region and at least one Type (c)

Region. Without loss of generality, we only consider the scenario with one Type

(b) Region and one Type (c) Region, as can be seen from Fig. 3.5(d).

Based on Case 3.4(b) and Case 3.4(c), the switched system in this subcase

is asymptotically stable under the global WCSS for any initial state.

Therefore, the switched system (3.1) with N ≥ 2 belonging to Case 3.4 is

asymptotically stable under arbitrary switching if all of the three conditions are

satisfied.

Overall, the switched system (3.1) with N ≥ 2 is asymptotically stable under

arbitrary switching if all of the three conditions are satisfied and thus the proof

of sufficiency is complete.
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Proof of Necessity

In order to prove the necessity of Theorem 3.1, we need to show that the

switched system (3.1) with N ≥ 2 is not asymptotically stable under arbitrary

switching if any one of the three conditions is violated.

If the first condition is violated, the switched system (3.1) with N ≥ 2 is not

asymptotically stable under arbitrary switching according to Lemma 3.4.

If the second condition is violated, the switched system (3.1) with N ≥ 2 is

not asymptotically stable under the switching signal staying on the corresponding

worst clockwise subsystem in each region for any initial state.

If the third condition is violated, the switched system (3.1) with N ≥ 2 is not

asymptotically stable under the switching signal staying on the corresponding

worst counterclockwise subsystem in each region for any initial state.

Overall, if any one of the three conditions is violated, the switched system

(3.1) with N ≥ 2 is not asymptotically stable under arbitrary switching and thus

the proof of necessity is done.

3.4.2 Instability Mechanisms for the Switched System (3.1) with

N ≥ 2 under Arbitrary Switching

Based on Theorem 3.1, there are two types of instability mechanisms for the

switched system (3.1) with N ≥ 2.

1) Unstable chattering: If the first condition is violated, the trajectory of the

switched system will diverge to infinity by switching between the worst clockwise

subsystem Ap and the worst counterclockwise subsystem Aq in the interior of

the region where both Hpq and Hqp are positive, as shown in Fig. 3.6(a);
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Figure 3.6: Two instability mechanisms for the switched system (3.1) with N ≥ 2
under arbitrary switching

2) Unstable spiralling: If the second (resp. third) condition is violated, the

trajectory of the switched system will diverge to infinity by following the switch-

ing signal staying on the corresponding worst clockwise (resp. counterclockwise)

subsystem in each region for any initial state, as shown in Fig. 3.6(b).

The above two instability mechanisms are similar to the ones in [69] for the

two-mode case.

3.4.3 Application of Theorem 3.1

Example 3.1. Consider a switched linear system with three stable second-order

LTI subsystems of the form

A1 =

 0 5

−30 −1

 , A2 =

 0 5

−26 −1

 , A3 =

 −6 27

−150 −1

 . (3.12)

It was shown in [39] that there does not exist a CQLF among these three

subsystems. We will check whether the switched system is stable under arbitrary

switching.
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Table 3.1: Generalized regions of k for Example 3.1

k H12 H21 H13 H31 H23 H32 WCS

(−∞,−4.3398) − + + − + − A3

(−4.3398,−1.7048) − + − + + − A1

(−1.7048, 0) − + − + − + A1

(0, 1.8853) + − − + − + A2

(1.88536, 4.1594) + − + − − + A2

(4.1594,∞) + − + − + − A3

Based on equations (2.42)-(2.44), Di(k), Dj(k) andNij(k) for i, j ∈ {1, 2, 3}, i <

j can be calculated. With all the real roots of Di(k) = 0, Dj(k) = 0 and

Nij(k) = 0, the polar coordinates space can then be partitioned into six gen-

eralized regions of k, as listed in Table 3.1. Moreover, it is noted that all the

boundaries are Type (c) Boundaries and all the regions are Type (c) Regions.

According to Lemma 3.7, we have
⋃3
i=1E

o
icc = ∅ and

⋃3
i=1E

o
ic = R2. Therefore,

the first condition and the third condition in Theorem 3.1 are already satisfied.

Based on equations (2.38)-(2.39), the signs of Hij and Hji in each region are

determined and listed in Table 3.1. According to Remark 3.1, the worst clockwise

subsystems (WCS) for each region can also be determined and listed in Table 3.1.

From Table 3.1, we know that only three Ti need to be calculated. According to

equation (3.7), we have T1 = 0.08892s, T2 = 0.01594s, T3 = 0.09093s. Choose an

initial state x(t0) = [1, 0]T , we have

γwc =
‖eA2T2eA3T3eA1T1eA2T2eA3T3eA1T1x(t0)‖

‖x(t0)‖
= 0.9575 < 1 (3.13)

which means that the second condition in Theorem 3.1 is also satisfied. There-

fore, the switched system (3.12) is asymptotically stable under arbitrary switch-

ing. The worst case trajectory is shown in Fig. 3.7.

Remark 3.2. Although there does not exist a CQLF for the switched system

64



Chapter 3. Stability of Second-order Switched Linear Systems under Arbitrary
Switching

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

x1

x2

Worst Case Clockwise Trajectory

A
1

A
1

A
2

A
2

A
3

A
3

Figure 3.7: The worst case trajectory of Example 3.1

(3.12), it is still asymptotically stable under arbitrary switching. This example

shows the advantage of the proposed condition in Theorem 3.1 over the CQLF

conditions.

Remark 3.3. In [121], the (2, 2) entry of A1, a221, was treated as a variable, and

it was shown that the three subsystems will share a CQLF if a221 < −1.31225.

On the other hand, based on the CQLF existence condition in [39], we know

that every two subsystems will share a CQLF if a221 < −0.7152. However,

according to our condition, the switched system is still asymptotically stable even

when a122 = −0.5. Therefore, it seems that the condition for the existence of a

CQLF pairwise is more restrictive than the stability condition for the switched

system under arbitrary switching. Hence, from this observation, we propose the

conjecture that a second-order switched linear system is always asymptotically

stable under arbitrary switching when each pair of subsystems have a CQLF.

No counterexample has been found yet through extensive simulation studies.

However, the rigorous mathematical proof is lacking at this moment.
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3.5 Summary

Based on the results in Chapter 2, this chapter extended the worst case

switching signal (WCSS) criteria for second-order switched linear systems with

two modes in [69] to the general case and derived an easily verifiable necessary

and sufficient condition for the stability of second-order switched linear systems

with any finite number of subsystems under arbitrary switching.
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Chapter 4

Switching Stabilizability of

Second-order Switched Linear

Systems

4.1 Introduction

Based on the results in Chapter 2, this chapter aims to extend the best case

switching signal (BCSS) criteria for second-order switched linear systems with

two subsystems in [82] to the general case with any finite number of subsystems

and derive easily verifiable necessary and sufficient conditions for the switching

stabilizability. Similar to the previous chapter, the key idea is to compare the

subsystems for each group in the interior of a region pairwise, and determine

the most “stable” subsystem for the corresponding group. Then, the best case

analysis among all the subsystems in the interior of a region can be reduced to

the best case analysis between the two most “stable” subsystems in the interior
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of that region.

The contents of this chapter are organized as follows. Section 4.2 presents a

unified statement of the problem, where the second-order switched linear systems

are classified into three categories. The BCSS criteria for switched systems

belonging to the first category are derived in Section 4.3. In Section 4.4, an

easily verifiable necessary and sufficient condition for the switching stabilizability

is proposed for second-order switched linear systems with any finite number

of subsystems belonging to the first category. This condition is extended to

switched systems belonging to the other two categories in Section 4.5. Finally,

in Section 4.6, a summary is given.

4.2 Statement of the Problem

Motivated by the limitations of the existing results outlined in Chapter 1,

our aim is to derive easily verifiable necessary and sufficient conditions for the

switching stabilizability of second-order switched linear system with any finite

number of subsystems. In particular, we consider the continuous-time second-

order switched linear system with N (N > 2) unstable subsystems of the form

ẋ(t) = Aσ(t)x(t) (4.1)

with

Ai =

 a11i a12i

a21i a22i

 (4.2)

where x(t) ∈ R2 is the state, and σ : R+ → IN = {1, 2, · · · , N} is the switching

signal that determines the active mode of the system among N possible modes
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in A = {A1, A2, · · · , AN}.

It is noted that an unstable second-order LTI system ΣAi with two eigenvalues

λi1 and λi2 can be classified into three types according to its eigenvalue structure.

Type 1: Both λi1 and λi2 have positive real part;

Type 2: Both λi1 and λi2 have non-negative real part and at least one of

them has zero real part;

Type 3: One of λi1 and λi2 is negative (the other one can be zero or positive).

Then, the switched system (4.1) can be classified into three categories as

follows.

• Category I: All the subsystems are of Type 1;

• Category II: At least one of the subsystems is of Type 2 and none of the

subsystems is of Type 3;

• Category III: At least one of the subsystems is of Type 3.

For clarity, two types of asymptotic stabilizability are defined as follow.

Definition 4.1. The switched system (4.1) is said to be globally asymptotically

stabilizable (GAS), if for any initial state, there exists a switching signal under

which the trajectory will asymptotically converge to zero.

Definition 4.2. The switched system (4.1) is said to be regionally asymptotically

stabilizable (RAS), if there exists at least one region (non-empty, open set) such

that for any initial state in that region, there exists a switching signal under

which the trajectory will asymptotically converge to zero.

Remark 4.1. Although the global asymptotic stabilizability is our preference in

designing stabilizing switching laws, there exists a class of switched systems that
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may not be GAS, but still can be stabilized if the system trajectories can be

driven into certain regions. In fact, for these switched systems, it is possible to

force the system trajectories into such regions for most of the initial states.

Recall the three assumptions made in Section 2.1 and rewrite them for the

switched system (4.1) in the following form.

Assumption 4.1. Ai 6= cAj , where c ∈ R, c > 0, i, j ∈ IN and i 6= j.

When Assumption 4.1 is violated, the trajectories of ΣAi and ΣAj are identi-

cal for the same initial state. Therefore, only one of them needs to be considered

in the best case analysis.

Assumption 4.2. Ai 6= c

 1 0

0 1

, where c ∈ R, c > 0, and i ∈ IN .

