
Title vSkyConf: cloud-assisted multi- party mobile video conferencing

Author(s) Wu, Y; Wu, C; Li, B; Lau, FCM

Citation
The 2nd ACM SIGCOMM Workshop on Mobile Cloud Computing
(MCC 2013), Hong Kong, China, 12 August 2013. In Conference
Proceedings, 2013, p. 33-38

Issued Date 2013

URL http://hdl.handle.net/10722/186487

Rights Creative Commons: Attribution 3.0 Hong Kong License

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by HKU Scholars Hub

https://core.ac.uk/display/38026654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

vSkyConf: Cloud-assisted Multi-party Mobile Video

Conferencing

Yu Wu
Dept. of Computer Science

The University of Hong Kong
ywu@cs.hku.hk

Chuan Wu
Dept. of Computer Science

The University of Hong Kong
cwu@cs.hku.hk

Bo Li
Dept. of Computer Science

and Engineering, Hong Kong
University of Science and

Technology
bli@cse.ust.hk

Francis C.M. Lau
Dept. of Computer Science

The University of Hong Kong
fcmlau@cs.hku.hk

ABSTRACT
As an important application in today’s busy world, mobile video
conferencing facilitates people’s virtual face-to-face communica-
tion with friends, families and colleagues, via their mobile devices
on the move. However, how to provision high-quality, multi-party
video conferencing experiences over mobile devices is still an open
challenge. The fundamental reason behind is the lack of computa-
tion and communication capacities on the mobile devices, to scale
to large conferencing sessions. In this paper, we present vSkyConf,
a cloud-assisted mobile video conferencing system to fundamen-
tally improve the quality and scale of multi-party mobile video
conferencing. By novelly employing a surrogate virtual machine
in the cloud for each mobile user, we allow fully scalable com-
munication among the conference participants via their surrogates,
rather than directly. The surrogates exchange conferencing streams
among each other, transcode the streams to the most appropriate bit
rates, and buffer the streams for the most efficient delivery to the
mobile recipients. A fully decentralized algorithm is designed to
decide the best paths of streams and the most suitable surrogates for
video transcoding along the paths, such that the limited bandwidth
is fully utilized to deliver streams of the highest possible quality to
the mobile recipients. We also carefully tailor a buffering mecha-
nism on each surrogate to cooperate with efficient stream distribu-
tion. We have implemented vSkyConf based on Amazon EC2 and
verified the excellent performance of our design, as compared to
the widely adopted unicast solutions.

Categories and Subject Descriptors
J.0 [Computer Applications]: General

Keywords
Cloud computing, Video conferencing, Mobile computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MCC’13, August 12, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2180-8/13/08 ...$15.00.

1. INTRODUCTION
Video conferencing has been widely deployed for virtual, face-

to-face communication among separate parties, as a greener solu-
tion to replace many of the energy-expensive conference travels.
Benefiting from the advances in mobile and wireless communica-
tion technologies, a number of mobile video conferencing applica-
tions [1] have emerged. Many of them rely on expensive, dedicated
architectures, e.g., multiple control units (MCU), to process signal-
ing messages, transcode ingress session streams and disseminate
multiple streams to each end device. Alternatively, distributed peer-
to-peer (P2P) based mobile video conferencing systems have also
sprung up, e.g., Skype mobile leverages intermediate super nodes
for session relays.

In order to find out how well the the existing mobile video con-
ferencing systems support multi-party video conferencing over mo-
bile devices, we have conducted a survey of the seven represen-
tative applications, with results given in [10].We observe that ap-
plications with infrastructure support can support more concurrent
users in each session (but still typically no more than 4), at the cost
of expensive up-front investment which may prohibit their wide
adoption by small or medium institutions; P2P-based solutions are
reluctant to allow group video calls for a fear of compromising call
qualities, (e.g., Skype only supports two-way visual communica-
tion on mobile phones), and most of them stick to a single flat
streaming rate, or a limited number of bit rates (e.g., 2).A fully-
adaptive, multi-party mobile video conferencing solution is still
pending to achieve.

We summarize the key challenges as follows: (1) The workload
on each node in a video conferencing session, in terms of both pro-
cessing and transmission, scales quadratically to the number of
participants in the session, leading to significant challenge when
using mobile devices for multi-party video conferencing. (2) Mo-
bile users are equipped with different devices and downlink speeds;
a high-quality solution should enable differentiated call qualities to
different users, instead of a homogeneous video broadcast quality
enforced by the low-end users, as in a traditional solution.

