709 research outputs found

    An Investigation into the Performance Evaluation of Connected Vehicle Applications: From Real-World Experiment to Parallel Simulation Paradigm

    Get PDF
    A novel system was developed that provides drivers lane merge advisories, using vehicle trajectories obtained through Dedicated Short Range Communication (DSRC). It was successfully tested on a freeway using three vehicles, then targeted for further testing, via simulation. The failure of contemporary simulators to effectively model large, complex urban transportation networks then motivated further research into distributed and parallel traffic simulation. An architecture for a closed-loop, parallel simulator was devised, using a new algorithm that accounts for boundary nodes, traffic signals, intersections, road lengths, traffic density, and counts of lanes; it partitions a sample, Tennessee road network more efficiently than tools like METIS, which increase interprocess communications (IPC) overhead by partitioning more transportation corridors. The simulator uses logarithmic accumulation to synchronize parallel simulations, further reducing IPC. Analyses suggest this eliminates up to one-third of IPC overhead incurred by a linear accumulation model

    Integrated Special Event Traffic Management Strategies in Urban Transportation Network

    Get PDF
    How to effectively optimize and control spreading traffic in urban network during the special event has emerged as one of the critical issues faced by many transportation professionals in the past several decades due to the surging demand and the often limited network capacity. The contribution of this dissertation is to develop a set of integrated mathematical programming models for unconventional traffic management of special events in urban transportation network. Traffic management strategies such as lane reorganization and reversal, turning restriction, lane-based signal timing, ramp closure, and uninterrupted flow intersection will be coordinated and concurrently optimized for best overall system performance. Considering the complexity of the proposed formulations and the concerns of computing efficiency, this study has also developed efficient solution heuristics that can yield sufficiently reliable solutions for real-world application. Case studies and extensive numerical analyses results validate the effectiveness and applicability of the proposed models

    New Framework and Decision Support Tool to Warrant Detour Operations During Freeway Corridor Incident Management

    Get PDF
    As reported in the literature, the mobility and reliability of the highway systems in the United States have been significantly undermined by traffic delays on freeway corridors due to non-recurrent traffic congestion. Many of those delays are caused by the reduced capacity and overwhelming demand on critical metropolitan corridors coupled with long incident durations. In most scenarios, if proper detour strategies could be implemented in time, motorists could circumvent the congested segments by detouring through parallel arterials, which will significantly improve the mobility of all vehicles in the corridor system. Nevertheless, prior to implementation of any detour strategy, traffic managers need a set of well-justified warrants, as implementing detour operations usually demand substantial amount of resources and manpower. To contend with the aforementioned issues, this study is focused on developing a new multi-criteria framework along with an advanced and computation-friendly tool for traffic managers to decide whether or not and when to implement corridor detour operations. The expected contributions of this study are: * Proposing a well-calibrated corridor simulation network and a comprehensive set of experimental scenarios to take into account many potential affecting factors on traffic manager\u27s decision making process and ensure the effectiveness of the proposed detour warrant tool; * Developing detour decision models, including a two-choice model and a multi-choice model, based on generated optima detour traffic flow rates for each scenario from a diversion control model to allow responsible traffic managers to make best detour decisions during real-time incident management; and * Estimating the resulting benefits for comparison with the operational costs using the output from the diversion control model to further validate the developed detour decision model from the overall societal perspective

    Parallel implementation of the TRANSIMS micro-simulation

    Full text link
    This paper describes the parallel implementation of the TRANSIMS traffic micro-simulation. The parallelization method is domain decomposition, which means that each CPU of the parallel computer is responsible for a different geographical area of the simulated region. We describe how information between domains is exchanged, and how the transportation network graph is partitioned. An adaptive scheme is used to optimize load balancing. We then demonstrate how computing speeds of our parallel micro-simulations can be systematically predicted once the scenario and the computer architecture are known. This makes it possible, for example, to decide if a certain study is feasible with a certain computing budget, and how to invest that budget. The main ingredients of the prediction are knowledge about the parallel implementation of the micro-simulation, knowledge about the characteristics of the partitioning of the transportation network graph, and knowledge about the interaction of these quantities with the computer system. In particular, we investigate the differences between switched and non-switched topologies, and the effects of 10 Mbit, 100 Mbit, and Gbit Ethernet. keywords: Traffic simulation, parallel computing, transportation planning, TRANSIM

    Fully automated urban traffic system

    Get PDF
    The replacement of the driver with an automatic system which could perform the functions of guiding and routing a vehicle with a human's capability of responding to changing traffic demands was discussed. The problem was divided into four technological areas; guidance, routing, computing, and communications. It was determined that the latter three areas being developed independent of any need for fully automated urban traffic. A guidance system that would meet system requirements was not being developed but was technically feasible
    • …
    corecore