When Assumption 4.2 is violated, any switching to Ai can only make the

trajectories of the switched system (4.1) become more “unstable” (θ keeps in-

variant and r becomes bigger). In this case, there is no need to take Ai into

account in the best case analysis.

Assumption 4.3. There does not exist a common real eigenvector for all Ai ∈

A.

When Assumption 4.3 is violated, all the matrices in A are simultaneously

lower-triangulable. According to Appendix A in [82], the switched system (4.1)

is RAS if and only if at least one of the (1,1) entries of the lower-triangular

matrices is negative.
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4.3 Best Case Analysis for the Switched System (4.1)

of Category I

In this section, we generalize the BCSS criteria for the switched system (4.1)

of Category I with N = 2 in [82] to the general case when N ≥ 2.

4.3.1 BCSS Cretiria for the Switched System (4.1) of Category

I with N = 2

Lemma 4.1 ([82]). For the switched system (4.1) of Category I with N = 2, we

have

1) The switched system is RAS if there exists a region of k where both H12(k)

and H21(k) are negative;

2) In regions where H12(k) > 0 and H21(k) < 0, the switching signal staying

on ΣA1 is the local BCSS;

3) In regions where H12(k) < 0 and H21(k) > 0, the switching signal staying

on ΣA2 is the local BCSS.

Lemma 4.2. In regions where both H12(k) and H21(k) are positive, the local

BCSS cannot have any switch between the two subsystems.

Similar to Lemma 3.2, this lemma can be easily proved based on the definition

of H12 and H21.
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4.3.2 BCSS Criteria for the Switched System (4.1) of Category

I with N ≥ 2

BCSS criteria in the interior of generalized regions of k

According to Remark 2.10 and Lemma 4.1, we can determine the more “sta-

ble” subsystem for any two subsystems in the interior of a generalized region

of k. For all the subsystems in Arc (resp. Arcc), by comparing pairwise, the

most “stable” clockwise (resp. counterclockwise) subsystem in the interior of

that region can then be determined.

Definition 4.3. In the interior of a generalized region of k, the most “stable”

clockwise (resp. counterclockwise) subsystem is called the best clockwise (resp.

counterclockwise) subsystem in that region.

Remark 4.2. According to Lemma 4.1, the best clockwise (resp. counterclock-

wise) subsystem in the interior of a generalized region of k is ΣAv (resp. ΣAw)

whose Hiv (Hjw) terms are all negative with Ai ∈ Arc, i 6= v (resp. Aj ∈

Arcc, j 6= w).

Lemma 4.3. The local BCSS in a generalized region of k only relates to the best

clockwise subsystem and the best counterclockwise subsystem in that region.

The proof of this lemma follows the similar line as that of Lemma 3.3.

From Lemma 4.3, we know that the local BCSS in the interior of a Type (b)

(resp. Type (c)) Region is the switching signal staying on the best counterclock-

wise (resp. clockwise) subsystem in this region. For a Type (a) Region, we have

the following two lemmas.
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Lemma 4.4. The switched system (4.1) of Category I with N ≥ 2 is RAS if

there exists a Type (a) Region where both Hvw(k) and Hwv(k) are negative.

Lemma 4.5. In the interior of a Type (a) Region where both Hvw(k) and Hwv(k)

are positive, the local BCSS for the switched system (4.1) of Category I with

N ≥ 2 cannot have any switch between Av and Aw.

These two lemmas can be easily proved based on Lemmas 4.1-4.3.

Definition 4.4. In the best case analysis, a Type (a) Region where both Hvw

and Hwv are negative (resp. positive) is called a stabilizable (resp. an unstabi-

lizable) Type (a) Region.

BCSS criteria on boundaries of generalized regions of k

It is obvious that the BCSS on the eigenvector of a Type 1 subsystem cannot

be the switching signal staying on this subsystem. Therefore, subsystems on

their corresponding eigenvectors can be ignored in the best case analysis, and

the best case trajectory of the switched system (4.1) of Category I with N ≥ 2

cannot stay on any boundary of the regions. According to the properties of

linear subsystems, the time spent on any boundary is zero. Therefore, we only

need to study whether the direction of the best case trajectory will change after

reaching a boundary. For a Type (b) Boundary or a Type (c) Boundary, there

is no doubt since only one possible direction exists. For a Type (a) Boundary,

we have

Lemma 4.6. If there does not exist any stabilizable Type (a) Region, the direc-

tion of the best case trajectory for the switched system (4.1) of Category I with

N ≥ 2 will keep invariant after reaching a Type (a) Boundary.
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The proof of this lemma follows the similar line as that of Lemma 3.6.

4.4 A Necessary and Sufficient Condition for the Switch-

ing Stabilizability of the Switched System (4.1) of

Category I with N ≥ 2

Similar to the worst case analysis, several useful equations are listed below.

Eic = {θ|Qi(θ) ≤ 0} (4.3)

Eicc = {θ|Qi(θ) ≥ 0} (4.4)

Lemma 4.7.
⋃N
i=1E

o
ic = R2 if and only if there is no Type (b) Boundary in

the polar coordinates space.
⋃N
i=1E

o
icc = R2 if and only if there is no Type (c)

Boundary in the polar coordinates space.

If
⋃N
i=1E

o
ic = R2 (resp.

⋃N
i=1E

o
icc = R2), the trajectory of the switched sys-

tem (4.1) belonging to Category I with N ≥ 2 under the switching signal staying

on the corresponding best clockwise (resp. counterclockwise) subsystem in each

region would be a clockwise (resp. counterclockwise) spiral around the origin

for any non-zero initial state x(t0) in the x − y coordinates. To determine the

convergence or divergence of such trajectories, we can define the best clockwise

ratio γbc (resp. the best counterclockwise ratio γbcc) between the magnitudes of

the state after one full clockwise (resp. counterclockwise) circle and the non-zero
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initial state x(t0) in the x− y coordinates with the form of

γbc(x(t0)) =
‖Φbc(x(t0))x(t0)‖

‖x(t0)‖
(4.5)

γbcc(x(t0)) =
‖Φbcc(x(t0))x(t0)‖

‖x(t0)‖
(4.6)

where Φbc(x(t0)) (resp. Φbcc(x(t0))) represents the state transition matrix for a

full clockwise (resp. counterclockwise) spiral under the switching signal staying

on the corresponding best clockwise (resp. counterclockwise) subsystem in each

region for the initial state x(t0).

Due to the symmetric property of the BCSS, we only need to consider half

plane. Denote the best clockwise (resp. counterclockwise) subsystems from the

ray that x(t0) falls on as A1, A2, · · · , Am in clockwise (resp. counterclockwise)

direction before reaching the opposite ray where −x(t0) falls on. According to

the isochronism property of linear systems, the time Ti spend in the ith region

is a constant and can be calculated by

Ti =

∫ θi+1

θi

1

Qi(θ)
dθ (4.7)

where θi and θi+1 are the angles of the two boundaries for the region in the

interior of which Ai is the best clockwise (resp. counterclockwise) subsystem.

Then, we have

Φbc(x(t0)) = (exp(AmTm) · · · exp(A2T2) exp(A1T1))
2 (4.8)

Φbcc(x(t0)) = (exp(AmTm) · · · exp(A2T2) exp(A1T1))
2 (4.9)
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Lemma 4.8. γbc(x(t0)) and γbcc(x(t0)) are invariant for any initial state x(t0).

The proof of this lemma follows the similar line as that of Lemma 3.8 and

thus is omitted.

Then, we have the principle result of this chapter as follows.

Theorem 4.1. The switched system (4.1) of Category I with N ≥ 2 is RAS

subject to Assumptions 4.1-4.3 if and only if at least one of the following three

conditions is satisfied.

1) There exists a stabilizable Type (a) Region;

2)
⋃N
i=1E

o
ic = R2, and γbc < 1;

3)
⋃N
i=1E

o
icc = R2, and γbcc < 1.

4.4.1 Proof of Theorem 4.1

Proof of Necessity

Let’s assume that none of the three conditions is satisfied. Then, all the

Type (a) Regions are unstabilizable Type (a) Regions. In addition, Lemma 4.5

and Lemma 4.6 indicate that the best case trajectory never changes direction.

According to different types of boundaries, we have the following four cases.

Case 4.1. All the boundaries are of Type (a), as shown in Fig. 4.1. In this case,

all the regions are Type (a) Regions. Based on Lemma 4.7, we have
⋃N
i=1E

o
ic =

R2 and
⋃N
i=1E

o
icc = R2. Moreover, the violation of the latter two conditions

means that γbc ≥ 1 and γbcc ≥ 1.

The global BCSS for this case is either the switching signal staying on the

corresponding best clockwise subsystem in each region or the switching signal

staying on the corresponding best counterclockwise subsystem in each region.
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k

 

   V V VI

Figure 4.1: Case 4.1: All the boundaries are of Type (a)

It is obvious that the trajectories under these two switching signals are spi-

ralling around the origin and the stability of the switched system under these

two switching signals only depends on the values of γbc and γbcc. Since neither

γbc or γbcc is smaller than one, the trajectories under these two switching signals

will never contract after one full circle (clockwise or counterclockwise) and thus

will not converge to zero finally for any initial state.

Therefore, the switched system (4.1) of Category I with N ≥ 2 that belongs

to Case 4.1 is not RAS if all of the three conditions are violated.

Case 4.2. At least one boundary is of Type (b) and none of the boundaries is

of Type (c). Based on Lemma 4.7, we have
⋃N
i=1E

o
ic 6= R2 and

⋃N
i=1E

o
icc = R2,

which means that the second condition is already violated. Besides, the violation

of the third condition indicates that γbcc ≥ 1.

(a) All the regions are Type (a) Regions. Without loss of generality, we

only consider the scenario with one Type (b) Boundary, as can be seen from

Fig. 4.2(a). Note that the Type (b) Boundary is the eigenvector for the best

clockwise subsystems in Regions II and III.

If the initial state is on the Type (b) Boundary, the global BCSS is the

switching signal staying on the corresponding best counterclockwise subsystem

in each region. Similar to Case 4.1, the switched system is not asymptotically
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k

 

   V V VI

(a)

k

 

   V V VI

(b)

Figure 4.2: Case 4.2: At least one boundary is of Type (b) and none of the
boundaries is of Type (c)

stabilizable since γbcc ≥ 1.