In this paper, we present vSkyConf, a cloud-assisted mobile video
conferencing solution to fundamentally enable high-quality, multi-
party video conferencing over heterogeneous mobile devices. The
cloud computing paradigm offers ubiquitously accessible comput-
ing resources, with on-demand resource provisioning at the modest
cost. The paradigm particularly compensates well for the inherent

33

resource deficiencies of mobile devices, and catalyzes the under-
going evolution in the burgeoning mobile computing industry. In
vSkyConf, we dynamically provision a virtual machine in the cloud
as the exclusive surrogate for a dialed-in mobile user. Each mobile
device disseminates/receives the video streams to/from its surro-
gate; the surrogates exchange conferencing streams among each
other, transcode the streams to the most appropriate bit rates, and
buffer the streams for the most efficient delivery to the mobile re-
cipients. By leveraging the more powerful processing capabilities
and stable wired network bandwidths, mobile users shift those oth-
erwise on-device tasks to the cloud, yielding superior power reduc-
tion and quality enhancement, as well as achieving fully scalable
communication among the conference participants.

To realize such a solution, we design a fully decentralized, effi-
cient algorithm to decide the best delivery paths of streams among
the surrogates (possibly distributed in different cloud data centers),
and the most suitable surrogates for video transcoding along the
paths. We also carefully tailor a buffering mechanism on each sur-
rogate to cooperate with the efficient stream distribution. Together
they guarantee bounded, small end-to-end latencies and smooth
stream playback at the mobile devices at the highest possible qual-
ities, in each video conferencing session. We have implemented a
preliminary version of vSkyConf based on Amazon EC2, and con-
ducted experiments in the real-world settings. The results reveal
the high scalability, full adaptability, and excellent video confer-
encing qualities achieved by our design, as compared to the widely
adopted unicast solutions.

The remainder of this paper is organized as follows. We intro-
duce related literature in Sec. 2, present unique challenges and the
system architecture in Sec. 3, unfold design details in Sec. 4, in-
troduce our prototype implementation and evalution in Sec. 5, and
finally conclude the paper in Sec. 6.

2. RELATED WORK
Despite extensive studies during the past decades, video confer-

encing (VC) has recaptured people’s interest in this new “smart-
phone” era, with a series of works and systems springing up re-
cently [9][2] [4][7], which can be categorized into Server-to-Client
(S/C) based and Peer-to-Peer (P2P) based solutions. Compared to
the S/C-based structure, P2P has been deemed as a more promising
and scalable solution. Both Ponec et al. [9] and Chen et al. [2] for-
mulate utility maximization problems and enable multi-party VC
by building multi-rate multicast trees. They focus more on the
streaming rate allocation over physical links, but do not investigate
much the transcoding flexibilities. Liang et al. [7] leverage the up-
load capacities of “helpers” from different swarms, in similar ways
as adopted by Skype (not Skype mobile). Though promising, these
solutions are difficult to achieve in practice among mobile users,
who are reluctant to contribute resources to strangers due to con-
strained batteries and expensive cellular data fees. The dominant
P2P-based solution in the real world is still pair-wise unicast (e.g.,
Fring, Tango, etc.[1]), where a user directly exchanges streams with
each of the other users in the same conferencing session. In this
way, the limited uplink bandwidths of mobile devices significantly
restrict the session size.

Cloud computing, as an agile solution, compensates well for
the deficiencies of mobile devices for media streaming in terms
of both processing and bandwidth supports. Traditional players
in the VC market have recently claimed their support for mobile
users via their private clouds. But their solutions are mostly cen-
tralized in a private cloud with abundant infrastructure resources
to support enterprise users. For example, Vidyo [1] provides its
cloud-based solution by provisioning virtual MCUs on top of their

Control Signals Video Streams

Initiator

Participator

Participator

First/Last-mile Streams

SurrogateSurrogate

Surrogate

Participator

Surrogate

Figure 1: The architecture of vSkyConf.

VidyoRouters, bearing similar flavors to their traditional dedicated
infrastructures. In contrast, our design novelly provisions a VM
surrogate for each mobile user in a public cloud in a more afford-
able manner, catering for the needs of ordinary mobile users in
their daily life. A recent work by Feng et al. [3] optimally lever-
ages inter-datacenter network bandwidths to maximize the overall
throughput of all conferencing sessions, based on intra-session net-
work coding. vSkyConf considers both dynamic session routing and
adaptive session transcoding, and exploits surrogates in a cloud in-
frastructure for scalable video conferencing among mobile devices.
Huang et al. [4] leverage clouds to encode videos into layered rates
using scalable video coding (SVC), to enable differentiated stream-
ing qualities to users with different available bandwidths. We do
not consider SVC encoding in this work, since the encoding com-
plexities inevitably incur intolerable delays for a time-sensitive ap-
plication like video conferencing.

