549 research outputs found

    vSkyConf: Cloud-assisted Multi-party Mobile Video Conferencing

    Get PDF
    As an important application in the busy world today, mobile video conferencing facilitates virtual face-to-face communication with friends, families and colleagues, via their mobile devices on the move. However, how to provision high-quality, multi-party video conferencing experiences over mobile devices is still an open challenge. The fundamental reason behind is the lack of computation and communication capacities on the mobile devices, to scale to large conferencing sessions. In this paper, we present vSkyConf, a cloud-assisted mobile video conferencing system to fundamentally improve the quality and scale of multi-party mobile video conferencing. By novelly employing a surrogate virtual machine in the cloud for each mobile user, we allow fully scalable communication among the conference participants via their surrogates, rather than directly. The surrogates exchange conferencing streams among each other, transcode the streams to the most appropriate bit rates, and buffer the streams for the most efficient delivery to the mobile recipients. A fully decentralized, optimal algorithm is designed to decide the best paths of streams and the most suitable surrogates for video transcoding along the paths, such that the limited bandwidth is fully utilized to deliver streams of the highest possible quality to the mobile recipients. We also carefully tailor a buffering mechanism on each surrogate to cooperate with optimal stream distribution. We have implemented vSkyConf based on Amazon EC2 and verified the excellent performance of our design, as compared to the widely adopted unicast solutions.Comment: 10 page

    AngelCast: cloud-based peer-assisted live streaming using optimized multi-tree construction

    Full text link
    Increasingly, commercial content providers (CPs) offer streaming solutions using peer-to-peer (P2P) architectures, which promises significant scalabil- ity by leveraging clients’ upstream capacity. A major limitation of P2P live streaming is that playout rates are constrained by clients’ upstream capac- ities – typically much lower than downstream capacities – which limit the quality of the delivered stream. To leverage P2P architectures without sacri- ficing quality, CPs must commit additional resources to complement clients’ resources. In this work, we propose a cloud-based service AngelCast that enables CPs to complement P2P streaming. By subscribing to AngelCast, a CP is able to deploy extra resources (angel), on-demand from the cloud, to maintain a desirable stream quality. Angels do not download the whole stream, nor are they in possession of it. Rather, angels only relay the minimal fraction of the stream necessary to achieve the desired quality. We provide a lower bound on the minimum angel capacity needed to maintain a desired client bit-rate, and develop a fluid model construction to achieve it. Realizing the limitations of the fluid model construction, we design a practical multi- tree construction that captures the spirit of the optimal construction, and avoids its limitations. We present a prototype implementation of AngelCast, along with experimental results confirming the feasibility of our service.Supported in part by NSF awards #0720604, #0735974, #0820138, #0952145, #1012798 #1012798 #1430145 #1414119. (0720604 - NSF; 0735974 - NSF; 0820138 - NSF; 0952145 - NSF; 1012798 - NSF; 1430145 - NSF; 1414119 - NSF

    Peer-to-peer stream merging for stored multimedia

    Get PDF
    In recent years, with the fast development of resource capability of both the Internet and personal computers, multimedia applications like video-on-demand (VOD) streaming have gained dramatic growth and been shown to be potential killer applications in the current and next-generation Internet. Scalable deployment of these applications has become a hot problem area due to the potentially high server and network bandwidth required in these systems.The conventional approach in a VOD streaming system dedicates a media stream for each client request, which is not scalable in a wide-area delivery system serving potentially very large numbers of clients. Recently, various efficient delivery techniques have been proposed to improve the scalability of VOD delivery systems. One approach is to use a scalable delivery protocol based on multicast, such as periodic broadcast or stream merging. These protocols have been mostly developed for single-server based systems and attempt to have each media stream serve as many clients as possible, so as to minimize the required server and network bandwidth. However, the performance improvements possible with techniques that deliver all streams from a single server are limited, especially regarding the required network bandwidth. Another approach is based on proxy caching and content replication, such as in content delivery networks (CDN). Although this approach is able to effectively distribute load across multiple CDN servers, the cost of this approach may be high.With the focus on further improving the system efficiency regarding the server and network bandwidth requirement, a new scalable streaming protocol is developed in this work. It adapts a previously proposed technique called hierarchical multicast stream merging (HMSM) to use a peer-to-peer delivery approach. To be more efficient in media delivery, the conventional early merging policy associated with HMSM is extended to be compatible with the peer-to-peer environment, and various peer selection policies are designed for initiation of media streams. The impact of limited peer resource capability is also studied in this work. In the performance study, a number of simulation experiments are conducted to evaluate the performance of the new protocol and various design policies, and promising results are reported

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    DecVi: Adaptive Video Conferencing on Open Peer-to-Peer Networks

    Full text link
    Video conferencing has become the preferred way of interacting virtually. Current video conferencing applications, like Zoom, Teams or WebEx, are centralized, cloud-based platforms whose performance crucially depends on the proximity of clients to their data centers. Clients from low-income countries are particularly affected as most data centers from major cloud providers are located in economically advanced nations. Centralized conferencing applications also suffer from occasional outages and are embattled by serious privacy violation allegations. In recent years, decentralized video conferencing applications built over p2p networks and incentivized through blockchain are becoming popular. A key characteristic of these networks is their openness: anyone can host a media server on the network and gain reward for providing service. Strong economic incentives combined with lower entry barrier to join the network, makes increasing server coverage to even remote regions of the world. These reasons, however, also lead to a security problem: a server may obfuscate its true location in order to gain an unfair business advantage. In this paper, we consider the problem of multicast tree construction for video conferencing sessions in open p2p conferencing applications. We propose DecVi, a decentralized multicast tree construction protocol that adaptively discovers efficient tree structures based on an exploration-exploitation framework. DecVi is motivated by the combinatorial multi-armed bandit problem and uses a succinct learning model to compute effective actions. Despite operating in a multi-agent setting with each server having only limited knowledge of the global network and without cooperation among servers, experimentally we show DecVi achieves similar quality-of-experience compared to a centralized globally optimal algorithm while achieving higher reliability and flexibility

    Peer-to-peer interactive 3D media dissemination in networked virtual environments

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    View-Upload Decoupling: A Redesign of Multi-Channel P2P Video Systems

    Get PDF
    Abstract—In current multi-channel live P2P video systems, there are several fundamental performance problems including exceedingly-large channel switching delays, long playback lags, and poor performance for less popular channels. These performance problems primarily stem from two intrinsic characteristics of multi-channel P2P video systems: channel churn and channelresource imbalance. In this paper, we propose a radically different cross-channel P2P streaming framework, called View-Upload Decoupling (VUD). VUD strictly decouples peer downloading from uploading, bringing stability to multichannel systems and enabling cross-channel resource sharing. We propose a set of peer assignment and bandwidth allocation algorithms to properly provision bandwidth among channels, and introduce substream swarming to reduce the bandwidth overhead. We evaluate the performance of VUD via extensive simulations as well with a PlanetLab implementation. Our simulation and PlanetLab results show that VUD is resilient to channel churn, and achieves lower switching delay and better streaming quality. In particular, the streaming quality of small channels is greatly improved. I

    Storage optimization for a peer-to-peer video-on-demand network

    Full text link
    • 

    corecore