If the initial state is in the interior of any Type (a) Region or on any Type

(a) Boundary, there are two possibilities for the global BCSS. The first one is the

switching signal staying on the corresponding best counterclockwise subsystem in

each region, which cannot stabilize the switched system since γbcc ≥ 1. The other

possibility is the switching signal staying on the corresponding best clockwise

subsystem in each region. Since this Type (b) Boundary is the eigenvector for

the best clockwise subsystem in Region III, the trajectory under this switching

signal will diverge to infinity in Region III and the switched system cannot be

asymptotically stabilized by this switching signal.

(b) There exists at least one Type (b) Region. Without loss of generality,

we only consider the scenario with one Type (b) Region, as can be seen from
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Fig. 4.2(b). Note that the two boundaries of the Type (b) Region are both Type

(b) Boundaries and they are eigenvectors for the best clockwise subsystems in

Region I and Region III respectively.

If the initial state is in the interior of the Type (b) Region or on any Type (b)

Boundary, the global BCSS is the switching signal staying on the corresponding

best counterclockwise subsystem in each region. Similar to Case 4.1, the switched

system is not asymptotically stabilizable since γbcc ≥ 1.

If the initial state is in the interior of any Type (a) Region or on any Type

(a) Boundary, there are two possibilities for the global BCSS. The first one is the

switching signal staying on the corresponding best counterclockwise subsystem in

each region, which cannot stabilize the switched system since γbcc ≥ 1. The other

possibility is the switching signal staying on the corresponding best clockwise

subsystem in each region. Since the two Type (b) Boundaries are the eigenvectors

for the best clockwise subsystems in Region I and Region III respectively, the

trajectory under this switching signal will diverge to infinity in Region III and

the switched system cannot be asymptotically stabilized by this switching signal.

Therefore, the switched system (4.1) of Category I with N ≥ 2 that belongs

to Case 4.2 is not RAS if all of the three conditions are violated.

Case 4.3. At least one boundary is of Type (c) and none of the boundaries is

of Type (b). Based on Lemma 4.7, we have
⋃N
i=1E

o
ic = R2 and

⋃N
i=1E

o
icc 6= R2,

which means the third condition is already violated. Besides, the violation of

the second condition indicates that γbc ≥ 1.

(a) All the regions are Type (a) Regions. Without loss of generality, we

only consider the scenario with one Type (c) Boundary, as can be seen from
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Figure 4.3: Case 4.3: At least one boundary is of Type (c) and none of the
boundaries is of Type (b)

Fig. 4.3(a). Note that the Type (c) Boundary is the eigenvector for the best

counterclockwise subsystems in Regions IV and V.

If the initial state is on the Type (c) Boundary, the global BCSS is the

switching signal staying on the corresponding best clockwise subsystem in each

region. Similar to Case 4.1, the switched system is not asymptotically stabilizable

since γbc ≥ 1.

If the initial state is in the interior of any Type (a) Region or on any Type

(a) Boundary, there are two possibilities for the global BCSS. The first one is the

switching signal staying on the corresponding best clockwise subsystem in each

region, under which the switched system is not asymptotically stabilizable since

γbc ≥ 1. The other possibility is the switching signal staying on the corresponding

best counterclockwise subsystem in each region. Since this Type (c) Boundary
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is the eigenvector for the best counterclockwise subsystem in Region IV, the

trajectory under this switching signal will diverge to infinity in Region IV and

the switched system cannot be asymptotically stabilized by this switching signal.

(b) There exists at least one Type (c) Region. Without loss of generality, we

only consider the scenario with one Type (c) Region, as can be seen from Fig.

4.3(b). Note that the two boundaries of the Type (c) Region are both Type (c)

Boundaries and they are eigenvectors for the best counterclockwise subsystems

in Region IV and Region VI respectively.

If the initial state is in the interior of the Type (c) Region or on any Type (c)

Boundary, the global BCSS is the switching signal staying on the corresponding

best clockwise subsystem in each region. Similar to Case 4.1, the switched system

is not asymptotically stabilizable since γbc ≥ 1.

If the initial state is in the interior of any Type (a) Region or on any Type

(a) Boundary, there are two possibilities for the global BCSS. The first one is

the switching signal staying on the corresponding best clockwise subsystem in

each region, under which the switched system is not asymptotically stabilizable

since γbc ≥ 1. The other possibility is the switching signal staying on the corre-

sponding best counterclockwise subsystem in each region. Since the two Type

(c) Boundaries are the eigenvectors for the best counterclockwise subsystems

in Region IV and Region VI respectively, the trajectory under this switching

signal will diverge to infinity in Region IV and the switched system cannot be

asymptotically stabilized by this switching signal.

Therefore, the switched system (4.1) of Category I with N ≥ 2 that belongs

to Case 4.3 is not RAS if all of the three conditions are violated.
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Case 4.4. At least one boundary is of Type (b) and at least one boundary is of

Type (c). According to Lemma 4.7, we have
⋃N
i=1E

o
ic 6= R2 and

⋃N
i=1E

o
icc 6= R2,

which means that the latter two conditions are violated.

(a) All the regions are Type (a) Regions. Without loss of generality, we only

consider the scenario with one Type (b) Boundary and one Type (c) Boundary,

as can be seen from Fig. 4.4(a). Note that the Type (b) Boundary is the

eigenvector for the best clockwise subsystems in Regions II and III, and the

Type (c) Boundary is the eigenvector for the best counterclockwise subsystems

in Regions IV and V.

If the initial state is on the Type (b) Boundary, the global BCSS is the

switching signal staying on the corresponding best counterclockwise subsystem

in each region. In Region IV, the trajectory under this switching signal will

diverge to infinity and the switched system is not asymptotically stabilizable.

If the initial state is on the Type (c) Boundary, the global BCSS is the

switching signal staying on the corresponding best clockwise subsystem in each

region. In Region III, the trajectory under this switching signal will diverge to

infinity and the switched system is not asymptotically stabilizable.

If the the initial state is in the interior of any Type (a) Region or on any

Type (a) Boundary, there are two possibilities for the global BCSS. Similar to

the above two situations, the trajectories under both these two switching signals

will diverge to infinity and the switched system is not asymptotically stabilizable.

(b) There exists at least one Type (b) Region and no Type (c) Region.

Without loss of generality, we only consider the scenario with one Type (b)

Region and one Type (c) Boundary, as can be seen from Fig. 4.4(b).
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Figure 4.4: Case 4.4: At least one boundary is of Type (b) and at least one
boundary is of Type (c)
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Similar to Case 4.4(a), the switched system in this subcase cannot be asymp-

totically stabilized by the global BCSS for any initial state.

(c) There exists at least one Type (c) Region and no Type (b) Region.

Without loss of generality, we only consider the scenario with one Type (c)

Region and one Type (b) Boundary, as can be seen from Fig. 4.4(c).

Similar to Case 4.4(a), the switched system in this subcase cannot be asymp-

totically stabilized by the global BCSS for any initial state.

(d) There exists at least one Type (b) Region and at least one Type (c)

Region. Without loss of generality, we only consider the scenario with one Type

(b) Region and one Type (c) Region, as can be seen from Fig. 4.4(d).

Based on Case 4.4(b) and Case 4.4(c), the switched system in this subcase

cannot be asymptotically stabilized by the global BCSS for any initial state.

Therefore, the switched system (4.1) of Category I with N ≥ 2 that belongs

to Case 4.4 is not RAS if all of the three conditions are violated.

Overall, if all of the three conditions are violated, the switched system (4.1)

of Category I with N ≥ 2 is not RAS and thus the proof of necessity is complete.

Proof of Sufficiency

If the first condition is satisfied, the switched system (4.1) of Category I with

N ≥ 2 is RAS according to Lemma 4.4. In addition, the global stabilizability of

the switched system in this case depends on whether the system trajectories can

be driven into the stabilizable Type (a) Region for any initial state.

If the second condition is satisfied, the switched system (4.1) of Category I

with N ≥ 2 is GAS by the switching signal staying on the corresponding best

clockwise subsystem in each region for any initial state.
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(a) Regionally Stable Chattering
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(b) Globally Stable Spiralling

Figure 4.5: Two stabilization mechanisms for the switched system (4.1) of Cat-
egory I with N ≥ 2

If the third condition is satisfied, the switched system (4.1) of Category I

with N ≥ 2 is GAS by the switching signal staying on the corresponding best

counterclockwise subsystem in each region for any initial state.

Overall, if any one of the three conditions is satisfied, the switched system

(4.1) of Category I with N ≥ 2 is RAS and thus the proof of sufficiency is done.

4.4.2 Stabilization Switching Laws for the Switched System (4.1)

of Category I with N ≥ 2

Based on Theorem 4.1, there are two stabilization switching laws for the

switched system (4.1) of Category I with N ≥ 2.

1) Regional Stabilization Switching Law: If there exists a stabilizable Type

(a) Region and the system trajectories can be driven into this region, switch

between the best clockwise subsystem and the best counterclockwise subsystem

in this region upon intersecting the boundary of this region so as to keep the

trajectory inside this region, as shown in Fig. 4.5(a);
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2) Global Stabilization Switching Law: If
⋃N
i=1E

o
ic = R2 and γbc < 1 (resp.⋃N

i=1E
o
icc = R2 and γbcc < 1), switch to the corresponding best clockwise (resp.

counterclockwise) subsystem in each region for any initial state, as shown in Fig.

4.5(b).

The above two stabilization laws are similar to the ones in [82] for the two-

mode case.

4.4.3 Application of Theorem 4.1

Example 4.1. Consider a switched linear system with three unstable second-

order LTI subsystems as follows

A1 =

 0 −5

30 0.3

 , A2 =

 0 −5

26 1

 , A3 =

 6 −27

150 1

 . (4.10)

It is noted that all the three subsystems are of Type 1. According to the

switching stabilizability conditions in [82], it is impossible to stabilize any two

of them by switching.

Based on equations (2.42)-(2.44), Di(k), Dj(k) andNij(k) for i, j ∈ {1, 2, 3}, i <

j can be calculated. With all the real roots of Di(k) = 0, Dj(k) = 0, and

Nij(k) = 0, the polar coordinates space can then be partitioned into seven re-

gions, as listed in Table 4.1. Moreover, all the boundaries are Type (b) Bound-

aries and all the regions are Type (b) Regions. According to Lemma 4.7, we

have
⋃N
i=1E

o
icc = R2 and

⋃N
i=1E

o
ic = ∅. Therefore, the first two conditions are

violated.