3. ARCHITECTURE
vSkyConf enables efficient, peer-to-peer fashioned, multi-party

mobile video conferencing via an IaaS cloud, with the architecture
presented in Fig. 1. We refer to a video conference call among mul-
tiple mobile users as a session. The user which starts the conference
call is the initiator of the session. A surrogate, i.e., a virtual ma-
chine (VM) instance, is created in the IaaS cloud for each mobile
user. The IaaS cloud consists of disparate data centers in differ-
ent geographic locations, and the surrogate for each mobile user
is assigned in a data center proximate to the user. As a proxy for
the mobile device, a mobile user’s surrogate is responsible for the
following: (i) session maintenance, by exchanging control mes-
sages with other surrogates in a timely and efficient manner; (ii)
video stream dissemination and transcoding, by receiving the video
stream its corresponding mobile user produces, transcoding it into
appropriate format(s), distributing it to other users’ surrogates, and
the other way round as well; (ii) efficient video stream buffering
for its mobile user, for timely, smooth and robust streaming to the
corresponding mobile device. A mobile user just needs to send the
stream it generates and receive streams other users produce to and
from its surrogate, and is effectively freed from power-consuming
stream processing and intra-session communication. A gateway
server in vSkyConf loosely keeps track of participating users and
their surrogates, which can be implemented by a standalone server
or VMs in the IaaS cloud.

Fig. 2 depicts the key modules implemented on a single surro-
gate, which can be divided into two parts:

Control Plane is the brain of the surrogate, responsible for con-
trol signaling between this surrogate and neighboring surrogates. It
measures the latencies and bandwidths on the connections from/to
neighboring surrogates, and all the collected information is stored
in the “peer table”, which constructs a partial view of the video con-
ferencing topology from this surrogate’s point of view. Utilizing
the collected information, the surrogate computes routing paths for

34

Data Plane Control Plane

In-gress
Queue

E-gress
Queue

Route Computing
Jitter
Mask

Heartbeat

Transcoder

Link Measurement

Flow Request

Peer Table

Data I/O paths, Resource allocation,

session maintenance and call routingtranscoding, jitter management

Path Broadcast

Surrogate

Other surrogates

Figure 2: The key modules of a surrogate.

streams from its corresponding mobile user to other mobile users,
and participates in the construction of optimal video dissemina-
tion trees. It also monitors the call qualities and determines the
best video encoding parameters (codecs, bitrates, etc.) for streams
from/to its mobile device.

Data Plane is responsible for processing in/out video streams,
in terms of both transcoding and forwarding, as directed by the
control plane. The video stream from its mobile user is captured
continuously and disseminated to other surrogates after necessary
transcoding. In the reverse direction, all video streams from other
mobile users, via their respective surrogates, are transcoded into
appropriate rates (if necessary) and delivered to the mobile user by
a key module “jitter mask”, which deals with random jitters caused
by fluctuations of processing and network latencies, as well as any
anomalies along the dissemination paths.

Our design of vSkyConf observes the following principles.
Decentralized Control. Except necessary bootstrapping from

the gateway server, each session is to be maintained by the sur-
rogate of the initiator of a conference session, in order to provide
good scalability and flexibility. The video routing and transcoding
decisions are to be made in a fully distributed fashion by collabo-
rations among surrogates.

Self-Evolving Routing Topology with Full Adaptivity. We
seek to build a best routing topology among the surrogates for
disseminating the stream from each participant, which achieves
a small end-to-end latency and fully exploits the available band-
widths among the surrogates. Transcoding decisions to convert the
original stream to acceptable formats/bit rates of the recipients are
dynamically made at the best points along the dissemination paths,
according to different computation capacities of the surrogates and
needs of downstream mobile devices.

Robust, Smooth Video Streaming. To guarantee smooth stream
playback at each mobile user even in cases of inaccurate route com-
putation (e.g., due to inaccurate estimates of link bandwidths and
latencies), we seek to design an advanced error correction mecha-
nism to search for better routing paths before the call quality drops,
by monitoring a carefully designed jitter buffer at each surrogate.

4. DETAILED DESIGN

4.1 Session Maintenance
Establishment: When a mobile user logs in to the vSkyConf sys-

tem via the gateway server, it is assigned a surrogate VM. The gate-
way can maintain information on a pool of available, pre-initiated
VMs in the IaaS cloud, and assign one from the pool to a mobile
user based on geographic proximity of the two, to expedite the ser-
vice. The surrogate of the session initiator finds out IP addresses of
surrogates of the other online users from the gateway server, which
it wishes to invite to join the video conferencing session. The ini-
tiator then contacts and invites the interested participants through
their surrogates directly, and maintains a list of IP addresses of all
active surrogates in the session.