Based on equations (2.38)-(2.39), the signs of Hij and Hji in each region are

determined and listed in Table 4.1. According to Remark 4.2, the best counter-

86



Chapter 4. Switching Stabilizability of Second-order Switched Linear Systems

Table 4.1: Generalized regions of k for Example 4.1

k H12 H21 H13 H31 H23 H32 BCCS

(−∞,−21.4777) + − − + − + A3

(−21.4777,−1.7048) + − + − − + A1

(−1.7048, 0) + − + − + − A1

(0, 2.7035) − + + − + − A2

(2.7035, 4.1594) − + − + + − A2

(4.1594, 5.7143) − + − + − + A3

(5.7143,∞) + − − + − + A3

−1.5 −1 −0.5 0 0.5 1 1.5
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Figure 4.6: The best case trajectory of Example 4.1

clockwise subsystems (BCCS) for each region are also determined and listed in

Table 4.1. From Table 4.1, we know that only three Ti need to be calculated.

According to equation (4.7), we have T2 = 0.0909s, T3 = 0.0100s, T1 = 0.1200s.

Choosing an initial state x(t0) = [1, 0]T , we have

γbcc =
‖eA1T1eA3T3eA2T2eA1T1eA3T3eA2T2x(t0)‖

‖x(t0)‖
= 0.9884 < 1 (4.11)

which means that the third condition in Theorem 4.1 is satisfied. Therefore, the

switched system (4.10) is GAS. The best case trajectory is given in Fig. 4.6.
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4.5 Extensions

In this section, the switching stabilizability condition for the switched sys-

tem (4.1) of Category I with N ≥ 2 is extended to the switched systems (4.1)

belonging to the other two categories.

4.5.1 Extension to the Switched System (4.1) of Category II

with N ≥ 2

Theorem 4.2. The switched system (4.1) of Category II with N ≥ 2 is RAS

subject to Assumptions 4.1-4.3 if and only if at least one of the following three

conditions is satisfied.

1) There exists a stabilizable Type (a) Region;

2)
⋃N
i=1E

o
ic = R2, and γbc < 1;

3)
⋃N
i=1E

o
icc = R2, and γbcc < 1.

Theorem 4.2 is an extension of Theorem 4.1 by including subsystems of Type

2. The proof for Theorem 4.2 is very similar to that of Theorem 4.1, hence is

omitted.

4.5.2 Extension to the Switched System (4.1) of Category III

with N ≥ 2

Theorem 4.3. The switched system (4.1) of Category III with N ≥ 2 is always

GAS subject to Assumptions 4.1-4.3.

The proof for Theorem 4.3 is straightforward according to Theorem 3 and

Remark 5 in [82].

88



Chapter 4. Switching Stabilizability of Second-order Switched Linear Systems

4.6 Summary

Based on the results in Chapter 2, this chapter extended the best case switch-

ing signal (BCSS) criteria for second-order switched linear systems with two

subsystems in [82] to the general case and derived three easily verifiable nec-

essary and sufficient conditions for the switching stabilizability of second-order

switched linear systems with any finite number of subsystems. Based on the de-

rived conditions, two switching laws were proposed for the switching stabilization

of second-order switched linear systems with any finite number of subsystems.
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Chapter 5

Identification of Nonlinear

Systems using Multiple

Models

5.1 Introduction

As mentioned in Chapter 1, switched systems provide a switching control

method for nonlinear dynamical systems based on the divide-and-conquer strat-

egy. It is noted that a good multiple model architecture, which can provide ac-

curate approximations of nonlinear systems, plays an important role in achieving

a satisfactory control performance. While the PWA models have drawn most of

the attention in approximating nonlinear systems in recent years, they encounter

the “curse of dimensionality” problem when the dimension of the regressor space

is high. To resolve this problem, we propose a novel multiple model architecture

for the identification of nonlinear systems in this chapter. Instead of engaging all
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dimensions of the regressor space into partitioning, the key idea of the proposed

multiple model architecture is to partition only the range of the control input

u(k) into several intervals and obtain a local model that is linear in u(k) within

each interval. Based on the Taylor’s theorem, a theoretical upper bound for the

estimation error of the proposed model architecture can also be obtained. For

each interval, the local model can be approximated by any universal approxima-

tor, such as artificial neural networks (ANN), assuming abundant input-output

data. Both simulation studies and experimental results show that accurate ap-

proximation can be obtained by the proposed multiple model architecture.

The contents of this chapter are organized as follows. Section 5.2 presents

some mathematical preliminaries. In Section 5.3, the novel multiple model ar-

chitecture is presented. The identification of the proposed multiple model using

neural networks is detailed in Section 5.4. Simulation studies and experimental

results are given in Section 5.5 and Section 5.6 to demonstrate the effectiveness

of the proposed multiple model in approximating nonlinear systems. Finally, in

Section 5.7, a summary is given.

5.2 Mathematical Preliminaries

Consider a nonlinear discrete-time dynamical system described by the state-

space equations

x(k + 1) = f [x(k), u(k)]

y(k) = h[x(k)] (5.1)
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where the state x(k) ∈ Rn, the input u(k) ∈ R, and the output y(k) ∈ R are

discrete-time sequences, f : Rn × R → Rn and h : Rn → R are smooth maps.

However, both f and h are unknown, and only the input u(k) and output y(k)

are accessible. Therefore, system identification and control have to be carried

out using only input-output data, which is called data-driven identification and

control of nonlinear systems. Our primary object in this thesis is to suggest a

novel multiple model approach which circumvents the curse of dimensionality

problem and is computationally effective in dealing with control problems. In

particular, the control task is to determine a bounded control input u(k) such

that the output y(k) tracks a specified bounded reference output y∗(k).

For practical control problems, due to the limitation of the actuators, the

input signals always have an operating range such that

Umin ≤ u ≤ Umax (5.2)

where Umin and Umax are the minimal and maximum values of the control input

signals. This operating range is assumed to be known to the users. For the

simplicity of theoretical analysis, we make the following assumption.

Assumption 5.1. For any input sequence u(k) within the operating range, the

output sequence y(k) is always bounded.

Remark 5.1. This assumption plays a very important role in the identification

process and the theoretical analysis of the estimation error. It is a general

assumption for most data-driven identification and control algorithms in the

literature. It essentially implies that the system is bound-input-bounded-output

(BIBO) stable. It is necessary since identification algorithms can only deal with
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bounded signals. If not satisfied, it is assumed that we have a controller to

stabilize the system first to assure that the input and output signals are all

bounded.

Since only the input-output data are available, it is of great importance to

investigate the existence of input-output models of the nonlinear system (5.1).

5.2.1 The NARMA Model

Under certain conditions, a local input-output model for the nonlinear system

(5.1) in the neighborhood of the equilibrium state was derived in [122] and [123]

with the form of

y(k + 1) = Fl[y(k), · · · , y(k − n+ 1), u(k), · · · , u(k − n+ 1)] (5.3)

where Fl : R2n → R is smooth. Considering the relative degree d of the nonlinear

system (5.1), which represents the delay from input u to output y [124], the model

becomes

y(k + d) = Fl[y(k), · · · , y(k − n+ 1), u(k), · · · , u(k − n+ 1)]. (5.4)

By taking more past observations of input and output into consideration, the

local input-output model (5.4) was extended to a global input-output represen-

tation for almost all nonlinear systems in [125] with the form of

y(k + d) = Fg[y(k), · · · , y(k − 2n), u(k), · · · , u(k − 2n)] (5.5)

where Fg : R4n+2 → R is smooth.
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Overall, we have the following assumption regarding the existence of an input-

output model of the nonlinear system (5.1).

Assumption 5.2. The nonlinear system (5.1) can be described by the nonlinear

autoregressive moving average (NARMA) model of the form

y(k + d) = F [φ(k)] (5.6)

where φ(k) is the regression vector defined by

φ(k) = [y(k), · · · , y(k − na), u(k), · · · , u(k − nb)]T (5.7)

and F : Rna+nb+2 → R is smooth. Moreover, na + 1 and nb + 1 are the orders of

output and input in the regression vector respectively.

Remark 5.2. This assumption only assures the existence of the NARMA model.

The mathematical form of the map F is unknown. However, in the identification

process, the time delay d, the orders of output and input in the regression vector,

na + 1 and nb + 1, are assumed to be known. If they are unknown a prior, there

are various techniques to estimate them. For instance, the simplest way is to

try different values and choose the smallest ones with satisfactory identification

performance.

Under the existence assumption of F [·], a multilayer perceptron (MLP) or

a radial basis function network (RBFN) can be used to identify it [126, 127] .

Denoting the network mapping by N0[·], the identification model has the form

ŷ(k + d) = N0[φ(k)] (5.8)
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where ŷ(k + d) is the estimate of y(k + d).

Remark 5.3. Based on (5.8), the NARMA model can be approximated as accu-

rate as desired. However, the NARMA model is not convenient for controller

design since u(k) occurs nonlinearly in it.

5.2.2 The NARMA-L2 Model

In order to solve the control problem for the NARMA model mentioned in

Remark 5.3, an approximation of the NARMA model in the neighborhood of

the equilibrium state, called the NARMA-L2 model, was proposed in [128] of

the form

y(k + d) ≈ f0[ϕ(k)] + g0[ϕ(k)]u(k) (5.9)

where the degraded regression vector ϕ(k) is the original regression vector φ(k)

without u(k),

ϕ(k) = [y(k), · · · , y(k − na), u(k − 1), · · · , u(k − nb)]T (5.10)

and f0 : Rna+nb+1 → R, g0 : Rna+nb+1 → R are smooth.

The main feature of the NARMA-L2 model is that u(k) occurs linearly in

the equation, which permits easy algebraic calculation of the control inputs. If

g0 in (5.9) is sign definite in a neighborhood of the equilibrium state, the control

input can be obtained by algebraic calculation as follows.

u(k) =
y∗(k + d)− f0[ϕ(k)]

g0[ϕ(k)]
. (5.11)
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Based on equation (5.9), a neural network comprising two subnetworks N1[·]

and N2[·] can be constructed to identify the NARMA-L2 model. The identifica-

tion model has the form

ŷ(k + d) = N1[ϕ(k)] +N2[ϕ(k)]u(k). (5.12)

As mentioned in [128], the approximation can be made as accurate as desired

by decreasing the amplitude of the input u. Therefore, the NARMA-L2 model

only provides a local representation of the nonlinear system (5.1), which is its

main drawback in approximating nonlinear systems with large operating range.

5.3 Multiple NARMA-L2 Models

Inspired by the NARMA-L2 model and the multiple model strategy, a novel

multiple model architecture is proposed in this section.

Different from the PWA models where all dimensions of the regressor space

are engaged in the partitioning, the key idea of the novel multiple model archi-

tecture is to partition only the range of the control input u(k) with length L into

a suitable choice of intervals, say N , in the following form

[U0, U1], [U1, U2], · · · , [UN−1, UN ] (5.13)

where U0 = Umin and UN = Umax, and UN − U0 = L.

To make it simple, the partition is made with equal length, which means

U1 − U0 = U2 − U1 = · · · = UN − UN−1 =
L

N
. (5.14)
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Express F [φ(k)] = G[ϕ(k), u(k)] and denote U i = Ui−1+Ui
2 as the middle point

of the ith (i = 1, · · · , N) interval where u(k) ∈ [Ui−1, Ui]. In the ith interval, the

Taylor expansion of G[ϕ(k), u(k)] around the middle point U i can be expressed

as

y(k + d) = G[ϕ(k), u(k)] = G[ϕ(k), U i] +
∂G

∂u(k)

∣∣∣∣
(ϕ(k),U i)

(u(k)− U i) +Ri

(5.15)

where the second-order remainder Ri in Lagrange form is

Ri =
1

2

∂2G

∂u(k)2

∣∣∣∣
(ϕ(k),ξi)

(u(k)− U i)2 (5.16)

where ξi lies between U i and u(k). Since u(k) ∈ [Ui−1, Ui], we have ξi ∈ [Ui−1, Ui].

Since G is a smooth map, ∂2G
∂u(k)2

is a continuous function. Note that ϕ(k) is

bounded and ξi ∈ [Ui−1, Ui]. According to the Weierstrass extreme value theo-

rem, ∂2G
∂u(k)2

attains a maximum and a minimum in the compact set. Therefore,

we have ∣∣∣∣ ∂2G∂u(k)2

∣∣∣∣
(ϕ(k),ξi)

∣∣∣∣ 6Mi (5.17)

where Mi is the bounded maximum value of

∣∣∣∣ ∂2G
∂u(k)2

∣∣∣∣
(ϕ(k),ξi)

∣∣∣∣.
Then, we have

|Ri| 6
MiL

2

8N2
. (5.18)

In this case, the first-order Taylor polynomial of (5.15) can be used as an

approximation of the NARMA model in the ith interval where u(k) ∈ [Ui−1, Ui],
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which can be written as

y(k + d) ≈ fi[ϕ(k)] + gi[ϕ(k)]u(k), u(k) ∈ [Ui−1, Ui] (5.19)

which is in the NARMA-L2 form.

By combining all the submodels together, we have the multiple NARMA-L2

model of the form

y(k + d) ≈ fσ(k)[ϕ(k)] + gσ(k)[ϕ(k)]u(k) (5.20)

where

σ(k) =


dN · u(k)−U0

L e if u(k) 6= U0

1 if u(k) = U0

(5.21)

is the switching signal that determines the active submodel at time k, and dxe

is the ceiling function that returns the smallest integer not less than x.

Based on (5.18), the approximation error for the multiple NARMA-L2 model

is bounded by

|e(k + d)| =
∣∣y(k + d)− fσ(k)[ϕ(k)]− gσ(k)[ϕ(k)]u(k)

∣∣ 6 ML2

8N2
(5.22)

where M = max{M1,M2, · · · ,MN}.

Remark 5.4. Different from the NARMA-L2 model, which is only valid in a

small range of u(k), the multiple NARMA-L2 model provides a representation of

the nonlinear system (5.1) in the whole operating range [Umin, Umax]. Equation

(5.22) indicates that the approximation can be made as accurate as desired

by increasing the number of submodels, given the exact forms of fi[ϕ(k)] and
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gi[ϕ(k)].

5.4 Identification of Multiple NARMA-L2 Models us-

ing Neural Networks

Since F [φ(k)] is unknown, the mathematical forms of fi[ϕ(k)] and gi[ϕ(k)]

cannot be obtained directly. However, they can be approximated by any uni-

versal approximator if we have sufficient input-output data. Based on equation

(5.19), a neural network with two subnetworks Ni1[·] and Ni2[·] can be construct-

ed to identify the ith submodel of the multiple NARMA-L2 model with the form

of

ŷ(k + d) = Ni1[ϕ(k)] +Ni2[ϕ(k)]u(k), u(k) ∈ [Ui−1, Ui]. (5.23)

Then, we have the multiple NARMA-L2 identification model in the following

form

ŷ(k + d) = Nσ(k)1[ϕ(k)] +Nσ(k)2[ϕ(k)]u(k) (5.24)

where

σ(k) =


dN · u(k)−U0

L e if u(k) 6= U0

1 if u(k) = U0

. (5.25)

Given a set of input-output data of the nonlinear system (5.1), a training set

can be constructed. Based on equation (5.25), we can classify the training data

into N groups and train the corresponding neural networks.

Remark 5.5. In the identification of PWA models, the data assignment is a chal-

lenging task, which is coupled with parameter estimation and region estimation.

However, in the identification of multiple NARMA-L2 models, the data assign-
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ment becomes trivial due to the predefined data assignment rule (5.25).

Remark 5.6. The number of submodels in the multiple NARMA-L2 model, N ,

is a tuning parameter in the identification process. As mentioned in Remark

5.4, the theoretical upper bound for the estimation error becomes smaller as

N increases. However, for a specific set of data in practice, as N increases,

the number of data within each interval decreases, which will affect the neural

networks approximation. Therefore, N should be chosen neither too large nor

too small from the identification point of view.

Remark 5.7. The fundamental rule to choose an appropriate neural network

structure is: the more complicated the nonlinear system is, the more complex

neural networks we need. For a specific example, we need to first find an ap-

propriate neural network structure for the NARMA model. Then, the neural

network structures for each NARMA-L2 submodel should be simpler than that

for the NARMA model.

5.5 Simulation Studies

In this section, simulation studies are carried out to demonstrate the effec-

tiveness of the multiple NARMA-L2 models in approximating nonlinear systems.

For comparison purposes, the identification results based on the NARMA model

and the NARMA-L2 model are also included.

To evaluate the fit between the predicted output ŷ and the measured output

y, we use the standard “Fit”-value, which is defined as

Fit =

(
1−

√∑
k(y(k)− ŷ(k))2∑
k(y(k)− y)2

)
× 100% (5.26)
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where y is the arithmetic mean of y(k).

5.5.1 Nonlinear Example 1

Consider the following nonlinear system

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (5.27)

which was also used in [126, 107]. Note that this system is already in the NARMA

form.

The training set consists of 4000 samples, which were generated by simulation

using a uniformly distributed random input u(k) ∈ [−2, 2]. To test the quality

of different models in approximating the original nonlinear system, the output

of the original nonlinear system is compared with the output of different models

when the test input is

u(k) = sin
2πk

10
+ sin

2πk

25
, k = 1, · · · , 200. (5.28)

The three models used to identify the nonlinear system (5.27) are

ŷ1(k + 1) = N0[y(k), u(k)]

ŷ2(k + 1) = N1[y(k)] +N2[y(k)]u(k)

ŷ3(k + 1) = Nσ(k)1[y(k)] +Nσ(k)2[y(k)]u(k) (5.29)

where ŷ1, ŷ2, and ŷ3 are the outputs predicted by the NARMA, NARMA-L2,

and multiple NARMA-L2 models, respectively. In the simulation studies, N0 is

an MLP chosen from the class N2
2,10,1 (i.e., two-layer networks with two inputs,
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Figure 5.1: Identification results for the test set of nonlinear system 1 with
different models. Solid: Real output, dashed: Estimation output

Table 5.1: Fit values for the test set of nonlinear system 1 with different models

Model Structure NARMA NARMA-L2 N = 2 N = 4 N = 6 N = 8

Fit Value 99.88% 58.59% 64.69% 90.31% 95.95% 97.43%

10 hidden neurons in the hidden layer, and one output node). Similarly, N1, N2,

Ni1 and Ni2 are chosen to belong to N2
1,10,1.

The simulation results for the test data of nonlinear system 1 using different

models are shown in Fig. 5.1 and the corresponding Fit values are shown in

Table 5.1. Note that N = 2 in Table 5.1 stands for the multiple NARMA-L2

model with 2 submodels. As can be seen from Fig. 5.1 and Table 5.1, the

fitting becomes better as the number of submodels increases. In particular,

the identification performance based on the multiple NARMA-L2 model with 8

submodels is close to that using the NARMA model.
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5.5.2 Nonlinear Example 2

Consider the following nonlinear system

y(k + 1) =
1.5y(k)y(k − 1)

1 + y2(k) + y2(k − 1)

+ sin[y(k) + y(k − 1)] + u(k) + 0.8u(k − 1) (5.30)

which can be found in [108]. Note that this system is already in the NARMA-L2

form.

The training set consists of 4000 samples, which were generated by simulation

using a uniformly distributed random input u(k) ∈ [−2.2, 2.2]. The test input

signal is

u(k) = sin
2πk

10
+ sin

2πk

25
, k = 1, · · · , 200. (5.31)

The three models used to identify the nonlinear system (5.30) are

ŷ1(k + 1) = N0[φ(k)]

ŷ2(k + 1) = N1[ϕ(k)] +N2[ϕ(k)]u(k)

ŷ3(k + 1) = Nσ(k)1[ϕ(k)] +Nσ(k)2[ϕ(k)]u(k) (5.32)

where

φ(k) = [y(k), y(k − 1), u(k), u(k − 1)]

ϕ(k) = [y(k), y(k − 1), u(k − 1)] (5.33)
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Figure 5.2: Identification results for the test set of nonlinear system 2 with
different models. Solid: Real output, dashed: Estimation output

Table 5.2: Fit values for the test set of nonlinear system 2 with different models

Model Structure NARMA NARMA-L2 N = 2 N = 4 N = 6 N = 8

Fit Value 99.17% 98.38% 98.15% 97.22% 97.15% 96.42%

and ŷ1, ŷ2, and ŷ3 are the outputs predicted by the NARMA, NARMA-L2, and

multiple NARMA-L2 models, respectively. In the simulation studies, N0 is an

MLP chosen from the class N2
4,20,1, while N1, N2, Ni1 and Ni2 are chosen from

the class N2
3,10,1.