Tear-down: When a mobile user leaves the system, its surrogate
VM is released and returned to the pool of available VMs in the
IaaS cloud. If the initiator of a session departs, its hosting role is
handed over to another substitute surrogate in the participant list.

4.2 Routing Computation
In a video conferencing session with S users, there are S streams,

each produced by one of the mobile users, to be delivered to all the
other users. We model a mathematical optimization problem for
constructing efficient dissemination topologies of all streams in a
session and deciding the optimal transcoding locations. We then
design efficient, fully distributed heuristic to approach the optimal
solution in a dynamic system. For transcoding, we practically only
consider down-sampling of a stream, i.e., the reduction of stream-
ing bit rate, but not the reverse, since up-sampling provides no qual-
ity improvement but consumes unnecessary bandwidth. We also
focus on transcoding due to mismatched bit rates of streams of the
same format, while the case of transcoding from one format to an-
other can be readily addressed with similar efforts.

4.2.1 Optimization Formulation
Let graph G = (S, E) represent the network of surrogates in a

session, where S is the set of surrogates and E is the set of directed
connections among the surrogates. For each surrogate m 2 |S|, let
m̂ represent the corresponding mobile user. Let S = |S|. Suppose
Cij is the maximum available bandwidth on link (i, j) 2 E , and
dij denotes the link latency. We refer to the stream from a surro-
gate m 2 S as flow m, with source rate R

(m)
m̂ , which is the rate of

incoming stream from mobile user m̂ to surrogate m, determined
by the source capturing rate by the user’s mobile camera and the
uplink rate from the mobile user. Let R(m)

n̂ be the maximum ac-
ceptable bit rate of flow m at mobile user n̂, as decided by the
last-mile down-link bandwidth from surrogate n to n̂, and the allo-
cation of this down-link bandwidth among streams from different
users, e.g., if user n̂ sizes playback windows of streams from S�1

other conference participants equally on its device screen, 1
S�1 of

the down-link bandwidth should be allocated to each stream.
The multicast flow m from surrogate m to all other surrogates

can be viewed as consisting of S � 1 conceptual unicast flows [6],
from m to each of the other surrogates, respectively. These con-
ceptual unicast flows co-exist in the network without contending
for link bandwidths, and the multicast flow rate on a link is the
maximum of the rates of all the unicast flows going along this link.
For ease of transcoding implementation, we restrict each unicast
flow from m to n to be an integral flow along one path with the
end-to-end rate r

(m)
n , and the multicast topology is the overlap of

all the S � 1 unicast flow paths. Let binary variable I

mn
ij indicate

whether the conceptual unicast flow from m to n traverses link
(i, j) 2 E , and c

(m)
ij denote the actual rate of the multicast flow m

on link (i, j).
Let function 'n(r1, r2) give the transcoding latency at surrogate

n, if the rate r1 of an ingress flow received by n is higher than
the rate r2 of the egress flow from n. 'n(r1, r2) = 0 if r1 
r2. Typical transcoding steps are to decode the source stream of
rate r1 to an intermediate format, and then re-encode the stream
from the intermedia format to the destination rate r2 [8]. Hence,
transcoding delay 'n(r1, r2) is monotonously increasing on both
r1 and r2, and depends on computation capacity of the surrogate
VM n: the more powerful the VM is, the faster the transcoding can
be accomplished.

The quality of service in the conferencing session relies on two
aspects: (i) the end-to-end latency and (ii) the flow rate received by
each participant for each flow. We bound the end-to-end latency,

35

from the time a source surrogate m emits flow m to the time a
receiver surrogate n is ready to push the stream to its corresponding
mobile user, by L

(m)
n , whose value is dynamically set as discussed

in Sec. 4.3. Let U(

r
(m)
n

R
(m)
n̂

) be an increasing, concave utility function

on the rate of flow m received by surrogate n, r(m)
n . We maximize

the aggregate utility of all receivers in all flows as our objective.
The optimization problem is formulated in (1).

max

X

m2S

X

n2S,n 6=m

U(

r

(m)
n

R

(m)
n̂

) (1)

subject to:

X

i:(i,j)2E

I

mn
ij �

X

k:(j,k)2E

I

mn
jk = b

mn
j , 8j,m, n 2 S,m 6= n, (2)