The simulation results for the test data of nonlinear system 2 using different

models are shown in Fig. 5.2 and the corresponding Fit values are shown in Table

5.2. As can be seen from Fig. 5.2 and Table 5.2, there is no significant difference

for the fitting using the NARMA, NARMA-L2 and multiple NARMA-L2 models,

which is due to the NARMA-L2 form of the original nonlinear system.
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5.5.3 Nonlinear Example 3

Consider a nonlinear system described by the state-space form

x1(k + 1) = 0.1x1(k) + 2
u(k) + x2(k)

1 + [u(k) + x2(k)]2

x2(k + 1) = 0.1x2(k) +
u3(k) + x21(k)

1 + x21(k) + x22(k)

y(k) = x1(k) + x2(k) (5.34)

The training set consists of 10000 samples, which were generated by simula-

tion using a uniformly distributed random input u(k) ∈ [−2, 2]. The test input

signal is

u(k) = sin
2πk

10
+ sin

2πk

25
, k = 1, · · · , 200. (5.35)

Since this example is in the state-space form, appropriate na and nb need

to be chosen in the identification process. For different values of na and nb, it

was found that the Fit values of the NARMA model are almost the same when

na = nb ≥ 2. For simplicity, na = nb = 2 is chosen. Therefore, the three models

used to identify the nonlinear system (5.34) are

ŷ1(k + 1) = N0[φ(k)]

ŷ2(k + 1) = N1[ϕ(k)] +N2[ϕ(k)]u(k)

ŷ3(k + 1) = Nσ(k)1[ϕ(k)] +Nσ(k)2[ϕ(k)]u(k) (5.36)
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Figure 5.3: Identification results for the test set of nonlinear system 3 with
different models. Solid: Real output, dashed: Estimated output

where

φ(k) = [y(k), y(k − 1), y(k − 2), u(k), u(k − 1), u(k − 2)]

ϕ(k) = [y(k), y(k − 1), y(k − 2), u(k − 1), u(k − 2)] (5.37)

and ŷ1, ŷ2, and ŷ3 are the outputs predicted by the NARMA, NARMA-L2,

and multiple NARMA-L2 models, respectively. In the simulation studies, N0 ∈

N3
6,20,10,1 while N1, N2, Ni1 and Ni2 are chosen from the class N2

5,20,1.

The simulation results for the test data of nonlinear system 3 using different

models are shown in Fig. 5.3 and the corresponding Fit values are shown in Table

5.3. As can be seen from Fig. 5.3 and Table 5.3, the fitting becomes better as

the number of submodels increases from 1 to 4. In particular, the identification
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Table 5.3: Fit values for the test set of nonlinear system 3 with different models

Model Structure NARMA NARMA-L2 N = 2 N = 4 N = 6 N = 8

Fit Value 96.14% 69.70% 73.43% 92.16% 91.45% 90.14%

performance based on the multiple NARMA-L2 model with 4 submodels is close

to that using the NARMA model. However, from N = 4 to N = 8, there is no

increase but small decrease in the Fit value, which shows that bigger N does not

guarantee better identification performance in the multiple NARMA-L2 model

architecture.

5.5.4 Nonlinear Example 4

Consider a nonlinear benchmark system described in the state-space form

x1(k + 1) =

(
x1(k)

1 + x21(k)
+ 1

)
sin[x2(k)]

x2(k + 1) = x2(k) cos[x2(k)] + x1(k) exp[−x
2
1(k) + x22(k)

8
]

+
u3(k)

1 + u2(k) + 0.5 cos(x1(k) + x2(k))

y(k) =
x1(k)

1 + 0.5 sin[x2(k)]
+

x2(k)

1 + 0.5 sin[x1(k)]
. (5.38)

This plant, taken from [129], does not correspond to any real physical system

and is deliberately chosen to be complex and distinctly nonlinear so that conven-

tional identification and control methods do not give satisfactory performance.

The training set consists of 50000 samples, which were generated by simu-

lation using a uniformly distributed random input u(k) ∈ [−2.5, 2.5]. The test

input signal is

u(k) = sin
2πk

10
+ sin

2πk

25
, k = 1, · · · , 200. (5.39)
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Similar to nonlinear example 3, appropriate na and nb need to be chosen in

the identification process. To keep consistent with other works [130, 131, 132,

133, 107], which also used this model, na = nb = 2 is chosen. Therefore, the

three models used to identify the nonlinear system (5.38) are

ŷ1(k + 1) = N0[φ(k)]

ŷ2(k + 1) = N1[ϕ(k)] +N2[ϕ(k)]u(k)

ŷ3(k + 1) = Nσ(k)1[ϕ(k)] +Nσ(k)2[ϕ(k)]u(k) (5.40)

where

φ(k) = [y(k), y(k − 1), y(k − 2), u(k), u(k − 1), u(k − 2)]

ϕ(k) = [y(k), y(k − 1), y(k − 2), u(k − 1), u(k − 2)] (5.41)

and ŷ1, ŷ2, and ŷ3 are the outputs predicted by the NARMA, NARMA-L2,

and multiple NARMA-L2 models, respectively. In the simulation studies, N0 ∈

N3
6,50,20,1 while N1, N2, Ni1 and Ni2 are chosen from the class N3

5,30,20,1.

The simulation results for the test data of nonlinear system 4 using different

models are shown in Fig. 5.4 and the corresponding Fit values are shown in

Table 5.4. As can be seen from Fig. 5.4 and Table 5.4, the identification perfor-

mance becomes better as the number of submodels increases. In particular, the

identification result based on the multiple NARMA-L2 model with 4 submodels

is close to that using the NARMA model.

Remark 5.8. Nonlinear system 4 is a benchmark example to evaluate the iden-

tification and control methods and has been extensively used in the literature
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Figure 5.4: Identification results for the test set of nonlinear system 4 with
different models. Solid: Real output, dashed: Estimated output

Table 5.4: Fit values for the test set of nonlinear system 4 with different models

Model Structure NARMA NARMA-L2 N = 2 N = 4

Fit Value 92.19% 82.95% 87.12% 89.97%

[130, 131, 132, 133, 107]. While our model architecture needs more sample da-

ta to train the neural networks, its identification results are indeed superior to

others. In addition, our model can also facilitate the controller design problem,

which is challenging for most of them. Although the PWA models in [107] can

also deal with the controller design of this nonlinear system, its identification

performance is not as good as ours.

5.6 Experimental Studies

In this section, we apply the proposed multiple model structure to the iden-

tification of a real-world system to show its effectiveness. Specifically, we utilize
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Figure 5.5: Original hardware setup


l

m

g

Figure 5.6: Schematics diagram of the original setup

the hardware setup used in [107], which is a modified version of an L.J. Elec-

tronics DC motor apparatus by replacing the original centric load by a brass rod

with a heavy brass pendulum at the end, as shown in Fig. 5.5. Its schematics

diagram is also given in Fig. 5.6.

The simplified continuous-time physical model of the system is

Jθ̈ = −βθ̇ −mglsin(θ) +Ku (5.42)

where J is the overall moment of inertia of the system including the motor
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shaft, the rod and the pendulum, m is the mass of the rod and the pendulum, l

is the distance from the pivot of rotation to the center of gravity of the rod and

pendulum, g is the gravitational constant, β is the damping coefficient, θ is the

angle of rotation, and u is the input voltage.

In [107], the angular position θ was treated as the output and PWA models

were used to approximate the original nonlinear system. However, it was found

that good identification performance can be obtained with even a single affine

model (the Fit value is higher than 96%). Moreover, it is noted that the original

system is already in the NARMA-L2 form (linear in u(k)). Therefore, we cannot

expect a significant improvement for the identification using multiple NARMA-

L2 models.

In order to demonstrate the effectiveness of the multiple NARMA-L2 model,

we make another modification by adding a cubic term to the input channel of

the original setup and treat the angular velocity θ̇ as the system output. Let

x1 = θ, x2 = θ̇, the modified system can be represented by

ẋ1 = x2

ẋ2 = −mgl
J

sinx1 −
β

J
x2 +

K

J
u3

y = x2 (5.43)

In the data acquisition process, the MATLAB/Simulink and a dSPACE D-

S1104 rapid control prototyping system is used to generate the physical control

signal v(k) to the modified DC motor, based on the numerical value of the control

signal u(k) in Matlab. In addition, the sensor reading of the angle velocity s(k)

is sent into the computer via the dSPACE system and interpreted as numerical
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dSpace
DAC

Modified 
DC Motor

dSpace
ADC

( )u k ( )v k ( )s k ( )k

Figure 5.7: Working diagram for the identification process of the modified DC
motor

values θ̇(k). The working diagram for the identification process is shown in Fig.

5.7. For this experiment, the sampling period is chosen to be 0.05s.

The training set, which consists of 4000 data points, was obtained by setting

the input signal u(k) to be the combination of a square wave (with magnitude of

0.7 and period of 2s) and a uniformly distributed random signal (with magnitude

of 1). The test set, with 400 data points, was obtained by setting the input signal

u(k) to be

u(k) = sin
2πk

20
+ sin(

2πk

25
+
π

3
), k = 1, · · · , 400. (5.44)

For this experiment, we choose na = nb = 1. Therefore, the three models

used to identify the modified DC motor (5.43) are

ŷ1(k + 1) = N0[φ(k)]

ŷ2(k + 1) = N1[ϕ(k)] +N2[ϕ(k)]u(k)

ŷ3(k + 1) = Nσ(k)1[ϕ(k)] +Nσ(k)2[ϕ(k)]u(k) (5.45)

where

φ(k) = [y(k), y(k − 1), u(k), u(k − 1)]

ϕ(k) = [y(k), y(k − 1), u(k − 1)] (5.46)
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Figure 5.8: Identification errors for the training set of the modified DC motor
with different models

Table 5.5: Fit values for the modified DC motor with different models

Model structure NARMA NARMA-L2 N = 2 N = 4

Training set 92.37% 77.81% 82.20% 91.36%
Test set 94.65% 82.69% 87.85% 93.33%

and ŷ1, ŷ2, and ŷ3 are the outputs predicted by the NARMA, NARMA-L2, and

multiple NARMA-L2 models, respectively. In the experiment, N0 ∈ N3
4,20,10,1

while N1, N2, Ni1 and Ni2 are chosen from the class N2
3,10,1.

The identification errors for the training set with different models are shown

in Fig. 5.8. It is observed that the identification error decreases as the number

of submodels increases and the identification performance using the multiple

NARMA-L2 model with 4 submodels is close to that using the NARMA model,

which can also be concluded from the Fit values shown in Table 5.5.

On the other hand, the identification results for the test set are shown in
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(a) Identification output. Solid: Real output, dashed: Estimated output
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(b) Identification error

Figure 5.9: Identification results for the test set of the modified DC motor with
different models
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Fig. 5.9, and the corresponding Fit values are also listed in Table 5.5. As

can be seen, the fitting becomes better as the number of submodels increases

and the identification performance using the multiple NARMA-L2 model with

4 submodels is close to that using the NARMA model. This shows that the

identified multiple NARMA-L2 model can generalize well to the test set.

5.7 Summary

In this chapter, a novel multiple model architecture was proposed to cir-

cumvent the curse of dimensionality problem for the identification of nonlinear

systems. The key idea of this model structure is to partition only the range of

the control input u(k) into several intervals and identify a local model that is

linear in u(k) in each interval. A theoretical upper bound for the estimation error

was obtained based on the Taylor’s theorem. This methodology was applied to

nonlinear systems using artificial neural networks (ANN). Both simulation stud-

ies and experimental results have demonstrated the effectiveness of the proposed

multiple model architecture in approximating nonlinear systems.
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Chapter 6

Control of Nonlinear Systems

using Multiple Models and

Switching

6.1 Introduction

In this chapter, we proceed to design a switching controller for nonlinear

systems based on the multiple NARMA-L2 models proposed in Chapter 5. As

mentioned in Chapter 1, there are two steps for the switching control algorithm:

the design of sub-controllers and the determination of the switching mechanism.

In the first step, we utilize the weighted one-step-ahead predictive control

technique [134, 135, 136]. Different from the sub-controllers design based on

PWA models in [107] where a couple of quadratic optimization problems with

complex nonlinear constraints need to be solved, we only need to solve sever-

al quadratic optimization problems with linear constraints due to the special
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structure of the proposed multiple NARMA-L2 model architecture. This change

greatly reduces the computational load and makes it possible to be used in real-

time applications. In the second step, the active sub-controller at every time

instant is determined by substituting the control signals for each submodel into

the corresponding cost function and choosing the one with the smallest cost val-

ue. This control algorithm is applied to the numerical examples and experiment

used in Chapter 5 to verify its effectiveness.

The contents of this chapter are organized as follows. Section 6.2 designs

the sub-controllers based on the weighted one-step-ahead predictive control law

and constrained optimization techniques. Section 6.3 provides the strategy to

determine the switching mechanism at any time instant. Simulation studies and

experimental results are presented in Section 6.4 and Section 6.5 to show the

effectiveness of the proposed switching control algorithm. Finally, in Section

6.6, a summary is given.

6.2 Sub-controllers Design

The multiple NARMA-L2 model of the nonlinear system (5.1) in the form

y(k + d) ≈ fσ(k)[ϕ(k)] + gσ(k)[ϕ(k)]u(k) (6.1)

where

σ(k) =


dN · u(k)−U0

L e if u(k) 6= U0

1 if u(k) = U0

(6.2)
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was identified using neural networks in Section 5.4 with the form of

ŷ(k + d) = Nσ(k)1[ϕ(k)] +Nσ(k)2[ϕ(k)]u(k) (6.3)

where

σ(k) =


dN · u(k)−U0

L e if u(k) 6= U0

1 if u(k) = U0

. (6.4)

After Ni1[ϕ(k)] and Ni2[ϕ(k)] are obtained, fi[ϕ(k)] and gi[ϕ(k)] are assumed

to be known although they are approximated by neural networks. Then, we can

design the sub-controller for the ith submodel (5.19), which is repeated here for

the readers’ convenience.

yi(k + d) ≈ fi[ϕ(k)] + gi[ϕ(k)]u(k), u(k) ∈ [Ui−1, Ui]. (6.5)

To design the sub-controller for the ith submodel, we use the the weighted

one-step-ahead predictive control method, which is considered as the result of a

direct constrained optimization problem as follows

min
ui(k)

Ji(k) =
1

2

[
fi[ϕ(k)] + gi[ϕ(k)]u(k)− y∗(k + d)

]2
+
ρ

2
(ui(k)− u(k − 1))2

s.t. Ui−1 ≤ ui(k) ≤ Ui (6.6)

where ui(k) is the control input computed from the ith submodel, and ρ > 0

is the control effort weighting factor, which is to achieve a compromise between

perfect one-step-ahead control and the variation in the amount of control effort.
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Remark 6.1. Theoretically, a smaller ρ is preferred so as to put more emphasize

on the tracking error. However, a bigger ρ will result in a smoother control

input signal, which is easier to be implemented in practice. Therefore, the basic

stretegy is to try different values for ρ from zero to one (equally weighted) and

choose the biggest one with satisfactory tracking performance.

It is noted that (6.6) is only a one-dimensional quadratic optimization prob-

lem with linear constraints. Based on constrained optimization techniques, we

can first obtain the optimal solution without constraints as

ũi(k) =
gi[ϕ(k)](y∗(k + d)− fi[ϕ(k)]) + ρu(k − 1)

g2i [ϕ(k)] + ρ
. (6.7)

Then, the constrained optimal solution is

ui(k) =



ũi(k) if Ui−1 ≤ ũi(k) ≤ Ui

Ui−1 if ũi(k) < Ui−1

Ui if ũi(k) > Ui

. (6.8)

Remark 6.2. Equations (6.7)-(6.8) provide a very simple way to calculate the

control signals for each submodel, which is due to the special structure of the

proposed multiple model structure. The computational load is very small and

therefore can be used in real-time applications.

6.3 Switching Mechanism

With the control signal ui(k) for each submodel at time k, the submodel

corresponding to the minimum Ji(k) (i = 1, 2, · · · , N) is activated. In other
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words, the control input u(k) is chosen as ul(k) if

Jl(k) = min
i
Ji(k). (6.9)

Remark 6.3. The probability that ũi(k) falls outside the ith interval becomes

higher as N increases, which may result in non-smooth control performance.

Therefore, from the control point of view, the number of submodels, N , cannot

be too large.

Remark 6.4. The stability analysis for the control of nonlinear systems using

multiple models is extremely complicated. It is well known that even when each

sub-controller can stabilize its corresponding region of the nonlinear system, the

stability of the overall system still cannot be guaranteed after switching happens

[4]. Moreover, the fact that the submodels in our scheme are not accurate makes

the problem even more challenging. These issues are possible directions for our

future work.

6.4 Simulation Studies

In this section, simulation studies are carried out to demonstrate the effec-

tiveness of the switching control algorithm in controlling nonlinear systems based

on the identification results in Chapter 5. Due to the complexity of the controller

design based on the NARMA model, we only include the control performance

based on the NARMA-L2 model for comparison purposes.
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6.4.1 Nonlinear Example 1

Consider the following nonlinear system

y(k + 1) =
y(k)

1 + y2(k)
+ u3(k) (6.10)

which was identified in section 5.5.1.

With the identified NARMA-L2 model and multiple NARMA-L2 models of

nonlinear system 1, we proceed to control it using the control algorithm in (6.7)-

(6.9). For nonlinear system 1, the desired output is

y∗(k) = 4 sin
2πk

10
+ 4 sin

2πk

25
, k = 1, · · · , 100. (6.11)

The simulation results for the tracking performance of nonlinear system 1

using different models are shown in Fig. 6.1. It is noted that the parameter ρ

is chosen to be 0.01. As can be seen from Fig. 6.1, the tracking performance

becomes better as the number of submodels increases. Moreover, perfect track-

ing can almost be achieved based on the multiple NARMA-L2 model with 8

submodels.

6.4.2 Nonlinear Example 2

Consider the following nonlinear system

y(k + 1) =
1.5y(k)y(k − 1)

1 + y2(k) + y2(k − 1)

+ sin[y(k) + y(k − 1)] + u(k) + 0.8u(k − 1) (6.12)
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Figure 6.1: Control results of nonlinear system 1 with different models. Solid:
Reference, dashed: System output

which was identified in section 5.5.2.

With the identified NARMA-L2 model and multiple NARMA-L2 models of

nonlinear system 2, we proceed to control it using the control algorithm in (6.7)-

(6.9). For nonlinear system 2, the desired output is

y∗(k) = sin
2πk

10
+ sin

2πk

50
, k = 1, · · · , 200. (6.13)

The simulation results for the tracking performance of nonlinear system 2

are shown in Fig. 6.2. It is noted that the parameter ρ is chosen to be 0.01.