I

mn
ij r

(m)
n  c

(m)
ij , 8(i, j) 2 E ,m, n 2 S,m 6= n, (3)

X

m2S

c

(m)
ij  Cij , 8(i, j) 2 E , (4)

X

(i,j)2E

I

mn
ij dij +

X

(i,j)2E

X

k:(j,k)2E

I

mn
ij I

mn
jk 'j(c

(m)
ij , c

(m)
jk)

+'n(

X

j:(j,n)2E

I

mn
jn c

(m)
jn , R

(m)
n̂)  L

(m)
n ,

8m,n 2 S,m 6= n, (5)
I

mn
ij 2 {0, 1}, 8m,n 2 S,m 6= n, (i, j) 2 E , (6)

0  r

(m)
n  R

(m)
m̂ , 8m,n 2 S, (7)

0  r

(m)
n  R

(m)
n̂ , 8m,n 2 S, (8)

where

b

mn
j =

8
><

>:

�1, j = m

1, j = n

0, otherwise

.

Constraints (2) and (6) enforce a single path for the unicast flow
from surrogate m to n, and ensures flow conservation along the
path. Constraint (3) implies that the unicast flow from m to n with
rate r

(m)
n is conceptual, “hidden” in the actual multicast flow m

with rate c

(m)
ij , on each link (i, j). Constraint (4) requires that the

overall rate of actual flows from different sources should not exceed
the capacity of each link. Constraint (5) bounds the end-to-end de-
lay along the path from source surrogate m to receiver surrogate n,
which consists of three parts: (i) the overall link delay along the
path,

P
(i,j)2E I

mn
ij dij ; (ii) the sum of potential transcoding delay

at intermediate surrogates j’s along the path, i.e.,P
(i,j)2E

P
k:(j,k)2E I

mn
ij I

mn
jk 'j(c

(m)
ij , c

(m)
jk), where a surrogate j

is on the path if there exist neighboring links (i, j) and (j, k),
such that Imn

ij = 1 and I

mn
jk = 1, and a transcoding delay oc-

curs if the flow rate on (i, j), c(m)
ij , is larger than the flow rate on

(j, k), c(m)
jk ; (iii) the potential transcoding delay at surrogate n,

'n(
P

j:(j,n)2E I

mn
jn c

(m)
jn , R

(m)
n̂), to transcode the received stream

to the maximum receiving rate allowed at mobile user n̂, if needed.
Constraints (7) and (8) restrict the end-to-end rate of virtual uni-
cast flow from surrogate m to n to be no larger than the maximum
sending rate from mobile user m̂ and the maximum receiving rate
at mobile user n̂.

The solutions to the optimization problem, r(m)⇤
n , c(m)⇤

ij , Imn⇤
ij ,

8m,n 2 S, n 6= m, (i, j) 2 E , give us (i) the rate at which each
mobile user m̂ should send its stream to its surrogate m, which is
the maximum of all conceptual unicast flow rates from m to the
other surrogates, maxn2S,n 6=m r

(m)
n ; (ii) the delivery rate of flow

m along each link (i, j) and hence the flow routing topology among
the surrogates (c(m)⇤

ij = 0 indicates flow m is not to be routed over
link (i, j)); and (iii) where the transcoding of each flow m should
happen, i.e., a surrogate j where an egress flow rate c(m)

jk is smaller
than the ingress rate c

(m)
ij along the same conceptual unicast path,

should transcode flow m to the lower rate.

4.2.2 Distributed Heuristic
The optimization problem (1) is non-convex with integer vari-

ables.We design an efficient heuristic algorithm, as given in Alg. 1
and Alg. 2, to decide flow routing, rate assignment and transcoding
locations in a fully distributed fashion.

Algorithm 1 Flow Routing and Rate Allocation
1: Construct shortest-path trees from each surrogate m, T (m);
2: if 9m,n 2 S,!(m)

n > L
(m)
n then

3: No feasible solution exists; return ;
4: end if
5: Nij := Number of dissemination trees on (i, j);
6: 8(a, b) 2 T (m), c

(m)
a,b := mink2S,(i,j)2T (m){R(m)

k̂
,
Cij

Nij
};

7: Search for better routing paths, following Alg. 2;

We first decide a basic, feasible dissemination topology for each
flow m, on which the end-to-end delay constraint for each receiver,
constraint (5), is satisfied. Though the optimization problem (1)
does not restrict the topologies into trees, we seek to construct a
dissemination tree for each flow for ease of practical implementa-
tion. For conciseness, !(m)

n represents the overall latency (includ-
ing both link and necessary transcoding latencies) for flow m from
surrogate m to surrogate n. A shortest-path tree is constructed from
surrogate m to all the other surrogates, using a distributed Bellman-
ford algorithm (Line 1 in Alg. 1). If the overall link latency on the
path from surrogates m to n is larger than L

(m)
n , we know that this

pre-set end-to-end latency bound is by no means satisfiable, and
should be adjusted to a more reasonable value (Lines 2-4). We then
decide a basic, end-to-end rate of flow m on this shortest path tree,
from surrogate m to all the other surrogates: the capacity Cij of
each link (i, j) is evenly divided by the (actual) flows generated
by different surrogates, that pass through this link; the end-to-end
rate of each flow m is set to the rate allocated to this flow on the
bottleneck link its shortest-path tree spans (Lines 5-6).

Algorithm 2 Self-Evolving Route/Rate Adjustment at Surrogate n

in Flow m

1: while 9(j, n) 2 T (m), c(m)
jn < R

(m)
n do

2: if 9(i, k) 2 T (m), min{cmik, C̄kn} > c
(m)
jn then

3: ⇤ := {n}
S
{q : (n, q) 2 Tm};

4: if 8p 2 ⇤,!
(m)
p  L

(m)
p then

5: T (m) := T (m) � (j, n) + (k, n);
6: end if
7: end if
8: end while

Based on the basic dissemination topology, each surrogate then
carries out dynamic edge and rate adjustments by following Alg. 2,
to maximally utilize the available capacity to stream high-quality
streams, without violating the latency constraints. For each flow

36

Network

�m

Surrogate nSurrogate m

�n

Mobile Device Mobile Device D = + + �m �n

B(m)
n

Time

Figure 3: An illustration of the end-to-end delay for flow m.

m, suppose surrogate j is the parent to surrogate n on the current
dissemination tree of flow m. n contacts other neighboring surro-
gates in the flow, to discover if there is a better path from source
surrogate m with higher capacity via another parent k. It compares
the current receiving rate c

(m)
jn from j with the potential receiving

rate from k, min(c

(m)
ik ,

¯

Ckn), where we suppose surrogate i is the
parent of k in the current tree, and ¯

Ckn is the remaining available
bandwidth on link (k, n) (Line 2 in Alg. 2). If the potential receiv-
ing rate via k is larger, n needs to further evaluate the increased
latency along the new path, due to changes of link latencies and
potential transcoding latencies at k and n. Only if the latency of
the new path from m to n, i.e., !(m)

n , is still within L

(m)
n , and the

updated latency to each of the descent surrogates from n on the
tree is still within the respective delay bound, can n safely change
its parent from j to k (Lines 3-6).

4.3 Jitter Masking
In multi-party video conferencing, synchronization among streams

received at all users is crucial to users’ perceived quality of experi-
ence. It is much desired that the video frames captured at all users
at the same time, are played at all the recipient user devices at the
same time. We design an effective buffering mechanism, which
collaborates with the routing algorithms, for this purpose.

Surrogate n maintains a buffer B(m)
n for each stream m 2 S/{n}

from each of the other surrogates. The buffer holds video packets
of flow m, ready to be delivered to mobile device n. vSkypeConf
enforces an end-to-end delay of D, from when a video frame is cap-
tured at one mobile device, to the time it is synchronously played
at all the other mobile devices. The value of D can be set based on
reasonable estimation of the maximum delay between two mobile
users in the system, and should fall in the acceptable delay range for
real-time communication. Let �m indicate delay between mobile
device m̂ and its surrogate m, 8m 2 S. For a frame in buffer B(m)

n ,
which is produced at t at the source m̂, it will be pushed out from
the buffer no earlier than t+L(m)

n , where L(m)
n = D��m��n,

in order to guarantee playback of the frame at the mobile device n̂

at t+D (Fig. 3).
If there were no jitter in the cloud, we could set the delay bound

L

(m)
n in optimization (1), used to find the routing path from surro-

gate m to surrogate n, to L

(m)
n = L(m)

n , and rest assured that the
buffer will never starve. However, in a practical system, jitter may
occur due to various reasons, e.g., variation of transcoding delay at
surrogates, inaccurate estimate of link delay and bandwidth when
running our routing algorithm, etc. Hence, L(m)

n in the optimiza-
tion for route selection should be set smaller than L(m)

n , in order to
absorb the inaccuracy and jitter.