As can be seen from Fig. 6.2, there is no significant difference for the tracking

performance using NARMA-L2 model and multiple NARMA-L2 models, which

is consistent with the identification results.
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Figure 6.2: Control results of nonlinear system 2 with different models. Solid:
Reference, dashed: System output

6.4.3 Nonlinear Example 3

Consider nonlinear system 3 that was previously identified in section 5.5.3.

x1(k + 1) = 0.1x1(k) + 2
u(k) + x2(k)

1 + [u(k) + x2(k)]2

x2(k + 1) = 0.1x2(k) +
u3(k) + x21(k)

1 + x21(k) + x22(k)

y(k) = x1(k) + x2(k) (6.14)

With the identified NARMA-L2 model and multiple NARMA-L2 models of

nonlinear system 3, we proceed to control it using the control algorithm in (6.7)-

(6.9). For nonlinear system 3, the desired output is

y∗(k) = sin
2πk

20
+ sin

2πk

100
, k = 1, · · · , 200. (6.15)
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Figure 6.3: Control results of nonlinear system 3 with different models. Solid:
Reference, dashed: System output

The simulation results for the tracking performance of nonlinear system 3

are shown in Fig. 6.3. It is noted that the parameter ρ is chosen to be 0.1. As

can be seen from Figure 6.3, the tracking performance is satisfactory when the

number of submodels is 4 or 6.
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6.4.4 Nonlinear Example 4

Consider again the nonlinear benchmark system that was identified in section

5.5.4.

x1(k + 1) =

(
x1(k)

1 + x21(k)
+ 1

)
sin[x2(k)]

x2(k + 1) = x2(k) cos[x2(k)] + x1(k) exp[−x
2
1(k) + x22(k)

8
]

+
u3(k)

1 + u2(k) + 0.5 cos(x1(k) + x2(k))

y(k) =
x1(k)

1 + 0.5 sin[x2(k)]
+

x2(k)

1 + 0.5 sin[x1(k)]
. (6.16)

With the identified NARMA-L2 model and multiple NARMA-L2 models of

nonlinear system 4, we proceed to control it using the control algorithm in (6.7)-

(6.9). For nonlinear system 4, the desired output is

y∗(k) = sin
2πk

20
+ sin

2πk

100
, k = 1, · · · , 200. (6.17)

The simulation results for the tracking performance of nonlinear system 4 are

shown in Fig. 6.4. It is noted that the parameter ρ is chosen to be 0.001. As can

be seen from Figure 6.4, compared to the NARMA-L2 model, better tracking

performance can be achieved by using the multiple NARMA-L2 model with 2 or

4 submodels.

6.5 Experimental Studies

Consider again the modified DC motor which was identified in section 5.6.

Based on the obtained NARMA-L2 model and multiple NARMA-L2 models, we
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Figure 6.4: Control results of nonlinear system 4 with different models. Solid:
Reference, dashed: System output
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Figure 6.5: Working diagram for the control procedure of the modified DC motor

proceed to control the modified DC motor for angular velocity tracking. The

working diagram of the control procedure is shown in Fig. 6.5.

For this plant, three reference signals are defined as follows

y∗1(k) = 8 sin
2πk

200
, k = 1, · · · , 1000

y∗2(k) = 4 sin
2πk

400
+ 4 sin(

2πk

100
+
π

3
), k = 1, · · · , 1000

y∗3(k) = 4 sin
2πk

200
+ 4 sin(

2πk

40
+
π

6
), k = 1, · · · , 1000. (6.18)

127



Chapter 6. Control of Nonlinear Systems using Multiple Models and Switching

Table 6.1: Variance of tracking errors for the modified DC motor with different
models

Reference PID NARMA-L2 N = 2 N = 4

y∗1 0.8180 0.8911 0.4963 0.3870
y∗2 0.8458 0.7321 0.4167 0.2424
y∗3 0.9011 0.8140 0.4545 0.2454

The tracking performance for these three reference signals are shown in Fig.

6.6, Fig. 6.7 and Fig. 6.8, respectively. It is noted that the parameter ρ is chosen

to be 0.003. Moreover, a PID controller with properly tuned parameters is also

designed for comparison purposes.

As can be seen from the three figures, the tracking performance using multiple

NARMA-L2 models becomes better as the number of submodels increases, which

can also be seen from the variance of errors in Table 6.1. Moreover, the tracking

performance using multiple NARMA-L2 models is superior to that using the

PID controller (the sampling period is 0.05s).

6.6 Summary

In this chapter, a switching controller was designed for nonlinear systems

based on multiple NARMA-L2 models. By using the weighted one-step-ahead

control method, the sub-controllers design problem was transformed into several

easily solvable quadratic optimization problems with linear constraints. With the

control signals computed from each submodel at time k, the active controller at

that time corresponds to the one with the smallest cost value. While stability

analysis of the designed control algorithm is still lacking, simulation studies and

experimental results showed its effectiveness.
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Figure 6.6: Control results of the modified DC motor for reference signal 1 with
different models
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Figure 6.7: Control results of the modified DC motor for reference signal 2 with
different models
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Figure 6.8: Control results of the modified DC motor for reference signal 3 with
different models
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Conclusions

Switched systems are dynamical systems that consist of a number of sub-

systems and a switching rule governing the switching among these subsystems.

Due to their importance in theory and great potential in application, the last

two decades have witnessed numerous research activities in this field. Among

the various topics, we focused on the stability analysis and controller synthesis

of switched systems in this dissertation.

On the one hand, the stability analysis of switched systems, even with LTI

subsystems, is very challenging due to the existence of switching. While many

valuable results have been obtained regarding their stability issues, there are

still several open problems that need further investigation. In this thesis, some

novel and easily verifiable stability and stabilizability conditions were derived for

second-order switched linear systems with any finite number of subsystems. On

the other hand, switched systems provide a powerful approach for the identifica-

tion and control of nonlinear systems based on the divide-and-conquer strategy.

While the PWA models have drawn most of the attention in recent years, there
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are two major issues for the PWA model based identification and control: the

curse of dimensionality and the computational complexity. To resolve these two

issues, a novel multiple approach, which includes a multiple model structure and

a switching control algorithm, was proposed for the identification and control of

nonlinear systems in this thesis.

7.1 Main Contributions

In Chapter 3, we investigated the stability of second-order switched linear

systems under arbitrary switching based on the worst case analysis approach. D-

ifferent from most of the existing results, which are only applicable to the special

case with two subsystems, we considered the general case with any finite number

of subsystems. First, for second-order switched linear systems with more than

two subsystems, the polar coordinates space can be partitioned into several re-

gions by considering all the subsystems pairwise. Then, the worst case analysis

among all the subsystems in the interior of a region can be reduced to the worst

case analysis between two subsystems in the interior of that region, which was

achieved by dividing all the subsystems in that region into two groups based on

their trajectory directions and determining the “most unstable” subsystem for

each group. Based on this idea, we extended the worst case switching signal

(WCSS) criteria for the two-mode case to the general case, and derived an eas-

ily verifiable necessary and sufficient condition for the stability of second-order

switched linear systems with any finite number of subsystems under arbitrary

switching.

In Chapter 4, the switching stabilizability for second-order switched linear
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systems was studied based on the best case analysis approach. Similar to the

stability under arbitrary switching problem, most of the existing switching stabi-

lizability results are restricted to second-order switched linear systems with two

subsystems. Based on a similar strategy described in Chapter 3, we extended

the best case switching signal (BCSS) criteria for the two-mode case to the gen-

eral case and derived several easily verifiable necessary and sufficient switching

stabilizability conditions for second-order switched linear systems with any finite

number of subsystems.

To resolve the curse of dimensionality problem for the PWA models in ap-

proximating nonlinear systems, a novel multiple model architecture called the

multiple NARMA-L2 model was proposed in Chapter 5. In contrast to the PWA

models where all dimensions of the regressor space were engaged in the partition-

ing, the key idea of the proposed model structure is to partition only the range of

the control input u(k) at time k (the instant of interest in the control problem)

into several intervals and identify a local model that is linear in u(k) within each

interval. Based on the Taylor’s theorem, a theoretical upper bound for the esti-

mation error was also obtained. Finally, artificial neural networks (ANN) such

as MLP or RBFN were utilized to apply the proposed methodology to nonlinear

systems. Extensive simulation studies and experimental results showed that sat-

isfactory identification performance can be obtained by the proposed multiple

model architecture.

In Chapter 6, a switching control algorithm for the multiple NARMA-L2

model was designed based on the weighted one-step-ahead predictive control

method and constrained optimization techniques. In particular, the sub-controllers
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design problem was converted into several easily solvable quadratic optimization

problems with linear constraints. Moreover, the switching mechanism was de-

termined by evaluating the cost functions for each sub-controller and choosing

the one with the smallest cost value. Both simulation studies and experimental

results demonstrated the effectiveness of the proposed control algorithm.

7.2 Suggestions for Future Work

Based on the prior research, the following questions deserve further consid-

eration and investigation.

1. As mentioned in Chapter 1, most of the easily verifiable conditions for

the stability under arbitrary switching problem are restricted to second-order

switched linear systems with two subsystems. While we made some progress

in establishing an easily verifiable necessary and sufficient condition for second-

order switched linear systems with more than two subsystems in Chapter 3, it is

challenging to adopt the worst case analysis approach to higher-order switched

linear systems since the direction of trajectories for a higher-order LTI system

may have infinite possibilities while there are only two choices for the second-

order case (clockwise and counterclockwise). As a starting point, it is a possible

direction to derive an easily verifiable sufficient condition for the stability of

third-order switched linear systems with two subsystems under arbitrary switch-

ing.

2. In Chapter 4, easily verifiable necessary and sufficient switching stabiliz-

ability conditions were proposed for second-order switched linear systems with

any finite number of subsystems based on the best case analysis approach. Simi-
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lar to the worst case analysis approach, it is difficult to adopt the best case analy-

sis approach to higher-order switched systems. Therefore, it is desirable to derive

an easily verifiable sufficient condition for the switching stabilizability of third-

order switched linear systems with two subsystems as a staring point. Moreover,

for non-autonomous switched linear systems, it is also a possible direction to

study the combination of feedback stabilization and switching stabilization.

3. Even though the switching controller in Chapter 6 showed good tracking

performance in simulation studies and experimental results, the stability of the

closed-loop system was not established mathematically. As discussed in Chapter

1, the stability analysis of switched systems is extremely complicated even for

autonomous switched systems (i.e. without control input) with second-order

LTI subsystems. Moreover, the fact that the submodels in our scheme are not

accurate makes the problem even more challenging. Although complicated, it is

still a possible direction to study the closed-loop stability for some special cases

based on certain assumptions.

4. Some fundamental issues related to the multiple NARMA-L2 model, such

as how to determine the optimal number of submodels and how to fix the control

coefficient in the weighted one-step-ahead predictive control law, also need to be

investigated.

In conclusion, the study of switched systems is very important since they

have been employed as useful mathematical models for many practical systems.

On the one hand, easily verifiable conditions are greatly needed to verify the

stability and stabilizability of switched systems. On the other hand, a systematic

framework is needed to apply switched systems to the identification and control
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of nonlinear systems. This dissertation represents a further step in both these

directions.
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[2] T. I. Seidman. Optimal control for switching systems. In Proc. 21st Annual
Conf. Information Sciences and Systems, pages 485–489, 1987.
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