A series of measurement work [5] have shown that jitter on a
network path approximately follows a normal distribution [11]. Let
J

(m)
n be a random variable, representing the path delay from sur-

rogate m to surrogate n, such that J(m)
n ⇠ N(µ,�

2
), where µ

is the mean and � is the standard deviation. For a normal distri-
bution, we can derive that 99.97% of the samples fall within the
range of (�1, µ + 3.4�). If we set L(m)

n to the mean µ in the
path delay distribution while allowing L(m)

n = µ + 3.4�, we de-
rive L(m)

n = L(m)
n �3.4�. Using this L(m)

n in solving optimization
(1), we can make sure that 99.97% of the video packets, following
the path selected, can be sent out from surrogate n by L(m)

n , and
catch their playback deadlines at the mobile device m̂.

In vSkyConf, each surrogate n dynamically estimates the delay
variance � along the path from m to n, based on inter-packet la-
tencies of flow m it receives. It also observes the current queueing
delay in buffer B(m)

n , and adjusts L

(m)
n used in path selection ac-

cording to L

(m)
n = L(m)

n � 3.4�. That is, if there are less packets
in the buffer caused by larger delay variance, it tunes L(m)

n down to
be more stringent on the latency requirement in the path selection;
otherwise, it tunes L(m)

n up to explore paths with better bandwidths.
In this way, this buffering mechanism at the surrogates collaborates
with the routing algorithm, to deal with randomness in the system
and inaccuracy in the computation, while maximally guaranteeing
synchronized playback of all streams at all the mobile devices.

5. PERFORMANCE EVALUATION
We implement a prototype of vSkyConf and deploy it in Amazon

Elastic Compute Cloud (EC2). Surrogates are provisioned from
“ap-southeast-1a” (Singapore), “eu-west-1a” (Ireland), “us-west-
1b” (California) and “us-east-1a” (Virginia), for users located near
the respective region. Each mobile user is emulated by a machine
near its assigned EC2 instance (within 50 ms), where video frames
are generated at a constant rate around 768 kbps. We implement
an application-layer packet controller to limit the uplink and down-
link bandwidths of each user within the range of [1.5, 2] Mbps —
the same as those on regular 3G cellular connections. We apply
the concave function log(x) as the utility function in our routing
computation. Each surrogate dynamically measures the link de-
lays to its neighboring surrogates. The transcoding latencies are
pre-evaluated on the VM instances and used in our routing compu-
tation, for transcoding from 768kbps to 256kbps, from 768kbps to
128kbps, from 256kbps to 128kbps, respectively. At each user,
the stream from one of the other conference participants is dis-
played in a large screen (corresponding to a maximal acceptable
streaming rate of 768 kbps), and streams from other participants
are displayed using smaller screens (corresponding to maximal ac-
ceptable streaming rates of 128 kbps or 256 kbps). A fixed 400 ms
end-to-end delay (D in Sec. 4.3) is configured, and the buffer for
each flow at each surrogate is set to a size corresponding to 400ms
stream playback.

5.1 Adaptive Flow Rates
We test a video conferencing session among 10 participants: 5

from Hong Kong, 1 from Europe, 2 from US West and 2 from US
East. As a potential bottleneck for scalability, the surrogate of the
session initiator is responsible for session maintenance by exchang-
ing messages with the other surrogates in the session. We therefore
investigate the conferencing performance at the initiator’s surro-
gate: if its performance is satisfactory, then the performance at the
other surrogates should be even better.

Fig. 4 plots the flow rates of streams from 3 out of the other 9 par-
ticipants. “Flow-b” is the flow with a maximum streaming rate of
768kbps; “flow-a” and “flow-c” correspond to a maximum stream-
ing rate of 128kbps and 256kbps respectively, with the user of the
latter joining the session at a later time. We can see that each flow
goes through a “fast” start stage, when the basic stream dissem-

37

ination topology is being constructed (as introduced in Sec. 4.2),
and then evolve towards their maximal acceptable rates. Fig. 5
presents the load in the jitter buffer for “flow-b” at the initiator’s
surrogate, where we see that the buffering level varies significantly
when “flow-b” takes a path with large delay jitters. When our rout-
ing algorithm redirects “flow-b” through a better path, a more sta-
ble buffering level is achieved later on. Fig. 6 shows the latency
experienced by each flow, from the corresponding source surrogate
to the initiator’s surrogate. We observe that latencies only vary
slightly whenever the routing paths are adjusted, and can well meet
the end-to-end latency required (400ms).

0 10 20 30 40 50 60 70
0

500

1000

Time (seconds)

B
itr

a
te

s
(k

b
p

s)

Flow−a

Flow−b

Flow−c

Figure 4: Flow rates at the initiator’s surrogate.

10 20 30 40 50 60 70
0

50%

100%

Time (seconds)

B
u

ff
e

r
L

o
a

d
 (

%
)

Figure 5: Load of flow-b’s buffer at the initiator’s surrogate.

0 10 20 30 40 50 60 70
0

100

200

300

400

500

Time (seconds)

L
a

te
n

cy
 (

m
s)

Flow−a

Flow−b

Flow−c

Figure 6: Flow latencies at the initiator’s surrogate.

5.2 Comparison with a Unicast Solution
We next evaluate the performance of vSkyConf against a unicast

scheme typically applied in P2P video conferencing, where each
flow is directly transmitted from the source to the destination via
the network. We establish a 3-user video conferencing session, and
emulate a 50-minute long conferencing session with one user com-
ing from each of the regions, Hong Kong, Europe and west US.
Fig. 7 shows the perceived end-to-end latencies of the two flows
received at the Hong Kong user, where “eu” stands for Europe and
“usw” stands for west US. We can see that the end-to-end latency
achieved with vSkyConf is generally smaller, and much more sta-
ble than that achieved by the unicast solution, verifying the smooth
stream playback experienced by vSkyConf users. This validates that
our cloud-assisted design is suitable to achieve high-quality video
conferencing among multiple mobile participants.

6. CONCLUSION AND FUTURE WORK
This paper presents vSkyConf, a cloud-assisted mobile video con-

ferencing solution, designed to fundamentally improve the quality

0 500 1000 1500 2000 2500 3000
0

500

1000

Time (seconds)

L
a

te
n

cy
 (

m
s)

unicast−eu

unicast−usw

vSkyConf−eu

vSkyConf−usw

Figure 7: End-to-end delay at the Hong Kong user.

and scale of multi-party mobile video conferencing. We employ
a virtual machine in a cloud infrastructure as the proxy for each
mobile user, to send and to receive conferencing streams, and to
transcode the streams into proper formats/rates. We design a fully
decentralized, efficient algorithm to decide the best paths of stream
dissemination and the most suitable surrogates for video transcod-
ing along the paths, and tailor a buffering mechanism on each sur-
rogate to cooperate with efficient stream distribution. We have im-
plemented the vSkyConf prototype on Amazon EC2 and verified its
excellent performance. In our ongoing work, we are implementing
vSkyConf on real mobile devices and evaluating its performance
under more dynamic settings.

7. ACKNOWLEDGMENTS
The research was supported in part by a grant from Hong Kong

RGC under the contract HKU 717812E.

8. REFERENCES
[1] Survey on mobile video conferencing apps,

http://culiuliu.net/videoconf/survey.html.
[2] X. Chen, M. Chen, B. Li, Y. Zhao, Y. Wu, and J. Li. Celerity:

a low-delay multi-party conferencing solution. In
Proceedings of the 19th ACM international conference on
Multimedia, New York, NY, USA, 2011.

[3] Y. Feng, B. Li, and B. Li. Airlift: Video conferencing as a
cloud service using inter-datacenter networks bibtex. In
Proceedings of IEEE ICNP, 2012.

[4] Z. Huang, C. Mei, L. E. Li, and T. Woo. Cloudstream:
Delivering high-quality streaming videos through a
cloud-based svc proxy. In Proceedings of INFOCOM, 2011.

[5] M. J. Karam and F. A. Tobagi. Analysis of delay and delay
jitter of voice traffic in the internet. Computer Networks,
40(6):711–726, Dec. 2002.

[6] Z. Li, B. Li, D. Jiang, and L. C. Lau. On achieving optimal
throughput with network coding. In Proceedings of IEEE
INFOCOM, 2005.

[7] C. Liang, M. Zhao, and Y. Liu. Optimal bandwidth sharing in
multiswarm multiparty p2p video-conferencing systems.
IEEE/ACM Trans. Netw., 19(6):1704–1716, 2011.

[8] J. L. Ozer. Video Compression for Flash, Apple Devices and
HTML5. Doceo Publishing, USA, 2011.

[9] M. Ponec, S. Sengupta, M. Chen, J. Li, and P. A. Chou.
Optimizing multi-rate peer-to-peer video conferencing
applications. IEEE Transactions on Multimedia, 2011.

[10] Y. Wu, C. Wu, B. Li, and F. C. Lau. vSkyConf:
Cloud-assisted Multi-party Mobile Video Conferencing.
Technical report, http://arxiv.org/abs/1303.6076.

[11] E. R. Ziegel. Probability and Statistics for Engineering and
the Sciences (8th Ed.), by Jay L. Devore. American
Statistical Association, eight edition, 2012.

38

